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An Incremental K-means algorithm

D T Pham*, S S Dimov and C D Nguyen

Manufacturing Engineering Centre, Cardiff University, Cardiff, Wales, UK

Abstract: Data clustering is an important data exploration technique with many applications in
engineering, including parts family formation in group technology and segmentation in image
processing. One of the most popular data clustering methods is K-means clustering because of its
simplicity and computational efficiency. The main problem with this clustering method is its tendency
to converge at a local minimum. In this paper, the cause of this problem is explained and an existing
solution involving a cluster centre jumping operation is examined. The jumping technique alleviates
the problem with local minima by enabling cluster centres to move in such a radical way as to reduce
the overall cluster distortion. However, the method is very sensitive to errors in estimating distortion.
A clustering scheme that is also based on distortion reduction through cluster centre movement but is
not so sensitive to inaccuracies in distortion estimation is proposed in this paper. The scheme, which is
an incremental version of the K-means algorithm, involves adding cluster centres one by one as
clusters are being formed. The paper presents test results to demonstrate the efficacy of the proposed
algorithm.

Keywords: clustering, K-means method, incremental clustering

NOTATION

C a cluster
d length of one side of the calculated

hyper-cube
dðw, xÞ distance between the cluster’s centre

w and a position x in the Euclidean
space

DD estimated decrease of the total
distortion error when the centre of a
cluster is moved to a new position

Iz distortion error of cluster z
DI estimated increase of the total

distortion error when the centre of a
cluster is removed

DM estimated change of the total distortion
error when the jumping operation has
occurred

n number of objects of the dataset
N number of objects belonging to the

cluster (cluster’s capacity)
Nd dimension of the Euclidean space
Ni,Nj,Nk,Nz number of objects belonging to clusters

Ci, Cj, Ck, Cz respectively

R number of disjoint regions
S sum of the squared distances between

the objects in the cluster and the centre
of the Euclidean space

w centre of a cluster
x0 centre of the Euclidean space

1 INTRODUCTION

Data clustering (DC) is an important data exploration
technique for grouping similar physical or abstract
objects. The technique allows objects with common
characteristics to be lumped together in order to
facilitate their further processing. DC is an unsupervised
technique that generates hypotheses based on the
provided unlabelled objects. This makes this method a
very attractive data processing technique for a wide
range of applications [1].

K-means clustering (vector quantization) is one of the
most popular data clustering methods because of its
simplicity and computational efficiency. The computa-
tional efforts required to form the clusters grow linearly
with the increase of the dataset size. When applied to
small or medium sized datasets, K-means clustering
gives better results than other methods in terms of
clustering performance and computational time [2].

There are a number of different implementations of
the K-means method. For example, Linde–Buze–Gray

The MS was received on 20 August 2003 and was accepted after revision
for publication on 26 March 2004.
* Corresponding author: Manufacturing Engineering Centre, Cardiff
University, The Cardiff School of Engineering, PO Box 925, Newport
Road, Cardiff CF24 0YF, Wales, UK.

783

C14203 # IMechE 2004 Proc. Instn Mech. Engrs Vol. 218 Part C: J. Mechanical Engineering Science at Cardiff University on April 4, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


(LBG) is one version of this method in which a batch
update mode is applied [3]. Other implementations of
the method, ISODATA [4] and MAXNET [5], restrict
the cluster diameters and introduce flexibility in
specifying the number of clusters. Another version of
the K-means method [6] employs a contiguity character-
istic to improve the algorithm performance in some
specific applications.

K-means clustering has been used as a clustering
method in many application areas. For example, this
method could be employed for:

(a) image segmentation and compression [5, 6],
(b) grouping image voxels [7],
(c) initial clustering before applying more sophisticated

iterative methods [8],
(d) analysing a robot’s trajectory [9],
(e) speech and handwriting feature vectors analysis

[10, 11],
(f) grouping machined parts into families in cellular

manufacturing system design [12, 13].

Although the K-means method has demonstrated a
number of advantages over other DC techniques, it also
has drawbacks. In particular, it often converges at a
local optimum and, therefore, acceptable results can be
found only after several iterations. The local optimum
problem has been studied extensively by a number of
researchers [3, 14–16].

In recent years, many improvements have been
proposed and implemented in the K-means method. A
number of researchers have proposed different techni-
ques to improve its convergence speed [15, 17–21]. The
effect of finite sample size on the K-means method was
studied [22]. To obtain better results, other researchers
[23–25] modified the initialization procedure by present-
ing the algorithm with data collected using a density-
based approach. Again, to improve performance,
Fritzke [3] suggested a new jumping operation to
facilitate the algorithm’s convergence and assist it in
escaping from local minima. In the same direction as
Fritzke’s work, the utility index is used in reference [26].
Chinrungrueng and Sequin [27] proposed a new updat-
ing method introducing a restriction hypothesis about
the problem’s underlying object distribution. The
stochastic relaxation scheme was applied to the K-
means method to improve its performance [28].

In this paper, a new version of the K-means algorithm
called Incremental K-means is proposed. In section 2,
the original K-means algorithm is described. Section 3
explains why the original algorithm converges to a local
minimum and suggests a way to avoid this. Incremental
K-means is presented in section 4. Section 5 discusses
two approaches to speed-up Incremental K-means. The
effect of the proposed modifications on the performance
of the algorithm is analysed in section 6. Conclusions
are given in section 7.

2 THE ORIGINAL K-MEANS ALGORITHM

The K-means method is applicable only to datasets with
numerical attributes. The Euclidean distance is
employed to measure the distance between objects.
The main steps in the original K-means algorithm are
shown as follows:

Step 1. Choose arbitrary K objects for K cluster centres.

Step 2. Assign each object in the training set to the closest

cluster and update the centres of the clusters.

Step 3. If the clustering criterion is satisfied (the cluster

centres do not move), the algorithm stops.

Otherwise, go to step 2.

For convenience, in this paper the information in a
cluster is represented by a triple hw, N, Si where w is the
centre of a cluster, N is the number of objects belonging
to the cluster (cluster’s capacity) and S is the sum of the
squared distances between the objects in the cluster and
the centre of the Euclidean space. The distortion error I
of a cluster is calculated using the following equation:

I ¼ S �N½dðw, x0Þ�2 ð1Þ
where dðw, x0Þ is the distance between the cluster’s
centre w and the centre of the Euclidean space x0.

3 MOTIVATION

The performance of the K-means algorithm can be
measured by considering the movements of the centres
of the clusters. When a centre is initiated in an
inappropriate position, it cannot move to an optimum
location. For example, in Fig. 1a the dataset is split into
two disjoint regions, R1 and R2, with the same uniform
distribution. Suppose that the number of clusters is
chosen to be 4. In this example, the hypothesis about the
smooth underlying distribution [27] is not satisfied.
Because of the random initialization, after step 1 of the
K-means algorithm, the centres might be located as
shown in Fig. 1b. There is not any object in region R2
which can belong to any cluster in region R1 due to the
distance between the two regions. Thus, no cluster
centre in region R1 can move to region R2. Therefore,
the clustering obtained by K-means (Fig. 1c) differs
from the optimal results for this dataset (Fig. 1d).

To overcome the problem of cluster centres being
trapped in inappropriate locations, Fritzke [3] suggested
a modified K-means algorithm incorporating a jumping
operation to move the cluster centre with the least
distortion error to the cluster with the most distortion
error:

Step 1. Choose arbitrary K objects for K cluster centres.

Step 2. Assign each object in the training set to the closest

cluster and update the centres of the clusters.
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Step 3. If the clustering criterion is satisfied (the cluster

centres do not move), go to step 4.

Else, go to step 2.

Step 4. If there is a cluster that can be moved to a better posi-

tion to reduce the total sum of the distortion errors,

move it to the new position and then go to step 2.

Else, stop.

When the centre of a cluster is taken away from an
inappropriate position, the sum of distortion errors of
all clusters increases by a value equal to the sum of the
squared distances between objects of the removed
cluster and the second nearest cluster centre. However,
this calculation does not take into account the fact that
the centre of the second nearest cluster centre will be
moved when the objects of the removed cluster are
added to it. Thus, the increase of this sum will be smaller
than it would otherwise be. Moreover, in the proposed
operation, the removed cluster centre will be inserted at
a random position into the cluster with the largest
distortion. There is no estimation of the effect of this
operation on the sum of distortion errors of all clusters.

Pelleg and Moore [29] proposed to start the algorithm

with a small number of clusters, K, then double it by
inserting new cluster centres in suitable positions. There
are two problems with the criterion used to evaluate the
performance of this operation. Firstly, each cluster is
divided independently into two without taking into
account the influence of neighbouring clusters. Sec-
ondly, the BIC scoring that Pelleg and Moore adopt
does not guarantee that the distortion errors of all
clusters will be minimized.

In this paper, a new criterion is proposed to assess the
performance of the jumping operation suggested by
Fritzke [3]. During the learning process, as already
mentioned, the operation deals with the local minimum
problem by removing a cluster from an inappropriate
position and inserting it into a more promising position.
The increase in the sum of distortion errors of all
clusters when one cluster centre is removed and the
decrease in the same sum when a new cluster centre is
inserted into a new position are two parameters used to
evaluate performance. Because it is infeasible to
calculate the values of these parameters precisely in
the general case, two procedures are described in the
following section to estimate them.

Fig. 1 The results of applying K-means ðK ¼ 4Þ on two split regions
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Evaluation of distortion of the clusters

Suppose that the centre of cluster Ci is taken out. In the
worst case, all objects belonging to Ci will be allocated
to the second nearest cluster Cj without affecting any
other neighbouring clusters. The triples ðwi,Ni,SiÞ and
ðwj,Nj,SjÞ characterize Ci and Cj. The triple ðwk,Nk,SkÞ
of the new cluster Ck is calculated from the following
equations:

Nk ¼ Ni þNj ð2Þ

wk ¼ 1

Nk

XNk

i¼1

xki ¼
1

Nk
ðNiwi þNjwjÞ ð3Þ

Sk ¼ Si þ Sj ð4Þ

and the increase of the distortion DI in the worst case is
calculated using

DI ¼ Ik � Ii � Ij

¼ Sk �Nk½dðwk, x0Þ�2 � Si �Ni½dðwi, x0Þ�2
n o

� Sj �Nj½dðwj , x0Þ�2
n o

¼ Ni dðwi, x0Þ½ �2 þ Nj½dðwj, x0Þ�2 �Nk dðwk, x0Þ½ �2

¼ NiNj

Ni þNj
½dðwi,wjÞ�2 ð5Þ

where Ik, Ii and Ij are the distortion of Ck, Ci and Cj

respectively.
When the centre of a cluster is moved to a new

position, it will cause a decrease in the sum of cluster
distortion errors. This decrease cannot be calculated in

the general case. In this paper, it is assumed that a
cluster Cz is a hyper-cube with a uniform distribution
density p of objects belonging to it (Fig. 2). When a new
cluster centre is inserted, Cz will be split into two clusters
Cz1 and Cz2. The triples, ðwz,Nz,SzÞ, ðwz1,Nz1,Sz1Þ and
ðwz2,Nz2,Sz2Þ, represent these clusters. All objects of Cz

are assumed to belong to Cz1 or Cz2. After training, the
centres of the two new clusters will be positioned as
shown in Fig. 2. Without loss of generality, the centre of
Cz is considered to be the origin of the coordinate
system.

The distortion error Iz of cluster Cz is calculated as
follows:

Iz ¼
ðd=2
� d=2

ðd=2
� d=2

� � �
ðd=2
� d=2

dðx, x0Þ½ �2p dxð1Þdxð2Þ� � �dxðNdÞ

¼
ðd=2
� d=2

ðd=2
� d=2

� � �
ðd=2
� d=2

XNd

t¼1

ðxðtÞÞ2
" #

p dxð1Þdxð2Þ� � � dxðNdÞ

¼ p
XNd

t¼1

ðd=2
� d=2

ðd=2
� d=2

� � �
ðd=2
� d=2

½ðxðtÞÞ2�dxð1Þdxð2Þ� � � dxðNdÞ
( )

¼ p
XNd

t¼1

YNd

j¼1
j=t

xð jÞ
�� ��d=2

� d=2

0
B@

1
CA ðxðtÞÞ3

3

�����
�����
d=2

� d=2

2
4

3
5

8><
>:

9>=
>;

¼ pNdd
Ndþ2

12

¼ NzNd d2

12
ð6Þ

where Nd is the dimension of the Euclidean space.
Because Cz is a cube with a uniform distribution, the
two new clusters Cz1 and Cz2 contain the same
number of objects Nz1 ¼ Nz2 ¼ Nz=2. Using equation
(6), the decrease in distortion errors is calculated as
follows:

DD ¼ Nz1Nz2

Nz
d wz1,wz2ð Þ½ �2

¼ Nz

4

d

2

� �2

¼ 3Iz

4Nd
ð7Þ

By applying the jumping operation, the sum of the
distortion errors will be changed by a value
DM ¼ DI � DD. If DM is smaller than 0, the operation
could lead to better clustering.

As the performance of the jumping operation is
evaluated based on two estimated parameters in the
cluster centre removal and insertion operators, this may
introduce additional errors. An incremental strategy canFig. 2 The splitting of Cz into Cz1 and Cz2 after training
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be used to eliminate the removal of a cluster centre and
the dependence on the initial positions of cluster centres.
An incremental algorithm starts with the number of
clusters K being set equal to 1 and increasing by 1 in
each step. With each increase of K, a new cluster centre
is inserted into the cluster with the most distortion and
then objects are reassigned to clusters until the centres
do not move. The process is repeated until K reaches the
specified number of clusters. A new improved K-means
algorithm with this incremental strategy will be
described in the next section. The proposed algorithm
has the advantage of determining near-optimal cluster
centre positions.

To the authors’ knowledge, there is another K-means
clustering algorithm [30] with a similar incremental
strategy. In each step of the incremental process, that
algorithm uses a local search procedure to calculate the
position of the new cluster centre, assuming that the
positions of the current cluster centres are optimal and
can remain fixed. Because of the dynamic nature of
clusters in a K-means operation, this calculation will not
yield the optimal position for the new cluster centre for
each step. The position error accumulated over the
clustering process can affect the final performance of the
algorithm.

4 INCREMENTAL K-MEANS ALGORITHM

The Incremental K-means algorithm is summarized as
follows:

Assign K¼ 1.

Phase 1. Normal training

Step 1. If K¼ 1, choose an arbitrary point for a cluster

centre.

If K > 1, insert the centre of the new cluster in

the cluster with the greatest distortion.

Step 2. Assign each object in the training set to the closest

cluster and update its centre.

Step 3. If the cluster centre does not move, go to phase 2.

Else, go to phase 1, step 2.

Phase 2. Increasing the number of clusters

If K is smaller than a specified value, increase K by 1 and

go to phase 1, step 1.

Else, stop.

Phase 1 includes steps that are similar to the steps of the
conventional K-means algorithm, except in its restric-
tion on where the new cluster centre can be placed. The
centres of all existing clusters do not change their
positions, which makes the algorithm less dependent on
the random placement of the new centres.

The complexity of the new algorithm can be assessed
using the formula

OðK2
* n * num of iterationsÞ

where n is the number of objects and num of iterations is
the largest possible number of iterations in phase 1.
Compared with the complexity OðK * n * num of
iterationsÞ of the K-means algorithm, the Incremental
K-means algorithm requires K times more iterations.

When there are K clusters, the new algorithm needs to
run phase 1 K times, each iteration being equivalent to
one execution of the traditional K-means algorithm. Of
those K times, ðK � 1Þ are considered intermediate steps
that prepare the data for the next iteration. Therefore,
only the last iteration of phase 1 has to satisfy the strict
end condition defined in step 3. In this paper, the end
condition for each intermediate iteration is relaxed and
tested separately.

In the initial step of each run of phase 1 of the
Incremental K-means algorithm, a new cluster centre is
inserted in the cluster with the largest distortion error.
The insertion of the new centre mostly affects the objects
belonging to this cluster. The performance of the
algorithm can be improved further by organizing the
indexing of centres to reduce the computational effort in
finding the nearest cluster [19].

5 PERFORMANCE

Six artificial datasets and six real datasets from the UCI
Repository [31] were used to test the proposed new
algorithm. The characteristics of these datasets are
represented in Table 1. The object distribution of the
six artificial datasets is shown in Fig. 3.

The research carried out by Bottou and Bengio [15]
and Bilmes et al. [2] showed that it takes on average 15
iterations for the K-means algorithm to reach a local
minimum. The clustering process could be stopped by
specifying termination conditions such as a predefined
number of iterations and the percentage reduction of
the distortion errors in one iteration being smaller than
a given value e. In this work, these two termination
criteria were used. In particular, the maximum number
of iterations was empirically set to 20 and e to 10� 7.
The algorithm stops when one of these conditions is
satisfied.

Due to the random nature of the K-means algorithm,
it is important to conduct a large number of tests to
demonstrate its performance in a statistically significant
way. When the problem has R disjoint and distant
regions and K clusters should be formed, an extremely
large number of possibilities exist to allocate the K
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cluster centres to different regions. Each particular
allocation will lead to different distortion errors.
Unfortunately, R is not known in real problems.
Many researchers select a large K and a small number
of tests, which may not lead to optimal clustering
results. In this work, K was selected in the range of 1–15
and the number of tests for each dataset was taken as
500.

Figure 4 shows the results obtained by applying
four different versions of the K-means algorithm
(original K-means, K-means with the jumping operation,
Incremental K-means and Incremental K-means with
predefined termination conditions) to the 12 datasets.
On all datasets, except the Balance-Scale dataset, the
K-means algorithm with the jumping operation out-
performs the original K-means algorithm in spite of

Fig. 3 The object distribution of the contrived datasets

Table 1 Characteristics of data sets

(a) Real data sets
Balance-Scale Ionosphere Iris Pima Wine Zoo

Number of attributes 4 34 4 8 13 17
Number of objects 635 351 150 768 178 101

(b) Artificial data sets
Uniform1 Uniform2 Uniform3 Gauss1 Gauss2 Gauss3

Number of attributes 2 2 2 2 2 2
Number of objects 421 1084 800 848 1220 800
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the fact that the results obtained are far from the
optimal solution. Also, on all datasets, the Incremental
K-means algorithm groups objects in clusters whose
average distortion error is very close to the smallest
distortion error of any of those clusters. This means that
the Incremental K-means algorithm does not depend on
the specific characteristics of the datasets and the value
of K, and produces reliable and optimal clustering of
objects.

Figure 5 gives the running time of the K-means

algorithm, Incremental K-means algorithm and Incre-
mental K-means algorithm with predefined termination
conditions. All algorithms were implemented in Cþþ
and executed on a Pentium II 300MHz PC. Although
the theoretical complexity of Incremental K-means is a
function of K2, the experiments carried out show that
the running time depends linearly on K (see the
Appendix). By specifying termination conditions, the
running time is reduced without sacrificing the quality of
the clustering results (Fig. 4).

Fig. 4 (continued over)
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Fig. 4 Clustering results of K-means, K-means with the jumping operation, Incremental K-means and
Incremental K-means with termination conditions (I a and Imin are the average and the minimum
values of cluster distortion errors)
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6 FURTHER IMPROVEMENT

With some values of K, the results of the Incremental K-
means algorithm on real datasets are not close to the
optimal, e.g. the Balance-Scale dataset with K¼ 11 or 12
and the Ionosphere dataset with K¼ 5 or 6. The reason
for this problem is the heuristical insertion of a new
centre into the cluster, with the largest distortion when

increasing K by 1. After insertion, the total distortion is
decreased by a value smaller than or equal to the
distortion of the split cluster. If a different cluster has its
distortion larger than this amount of decrease, it may be
a better choice for splitting up. Thus, the algorithm has
to investigate all possibilities in order to find the most
beneficial place to insert the new cluster. However, this
searching slows down the algorithm for large values of

Fig. 5 (continued over)
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K, so that, for any given insertion, the search only
tries clusters with a distortion at least 1.5 times
larger than the amount of decrease achieved until that
point.

Figure 6 shows the results obtained by applying three
different versions of the K-means algorithm, original K-

means, Incremental K-means and Incremental K-means
with clusters search to the six real datasets. The third
version has all its results close to 1 for all values of K,
demonstrating that the search strategy helped it to
handle cases that the plain incremental version had
difficulties with.

Fig. 5 Comparison of the running time of K-means, Incremental K-means and Incremental K-means with
termination conditions
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7 CONCLUSION

This paper has described a new clustering algorithm,
Incremental K-means. The algorithm has been tested on
a number of artificial and real datasets. The algorithm
consistently outperforms the original K-means algo-
rithm. The proposed search strategy decreases the

dependence of the algorithm on the initialization of
cluster centres. In addition, the new algorithm only
needs to be applied once to achieve almost optimal
results. Further experiments will be carried out to
test the new algorithm on both nominal and mixed
data.

Fig. 6 Clustering results of K-means, Incremental K-means and Incremental K-means with cluster search
(I a and Imin are the average and the minimum values of cluster distortion errors)
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APPENDIX

The complexity of the Incremental K-means algorithm
over K insertions is

D T PHAM, S S DIMOV AND C D NGUYEN794

Proc. Instn Mech. Engrs Vol. 218 Part C: J. Mechanical Engineering Science C14203 # IMechE 2004 at Cardiff University on April 4, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


OðKÞ ¼
XK
t¼1

tnRt ð8Þ

where Rt is the number of iterations when the number of
clusters is t and n is the number of objects. In the worst
case,

R1 ¼ R2 ¼ � � � ¼ RK

¼ maximum number of iterations R ð9Þ
Thus,

OðKÞ ¼ nR
XK
t¼1

t

 !
¼ 1

2
nRKðK þ 1Þ ð10Þ

However, when the dataset has well-separated regions,
as in the case of the chosen datasets, the insertion of a
new cluster may affect only one of the regions. With
such a dataset, when t increases, the reduction in the
sum of distortions also decreases, as discussed in section
3. This decrease can lower the value of Rt when t
increases. The decrease in Rt could compensate for the
increase in t. This means the factor ðtRtÞ could almost be
a constant C, which means the complexity of the
algorithm becomes

OðKÞ ¼
XK
t¼1

nC ¼ KnC ð11Þ
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