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Analytical Solutions for Contaminant Diffusion
in Double-Layered Porous Media

Yu-Chao Li1 and Peter John Cleall2

Abstract: Analytical solutions for conservative solute diffusion in one-dimensional double-layered porous media are presented in this
paper. These solutions are applicable to various combinations of fixed solute concentration and zero-flux boundary conditions �BC�
applied at each end of a finite one-dimensional domain and can consider arbitrary initial solute concentration distributions throughout the
media. Several analytical solutions based on several initial and BCs are presented based on typical contaminant transport problems found
in geoenvironmental engineering including �1� leachate diffusion in a compacted clay liner �CCL� and an underlying stratum; �2�
contaminant removal from soil layers; and �3� contaminant diffusion in a capping layer and underlying contaminated sediments. The
analytical solutions are verified against numerical solutions from a finite-element method based model. Problems related to leachate
transport in a CCL and an underlying stratum of a landfill and contaminant transport through a capping layer over contaminated sediments
are then investigated, and the suitable definition of the average degree of diffusion is considered.
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Introduction

Contaminant transport analysis is undertaken when considering
geoenvironmental problems such as the evaluation and design of
engineered/natural containment barrier systems for waste disposal
and the containment and remediation of existing contaminated
soils �Sharma and Reddy 2004�. In particular, contaminant diffu-
sion analysis in porous media is of great importance in that dif-
fusion often dominates the contaminant transport processes in
engineered barriers, natural containment systems, and geological
soil/rock media �Shackelford and Lee 2005�.

One-dimensional diffusion of solute in a semiinfinite or finite
homogeneous porous medium can be analyzed via use of analyti-
cal solutions for diffusion in solids �Crank 1956; Carslaw and
Jaeger 1959�. Contaminant transport in a system consisting of two
soil layers, whose soil and transport properties are quite different
from each other, is often observed in geoenvironmental engineer-
ing problems. For example, leachate transfer through a compacted
clay liner �CCL� and an underlying stratum in landfills �Rowe
et al. 2004� and contaminant diffusion in capping layers over
contaminated sediments �Palermo et al. 1998b; Lampert and
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Reible 2009� are often considered. These two examples are illus-
trated in Fig. 1. The range of initial and boundary conditions
�BCs� of many solutions is limited and is not suitable for many
practical contaminant diffusion problems. Some work has been
done on solving the diffusion or advection-dispersion equation of
solute transports in two- or multilayered porous media using the
Laplace transform method �Leij et al. 1991; Leij and van Genu-
chten 1995�, the integral transform method �Liu et al. 1998�, and
an approach combining the Laplace transformation method and
binomial theorem �Liu and Ball 1998�. Also, an analytical solu-
tion for contaminant diffusion through multilayered system was
presented by Chen et al. �2009�; however, only scenarios with a
fixed top BC are considered as contaminant diffusion in landfill
liners is the main focus of their work. The form of the solutions
considering multilayered system above �Chen et al. 2009; Leij
et al. 1991; Leij and van Genuchten 1995; Liu and Ball 1998; Liu
et al. 1998� while able to yield valuable insights into the mecha-
nisms occurring is relatively complex and is not readily amenable
to simple implementation.

This paper presents analytical solutions for conservative solute
�in terms of mass� diffusion in one-dimensional double-layered
porous media subjected to arbitrary initial and BCs. The term
“conservative solute” is used here to mean that no loss in mass of
the solute species occurs during transport as opposed to indicating
a nonreactive solute. In fact, the solute is considered to be reac-
tive via consideration of reversible, linear, and instantaneous
sorption by the use of a retardation factor. This work is inspired
by the analogy between Terzaghi’s governing equation for con-
solidation and Fick’s governing equation for diffusion presented
by Shackelford and Lee �2005�. The governing equations of sol-
ute diffusion are solved following the approach of Lee et al.
�1992� and Xie �1994� who considered consolidation in double-
layered soils. The novelty of the solutions presented herein is both
in terms of the simplicity of the solutions relative to Laplace
transform approaches and the wider range of BCs that are consid-

ered. In contrast to Chen et al. �2009�, the number of layers is
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restricted to 2; this restriction has the advantage of the resulting
eigenvalued function being considerably less complex. Several
analytical solutions subjected to a series of initial and BCs are
presented based on typical contaminant transport problems found
in geoenvironmental engineering. The analytical solutions are
verified against numerical solutions by consideration of a hypo-
thetical diffusion problem in a double-layered system and applied
to analyze both leachate transport in a CCL of a landfill and an
underlying stratum and contaminant transport in capped contami-
nated sediments.

Theory

Problem Formulation

A porous medium consisting of two individual homogeneous lay-
ers is considered, as illustrated in Fig. 2. A coordinate system �z�,
whose positive direction is downward, is adopted, and the top of
the upper layer is chosen as the origin of z. Each layer has its own
constant effective diffusion coefficient �Di

��, retardation factor
�Rdi�, and porosity �ni�. The subscript i represents the layer with
i=1 corresponding to the upper layer and i=2 to the lower layer.

Fig. 1. Examples of contaminant diffusion in double-layered soils:
�a� contaminant transport in a compacted clay landfill liner and an
underlying stratum; �b� contaminant diffusion through a capping
layer over contaminated sediments

Fig. 2. Schematic representation of generalized domain for solute
diffusion in a double-layered porous medium

Table 1. BCs for Double-Layered Systems Considered

Boundary Fixed concentrat

Top of layered system c1 �z=0

Bottom of layered system c2 �z=H
JOURNAL OF GEOTECHNICAL AND GEOE
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The thicknesses of the upper layer and the lower layer are h1 and
h2, respectively, and the total thickness H is h1+h2.

The effective diffusion coefficient is defined as the product of
the apparent tortuosity factor �a and the aqueous diffusion coef-
ficient for the solutes D0, i.e., D�=�aD0 �Freeze and Cherry 1979;
Shackelford and Daniel 1991�. A linear reversible sorption iso-
therm �Freeze and Cherry 1979� is considered such that the retar-
dation factor can be written as Rdi=1+�iKdi /ni, where �i=bulk
dry density of soil and Kdi=distribution coefficient. The govern-
ing equation of solute diffusion in each layer �Shackelford and
Daniel 1991� can be expressed as follows:

Rdi

�ci

�t
= Di

��2ci

�z2 �i = 1,2� �1�

where t represents time and ci=solute concentration in the pore
water of the ith layer.

The initial condition for the problem considered can be ex-
pressed as

ci�t=0 = ci,t=0�z� �i = 1,2� �2�

where ci,t=0�z�=arbitrary function for the initial solute concentra-
tion distribution in the ith soil layer. Several combinations of BCs
are considered, as shown in Table 1, where cz=0�t� and cz=H�t�
=time-dependent functions for the boundary solute concentration
at the top and bottom, respectively.

Solute concentration continuity and flux continuity are satis-
fied at the interface between layers as follows:

c1�z=h1
= c2�z=h1

�3a�

�n1D1
��c1

�z
�

z=h1

= �n2D2
��c2

�z
�

z=h1

�3b�

Following Shackelford and Lee �2005�, the relative amount of
solute removed or gained in the two layers at any elapsed time
can be represented by the average degree of diffusion, Uc�t�, as

Uc�t� =
M�0� − M�t�
M�0� − M���

�4�

where M�t�=solute mass per unit area within the double-layered
system at time t and can be expressed by

M�t� = n1Rd1�
0

h1

c1�z,t�dz + n2Rd2�
h1

H

c2�z,t�dz �5�

The definition of the average degree of diffusion in Eq. �4� is
similar to the average degree of consolidation in Terzaghi’s theory
of consolidation �Terzaghi 1943�. However, the solute mass in
soil, rather than the solute mass in pore water as used by Chen
et al. �2009�, is considered in Eq. �4�. This difference in definition
of average degree of diffusion is discussed later in the “Applica-
tions” section.

The diffusive solute mass flux in soil, Jc, can be written in
accordance with Fick’s first law for diffusion in soil as follows
�Shackelford 1991; Shackelford and Lee 2005�:

irichlet� BC Zero-flux �von Neumann� BC

� �c1 /�z �z=0=0

t� �c2 /�z �z=H=0
ion �D

=cz=0�t
=cz=H�
NVIRONMENTAL ENGINEERING © ASCE / NOVEMBER 2010 / 1543
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Jc�z,t� = − niDi
��ci�z,t�

�z
�6�

Therefore, Jc may be obtained at any spatial or temporal location
via substitution of the spatial derivative of the solute concentra-
tion from the analytical solution.

Analytical Solutions

Analytical solutions for the governing equations, i.e., Eq. �1�,
subjected to the initial condition, i.e., Eq. �2�, and the BCs in
Table 1 and Eq. �3� are presented in this section. These are devel-
oped following the approach proposed by Lee et al. �1992� and
Xie �1994� who considered the problem of linear elastic small-
strain consolidation in double-layered soils. Although Fick’s gov-
erning equation for diffusion is analogous to Terzaghi’s governing
equation for consolidation �Shackelford and Lee 2005�, the flux
continuity condition at the interface of layers is different from that
of consolidation as a result of both its porosity dependence, i.e.,
Eq. �3b�, and being based on Fick’s first law for diffusion versus
Darcy’s law for consolidation.

The following dimensionless parameters for the soil and trans-
port properties are defined to simplify the formulations of the
solutions:

� =
D2

�

D1
�

; � =
Rd2

Rd1
; � =

n2

n1
; � =

h2

h1
�7�

Fixed Surface - Zero-Flux Base Scenario
A scenario with a fixed, time-dependent concentration BC at the
top and a zero-flux BC at the bottom �i.e., fixed surface - zero-flux
base scenario�, as given in Table 1, is considered in this section. A
solution for consolidation of a clay layer with free-draining BCs
at both the top and bottom boundaries can be expressed as the
sum of an infinite series of the product of a coefficient, a sinu-
soidal function, and an exponential function, representing the ini-
tial excess pore water pressure, depth, and elapsed time,
respectively �Terzaghi 1943�. Following the form of the solutions
for such consolidation problems presented by Terzaghi �1943�
and Lee et al. �1992�, the solution for the scenario considered can
be written as follows:

ci�z,t� = cz=0�t� + �
m=1

�

�Bm + CmSm�t��gmi�z�exp�− �mt� �8a�

gm1�z� = sin	�m

z

h1

 �8b�

gm2�z� = Am cos		�m

H − z

h1

 �8c�

where Am, Bm, Cm, �m, �m, and 	=coefficients to be determined
and Sm�t�=function with respect to time t and to be determined
�which is introduced due to the term of the time-dependent con-
centration BC at the top, i.e., cz=0�t��. Note that the function
Sm�t�=0 if the fixed concentration BC is time independent.

The types of the trigonometric functions in Eqs. �8b� and �8c�
are chosen according to the BCs applied at the top and the bottom
of the system, respectively, with a sine function chosen for the
fixed BC and a cosine function chosen for zero-flux BCs. The
value of the series function term in Eq. �8a� equals to zero at the

top �that is, z=0� using Eq. �8b� and the value of the term of the
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series function’s derivative with respect to z in Eq. �8a� equals to
zero at the bottom �that is, z=H� using Eq. �8c�. Consequently,
the BCs at both the top and the bottom for the scenario considered
here can be satisfied by the solution form of Eqs. �8a�–�8c�.

Substitution of Eqs. �8a�–�8c� into Eqs. �3a� and �3b�, i.e., to
consider continuity at the interface between the layers, yields

Am = sin �m/cos�	��m� �9�

��	 sin �m sin�	��m� − cos �m cos�	��m� = 0 �10�

where Eq. �10� =eigenvalued function of �m. Further substitution
of Eqs. �8a� and �8b� into Eq. �1�, to consider the solute diffusion
within the upper layer, yields

�m =
D1

�

Rd1

�m
2

h1
2 �11�

Sm�t� =�
0

t dcz=0���
d�

exp��m��d� �12�

�
m=1

�

Cmgm1 = − 1 �13�

Similarly, substitution of Eqs. �8a� and �8c� into Eq. �1�, to con-
sider the solute diffusion within the lower layer, yields

	 = ��/� �14�

�
m=1

�

Cmgm2 = − 1 �15�

Finally, substitution of Eqs. �8a�–�8c� into Eq. �2�, to consider the
initial conditions, yields

ci,z=0�0� + �
m=1

�

Bmgmi�z� = ci,t=0�z� �i = 1,2� �16�

Using the following orthogonal relations:

�
0

h1

gm1�z�gn1�z�dz + ���
h1

H

gm2�z�gn2�z�dz

= � 0 m � n

1

2
h1�1 + ���Am

2 � m = n 
 �17�

the following formulations for Bm and Cm based on Eqs. �13� and
�15�–�17� can be obtained:

Bm = 2

�
0

h1

c1,t=0�z�gm1�z�dz + ���
h1

H

c2,t=0�z�gm2�z�dz

h1�1 + ���Am
2 �

− cz=0�0�
2

�m�1 + ���Am
2 �

�18�

Cm = −
2

�m�1 + ���Am
2 �

�19�

The integral terms in Eq. �18� can be written explicitly if the
initial concentration function, ci,t=0�z�, has a simple form, such as
a unique function; otherwise numerical integration techniques

�Chapra and Canale 2006� can be employed to solve the integral.
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The analytical solution presented in this section is summarized in
Table 2 as Scenario 2.

Other Boundary Scenarios
Three other scenarios can be considered based on the other pos-
sible combinations of different BCs at the top and the bottom of
the system, as indicated in Table 2. Similar solutions to that for
the fixed surface and zero-flux base scenario can be established
for these three scenarios and are also detailed in Table 2. Sine
functions again are adopted in the expressions of gm1�z� and
gm2�z� for the fixed concentration BC, whereas cosine functions
are adopted for the zero-flux BCs. The unknown coefficients and
functions can be obtained following the procedure presented for
the fixed surface-zero-flux base scenario and are also listed in
Table 2.

The dichotomy technique, recommended by Xie �1994�, is
adopted to solve the type of eigenvalue function of �m presented
in the analytical solutions. However, simple formulations of �m

can be obtained if ��	=1, that is, ����=1, as follows:

�m = �
m


1 + 	�
�Scenarios 1 and 4�

�2m − 1�

2�1 + 	��

�Scenarios 2 and 3� 
 �20�

With various combinations of initial and BCs, the analytical so-
lutions presented above can be utilized to analyze many typical
cases for solute diffusion problems existing in geoenvironmental
engineering. A number of possible cases are considered herein,
and the solutions are listed in Table 3. These solutions can be used
to consider the following solute transport problems:
1. Leachate diffusion in a CCL and an underlying stratum

�Cases A and D�;
2. Contaminant removal from soil layers �Cases B and E�; and
3. Contaminant diffusion in a capping layer and underlying

contaminated sediments �Cases C, F, and G�.
A constant, fixed concentration BC is included in Cases A–F,

which enables the analytical solutions to have a simple form,
compared to those for the general scenarios, as listed in Table 2.
The formulations of average degree of diffusion for the cases
considered are also given in Table 3. Nonstandard cases, includ-
ing time-dependent BCs and complex initial conditions, may be
analyzed on the basis of superposition �Taylor 1948; Shackelford
and Lee 2005�.

In this paper, convergence of determination of the series func-
tions in the formulations for the solute concentration and the av-
erage degree of diffusion is regarded to have been achieved when
the value of the final series term considered is less than 1�10−8.
Based on an investigation of the solutions presented herein, sat-
isfaction of this criterion usually requires less than 30 series terms
for an accurate solution.

Verification

The analytical solutions herein are verified via consideration of a
hypothetical diffusion problem in a double-layered system. The
results obtained from the analytical solutions are compared with
those from a numerical solution using the finite-element method
�Cleall et al. 2007; Seetharam et al. 2007�.

The two layers are defined to initially have zero solute con-
centrations. The solute concentration is assumed to be constant at

the boundaries, with a value of c0 at the top boundary and a zero

JOURNAL OF GEOTECHNICAL AND GEOE
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concentration at the bottom boundary, corresponding to Case A in
Table 3. The soil and transport properties for the upper layer are
assumed as D1

�=5�10−10 m2 /s, Rd1=2.0, and n1=0.4. A number
of analyses have been undertaken with varying values of �, �, �,
�, and H to illustrate the uniqueness of the solutions and results of
these analyses follow.

First, three series of analyses are performed, all with H
=1.0 m and �=1, where the value of one of the parameters given
by Eq. �7� is varied while the other parameters are maintained at
unity. Calculated solute concentration profiles at 10 years for
these three series of analyses are shown in Figs. 3�a–c�, respec-
tively, together with those obtained by the numerical approach.
The impact of the variation in the effective diffusion coefficients
and the porosities between the two layers can be clearly seen with
a distinct change in the concentration gradient �i.e., shape of con-
centration profile� at the interface from Figs. 3�a and c�. This
result is due to the fact that the interface BCs applied are depen-
dent on the effective diffusion coefficients and the porosities �see
Eq. �3b��. Such concentration gradient changes are not apparent in
Fig. 3�b� because the continuity in mass flux at the interface is
independent of retardation.

Solute concentration profiles at 2, 5, 10, and 20 years and for
the long term, for a case having �=�=�=0.5, �=1, and H
=1.0 m, are presented in Fig. 3�d�, and the solute penetration
process can be seen clearly. The impact of the variation in effec-
tive diffusion coefficients and the porosities between the two lay-
ers can be seen at the interface in all but the 2-year profile
because, at that short elapsed time, the solute has not yet reached
the interface in any significant quanity.

Finally, a series of cases with �=�=�=0.5 and varying total
thicknesses �i.e., H=0.5,1.0,2.0 m� and different values of the
ratios of thickness for the lower layer relative to the upper layer
�i.e., �=1 /3,1 ,3� are then considered, and the calculated results
at 10 years are shown in Fig. 4. Comparison of the solute con-
centration at the same relative depth in the lower layer shows the
impact of a thicker upper layer leading to significantly lower val-
ues of solute concentration with increasing total thickness �i.e.,
H�. This result is due to the increased time required to penetrate
through a thicker upper layer. Overall, the results of the verifica-
tion analysis indicate that the analytical simulations are in excel-
lent agreement with the numerical simulations.

Applications

In this section, the analytical solutions presented in this paper are
applied to analyze first leachate diffusion in a CCL and an under-
lying stratum of a landfill and, second, contaminant diffusion
within a capping layer and an underlying contaminated sediment
layer.

Leachate Diffusion in a CCL and an Underlying
Stratum

CCLs typically have thicknesses of between 0.6 and 1.8 m �Ben-
son and Daniel 1994� and a thickness of 0.9 m is considered
herein. The soil and transport properties for the CCL considered
are adopted from those presented by Lewis et al. �2009� and are
listed in Table 4 together with those for the underlying stratum. A
retardation factor of Rd=3.3 is adopted for the CCL following the
values presented by Foose et al. �1999� for a similar material. The
thickness of the underlying stratum is assumed as 1.1 m. The

leachate concentration is assumed to be constant with a value of
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Dm , Sm , Tm

m�
�dz+���h1

H c2,t=0�z�gm2�z�dz

− 1� + cz=H�0�
h1

�m
���� sin �m�cot�	��m�

�/��� + ����cos �m − 	� sin �m cot�	��m��
2��1 + ���Am

2 �

1�z�dz + ���
h1

H

��1 + � − z/h1�/��� + ���gm2�z�dz

/2��1 + ���Am
2 �

�dz + ���
h1

H

���� + �z/h1 − 1��/��� + ���gm2�z�dz

�h1/2��1 + ���Am
2 �

xp��m��d�

xp��m��d�

m�

1�z�dz + ���
h1

H

c2,t=0�z�gm2�z�dz

h1/2��1 + ���Am
2 �

2

���Am
2 �

m
2 �

xp��m��d�
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Table 2. Analytical Solutions for Contaminant Diffusion in Double-Layered Soils, Scenarios with Various Combinations of BCs

Scenario
Boundary
conditions ci �m Am , Bm , Cm ,

1 c1 �z=0=cz=0�t�
c2 �z=H=cz=H�t� c1 = f1�z,t� + �

m=1

�

�Bm + CmSm�t� + DmTm�t��gm1�z�exp�− �mt�

f1�z,t� = cz=0�t�
���1 − z/h1� + �

�� + �
+ cz=H�t�

��z/h1

�� + �

gm1�z� = sin	�m
z

h1



c2 = f2�z,t� + �
m=1

�

�Bm + CmSm�t� + DmTm�t��gm2�z�exp�− �mt�

f2�z,t� = cz=0�t�
1 + � − z/h1

�� + �
+ cz=H�t�

�� + �z/h1 − 1�
�� + �

gm2�z� = Am sin		�m
H − z

h1



��	 sin �m cos�	��m�
+cos �m sin�	��m�=0

Am=sin �m /sin�	��

Bm=�0
h1c1,t=0�z�gm1�z

+ cz=0�0�
h1

�m
�cos �m

− csc�	��m��
+ �− cz=0�0� + cz=H�0���h1/�m���

�h1/
Cm =

−

�
0

h1

������1 − z/h1� + ��/��� + ���gm

�h1

Dm =

−

�
0

h1

����z/h1�/��� + ���gm1�z

Sm�t� =�
0

t
dcz=0���

d�
e

Tm�t� =�
0

t
dcz=H���

d�
e

2 c1 �z=0=cz=0�t�

� �c2

�z
�

z=H

= 0
ci = cz=0�t� + �

m=1

�

�Bm + CmSm�t��gmi�z�exp�− �mt�

gm1�z� = sin	�m
z

h1



gm2�z� = Am cos		�m
H − z

h1



��	 sin �m sin�	��m�
−cos �m cos�	��m�=0

Am=sin �m /cos�	��

Bm =

�
0

h1

c1,t=0�z�gm

�

− cz=0�0�
�m�1 +

Cm = −
2

�m�1 + ���A

Sm�t� =�
0

t
dcz=0���

d�
e
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2 �

Dm = −
2����Am
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2 �

� =�
0

t
dcz=H���

d�
exp��m��d�
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H
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Table 2. �Continued.�

Scenario
Boundary
conditions ci �m Am

3 ��c1

�z
�

z=0

= 0

c2 �z=H=cz=H�t�
ci = cz=H�t� + �

m=1

�

�Bm + DmTm�t��gmi�z�exp�− �mt�

gm1�z� = cos	�m
z

h1



gm2�z� = Am sin		�m
H − z

h1



sin �m sin�	��m�
−��	 cos �m cos�	��m�=0

Am=cos �m /sin�	��m�

Bm =

�
0

h1

c1,t=0�z�gm1�z�dz +

�h1/2��1

Tm�t

4 � �c1

�z
�

z=0

= 0

� �c2

�z
�

z=H

= 0 ci =

�
0

h1

ct=0�z�dz + ���
h1

H

ct=0�z�dz

h1 + ��h2
+ �

m=1

�

Bmgmi�z�

exp�− �mt�

gm1�z� = cos	�m
z

h1



gm2�z� = Am cos		�m
H − z

h1



sin �m cos�	��m�
+��	 cos �m sin�	��m�=0

Am=cos �m /cos�	��m�

Bm =

�
0

h1

c1,t=0

−

�
0

h1

c1,t=0�z�dz + ���
h1

H

h1 + ��h2

Note:	=�� /�; �m= �D1
� /Rd1� ��m

2 /h1
2�.
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�
m=1

�

��1 − cos �m� + ���Am/	��1 − cos�	��m����Bm/�m�exp�− �mt�

�c0/��� + ����� + ���/2� + ���2�/2��

�
m=1

�

��1 − cos �m� + ���Am/	��1 − cos�	��m����Bm/�m�exp�− �mt�

�1 + ����c0

�
m=1

�

��1 − cos �m� + ���Am/	��1 − cos�	��m����Bm/�m�exp�− �mt�

���c0

�
m=1

�

��1 − cos �m� + ���Am/	�sin�	��m���Bm/�m�exp�− �mt�

�1 + ����c0

�
m=1

�

��1 − cos �m� + ���Am/	�sin�	��m���Bm/�m�exp�− �mt�

�1 + ����c0
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Table 3. Analytical Solutions for Contaminant Diffusion in Double-Layered Soils with Particular Initial and BCs

Case Initial Boundary ci�z , t� �m , Am Bm

A c1 �t=0=0
c2 �t=0=0

c1 �z=0=c0
c2 �z=H=0 c1 = c0

���1 − z/h1� + �

�� + �

+ �
m=1

�

Bm sin	�m
z

h1

exp�− �mt�

c2 = c0
1 + � − z/h1

�� + �

+ �
m=1

�

AmBm sin		�m
H − z

h1

exp�− �mt�

��	 sin �m cos�	��m�
+cos �m sin�	��m�=0
Am=sin �m /sin�	��m�

c0
��m cos �m − ��m − ���m + 	����m sin �m cot�	��m�

�m
2 ��� + ���1 + ���Am

2 �/2

1 +

B c1 �t=0=c0
c2 �t=0=c0

c1 �z=0=0
c2 �z=H=0

c1 = �
m=1

�

Bm sin	�m
z

h1

exp�− �mt�

c2 = �
m=1

�

AmBm sin		�m
H − z

h1

exp�− �mt�

As above
c0

1 + ����Am

�m�1 + ���Am
2 �/2

1 −

C c1 �t=0=0
c2 �t=0=c0

As above As above As above
c0

����Am�1 − cos�	��m��
�m�1 + ���Am

2 �/2

1 −

D c1 �t=0=0
c2 �t=0=0

c1 �z=0=c0
�dc2 / dz �z=H=0

c1 = c0 + �
m=1

�

Bm sin	�m
z

h1

exp�− �mt�

c2 = c0 + �
m=1

�

AmBm cos		�m
H − z

h1

exp�− �mt�

��	 sin �m sin�	��m�
−cos �m cos�	��m�=0
Am=sin �m /cos�	��m�

−
2c0

�m�1 + ���Am
2 �

1 +

E c1 �t=0=c0
c2 �t=0=c0

c1 �z=0=0
�dc2 / dz �z=H=0

c1 = �
m=1

�

Bm sin	�m
z

h1

exp�− �mt�

c2 = �
m=1

�

AmBm cos		�m
H − z

h1

exp�− �mt�

As above 2c0

�m�1 + ���Am
2 �

1 −
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Table 3. �Continued.�

Case Initial Boundary ci�z , t� �m , Am Bm

F c1 �t=0=0

c2 �t=0=c0

As above As above As above
c0

����Am sin�	��m�
�m�1 + ���Am

2 �/2

1 −

G c1 �t=0=0

c2 �t=0=c0
�dc1

dz
�

z=0

= 0

�dc2

dz
�

z=H

= 0

c1 = c0
���

1 + ���
+ �

m=1

�

Bm cos	�m
z

h1

exp�

− �mt�

c2 = c0
���

1 + ���
+ �

m=1

�

AmBm cos		�m
H − z

h1



exp�− �mt�

sin �m cos�	��m�
+��	 cos �m sin�	��m�=0

Am

=cos �m /cos�	��m�

c0
− ��� sin �m + ����Am sin�	��m�

�m�1 + �����1 + ���Am
2 �/2

Note:	=�� /�; �m= �D1
� /Rd1� ��m

2 /h1
2�.
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c0 at the top boundary and a zero concentration at the bottom
boundary. This bottom BC is often considered appropriate if a
confined aquifer is present below the base of the stratum, such
that lateral flow through the aquifer immediately removes any
contaminant mass flux entering the aquifer.

The solution for Case A in Table 3 is adopted to analyze
leachate diffusion in the CCL and the underlying stratum accord-
ing to the initial and BCs considered, and the calculated leachate
concentration profiles at elapsed times of 2, 5, 10, 20, 50, and 100
years and steady state �t=�� are shown in Fig. 5�a�. Almost no
leachate enters the underlying stratum before 10 years, and the
concentration gradient in this layer is still relatively low after 50
years, with steady-state conditions not being achieved even after
100 years.

As shown in Fig. 5�b�, the outlet leachate flux at the bottom
�H=2.0 m�, which is calculated using Eq. �6�, remains close to
zero during the first 40 years, and at 100 years is less than 30% of
the maximum occurring after 700 years. However, without a
CCL, a significant outlet leachate flux occurs at the base after 10
years, and after 100 years reaches 85% of the maximum occurring
after 200 years. Also, nearly 10 years is required for the leachate
to penetrate the CCL, as the flux at the interface remains low

Fig. 3. Calculated solute concentration profile
during that period. The flux at the interface has a peak value at

1550 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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100 years and then drops slowly to a value being equal to that of
the long-term outlet flux at the bottom, which demonstrates a
mass balance for the underlying stratum after the steady-state
condition is achieved.

The calculated average degrees of diffusion are also shown in
Fig. 5�b� with shapes similar to those of average degrees of con-
solidation �Terzaghi 1943; Lee et al. 1992; Xie 1994� due to the
analogy between diffusion and consolidation �Shackelford and
Lee 2005�. The system with a CCL has a lower average degree of
diffusion than the system without a CCL due to the barrier effect
of the CCL. For instance, the average degree of diffusion for the
system with CCL is 0.23 at 10 years, which is less than 60% of
that for the system without a CCL. Consequently, based on the
concentration profiles, outlet fluxes, and average degrees of dif-
fusion, the CCL effectively reduces leachate diffusion through the
system, as expected.

Contaminant Diffusion within a Capping Layer and an
Underlying Contaminated Sediment Layer

The capped contaminated sediment problem considered herein is
based on the problem considered by Thoma et al. �1993�. A 1.5-

varied �, �, v, and t for verification problem
s with
m-thick sediment is contaminated by trichloropropane �TCP� and
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covered by a 0.7-m-thick balsam sand capping layer to impede
the TCP from dispersing into the surface water. The soil and
transport properties considered for these two layers are as defined
by Thoma et al. �1993� and are summarized in Table 5. The initial
concentration of TCP is 150 mg/L for the sediment �cs �t=0

Fig. 4. Calculated solute concentration profiles with varied � and H
for verification problem
=150 mg /L� and zero for the capping layer. A zero-flux BC is

JOURNAL OF GEOTECHNICAL AND GEOE

J. Geotech. Geoenviron. Eng.
imposed at the bottom of the sediment layer, and the concentra-
tion is fixed at zero at the top of the capping layer to model the
washing effect of the surface water. This scenario matches Case F
previously defined in Table 3.

The resulting TCP concentration distributions in both the cap-
ping layer and the sediment layer at different elapsed times are
shown in Fig. 6�a�. In order to evaluate the impact of the capping
layer on containment, a scenario without the capping layer is also
considered and can be analyzed by the solution for Case E in
Table 3 or the analytical solution presented by Carslaw and Jaeger
�1959� and Shackelford and Lee �2005�. In this analysis the sedi-
ment layer is arbitrarily separated into 0.5- and 1.0-m-thick lay-
ers, and the soil and transport properties of the sediment are set
for both of the two layers. The concentration profiles for the sce-
nario without the capping layer are shown in Fig. 6�b�. Based on

Table 4. Soil and Transport Properties for CCL and Underlying Stratum

Property �unit� CCLa Underlying stratum

D� �m2 /s� 4�10−10 1�10−10

Rd 3.3 1.0

n 0.444 0.375

h �m� 0.9 1.1
aFrom Lewis et al. �2009� and Foose et al. �1999�.

Fig. 5. Calculated leachate concentration profiles, average degree of
diffusion, and leachate flux for diffusion in the CCL and the under-
lying stratum of a landfill

Table 5. Soil and Transport Properties for Capping Layer and Contami-
nated Sediment �Thoma et al. 1993�

Property �unit� Capping material Sediment

D� �m2 /s� 9.8�10−10 9.4�10−10

Rd 4.94 43.3

n 0.38 0.45

h �m� 0.7 1.5
NVIRONMENTAL ENGINEERING © ASCE / NOVEMBER 2010 / 1551

 2010.136:1542-1554.



D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

C
ar

di
ff

 U
ni

ve
rs

ity
 o

n 
02

/2
5/

14
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.
comparison of the concentration profiles after 10 years, less TCP
has been removed from the sediment for the scenario with the
capping layer, as expected.

Fig. 6. Calculated TCP concentration profiles at different times for
diffusion in �a� capped contaminated sediment; �b� uncapped con-
taminated sediment
capped contaminated sediment problem considered here. An in-

1552 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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This observation can be observed more clearly in Fig. 7, where
the average degree of diffusion, Uc, for both the scenarios �with
and without the cap� versus time is presented. For the scenario
with a capping layer Uc is close to zero corresponding to almost
no TCP diffusion into water for the first 10 years and only 3.7%
of TCP has diffused into water after 100 years. However, values
for Uc of 6.2 and 20% within the first 10 and 100 years, respec-
tively, result for the scenario without the capping layer.

For the scenarios considered above, the rate of TCP diffusion
into the water is quite low, and more than 1,000 years are required
to reach an average degree of diffusion of 90%. This result is to a
large extent caused by the high retardation factor of the sediment.
To assess the impact of the retardation factor on the system, an
additional analysis was performed with the retardation factor of
the sediment given a significantly lower value �matching that of
the capping layer�. The resulting calculated average degrees of
diffusion with time are also illustrated in Fig. 7. The rate of TCP
diffusion is considerably greater, with average degrees of diffu-
sion of 22 and 58% after 100 years for the scenarios with and
without the cap, respectively. This result clearly shows that the
retardation factor of porous media is of importance for the rate of
contamination diffusion. The analyses presented herein do not
include the effect of consolidation of both the sediment and un-
derlying uncontaminated layers on the TCP transport which could
result in greater TCP mass flux due to advection �Alshawabkeh
et al. 2005; Arega and Hayter 2008�. However, the analytical
solutions presented in this paper can be regarded as a useful ap-
proach to predict the lower boundary of the rate of contaminant
transport from the sediment.

The definition of average degree of diffusion used in this
paper, i.e., Eq. �4�, represents the relative amount of solute mass
removed or gained in the double layers following the approach of
Shackelford and Lee �2005�. However, another definition based
on solute mass in pore water presented by Chen et al. �2009� can
be written for a double-layer porous medium as follows:
Uc�t� =

�
0

h1

c1�z,0�dz +�
h1

H

c2�z,0�dz −�
0

h1

c1�z,t�dz −�
h1

H

c2�z,t�dz

�
0

h1

c1�z,0�dz +�
h1

H

c2�z,0�dz −�
0

h1

c1�z,��dz −�
h1

H

c2�z,��dz

�21�
Considering Case F, the average degree of diffusion based on Eq.
�21� and solute mass in pore water can then be written as follows:

Uc�t� = 1

−

�
m=1

�

��1 − cos �m� + �Am/	�sin�	e�m���Bm/�m�exp�− �mt�

ec0

�22�

The calculated average degrees of diffusion for both definitions
�i.e., Eqs. �4� and �22�� are plotted versus time in Fig. 8 for the
teresting outcome is that, when based on solute mass in the pore
water, the value of average degree of diffusion is negative in the
first 300 years of the analysis. This is a result of the relatively
high retardation factor of the sediment compared to that of the
capping layer. The solute mass diffusing from the sediment into
the cap leads to a small reduction of solute concentration in the
sediment, but a relatively large increase in solute concentration in
the capping layer. This results in a greater average solute concen-
tration through the double layers than that at the initial state, and
subsequently according to the definition of average degree of dif-
fusion given in Eq. �22� a negative average degree of diffusion
during the early period, which is clearly problematic. However, as

shown in Fig. 8, the average degree of diffusion based on solute
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mass in the soil, as defined by Shackelford and Lee �2005� and
applied in this paper for a two-layered system �i.e., Eq. �4��,
avoids this problem as the total mass of contaminant which is
conserved is considered. Consequently, the average degree of dif-
fusion based on total contaminant mass is more reasonable than
that based on solute mass in the pore water �solute concentration�.

Consideration of Eq. �6� allows the following expression to be
developed to calculate the TCP flux into the water:

Jc�t� = −
n1D1

�

h1
�
m=1

�

�mBm exp�− �mt� �23�

The calculated TCP fluxes into the water for both the scenarios
with and without the capping layer, considering the original retar-
dation factor, are shown in Fig. 9�a�. The maximum flux for the
scenario without the capping layer is more than 200 times greater
than that for the scenario with the capping layer, and this maxi-
mum flux occurs at the start of the analysis and subsequently
decreases with the time. However, the flux for the scenario with
the capping layer is close to zero within the first 3 years as the
capping layer prevents TCP from diffusing directly into the water.
The TCP concentration then increases due to the penetration
through the capping layer, reaching a maximum �i.e., 6.06
�10−8 g /s m2� at the elapsed time of 45 years and decreases
thereafter. Following the definition of breakthrough by Palermo
et al. �1998a�, the flux reaches 5% of its maximum value at the
elapsed time of 4.25 years. These results, when considered with
the average degree of diffusion shown in Fig. 7, clearly demon-
strate the impact of introducing a capping layer to the system both
in terms of timescales and levels of contaminant flux.

Fig. 7. Calculated average degree of diffusion with time for diffusion
in a capped contaminated sediment

Fig. 8. Comparison of different definitions of average degree of dif-
fusion for diffusion in a capped contaminated sediment
JOURNAL OF GEOTECHNICAL AND GEOE
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An analytical solution for diffusion in a finite homogeneous
medium presented by Carslaw and Jaeger �1959� is often em-
ployed to estimate the solute diffusion in the capping layer for
capping contaminated sediment �Thoma et al. 1993; Palermo
et al. 1998a,b�, with an assumption of constant concentration at
the bottom of the capping layer. A similar analytical solution for a
semiinfinite medium with the same BC has also been presented
by Carslaw and Jaeger �1959�. The solute flux from the top sur-
face of the capping, based on these two analytical solutions for
finite and semiinfinite media �Carslaw and Jaeger 1959�, can be
expressed as follows:

Jc�t� =
n1D1

�c0

h1
�1 + 2�

m=1

�

�− 1�m

exp	−
m2
2D1

�t

Rd1h1
2 
� �finite media� �24�

Jc�t� = n1D1
�c0� Rd1


D1
�t

exp	−
Rd1h1

2

4D1
�t

 �semiinfinite media�

�25�

These two alternative solutions can be used to compare the results
of the solutions developed in this paper that consider the contami-
nated sediment layer with those that do not consider the contami-
nated sediment layer.

The calculated TCP fluxes into water using Eqs. �24� and �25�
are illustrated in Fig. 9�b�. The fluxes remain low in the first 3
years, which is in good agreement with the result calculated using
the analytical solution presented in this paper. However, the TCP
flux calculated by the analytical solution for a finite medium �i.e.,
Eq. �24�� then increases rapidly and reaches a peak value at 65

−8 2

Fig. 9. Calculated TCP flux into water with time for diffusion in a
capped contaminated sediment ��a� analytical solution for a finite
medium; �b� analytical solution for a semiinfinite medium�
years of 7.98�10 g /s m , which is 31.7% more than that ob-
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tained by the analytical solution presented in this paper. The flux
then remains at this peak value thereafter as a steady state, linear
solute concentration distribution within the capping has been
reached. The TCP flux calculated by the analytical solution for an
infinite medium �i.e., Eq. �25�� has a peak value of 3.86
�10−8 g /s m2 at 37.5 years, which is 36.3% less than that ob-
tained by the analytical solution presented in this paper and de-
creases slowly thereafter. However, the analytical solution for an
infinite medium overestimates the TCP flux in the long term �after
6,750 years�, as shown in Fig. 9�b�. Consequently, the solute flux
from the capping layer into water may be overestimated by the
analytical solution for a finite medium and underestimated by that
for a semiinfinite medium, i.e., during timescales typically con-
sidered in engineering applications.

Conclusions

Analytical solutions for conservative solute diffusion in one-
dimensional double-layered porous media were presented in this
paper. Solutions were derived for various combinations of fixed
solute concentration and zero-flux BCs at the top and the bottom
and for arbitrary initial solute concentration distributions through-
out the media. Several solutions considering particular initial and
BCs were presented based on typical contaminant transport prob-
lems found in geoenvironmental engineering. These analytical so-
lutions were shown to correlate well with numerical solutions
from a finite-element analysis.

The presented analytical solutions were used to investigate
leachate transport for two typical applications: �1� a CCL from a
landfill with an underlying stratum and �2� contaminant diffusion
within a subaqueous capped contaminated sediment system. An
alternative definition of the average degree of diffusion based on
solute concentration was also considered and found to be less
robust than the definition based on total solute mass adopted in
this paper. Furthermore, for the capped contaminated sediment
application, comparisons with alternative solutions indicated that
consideration of the contaminated sediment layer is necessary to
obtain reasonable estimates of contaminant fluxes from the cap-
ping layer.
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