
Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Modeling the interrelating effects of plastic deformation and stress on magnetic properties of materials
C. C. H. Lo, E. Kinser, and D. C. Jiles

Citation: J. Appl. Phys. 93, 6626 (2003); doi: 10.1063/1.1557356
View online: http://dx.doi.org/10.1063/1.1557356
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v93/i10
Published by the American Institute of Physics.

Related Articles
A comparison between magnetic and reflection loss characteristics of substituted strontium ferrite and nanocomposites of ferrite/carbon nanotubes

Experimental study and theoretical prediction of dielectric permittivity in BaTiO3/polyimide nanocomposite films

High temperature x ray diffraction determination of the body-centered-cubic–face-centered-cubic transformation temperature in (Fe70Ni30)88Zr7B4Cu1 nanocomposites

Nanosized precipitates in half-Heusler TiNiSn alloy

Effect of plasma parameters on growth and field emission properties of spherical carbon nanotube tip
Phys. Plasmas 18, 063503 (2011)

Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/
Journal Information: http://jap.aip.org/about/about_the_journal
Top downloads: http://jap.aip.org/features/most_downloaded
Information for Authors: http://jap.aip.org/authors
Modeling the interrelating effects of plastic deformation and stress on magnetic properties of materials

C. C. H. Lo, E. Kinser, and D. C. Jiles
Center for NDE, Iowa State University, Ames, Iowa 50011

(Presented on 12 November 2002)

A model has been developed that describes the interrelating effects of plastic deformation and applied stress on hysteresis loops based on the theory of ferromagnetic hysteresis. In the current model the strength of pinning sites for domain walls is characterized by the pinning coefficient \(k_{\text{eff}} \) given by \(k_{\text{eff}} = k_0 + k'\sigma \). The term \(k_0 \) depicts pinning of domain walls by dislocations and is proportional to \(\rho^3 \), where \(\rho \) is the number density of dislocation which is related to the amount of plastic strain, and the exponent \(n \) depends on the strength of pinning sites. The second term \(k'\sigma \propto -3/2,\quad m \sigma \), where \(m \) is magnetization and \(\lambda_s \) is magnetostriction constant, describes the changes in pinning strength on a domain wall induced by an applied stress \(\sigma \). The model was capable of reproducing the stress dependence of hysteresis loop properties such as coercivity and remanence of a series of nickel samples which were pre-strained to various plastic strain levels. An empirical relation was found between the parameter \(k_0 \) and the plastic strain, which can be interpreted in terms of the effects on the strength of domain wall pinning of changes in dislocation density and substructure under plastic deformation. © 2003 American Institute of Physics.

[I. INTRODUCTION]

A model description of the effects of plastic deformation and applied stress on hysteresis loop has been developed based on the theory of ferromagnetic hysteresis. It is well established that the magnetic properties of materials such as coercivity and remanence are sensitive to both microstructure and stress state of the materials, and that a material can exhibit different stress dependence of magnetic properties depending on the structural conditions (e.g., hardness) of the material. Several models have been developed to account for the effects of magnetic properties of either applied stresses or microstructure such as dislocation density or grain size. In this work experimental and theoretical studies were performed to investigate the stress dependence of magnetic properties in materials subjected to different amounts of plastic deformation. A model was developed by incorporating the effects of plastic deformation and applied stress on domain wall pinning into the theory of magnetic hysteresis. The extended model was found to be capable of reproducing the stress dependence of the magnetic properties of nickel samples which were pre-strained to various plastic strain levels.

[II. EFFECTS OF MICROSTRUCTURE AND APPLIED STRESS ON DOMAIN WALL PINNING]

The model description of the effects of stress and microstructure on magnetic properties was developed based on the theory of ferromagnetic hysteresis, which provides the basis for linking macroscopic magnetic properties to microscopic magnetization processes such as domain wall motion. According to the theory the energy \(E_{\text{pin}} \) dissipated through pinning and unpinning of a domain wall is proportional to the change in magnetization \(m \) and the pinning coefficient \(k_0 = n_0\langle e_0 \rangle/2m \), where \(n_0 \) is the pinning site density and \(\langle e_0 \rangle \) is the average pinning energy. It has been shown in a previous study that the average pinning energy \(\langle e_0 \rangle \) can be influenced by an applied stress which induces changes in the anisotropy energies of the domains on either side of the domain wall due to the magnetoelastic coupling. This in turn alters the local energy barrier that a domain wall needs to overcome before it moves irreversibly from one pinning site to another. The pinning coefficient \(k_{\text{eff}} \), which characterizes the strength of the pinning site, becomes dependent on the applied stress \(\sigma \) and is given by

\[
k_{\text{eff}} = k_0 + k'\sigma,
\]

where \(k' = -3/2b\lambda_s \), \(b \) is a constant factor, and \(\lambda_s \) is the magnetostriction constant. The first term \(k_0 \) characterizes the strength of domain wall pinning by structural defects such as dislocations. The second term \(k'\sigma \) describes the stress-induced changes in pinning strength on a domain wall, where the factor \(b \) is dependent on the material conditions such as microstructure. According to Eq. (1), \(k_{\text{eff}} \) decreases with tension but increases with compression for materials with positive \(\lambda_s \) (e.g., iron at low field strengths). Such stress dependence of \(k_{\text{eff}} \) has been found in a previous study.

The structural effects can be incorporated into the hysteresis model through the model parameter \(k_0 \). For single-phase magnetic materials the most important microstructural factors affecting magnetic properties are grain size and number density of dislocations, since grain boundaries and dislocations act as pinning sites for domain walls. Empirical relationships between these microstructural features and hysteresis loop properties have been reported in previous studies, and the general consensus is that coercivity \(H_c \) is inversely proportional to grain size and is proportional to...
the square root of dislocation density.10 Since the pinning coefficient is approximately equal to coercivity for soft magnetic materials,11 it is reasonable to assume that \(k_0 \) has the same dependence as \(H_c \) on grain size and dislocation density \(\rho \), i.e.,
\[
 k_0 \propto \rho^{1/2}.
\] (2)

This equation has been adopted in a recent modeling study of the effect of grain size and dislocation density on magnetic properties of steels.7 In this approach, the pinning strength parameter \(k_0 \) can be correlated with the macroscopic material conditions such as the amount of plastic deformation \(\varepsilon \), which is related to the dislocation density. In this case, one can write
\[
 k_0 = a \varepsilon^n,
\] (3)

where \(a \) is a constant factor and \(n \) is the index characterizing how domain wall pinning varies as dislocations multiply and evolve into dislocation substructures under plastic deformation.

III. PROCEDURES

A series of pure nickel samples were first annealed at 500 °C for 2 h. One sample was kept in the annealed condition while the others were pre-strained to various plastic tensile strain levels \(\varepsilon_p \) using a servo-hydraulic mechanical testing system. \textit{In situ} hysteresis loop measurements were made on the pre-strained samples under various tensile stresses within the elastic limits of the samples. During the measurement a 2 Hz sinusoidal magnetizing field was applied to the sample using a solenoid. A Hall effect sensor was used to measure the tangential magnetic field \(H \) at the sample surface. The output of a search coil encircling the sample was integrated to obtain the hysteresis loop.

Using model calculations, hysteresis loops were simulated for various stress levels using the following values for the model parameters: \(M_s = 5.04 \times 10^5 \) A/m, \(c = 0.1 \), \(a = 1300 \) A/m, and \(\alpha = 0.006 \). The values of \(k_{\text{eff}} \) were determined by obtaining the best fit to the experimental hysteresis loops.

IV. RESULTS AND DISCUSSION

It was found that the effects of plastic deformation and applied stress on the hysteresis loops of the nickel samples can be reproduced using the extended hysteresis model. Examples are given in Fig. 1, which shows the measured and modeled hysteresis loops for the sample pre-strained to \(\varepsilon_p = 736 \times 10^{-6} \) at \(\sigma = 0 \) and 50 MPa. The modeled hysteresis loops were found to agree with the experimental data in the low field regime (i.e., at field strengths below the coercive field). Discrepancies between the modeled and measured results were nevertheless observed at the knee of the hysteresis loops, in particular when the samples were under tensile stresses (Fig. 1). The shape of the measured hysteresis loops in the high field regime suggests that the magnetization reversal processes involved mainly reversible rotation of domain magnetization towards the applied field against the stress-induced anisotropy. This process is not accounted for in the previous model equation, which is based primarily on the consideration of domain wall motion.

As shown in Fig. 2, the coercivity of all samples increased while the remanence decreased with tensile stress, except for the sample with \(\varepsilon_p = 0 \) where the remanence increased initially and then decreased as the applied stress was further increased. The stress dependence of coercivity and

![FIG. 1. Measured and modeled hysteresis loops under 0 and 50 MPa for the nickel sample pre-strained to 736×10^{-6}.](image)

![FIG. 2. Variations in (a) coercivity and (b) remanence with applied stress for the nickel samples plastically deformed to various plastic strain levels \(\varepsilon_p \) prior to the \textit{in situ} hysteresis measurements under applied stresses.](image)
formation. It was found by empirical curve fitting that the coercivity increases while \(k_0 \) is greater than \(k' \). Comparing this relationship with Eq. (2), the present result seems to suggest that the number density of dislocations increases approximately linearly with plastic strain \(\varepsilon_p \) within the range of the plastic deformation investigated in this study. Similar relations between strain and dislocation density have been observed during the early stages of deformation in materials such as lithium fluoride.\(^\text{12}\)

The dependence of the model parameter \(k' \) on plastic deformation found in the present study suggests that the effects of applied stresses and microstructure on domain wall pinning are interrelated. The effect of an applied stress on magnetization can be treated as an effective field which, in the presence of an externally applied field, may induce irreversible domain wall motion if the total internal field is large enough to overcome the pinning force. When a material is subjected to plastic deformation, the dislocations rapidly multiply, which then develop into substructures such as dislocation tangles and cells if the material has a high stacking fault energy (e.g., nickel). These deformation substructures consist of highly dense dislocations, and they are therefore stronger pinning sites for domain walls than the individual dislocations. As a result the coercivity increases. This also results in a decrease in the influence of the applied stress on domain wall pinning, since the stress-induced changes in local energy barrier to domain wall motion become less significant compared to the pinning energy of the existing dislocation substructures.

ACKNOWLEDGMENT

This work was supported by the NSF Industry/University Cooperative Research Program of the Center for Nondestructive Evaluation of Iowa State University.

\(^12\)D. Hull and D. J. Bacon, Introduction to Dislocations (Butterworth-Heinemann, Oxford, 2001).