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a b s t r a c t

There are several biases and inefficiencies that are commonly associated with the
judgmental extrapolation of time series, even when the forecasters have technical
knowledge about forecasting. This study examines the effectiveness of using a rolling
training approach, based on feedback, to improve the accuracy of forecasts elicited from
people with such knowledge. In an experiment, forecasters were asked to make multiple
judgmental extrapolations for a set of time series fromdifferent timeorigins. For each series
in turn, the participants were either unaided or provided with feedback. In the latter case,
the true outcomes and performance feedback were provided following the submission of
each set of forecasts. The objective was to provide a training scheme that would enable
forecasters to understand the underlying pattern of the data better by learning from
their forecast errors directly. An analysis of the results indicated that this rolling training
approach is an effective method for enhancing the judgmental extrapolations elicited from
people with technical knowledge, especially when bias feedback is provided. As such, it
could be a valuable element in the design of software systems that are intended to support
expert knowledge elicitation (EKE) in forecasting.

© 2016 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters.

This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Surveys suggest that forecasts based either wholly or
partly on expert management judgment play a major
role in company decision making (e.g., Fildes & Goodwin,
2007). Sometimes these judgmental inputs take the form
of adjustments to statistical forecasts, ostensibly to take
into account special factors that were not considered
by the statistical forecast (Fildes, Goodwin, Lawrence, &
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Nikolopoulos, 2009). However, in some circumstances,
judgment may be the only process involved in producing
the forecasts. At times, there is even a statistical forecast
provided, but the expert chooses to ignore it (Franses,
2014). In some cases, judgment is used to extrapolate
time series data to produce point forecasts, when no other
information (except perhaps variable labels such as ‘sales’
or ‘costs’) is provided. This type of task has been the subject
of much research over the last thirty years, and a number
of biases associated with judgmental extrapolation have
been identified. These include tendencies to overweight
the most recent observation (e.g., O’Connor, Remus, &
Griggs, 1993, to underestimate the growth and decay in
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series (Lawrence, Goodwin, O’Connor, & Onkal, 2006), and
to see systematic patterns in the noise associated with
series (Eggleton, 1982; O’Connor et al., 1993).

Such biases can apply even when the forecaster has
expertise, whether in the domain within which the
forecasts are beingmade (e.g., Pollock &Wilkie, 1993) or in
forecasting itself (Goodwin & Fildes, 1999). This suggests
that, when experts are called upon to make judgmental
extrapolations, the elicitation processmaybenefit from the
inclusion of devices that are designed to mitigate these
biases. Studies in the expert knowledge and elicitation
(EKE) literature have examined a number of ways of
designing elicitationmethods so as to reduce the danger of
biased judgments from experts, particularly in relation to
the estimation of probabilities or probability distributions
Aspinall, 2010; Bolger & Rowe, 2014; Goodwin & Wright,
2014, Morgan, 2014, Chapter 11). Our focus here is on
improving EKE in time series extrapolation.

A variety of strategies have been explored in an attempt
to mitigate biases in the elicitation of judgmental extrap-
olations (Goodwin & Wright, 1993). One promising strat-
egy is to use performance feedback to train forecasterswho
already have technical expertise in order to improve the
accuracy of their extrapolations (Lawrence et al., 2006).
The use of feedback to enhance the quality of expert judg-
ments has proved to be successful in other areas of EKE,
such as weather forecasting (Murphy & Winkler, 1977), as
well as in applications of the Delphi technique, where the
feedback relates to the judgments of other experts (Rowe
& Wright, 1999). In time series extrapolation, while some
studies, such as that of Goodwin and Fildes (1999), have
shown that feedback can lead to improvements in the ac-
curacy of point forecasts, more research is needed to iden-
tify the most effective form of feedback for improving the
accuracy. This is a particularly important topic in demand
forecasting, where software provides the expert with in-
formation on past errors.

This paper reports on an experiment that was designed
to examine the effectiveness of providing forecasters with
rolling feedback on both the outcomes of the variable that
they are attempting to predict and their forecasting perfor-
mance. The objective is to provide a direct training scheme,
thus enabling forecasters who already have technical
knowledge to understand the underlying pattern of the
data better by learning from their forecast errors directly,
thus improving the accuracy of their judgments. Two types
of performance feedback were compared: feedback on the
bias associated with the forecasts submitted, and feedback
on their accuracy. The paper is structured as follows. First,
a review of the relevant literature is presented. Details of
the experiment and the analysis and results follow. Finally,
the practical implications of the findings are discussed, and
suggestions are made for further work in this area.

2. Literature review

In judgmental forecasting, Sanders and Ritzman (1992)
distinguish between expertise that is founded on con-
textual knowledge and that which is based on technical
knowledge. Expertise relating to contextual knowledge

comes from factors such as experience working in an in-
dustry or the possession of specific product knowledge.
In contrast, expertise based on technical knowledge is
present when a forecaster has a knowledge of formal fore-
casting procedures, including information on how to ana-
lyze data judgmentally.

Sanders and Ritzman compared the forecasting ac-
curacies of: (i) managers who had contextual expertise
but lacked technical expertise, (ii) forecasters who lacked
contextual expertise but had technical expertise, and
(iii) forecasters who lacked both contextual and technical
expertise. They concluded that expertise based on techni-
cal knowledge had little value in improving the accuracy
of judgmental forecasts relative to expertise based on con-
textual knowledge. However, many of the time series that
they studied were highly volatile, and contextual factors,
rather than time series components, accounted for much
of their variation. The forecasters with technical expertise
who took part in the study were not privy to these contex-
tual factors.

A comparison of the forecasts of people in groups (ii)
and (iii) enabled the authors to assess whether forecasters
who were lacking in contextual expertise but educated
in such technical aspects as the handling of outliers, the
identification of trends and the avoidance of judgmental
biases were able to achieve higher levels of accuracy than
those who lacked such knowledge. The authors reported
that there was little difference in accuracy, and therefore
concluded that providing people with technical expertise
had no value. However, a close inspection of their results
reveals that this finding only holds for the five most
volatile series in the study (those with a coefficient of
variation exceeding 134%). If these series are excluded,
forecasters with technical knowledge had lower average
median absolute percentage errors (MdAPE) than those
without this knowledge in 13 series out of 17 (p = 0.025
on a binomial test of the hypothesis that each group had an
equal probability of achieving the lowestMdAPE on a given
series). Although the mean reduction in average MdAPEs
for the 17 series was only 1.8%, the results provide some
evidence that, when series do not demonstrate extreme
volatility, there may actually be advantages in eliciting
forecasts from people who possess technical expertise.
This also suggests that it may be possible for these
judgments to be enhanced through further training.

In a review of Sanders and Ritzman’s (1992) study,
Collopy (1994) argues that people may not always be able
to apply what they learn in a training process. He cites a
report by Culotta (1992), who found that even students
who do well in calculus courses cannot apply what they
have learned. In Sanders and Ritzman’s study, those who
were counted as having technical knowledge had taken an
elective course in forecasting, andmay therefore have been
subject to didactic learning, which is a relatively passive
process. This is in contrast to experiential learning, which
includes actively participating in the task for which one is
being trained, reflecting on the experience, and learning
from feedback (Moon, 2004). Thus, training of this type
maybe effective in obtaining improvements in accuracy for
those with technical expertise.

In order for experiential training to be effective, it
needs to address the specific challenges of the task
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(Kremer, Moritz, & Siemsen, 2011). Goodwin and Wright
(1993, 1994) argue that three components of a time
series influence the degree of difficulty that is associated
with the judgmental time series forecasting task, namely:
(1) the complexity of the underlying signal, comprising
factors such as its seasonality, cycles and trends, and
autocorrelation; (2) the level of noise around the signal;
and (3) the stability of the underlying signal.

When there are trends in series, studies have consis-
tently found that judgmental forecasters tend to
damp them when making extrapolations (Eggleton, 1982;
Lawrence & Makridakis, 1989; O’Connor, Remus, & Griggs,
1997). This phenomenon appears to apply both to experts
working in their specialist field and to participants in ex-
perimental studies (e.g., Wagenaar & Sagaria, 1975). This
damping may occur either because forecasters anchor on
the most recent observation and make insufficient adjust-
ments from this (Bolger & Harvey, 1993), or because they
are unable to handle non-linear change. However, damp-
ing may also be caused by forecasters bringing non-time
series information, based on their knowledge or experi-
ence, to the task. For example, a forecaster’s prior expe-
rience may have demonstrated that the sales growth for
products tends to be damped. Similarly, in the case of a
downward trend in a sales series, people may expect a
trend reversal to occur as action is taken to correct the de-
cline (O’Connor et al., 1997). Complex seasonal patterns or
cyclical components have also been found to lead to inac-
curate judgmental forecasts (Lawrence & O’Connor, 1993).

Several studies have suggested that judgmental fore-
casters often confuse the noise in the time series with the
signal (Andreassen, 1988; Harvey, 1995; Lopes & Oden,
1987; Reimers & Harvey, 2011). For example, they often
adjust statistical forecasts to take into account recent ran-
dom movements in series which they perceive to be sys-
tematic changes that were not detected by the statistical
forecast (Goodwin & Fildes, 1999). Conversely, when sys-
tematic changes in the signal do occur, forecasters may
delay their responses, perceiving the changes to be noise
(O’Connor et al., 1993). Also, theymay pay toomuch atten-
tion to the most recent observation, which will contain a
certain amount of noise (Bolger & Harvey, 1993; Lawrence
&O’Connor, 1992). It seems reasonable to expect that noise
could also impair the detection of underlying trends and
seasonal patterns, though thiswasnot the case in two stud-
ies where the series were presented graphically (Lawrence
& Makridakis, 1989; Mosteller, Siegel, Trapido, & Youtz,
1981).

Learning through feedback could potentially mitigate
these biases (Lawrence et al., 2006). Aswe indicated above,
feedback is a key component of experiential learning, and
has been shown to improve the accuracy of point forecasts
(Goodwin & Fildes, 1999; Remus, O’Connor, & Griggs,
1996; Sanders, 1997; Welch, Bretschneider, & Rohrbaugh,
1998). However, there are a number of different types of
feedback that may be particularly relevant to the task of
time series forecasting (Balzer, Doherty, & O’Connor, 1989;
Önkal &Muradoglu, 1995), andmore research is needed to
determine the type that ismost effective and how it should
be delivered.

The simplest form is outcome feedback, where the
forecaster is told the outcomeof the variable that they have

been forecasting as it becomes available. This allows them
to compare each forecast with outcome directly, which
may help them to improve their forecasting accuracy over
time. However, there is evidence that learning through
outcome feedback can be slow (Klayman, 1988). One
problem is that each outcome will contain an element of
noise, and therefore highlighting this may exacerbate a
forecaster’s tendency to pay too much attention to the
latest observation and to overreact to noise in the series.
However, this may not be the case when outcomes are
provided for a set of periods (n > 1), rather than just one
period. In any case, outcome feedback is easy to provide,
easy to understand, and not contaminated by older and
possibly irrelevant observations (Goodwin, Onkal-Atay,
Thomson, Pollock, & Macaulay, 2004). It is probably also
something that forecasters would naturally expect to see,
so it seems reasonable to supply it even if other forms of
feedback are being provided as well.

Performance feedback provides forecasters with infor-
mation on the quality of their forecasts, such as their ac-
curacy or any bias. It usually takes the form of an average,
reflecting the forecaster’s performance over a number of
periods. Determining the number of periods over which to
average the performance poses a dilemma: too few, and
the feedback may be based on too small a sample of fore-
casts to provide a reliable assessment of performance; too
many, and the performance measure will not reflect re-
cent improvements or deteriorations in performance ad-
equately. The use of an exponentially weighted moving
average of performances may help to solve the dilemma,
but may be less transparent and understandable to the re-
cipients of the feedback. Another option would be to sim-
ply supply a set of point errors for n recent periods without
using any kind of average. This could potentially enable the
forecaster to identify specific problematic periods that re-
quire attention (for example, seasonality peaks).Moreover,
when using a rolling origin scheme, this strategy provides a
way to check whether the point errors are decreasing over
time.

We might expect the effectiveness of different types
of performance feedback to vary. Feedback on biases can
provide a direct message that one’s forecasts are typically
too high or too low, hence suggesting how they might
be improved. This is likely to be beneficial for untrended
series or series with monotonic trends. However, it may
lead to an unwarranted confidence in one’s current
forecasting strategy when a series has an alternating or
seasonal pattern, because biases in different periods will
tend to cancel each other out if an average across the
signed errors is used. In contrast, feedback on accuracy
provides no such direct message, and its implications may
be difficult to discern. In order for forecasters to learn
from accuracy feedback, they would need to experiment
with alternative approaches, not specified by the feedback,
and then establish whether these have improved the
accuracy. This requires forecasters to compare their levels
of accuracy across different periods, which adds to their
cognitive burden. Thus, it seems unlikely that accuracy
feedback will be conducive to rapid learning. This may
explain the ineffectiveness of performance feedback that
was found in a study by Remus et al. (1996), which
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consisted only of an accuracy measure (the mean absolute
percentage error).

Other forms of feedback seem likely to be less relevant
to practical judgmental time series forecasting contexts.
Cognitive process feedback aims to provide forecasters
with insights into their own forecasting strategies, causing
them to reflect on the possible deficiencies of these
strategies (O’Connor, Remus, & Lim, 2005). For example,
a regression model may be used to attempt to capture
their strategy, to allow the identification of the weights
that are implicitly being attached to different items of
available information, or cues. In time series forecasting,
it will clearly take time to obtain sufficient information
to enable these weights to be estimated reliably, which
reduces the speed at which forecasters can learn. Also,
identifying the cues that should be included in a model
from the huge number of potential cues that are present in
the time series forecasting task is problematic (e.g., typical
cues might be the last observation, the mean of the last n
observations, the last difference between observations, the
range of the last n observations, and so on). In addition,
many of these cues will be serially correlated, meaning
that multicollinearity is likely to reduce the precision with
which the weights can be estimated.

Task properties feedback relates to providing forecast-
ers with statistical information on the nature of the task.
In time series forecasting, this might involve providing the
forecasterwith the current estimates of the level, trend and
seasonal indices obtained from the Holt–Winters method,
for example. However, this would essentially modify the
task to one of accepting or adjusting statistical forecasts.
Task feedback has been researched widely elsewhere (e.g.,
Goodwin & Fildes, 1999; Sanders, 1997; Willemain, 1989,
1991), and is not the topic of the current paper.

Ultimately, any form of feedback, regardless of the type,
is likely to be most effective in enhancing the judgments
of those with technical expertise if it can be understood
easily and quickly (O’Connor et al., 2005), and is salient,
accurate and timely (Lawrence et al., 2006). We therefore
propose and test a rolling training scheme, based on
performance feedback. This has a number of innovations
that are designed to address the problems associated
with feedback that have been presented in earlier studies.
Unlike these studies, we have not supplied metrics that
summarise the ‘average’ performance over a given number
of periods or tasks (e.g., a mean absolute percentage error
or a measure of calibration, which, of necessity, has to be
based on a summary of performances over a large number
of judgments). Instead, a performance measure is supplied
for each individual judgment made by the forecaster, so
that there is no arbitrary censoring of earlier performances,
and the balance between the sensitivity and stability of the
feedback is no longer an issue. Furthermore, the feedback
is ‘rolling’, so that a complete and growing record of
the forecaster’s performance is presented and updated
at regular intervals. These innovations are important
because, as we have seen, a key problem with feedback
based on ‘average’ metrics is that it can depend on the
number of periods that contribute to the average. Also,
when a time series contains cyclical or seasonal patterns,
a tendency to forecast too low when the time series rises

and too high when it falls will be masked by an ‘average’
metric. In the scheme proposed here, forecasters can link
their errors to individual observations and patterns. They
can also see easilywhether their performance is improving
over time without having to memorise previous values of
the metric.

3. Experimental design

3.1. Forecasting approaches

The current research evaluates two judgmental fore-
casting approaches. Each participant provided judgmental
estimates following both approaches, using a fully sym-
metric experiment, as will be discussed in Section 3.4.

Unaided judgment: This is the simplest judgmental
forecasting approach, but is quite popular. Humans are
requested to provide point forecasts all at once for all
lead times (H), without receiving any kind of guidance,
other than the past data points. This approach acts as the
benchmark in our study, and is referred to hereafter as UJ.

Rolling training: We propose a direct rolling training
approach. Letting N denote the number of observations
available for a series and H the number of periods ahead
to be estimated, k > 1 blocks of H periods each are
withheld (N > kH). At the first stage, only the first N − kH
periods are presented to the forecaster, while H forecasts
ahead are requested. When the participants submit their
forecasts, the actual values of these H observations are
presented, together with performance feedback in terms
of percentage errors for each period (signed or not).
This procedure is repeated k times, with H data points
being added at each repetition. Hence, the completion
of each training loop is followed by the submission of
H estimates for the future, unknown, periods. As such,
we are performing an H-step-ahead rolling evaluation
(Tashman, 2000), which is common practice in automatic
forecast model selection (Fildes & Petropoulos, 2015). In
other words, this is a rolling origin (as opposed to a
rolling observation window) forecasting procedure, with
updating every H periods, where the observation window
is not kept constant but increases with the sample size.
In this case, though, instead of selecting the best model
based on out-of-sample performances,we assume that this
procedure will assist the participants to understand the
time series patterns better, thus providing more accurate
forecasts. This approach is referred to hereafter as RT.

3.2. Time series

Most relevant studies that have focused on the impact
of feedback for judgmental forecasting tasks have made
use of simulated series (e.g., Bolger & Önkal-Atay, 2004;
Fischer & Harvey, 1999). Moreover, many studies have not
examined seasonal series, but have confined their atten-
tion to stationary and trended ones (Bolger & Önkal-Atay,
2004; Lurie & Swaminathan, 2009). Therefore, the cur-
rent research focuses on real time series that collectively
demonstrate a variety of characteristics (stationary, only
trended, only seasonal, and both trended and seasonal).
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More specifically, 16 quarterly series were selected man-
ually from the M3-Competition data set (Makridakis & Hi-
bon, 2000), so as to ensure the required characteristics.
Thesewere confirmed using autocorrelation function plots
or Cox–Stuart/Friedman tests, or by fitting an appropriate
exponential smoothing model, using all the data. In addi-
tion, half of the trended or seasonal series did not exhibit
any significant pattern (trend or seasonality respectively)
in the first two years, but did so later on. This selectionwas
made in order to examine participants’ ability to recognise
developing series characteristics and adapt.

The 16 series were split into two categories, each
containing eight series. These sets of series allowed for
the implementation of a symmetric experimental design,
which will be described in Section 3.4. Each set contained
exactly two series with the same characteristics, as
displayed in Table 1. For analysis purposes, the 16 series
were split again into two sets of equal size in terms of
noise (low and high), as measured by the standardised
random component of a classical decomposition. Lastly,
four additional series were used in the first (warming-
up) stage of the experiment, in order to familiarise the
participants with the system.

The required length of all series was set to 28 points
(seven years), with longer series being truncated. In both
the UJ and RT approaches, the last four observations (last
year) were withheld and used only for the out-of-sample
evaluation and a comparison of the two approaches. The
length of this sample matches the required forecasting
horizon; thus, H = 4. So, the in-sample consisted of N =

24 observations (six years of quarterly data). In addition,
12 observations were used for the RT procedure, thus, the
number of blocks was k = 3. The forecasting performance
was tested on the last four observations (seventh year),
with forecasts being produced for both approaches (UJ and
RT).

3.3. Participants and web application

The group of participants consisted of 105 undergrad-
uate students who were enrolled in the Forecasting Tech-
niques module at the School of Electrical and Computer
Engineering at the National Technical University of Athens.
As part of the module, the students had been taught prin-
ciples of time series analysis, statistical and judgmental
forecasting methods, and ways of evaluating forecasting
performances. The experiment was introduced as an elec-
tive exercise, with the 50% of participants who produced
the most accurate forecasts obtaining bonus credit.

In order to attract a large number of participants,
we decided to build a web application, rather than
performing a standard laboratory experiment. The web
application was designed specifically for the purpose
of this experiment, using the ASP.NET framework for
the web development of the front-end and a Microsoft
SQL database for storing the time series data and the
participants’ point forecasts. The Microsoft Chart Controls
library was used for drawing line and bar graphs, as is
discussed in the next subsection. The application was
hosted in a secure web-server and participants could
connect remotely through their internet-enabled personal
computers via any web browser.

3.4. Process of the experiment

Instead of splitting the participants into two groups,
control and test, we adopted a symmetric experimental
design, where each participant submitted forecasts for
both UJ and RT. The sets of series A and B alternated
randomly between UJ and RT, so that half of the series
were forecast using UJ by half of the participants and
using RT by the other half, and vice-versa for the other
series. In order to avoid familiarity with the task, UJ and
RT were presented to the participants interchangeably.
This means that after a common warm-up round, half of
the participants were asked to provide forecasts using the
UJ approach for eight time series, then to submit their
estimates using the RT approach for the remaining eight
series at the next step, while the opposite (first RT then
UJ) was the case for the other half of the participants.
This symmetric design allowed us to avoid any familiarity
with the task effects that could have arisen if the two
approaches had been presented in the same order (first
UJ then RT) for all of the participants. For the provision of
feedback, eachparticipantwas assigned randomly to either
the signed or unsigned percentage errors treatments (so
that either bias or accuracy feedback was provided). Of the
105 participants, 52 were given feedback on signed errors
and 53 on absolute errors.

All of the series were presented in a line graph
format, using blue for the actual values and green for the
submitted forecasts. While there has been no evidence on
the relative superiority of graphical or tabular numerical
formats (Lawrence et al., 2006), graphical representations
are more common in modern forecasting support systems.
Historical data points were kept unlabeled in terms of
exact values, so that the participants could not export these
values to a spreadsheet and use statistical approaches.
This is a very important constraint, as the experiment
took place in an unobserved environment and a graphical
mode of presentation was the only way to guarantee
that judgmental extrapolation was used. However, grid
lines were provided in order to accommodate numerical
estimations. Four text boxes were used for the input of
judgmental forecasts for each lead time, while an update
button could be used to refresh the graph, so that the
participant could check his or her judgmental estimates
graphically before submitting. Fig. 1 presents two typical
screenshots of the system implemented, both before (a)
and after (b) the input of the four point forecasts.

Including the warming-up up round, the experiment
involved three rounds, each of which is described in detail
below. As has been noted, the UJ and RT rounds were
presented in reverse order for half of the participants.

Warming-up round: Each of the first four series was
presented to the participants in turn, withholding the last
four observations. The participants were then requested
to provide judgmental point forecasts for the next four
quarters (one year). A short description of each series
was provided, describing any historical patterns. Once
the forecasts for each series had been submitted, forecast
errors for each point (signed or not) were calculated
automatically and displayed in bar charts, using the color
red. As this round was a ‘warm-up’, the forecasts thus
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Table 1
Sets of series.

Stationary Trended Seasonal Trended and seasonal Total

Set A 2 series 2 series 2 series 2 series 8 series
Set B 2 series 2 series 2 series 2 series 8 series

Fig. 1. Screenshots of the system’s graphical representation and input features.

elicitedwere not taken into accountwhen the results of the
study were analysed. Fig. 2 presents a screenshot showing
the information provided to the participants after the four
point forecasts for a series had been submitted.

UJ round: The series from Set A (or Set B) were
used, holding back the last four observations in each
series. The series were presented in random order. The
participants were given the N = 24 actual values of
each series in a graphical format, and were requested
to provide judgmental point forecasts for the next four
quarters (periods 25–28). No description of the series or
information on the accuracy of the forecasts was provided.

RT round: Series from Set B (or Set A, the opposite
of the previous round) were used, holding back the last
16 observations of each series. Again, the series were
presented in random order. Each participant was initially
given the first N − kH = 12 observations and requested
to provide four sets of four quarterly judgmental point
forecasts, for each of the next four years in a rolling origin
manner. First, he or she was asked to submit just the first
four point forecasts (for the next year), after which the
actual data points were presented, with the corresponding
forecast errors (signed or not, as in thewarming-up round)
being given in a bar chart. Next, the second set of forecasts
was requested, followed by the provision of outcome and
performance feedback. Then, the third set of forecasts was
requested, again followed by outcome and performance
feedback. Finally, the participants submitted their last four
forecasts. In order to be directly comparable with UJ,
only the last set of forecasts was used in the evaluation.
Moreover, when producing the forecasts for the final year,
participants were given the same amount of information
(an observation window of 24 periods) as with the UJ
approach.

After completing each of the latter two rounds, the par-
ticipants filled in a questionnaire, which included ques-
tions on their confidence in the accuracy of their submit-
ted forecasts, their expected forecasting performance, the

extent to which they had examined the graphs and series
patterns, and the time spent in producing their forecasts. In
addition, a final questionnaire was used to ask participants
about their familiarity with forecasting tasks, their level of
forecasting expertise, their perceptions of the effectiveness
of rolling training (RT), and their motivation for provid-
ing accurate estimates. The two sets of questions posed are
given in Table 2. All of the questions had five-step ordinal
response choices (Likert scale).

The responses to the questions posed to the participants
were analysed in order to discover any relationships be-
tween the variables in question (e.g., confidence, expected
performance, extent of examination of graphs) and the ac-
tual forecasting performances achieved in the respective
rounds of the experiment (UJ and RT). The results of this
analysis are presented and discussed in Section 4.2.

4. Analysis

4.1. Forecasting performance

Table 3 presents the percentage improvements in
accuracy that were achieved by using RT relative to UJ.
These percentage improvements are measured as:

100 ×


1 − median


MAERT

s

MAEUJ
s


(%),

where UJ in the denominator is acting as the benchmark
for this study. Negative values indicate that RT performed
worse than UJ. In each case, the median is calculated
across the series considered. For both the numerator and
the denominator, the mean absolute error of a series s is
calculated across participants and horizons, as:

MAEs =
1
H

H
h=1

1
P

P
p=1

yh − fp,h
 ,
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Table 2
Questions posed to the participants.

Questions

After both UJ and RT rounds How confident are you that the forecasts you submitted in this round, on average, would be
within 10% of the actual values?
Please, rate your expected forecasting performance in the series of this round.
Did you examine carefully the time series graphs?
Did you take into account any historic patterns in the series when making your forecasts during
this round?
How much time (on average) did you spend for each series of this round?
How likely it is that taking more time would change your forecasts?

After completion of the experiment How familiar are you with such forecasting exercises?
How would you describe your level of expertise?
Please, rate the effectiveness of rolling training as a tool to increase your accuracy.
Please, indicate how motivated you were to provide accurate estimates.

Fig. 2. Screenshot of the system’s feedback report features, in terms of
outcome (out-of-sample actual values) and performance (error bars).

where P denotes the number of participants,H the number
of out-of-sample lead times, yh the actual value of a series
at time h, and fp,h the forecast of participant p for the same
series at time h. Note that the number of participants (P)
is not the same for all series, due to slight differences in
sample sizes.

The results are analysed by columns in terms of series
characteristics (stationary, trended, seasonal, trended
and seasonal, low noise and high noise). The major
rows indicate all (25th–28th), near (25th–26th) and
far (27th–28th) horizons. The minor rows provide an
additional analysis of the results based on the type of
feedback (in the case of RT) provided to the participants.
As was mentioned in Section 3.1, two types of feedback
have been considered: bias feedback, in the form of
signed percentage errors (PE), and accuracy feedback, in
the form of absolute percentage errors (APE). Statistically
significant differences between RT and UJ have been
identified by performing a two-sample paired t-test on
the values of the mean absolute errors summarised across
participants for each series and each horizon. The analysis
was also replicated using the mean absolute percentage
error (MAPE) as a measure of the forecasting performance,
but no substantial differences in the interpretation of the
results were identified.

Overall, there is evidence that the RT approach results
in statistically significant better forecasting performances
(3.78% performance gain). The improvements are more

prominent for high noise (5.18%, statistically significant at
the 0.05 level). Although gains of 5.72% and 9.20% were
observed for stationary and trended series, respectively,
these were not statistically significant at the 0.05 level.

Focusing on the very first row of Table 3, where
all horizons are considered, the only case in which RT
performs worse comes from the seasonal series. Even
though this difference is not statistically significant,
suggesting that UJ and RT perform similarly, we attempt
to understand the reason behind this result by examining
separately series with and without evident seasonality for
the very first years, as was discussed in Section 3.2. The
results of this analysis suggest that RTmight not be suitable
for series with developing seasonality.

In terms of the type of feedback provided to the
participants, it is apparent that bias feedback demonstrates
the most significant improvements (4.89% overall), while
the improvements for accuracy feedback are generally
smaller and not consistent. One could argue that providing
errors in an absolute format may lead to confusion, as
the participants may not be able to evaluate this kind of
information correctly. On the other hand, bias feedback
for each point in the form of signed bar charts is easier to
interpret and understand, and indicates a clear strategy for
improving one’s forecasts. It is notable that bias feedback,
which involved the provision of signed percentage errors
for each individual period, improved the accuracy for
seasonal series. It is unlikely that providing the mean
of these percentage errors would have been as effective,
because any tendency to over-forecast for some seasons
and under-forecast for others would have been masked by
the averaging process.

Another very important observation is that RT results
in improvements for series both with high noise (5.18%)
and when longer horizons are examined (4.17%). These
improvement gains are statistically significant at the 0.05
level when all types of feedback are pooled together.
However, the differences between RT and UJ are not
statistically significant at the 0.05 level for the shorter
horizon and low noise series. Lawrence, Edmundson, and
O’Connor (1985) suggested that, when the forecasting
task is based on graphs, judgmental forecasts can be as
good as statistical model forecasts, at least for the shorter
horizons. In contrast, unaided judgmental forecasting is
likely to be relatively inaccurate for longer horizons and
series with high levels of noise. The use of a direct rolling
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Table 3
Accuracy improvements (%) of the RT approach over UJ.

Type of feedback All series Stationary Trended Seasonal Trended and seasonal Low noise High noise

All horizons
(25th–28th)

ALL 3.78* 5.72 9.20 −4.14 0.90 0.90 5.18*

PE 4.89* 4.10 10.47 2.28 2.58 1.77 5.71*

APE 3.89 7.27* 7.10 −11.79 0.70 −1.99 6.23

Near horizons
(25th–26th)

ALL 2.41 −2.12 −0.91 4.14 8.07* 2.77 2.41
PE 7.14 0.02 0.63 10.47 7.14 6.50 8.23
APE 2.04 0.47 −2.45 −3.69 8.71 2.04 0.47

Far horizons
(27th–28th)

ALL 4.17* 6.10* 15.74 −10.39 1.59 1.59 6.10*

PE 5.67 5.67 14.47 −8.14 1.54 6.51 5.67
APE 2.35 8.14* 12.86 −8.94 −5.47 −2.42 3.50

* The differences are statistically significant at the 0.05 level.

training scheme improves graph-based judgmental long-
term forecasting, building on the relative efficiency of
judgmental over statistical approaches.

4.2. Questionnaire responses analysis

Fig. 3 provides a graphical representation of the rela-
tionships between the participants’ responses to the first
set of questions (x-axis) and their mean performances
(y-axis), as measured by MAPE. Separate lines are pre-
sented for UJ (black) and RT (grey). The size of the circle
at each data point reflects the number of participants who
provided the respective response. As this first set of ques-
tions was posed twice (after UJ and RT respectively), we
can also examine how the participants alternate their re-
sponses after each forecasting approach.

The negative association between the confidence level
andMAPE in UJ changes to no correlation for RT.Moreover,
participants tend to have fewer expectations for the
performances of their submitted forecasts when using
RT than UJ. These outcomes are very important, as it is
obvious that RT leads participants to be more cautious
in their expectations, thus potentially mitigating a well
known problem of judgemental forecasting, namely the
underestimation of uncertainty (e.g. Makridakis, Hogarth,
& Gaba, 2009).

As we would expect, a propensity to examine graphs
(and, to a lesser extent, patterns) has a negative association
with the MAPE, suggesting that improvements in forecast-
ing accuracy are recorded as participants devotemore time
to this task. However, literally no differences are observed
between the two approaches (UJ and RT) in terms of mean
values of the frequency of examining graphs and patterns.
One would have expected that RT would motivate the par-
ticipants to examine the graphs and series patterns more
carefully; however, such was not the case.

The forecasting performances achieved with both UJ
and RT are associated with the time that the participants
reported spending in producing the forecasts for each
series—the more time they spent, the greater the accuracy
they achieved. However, the correlation is stronger in
the case of UJ, meaning that the forecasting performance
achieved using the RT approach can be seen as more time
invariant. Also, there is evidence that participants who
were less accurate recognised that spending more time on
the task might have resulted in a change of their forecasts
(particularly in the case of the RT group).

The same analysis was performed for the second set
of questions. The majority of the participants (76%) found
the RT approach to be either effective or very effective.
However, familiarity with forecasting exercises, perceived
effectiveness of RT and motivation to produce accurate
forecasts were associated with the forecasting accuracy
only weakly or moderately. Interestingly, participants’
self-reported level of expertise had a strong positive
association with their realised MAPE, so that those who
considered themselves to have greater expertise produced
less accurate forecasts. Further work would be needed to
establishwhy thiswas the case, but it is consistentwith the
Dunning–Kruger effect (Kruger & Dunning, 1999), where
relatively unskilled people mistakenly consider their level
of ability to be higher than it really is. Clearly, such an effect
would have important implications for EKE if choices are
beingmade between experts’ forecasts based on their self-
rated expertise.

5. Discussion and implications

The key finding of this study is that, in tasks involving
time series extrapolationwhere no contextual information
is available, the judgmental forecasting accuracy of people
with a technical knowledge of forecasting can be improved
substantially by providing the forecasters with simple,
understandable performance feedback. This suggests that
training based on feedback can be a valuable element of
the EKE process when time series need to be extrapolated.
A number of characteristics of this feedback appear
to be crucial. First, in order to be most effective, the
feedback should relate to bias, rather than accuracy. As
was discussed earlier, feedback on bias provides a clear
indication of how future forecasts might be improved,
whereas feedback on accuracy does not provide any
indication of possible improvement strategies. Nor does
it provide an indication of whether any improvement
in accuracy is even possible. For example, does an APE
of 10% represent the limit of the accuracy that can be
achieved, given the noise level, or is there scope for further
improvement?

Second, the attribute of the bias feedback that appeared
to contribute most to its effectiveness was the feedback of
a set of individual errors, rather than an average of these
errors. In series where the signal has autocorrelated ele-
ments, such as seasonal series, judgmental biasesmay lead
to positive errors at some stages of the cycle (e.g., when
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Fig. 3. Association between questionnaire responses and forecasting performances for the first set of questions.

sales are increasing) and negative errors at other stages
(e.g., when sales are decreasing). Presenting individual er-
rors allows each observed bias to be associated with a
specific period, and avoids the cancelling out of opposing
biases that would be a feature of any averaging. Also, the
need to select an appropriate length for averaging the point
forecast errors is now removed.

Third, presenting the bias feedback as a bar chart may
have enhanced its effectiveness, though further research
would be needed to establish this. For example, a set of
four negative bars would be a strong, simple and clear
indication that the previous set of forecasts was too high
(error = actual – forecast). A table of four numbers would
probably provide a less salient message.

Fourth, the rolling nature of the feedback enabled it
to reflect improvements in performance quickly, while
at the same time avoiding the danger of confining a

participant’s attention to the performance of the most
recent forecast (which is a danger of outcome feedback).
Moreover, rolling across origins for one series before
moving on to the second series helped the participants to
focus on each series separately and better understand the
improvements (or deterioration) in their performance over
time. However, this is not a realistic representation of the
typical forecasting task; it is more common for feedback to
arise across time series.

Recent research suggests that the focus on helping
people to learn how to avoid bias is appropriate. A study by
Sanders and Graman (2009) found that accuracy was less
important than bias when translating forecast errors into
costs (such as excessive inventory or labour costs). In their
survey of forecasters, Fildes andGoodwin (2007) expressed
surprise at the number of company forecasters who never
checked the accuracy of their forecasts. The current study
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and the findings of Sanders and Graman (2009) suggest
that monitoring and feeding back levels of bias may be
just as important as checking accuracy levels, or evenmore
so, if the objective is to obtain improved forecasts and
minimize the costs of errors.

The proposed RT approach offers an innovative direct
feedback approach to time series forecasting. Usually, time
series forecasting occurs periodically and across series.
Thus, any feedback (lessons learned) from the performance
achieved on the previous periods would probably be
regarded as outdated. RT offers direct, timely and salient
feedback on the performance over a number of periods,
focusing on the performance for a single series. Providing
the past forecast errors for each period allows specific
periods inwhich the performance dropped to be identified.
These two features of RT enable forecasters to achieve
better performances for the longer horizons and the more
volatile series. This is due to the fact that RT essentially
invites the forecasters to examine the patterns in the
series closely across a number of horizons, rather than
focusing only on short-term forecasts. In addition, as the
performance is provided in a rolling manner, forecasters
are able to understand the limits of predictability for each
series. As such, RT may have an important role to play,
being particularly suitable for forecasting and decision
making under low levels of predictability (i.e., where there
is a high degree of uncertainty).

6. Conclusions and perspectives

Judgmental forecasting is employed in a wide range
of contexts for estimating the future values of time
series. However, numerous studies have shown the
limitations of judgment, even when it is elicited from
individuals with technical expertise. The current study
has examined the effectiveness of a rolling training
scheme that provides direct feedback by reporting to
participants their performances for given tasks. This
involved reporting signed or absolute percentage errors for
each period on a rolling basis, as opposed to metrics that
summarise performances over several periods. Real time
series featuring a number of characteristics were used. The
participants provided estimates for both the control case
(unaided judgment) and the test case (rolling training),
leading to an increased power. This was achieved using a
symmetric experimental design. Although the analysiswas
not based on data collected in the field, the experimental
approach allowed the effects of feedback of different types
to be measured and compared efficiently under controlled
conditions. Experiments like these have played a valuable
role in areas such as behavioural operations management,
as one component of a process of triangulation with field
research (Siemsen, 2011).

An analysis of the judgmental estimates indicates that
a rolling training scheme can improve the accuracy of the
judgmental extrapolations elicited from forecasters with
technical knowledge, especially when this is combined
with feedback in the form of signed errors. Because
signed errors indicate the biases in the forecasts, they
enable participants’ forecasting accuracies to be enhanced.
This is particularly obvious in non-stationary series. On

the other hand, accuracy feedback based on an absolute
form of errors is found to be more difficult to interpret,
leading to worse performances in the case of series that
exhibit seasonality. Sanders and Ritzman (1992) found
little advantage in employing judgmental forecasters with
technical knowledge. In contrast, the results presented
here suggest that it is worth designing EKE schemes
(possibly incorporated into software systems) that build on
the technical expertise acquired though didactic learning
by providing experiential learning based on feedback that
is accurate, timely, suggestive of how improvementsmight
be made, and easy to interpret.

One very interesting finding is that the improvements
achieved by using a rolling training procedure are greater
for longer forecasting horizons and noisy series. On top
of the improvements in forecasting performance achieved,
the rolling training procedure also made the participants
less confident of their forecasts. This is an additional
advantage, as there is evidence that people tend to
underestimate the levels of uncertainty associated with
their forecasts.

The current paper has focused on analysing perfor-
mances over the final set of periods (the final year), con-
trasting unaided judgment with rolling training. However,
a further possible objective with the current experimen-
tal design would be to analyse how the forecasting per-
formance changes over time within a single series, as a
direct result of applying the rolling training procedure.
Moreover, policy capturing regressionmodelsmay provide
insights into the forecasting strategies employed by partic-
ipantswith technical knowledge. This could include a large
number of potential cues that are linked with time series
forecasting. Of course, the time series forecasting task is of-
ten carried out in situations where contextual information
(such as information from market research or information
on advertising strategies) is available to expert forecasters
in addition to time series data, and it would be interesting
to test the effectiveness of rolling training in this context.

References

Andreassen, P. B. (1988). Explaining the price volume relationship—The
difference between price changes and changing prices.Organizational
Behavior and Human Decision Processes, 41, 371–389.

Aspinall, W. (2010). A route to more tractable expert advice. Nature,
463(7279), 294–295.

Balzer, W. K., Doherty, M. E., & O’Connor, R. (1989). Effects of cognitive
feedback on performance. Psychological Bulletin, 106, 410–433.

Bolger, F., & Harvey, N. (1993). Context-sensitive heuristics in statistical
reasoning. The Quarterly Journal of Experimental Psychology Section A,
46, 779–811.

Bolger, F., & Önkal-Atay, D. (2004). The effects of feedback on judgmental
interval predictions. International Journal of Forecasting , 20, 29–39.

Bolger, F., & Rowe, G. (2014). Delphi: somewhere between Scylla and
Charybdis? Proceedings of the National Academy of Sciences of the
United States of America, 111(41), E4284.

Collopy, F. (1994). Review of Nada R. Sanders and Larry P. Ritzman (1992).
forecastingprinciples.com reviews of important papers on forecasting
[accessed 01.03.15].

Culotta, E. (1992). The calculus of education reform. Science, 255,
1060–1062.

Eggleton, I. R. C. (1982). Intuitive time-series extrapolation. Journal of
Accounting Research, 20, 68–102.

Fildes, R., & Goodwin, P. (2007). Against your better judgment? How
organizations can improve their use of management judgment in
forecasting. Interfaces, 37, 570–576.

Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009).
Effective forecasting and judgmental adjustments: an empirical
evaluation and strategies for improvement in supply-chain planning.
International Journal of Forecasting , 25, 3–23.

Fildes, R., & Petropoulos, F. (2015). Simple versus complex selection rules
for forecasting many time series. Journal of Business Research, 68,
1692–1701.

http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref1
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref2
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref3
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref4
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref5
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref6
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref8
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref9
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref10
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref11
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref12


F. Petropoulos et al. / International Journal of Forecasting ( ) – 11

Fischer, I., & Harvey, N. (1999). Combining forecasts: what information do
judges need to outperform the simple average? International Journal
of Forecasting , 15, 227–246.

Franses, P. H. (2014). Expert adjustments of model forecasts. Cambridge:
Cambridge University Press.

Goodwin, P., & Fildes, R. (1999). Judgmental forecasts of time series
affected by special events: does providing a statistical forecast
improve accuracy? Journal of Behavioral Decision Making , 12,
37–53.

Goodwin, P., Onkal-Atay, D., Thomson, M. E., Pollock, A. E., & Macaulay,
A. (2004). Feedback-labelling synergies in judgmental stock price
forecasting. Decision Support Systems, 37, 175–186.

Goodwin, P., & Wright, G. (1993). Improving judgmental time series
forecasting: A review of the guidance provided by research.
International Journal of Forecasting , 9, 147–161.

Goodwin, P., & Wright, G. (1994). Heuristics, biases and improvement
strategies in judgmental time series forecasting. Omega International
Journal of Management Science, 22, 553–568.

Goodwin, P., & Wright, G. (2014). Decision analysis for management
judgment (5th ed.). Chichester: Wiley.

Harvey, N. (1995). Why are judgments less consistent in less predictable
task situations? Organizational Behavior and Human Decision Pro-
cesses, 63, 247–263.

Klayman, J. (1988). Learning from experience. In B. Brehmer, &
C. R. B. Joyce (Eds.), Human judgment: The SJT view (pp. 281–304).
Amsterdam: North Holland.

Kremer, M., Moritz, B., & Siemsen, E. (2011). Demand forecasting
behavior: System neglect and change detection.Management Science,
57, 1827–1843.

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how
difficulties in recognizing one’s own incompetence lead to inflated
self-assessments. Journal of Personality and Social Psychology, 77,
1121.

Lawrence, M. J., Edmundson, R. H., & O’Connor, M. J. (1985). An
examination of the accuracy of judgmental extrapolation of time
series. International Journal of Forecasting , 1, 25–35.

Lawrence, M., Goodwin, P., O’Connor, M., & Onkal, D. (2006). Judgmental
forecasting: A review of progress over the last 25 years. International
Journal of Forecasting , 22, 493–518.

Lawrence, M. J., & Makridakis, S. (1989). Factors affecting judgmental
forecasts and confidence intervals. Organizational Behavior and
Human Decision Processes, 43(2), 172–187.

Lawrence, M., & O’Connor, M. (1992). Exploring judgemental forecasting.
International Journal of Forecasting , 8, 15–26.

Lawrence, M., & O’Connor, M. (1993). Scale, randomness and the
calibration of judgemental confidence intervals. Organizational
Behavior and Human Decision Processes, 56, 441–458.

Lopes, L. L., & Oden, G. C. (1987). Distinguishing between random and
nonrandom events. The Journal of Experimental Psychology: Learning,
Memory, and Cognition, 13, 392–400.

Lurie, N. H., & Swaminathan, J. M. (2009). Is timely information
always better? The effect of feedback frequency on decision
making. Organizational Behavior and Human Decision Processes, 108,
315–329.

Makridakis, S., & Hibon, M. (2000). The M3-Competition: results,
conclusions and implications. International Journal of Forecasting , 16,
451–476.

Makridakis, S., Hogarth, R. M., & Gaba, A. (2009). Forecasting and
uncertainty in the economic and businessworld. International Journal
of Forecasting , 25, 794–812.

Moon, J. (2004). A handbook of reflective and experiential learning: Theory
and practice (p. 126). London: Routledge Falmer.

Morgan, M. G. (2014). Use (and abuse) of expert elicitation in support of
decisionmaking for public policy. Proceedings of the National Academy
of Sciences of the United States of America, 111(20), 7176–7184.

Mosteller, F., Siegel, A. F., Trapido, E., & Youtz, C. (1981). Eye fitting straight
lines. The American Statistician, 35, 150–152.

Murphy, A. H., &Winkler, R. L. (1977). Can weather forecasters formulate
reliable probability forecasts of precipitation and temperature?
In National weather digest, Vol. 2 (pp. 2–9).

O’Connor, M., Remus, W., & Griggs, K. (1993). Judgemental forecasting in
times of change. International Journal of Forecasting , 9, 163–172.

O’Connor,M., Remus,W., & Griggs, K. (1997). Going up–going down: How
good are people at forecasting trends and changes in trends? Journal
of Forecasting , 16, 165–176.

O’Connor, M., Remus, W., & Lim, K. (2005). Improving judgmental
forecasts with judgmental bootstrapping and task feedback support.
Journal of Behavioral Decision Making , 18, 247–260.

Önkal, D., & Muradoglu, G. (1995). Effects of feedback on probabilistic
forecasts of stock prices. International Journal of Forecasting , 11,
307–319.

Pollock, A. C., & Wilkie, M. E. (1993). Directional judgemental financial
forecasting: trends and random walks. In Modelling reality and
personal modelling (pp. 253–271). Physica-Verlag HD.

Reimers, S., & Harvey, N. (2011). Sensitivity to autocorrelation in judg-
mental time series forecasting. International Journal of Forecasting , 27,
1196–1214.

Remus, W., O’Connor, M., & Griggs, K. (1996). Does feedback improve the
accuracy of recurrent judgemental forecasts? Organizational Behavior
and Human Decision Processes, 66, 22–30.

Rowe, G., & Wright, G. (1999). The Delphi technique as a forecasting
tool: issues and analysis. International Journal of Forecasting , 15(4),
353–375.

Sanders, N. R. (1997). The impact of task properties feedback on time
series judgmental forecasting tasks. Omega: International Journal of
Management Science, 25, 135–144.

Sanders, N. R., &Graman, G. A. (2009). Quantifying costs of forecast errors:
A case study of the warehouse environment. Omega: International
Journal of Management Science, 37, 116–125.

Sanders, N. R., & Ritzman, L. P. (1992). The need for contextual and
technical knowledge in judgmental forecasting. Journal of Behavioral
Decision Making , 5, 39–52.

Siemsen, E. (2011). The usefulness of behavioral laboratory experiments
in supply chain management research. Journal of Supply Chain
Management , 47, 17–18.

Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an
analysis and review. International Journal of Forecasting , 16, 437–450.

Wagenaar, W. A., & Sagaria, S. D. (1975). Misperception of exponential
growth. Perception and Psychophysics, 18, 416–422.

Welch, E., Bretschneider, S., & Rohrbaugh, J. (1998). Accuracy of
judgmental extrapolation of time series data—Characteristics, causes,
and remediation strategies for forecasting. International Journal of
Forecasting , 14, 95–110.

Willemain, T. R. (1989). Graphical adjustment of statistical forecasts.
International Journal of Forecasting , 5, 179–185.

Willemain, T. R. (1991). The effect of graphical adjustment on forecast
accuracy. International Journal of Forecasting , 7, 151–154.

Fotios Petropoulos is Lecturer (Assistant Professor) at Cardiff Business
School of Cardiff University. Before that, hewas amember of the Lancaster
Centre for Forecasting at Lancaster University and the Forecasting and
Strategy Unit of the National Technical University of Athens. Fotios is
engaged in research on improving forecasting processes.

Paul Goodwin is Emeritus Professor of Management Science at the Uni-
versity of Bath. His research interests are concerned with the integration
of management judgment and analytical methods in forecasting and de-
cision making. In 2013 he was elected as an Honorary Fellow of the Inter-
national Institute of Forecasters. He is co-author of Decision Analysis for
Management Judgment (Wiley).

Robert Fildes is Distinguished Professor of Management Science in the
School ofManagement, Lancaster University andDirector of the Lancaster
Centre for Forecasting. He was co-founder of the Journal of Forecasting
in 1981 and of the International Journal of Forecasting in 1985. He has
consulted and lectured widely on all aspects of the problem of improving
forecasting in organisations.

http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref13
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref14
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref15
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref16
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref17
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref18
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref19
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref20
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref21
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref22
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref23
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref24
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref25
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref26
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref27
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref28
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref29
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref30
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref31
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref32
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref33
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref34
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref35
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref36
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref37
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref38
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref39
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref40
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref41
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref42
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref43
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref44
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref45
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref46
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref47
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref48
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref49
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref50
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref51
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref52
http://refhub.elsevier.com/S0169-2070(16)30003-6/sbref53

	Using a rolling training approach to improve judgmental extrapolations elicited from forecasters with technical knowledge
	Introduction
	Literature review
	Experimental design
	Forecasting approaches
	Time series
	Participants and web application
	Process of the experiment

	Analysis
	Forecasting performance
	Questionnaire responses analysis

	Discussion and implications
	Conclusions and perspectives
	References


