Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Fuzzy control of a three-tank system

D T Pham and D Li Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2001 215: 505 DOI: 10.1243/0954406011520896

> The online version of this article can be found at: http://pic.sagepub.com/content/215/5/505

> > Published by: **SAGE**

http://www.sagepublications.com

On behalf of:

Institution of Mechanical Engineers

Additional services and information for Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science can be found at:

Email Alerts: http://pic.sagepub.com/cgi/alerts

Subscriptions: http://pic.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://pic.sagepub.com/content/215/5/505.refs.html

>> Version of Record - May 1, 2001

What is This?

Fuzzy control of a three-tank system

D T Pham* and D Li

Intelligent Systems Laboratory, Manufacturing Engineering Centre, School of Engineering, Cardiff University, Wales, UK

Abstract: Fuzzy inverse reasoning performed using fuzzy relational equations can be employed to deduce control actions appropriate for a desired process output. The three-tank plant to be controlled has two inputs and hence the fuzzy relational equation describing the dynamics of the plant is a two-decision-variable equation. Algorithms are only available for solving equations that have a single decision variable. A method is proposed in this paper to decompose the two-decision-variable fuzzy relational equations so that existing algorithms can be applied to produce control actions for the plant.

Keywords: fuzzy logic, inverse reasoning, process control

NOTATION

az_i	opening of the <i>i</i> th valve	
A	cross-sectional area of a tank	
A, A', C, C'	fuzzy sets	
A^i, B^j, C^k, D^l	fuzzy sets	
g	gravitational constant	
h_i	liquid level in the <i>i</i> th tank	
\dot{h}_i	derivative of h_i with respect to time	
$h_{i}^{j}, \dot{h}_{i}^{j}, q_{i}^{j}$	degrees of membership	
$\boldsymbol{H}_i, \dot{\boldsymbol{H}}_i, \boldsymbol{Q}_i$	fuzzy variables corresponding to h_i , \dot{h}_i	
	and q_i	
$M_{\rm p}$	maximum overshoot	
q_i	inlet flowrate for the <i>i</i> th tank	
r _{ij}	element of \mathbf{R}'	
r _{ijkl}	element of R	
$\mathbf{R}, \mathbf{R}', \mathbf{R}_i, \mathbf{R}'_i$	fuzzy relations or fuzzy relational	
	matrices	
S_1	cross-sectional area of the outlet pipe	
$S_{\rm n}$	cross-sectional area of the connecting	
	pipes	
$u_i(t)$	control action of the <i>i</i> th control loop	
x_{ijk}	element of X	
X	input matrix of a multiple-decision-	
	variable fuzzy relational equation	
X_1, X_2, X, Y	fuzzy variables	
$y_i(t)$	output response of the <i>i</i> th control loop	
$Y_{\rm d}$	fuzzified desired process output	

The MS was received on 18 January 2001 and was accepted after revision for publication on 6 March 2001.

*Corresponding author: Intelligent Systems Laboratory, Manufacturing Engineering Centre, School of Engineering, Cardiff University, Queen's Buildings, The Parade, Newport Road, PO Box 688, Cardiff CF24 3TE, UK.

ε	steady state error
τ	rise time

1 INTRODUCTION

Fuzzy reasoning can be classified as fuzzy forward reasoning and fuzzy inverse reasoning. Forward reasoning involves finding a logical consequence of a given condition. It starts by comparing the given condition and the antecedent part of a fuzzy rule. If they match, the conclusion part of the fuzzy rule will be taken as a consequence of the given condition. Fuzzy inverse reasoning (FIR) aims to deduce a sufficient condition for a specified conclusion called a goal. It searches for a sufficient condition, A', through fuzzy relations such as $A \Rightarrow C$. If A' is found, the given goal is considered true. FIR can be expressed as follows [1, 2]:

goal: y is C' fuzzy relation: If x is A Then y is C

.

sufficient condition : x is A'

(1)

Consider that the given goal is a desired process output and the sufficient condition to be derived is a control action. FIR can thus be used to produce a control action for a specified process output. The technique of determining control actions by using FIR is called FIR control or fuzzy backward reasoning control (FBRC) [3]. In FIR control, the fuzzy relation represents the dynamics of a controlled process, the output of which can be expressed using a fuzzy relational equation such as

$$\boldsymbol{X} \circ \mathbf{R} = \boldsymbol{Y}_{\mathrm{d}} \tag{2}$$

where **R** is a fuzzy relation $X \Rightarrow Y$ representing the process dynamics, X is a control action and Y_d is a given goal. FIR is performed by solving the fuzzy relational equation in order to obtain a control action X that is sufficient to yield Y_d .

FIR ensures that the produced control actions are sufficient to generate the desired process output. Algorithms exist for solving linear fuzzy relational equations that contain one decision variable to obtain the appropriate control actions [4–6].

A three-tank plant is a multiple-input–multiple-output (MIMO) plant. When used to describe the dynamics of this plant, a fuzzy relation will contain more than one input in its antecedent part. Consequently, there will be multiple decision variables included in the corresponding fuzzy relational equation and existing algorithms cannot be applied to determine control actions.

This paper introduces an approach to FIR control that can deal with MIMO systems such as a three-tank plant. The idea is to decompose the fuzzy relational equation that describes an MIMO plant into single-decision-variable equations and apply an available algorithm to deduce control actions. The remainder of this paper is organized as follows. Section 2 describes the three-tank plant employed to illustrate the proposed approach. Section 3 discusses the decomposition of MIMO processes where there are interactions between the different process variables. Section 4 presents the experimental results obtained.

2 THREE-TANK PLANT

The plant is illustrated in Fig. 1. The tanks all have the same cross-sectional area. They are linked by connecting pipes. Liquid levels in the tanks are regulated

Fig. 1 A three-tank plant

by manipulating the inlet flows of which there are two, one into tank I (the left-most tank) and the other into tank II (the right-most tank). Two pumps, P_1 and P_2 , drawing liquid from a reservoir control the flowrates of the inlets. The flows in the pipes between tank I and tank II and the middle tank, tank III, are manipulated using ball valves V_1 and V_3 . The plant output flow is from a pipe connected to tank II. Ball valve V_2 controls the outlet flow. Disturbances to the plant are in the form of leakages from the tanks which are controlled by ball valves V_4 , V_5 and V_6 respectively. Pressure sensors are used to measure the levels of liquid in the tanks.

When the tanks are coupled together through the connecting pipes, the effects of q_1 and q_2 will interact with one another. For example, assume that the plant is in a steady state initially. A new desired level for tank I is set that is higher than the current level. The level h_2 for tank II is to remain the same. The variable q_1 must increase to bring the level h_1 in tank I to its new set point. This is the *direct* effect of q_1 on h_1 . However, because the tanks are coupled, q_1 will also disturb h_2 . A reduction in q_2 is required to compensate for the increase in h_2 due to q_1 . The decrease in q_2 , in turn, reduces h_1 . This is called the *indirect* effect of q_1 on h_1 .

$$A \frac{dh_1}{dt} = q_1 - az_1 S_n \operatorname{sgn}(h_1 - h_3) \sqrt{2g|h_1 - h_3|}$$
(3a)

$$A \frac{dh_3}{dt} = az_1 S_n \operatorname{sgn}(h_1 - h_3) \sqrt{2g|h_1 - h_3|} - az_3 S_n \operatorname{sgn}(h_3 - h_2) \sqrt{2g|h_3 - h_2|}$$
(3b)

$$A \frac{dh_2}{dt} = q_2 - az_3 S_n \operatorname{sgn}(h_2 - h_3) \sqrt{2g|h_2 - h_3|} - az_2 S_1 \sqrt{2gh_2}$$
(3c)

where az_i represents the opening of the *i*th valve, A is the cross-sectional area of a tank, S_n is the cross-sectional area of the connecting pipes and S_1 is the cross-sectional area of the outlet pipe. The interactions between q_1 and q_2 make it difficult to implement FIR control for the three-tank plant. This will be discussed in the next section.

3 DIMENSION REDUCTION FOR FUZZY INVERSE REASONING CONTROL

The plant can be viewed as a two-input-two-output process. The two inputs are q_1 and q_2 and the two outputs are \dot{h}_1 and \dot{h}_2 . The fuzzy relational equation that

describes the dynamics of the process has two decision variables and is not a linear equation. It needs to be transformed into linear single-decision-variable equations before an existing fuzzy inverse reasoning algorithm can be applied.

A commonly used method when dealing with a complex problem is to assume that some unknown factors are known to reduce the complexity of the problem. If, in a two-decision-variable equation $[X_1 \ X_2] \circ \mathbf{R} = \mathbf{Y}, X_2$ is assumed known, a fuzzy relation between X_1 and \mathbf{Y} can then be constructed, denoted as \mathbf{R}' . Consequently, the fuzzy relational equation becomes $X_1 \circ \mathbf{R}' = \mathbf{Y}$, which is a linear single-decision-variable equation. However, when there is interaction between X_1 and X_2 , this straightforward simplification cannot be made.

The concept of a *decoupler* [7] in conventional control can be employed to decompose interactions in an MIMO plant. A decoupler cancels the effect of the control actions of one control loop, $u_k(t)$, on the outputs of other loops, $y_i(t)$ $(i \neq k)$, and hence decomposes interactions between $u_k(t)$ and $u_i(t)$ $(i \neq k)$. The decoupler works by providing an additional action due to $u_k(t)$ on $y_i(t)$ $(i \neq k)$ to compensate for the influence of $u_k(t)$ on $y_i(t)$ $(i \neq k)$. In the time domain, it maintains $y_i(t)$ equal to $y_i(t-1)$ when $u_k(t)$ $(i \neq k)$ changes.

Two FIR controllers have been designed for the threetank plant based on the concept of the decoupler. One has q_1 as the input variable and \dot{h}_1 as the output variable. It also has two auxiliary variables, h_1 and h_3 . The fuzzy relation employed by this controller is a relation from q_1 , h_1 and h_3 to \dot{h}_1 , called \mathbf{R}_1 . The fuzzy relational equation for the controller is

$$[\boldsymbol{Q}_1 \ \boldsymbol{H}_1 \ \boldsymbol{H}_3] \circ \mathbf{R}_1 = \boldsymbol{H}_1 \tag{4}$$

where Q_1 , H_1 , H_3 and \dot{H}_1 are fuzzy variables corresponding to q_1 , h_1 , h_3 and \dot{h}_1 . When a new set point h_{1sp} is chosen, $\dot{h}_1(t+1) \simeq h_{1sp} - h_1(t)$ is calculated and a goal \dot{H}_1 is formed. By solving equation (4), control actions q_1 can be deduced. When $\dot{h}_1(t+1)$ is computed, the auxiliary variable h_3 is kept unchanged so that the controller works by providing an additional effect to counteract the influence of q_1 on h_3 , thereby cancelling the indirect effects of q_1 on h_1 .

The auxiliary fuzzy variables H_1 and H_3 are computed from the measured data, h_1 and h_3 . Equation (4) is then rewritten as a linear equation, namely

$$\boldsymbol{Q}_1 \circ \mathbf{R}_1'|_{\boldsymbol{H}_1,\boldsymbol{H}_3} = \dot{\boldsymbol{H}}_1 \tag{5}$$

where \mathbf{R}'_1 is calculated from \mathbf{R}_1 , H_1 and H_3 .

A three-dimensional matrix is defined as $\mathbf{X} = [\mathbf{Q}_1 \ \mathbf{H}_1 \ \mathbf{H}_3]$. Entry $x_{ijk} = q_1^i \land h_1^j \land h_3^k$ stands for the antecedent part of some fuzzy rule, 'IF \mathbf{Q}_1 is \mathbf{A}^i and \mathbf{H}_1 is \mathbf{B}^j and \mathbf{H}_3 is \mathbf{C}^k , THEN $\dot{\mathbf{H}}_1$ is \mathbf{D}^l , where q_1^i, h_1^j and h_3^k are degrees of membership of fuzzy sets $\mathbf{A}^i, \mathbf{B}^j$ and \mathbf{C}^k respectively.

The fuzzy relational matrix \mathbf{R}_1 is a four-dimensional matrix. Element r_{ijkl} of \mathbf{R}_1 is the truth degree of the given fuzzy rule.

With equation (4), \dot{h}_{1}^{l} , the degree of membership of fuzzy set D^{l} , is computed:

$$\dot{h}_{1}^{l} = [(x_{111} \wedge r_{111l}) \lor (x_{112} \wedge r_{112l}) \lor \cdots \lor (x_{11K} \wedge r_{11Kl})]$$

$$\lor [(x_{121} \wedge r_{121l}) \lor (x_{122} \wedge r_{122l}) \lor \cdots \lor (x_{12K} \wedge r_{12Kl})]$$

$$\lor \cdots$$

$$\lor [(x_{1J1} \wedge r_{1J1l}) \lor (x_{1J2} \wedge r_{1J2l}) \lor \cdots \lor (x_{1JK} \wedge r_{1JKl})]$$

$$\lor \cdots$$

$$\cdots$$

$$\lor [(x_{I11} \wedge r_{I11l}) \lor (x_{I12} \wedge r_{I12l}) \lor \cdots \lor (x_{I1K} \wedge r_{I1Kl})]$$

$$\lor [(x_{I21} \wedge r_{I21l}) \lor (x_{I22} \wedge r_{I22l}) \lor \cdots \lor (x_{I2K} \wedge r_{I2Kl})]$$

$$\lor \cdots$$

$$\lor [(x_{IJ1} \wedge r_{IJ1l}) \lor (x_{IJ2} \wedge r_{IJ2l}) \lor \cdots \lor (x_{IJK} \wedge r_{IJKl})]$$

$$(6)$$

Replacing x_{ijk} with $q_1^i \wedge h_1^j \wedge h_3^k$ and employing the associativity and commutativity of the *t*-norm and *t*-conorm (\wedge and \vee) to rearrange equation (6) gives

$$\dot{h}_{1}^{I} = \{ [q_{1}^{1} \wedge (h_{1}^{1} \wedge h_{3}^{1} \wedge r_{111l})] \vee \cdots \vee [q_{1}^{1} \wedge (h_{1}^{1} \wedge h_{3}^{K} \wedge r_{11Kl})] \}$$

$$\vee \cdots$$

$$\vee \{ [q_{1}^{1} \wedge (h_{1}^{J} \wedge h_{3}^{1} \wedge r_{1J1l})] \vee \cdots \vee [q_{1}^{1} \wedge (h_{1}^{J} \wedge h_{3}^{K} \wedge r_{1JKl})] \}$$

$$\vee \cdots$$

$$\cdots$$

$$\vee \{ [q_{1}^{I} \wedge (h_{1}^{1} \wedge h_{3}^{1} \wedge r_{I11l})] \vee \cdots \vee [q_{1}^{I} \wedge (h_{1}^{1} \wedge h_{3}^{K} \wedge r_{I1Kl})] \}$$

$$\vee \cdots$$

$$\vee \{ [q_{1}^{I} \wedge (h_{1}^{J} \wedge h_{3}^{1} \wedge r_{IJ1l})] \vee \cdots \vee [q_{1}^{I} \wedge (h_{1}^{1} \wedge h_{3}^{K} \wedge r_{IIKl})] \}$$

$$(7)$$

FT00401 © IMechE 2001

Equation (7) is rewritten as

$$(q_{1}^{1} \quad q_{1}^{2} \quad \cdots \quad q_{1}^{I}) \circ \begin{pmatrix} r_{1l}' \\ r_{2l}' \\ \vdots \\ r_{Il}' \end{pmatrix} = \dot{h}_{1}^{l}$$
(8)

Applying the above procedure to all elements of \dot{H}_1 , \dot{h}_1^l (l = 1, ..., L), yields the two-dimensional fuzzy relational matrix

$$\mathbf{R}_{1}^{\prime} = \begin{pmatrix} r_{11}^{\prime} & r_{12}^{\prime} & \cdots & r_{1L}^{\prime} \\ r_{21}^{\prime} & r_{22}^{\prime} & & r_{2L}^{\prime} \\ \vdots & & \vdots \\ r_{11}^{\prime} & r_{12}^{\prime} & \cdots & r_{1L}^{\prime} \end{pmatrix}$$

With \mathbf{R}'_1 completely defined, given a new set point h_{1sp} , it is possible to apply an algorithm for solving

linear fuzzy relational equations to equation (5) to produce control actions q_1 .

The other FIR controller possesses a similar structure. It has q_2 as the input variable and \dot{h}_2 as the output variable. The auxiliary variables are h_2 and h_3 . Inverse reasoning is again implemented with the decoupling technique to derive control actions q_2 from a specified set point h_{2sp} .

4 EXPERIMENTAL RESULTS

The designed FIR controllers were applied to regulate the liquid levels under different operating conditions. First, the plant was set up as follows: the three tanks were empty and fully connected, the outlet valve opening was in the medium range, there was no leakage and the set points h_{1sp} and h_{2sp} were 200 mm. With the system starting from a steady state, the set points were suddenly changed to $h_{1sp} = h_{2sp} = 400$ mm. A disturbance was simulated by abruptly increasing the inlet flowrate for tank II by 20 per cent and holding it there for about 120s when the plant was in the steady state.

Fig. 2 Responses of the three-tank plant with the set points raised from 0 to 200 mm

The following design specifications were set for all the different operating conditions:

Steady state error (ε) $\leq 2.50\%$ (9a)

Rise time $(\tau) \leq 90 \, \mathrm{s}$ (9b)

Maximum overshoot $(M_p) \leq 5\%$ (9c)

Figure 2 shows time domain plots of the liquid levels h_1 and h_2 . It can be seen from these plots that the FIR controllers could successfully regulate the liquid levels and satisfy the design specifications.

Figure 3 presents the results when the set points were changed. Compared with the previous case, the plant needed a longer time to reach the higher set point. The rise time of the closed-loop system, denoted as τ , is not proportional to the height of the set point. This is because of the non-linear property of the ball valve. The plant was stable at the various set points. The steady state errors were less than 1.20 per cent when the set points were 200 mm and below 0.65 per cent when the set points were 400 mm in both tank I and tank II.

The results with a disturbance added to tank II are depicted in Fig. 4. Figure 4a illustrates that the controllers produced small control actions to reject the disturbance. Figure 4b shows the effects of the disturbance on the liquid level of tank II. It can be seen that the disturbance caused little change in the liquid level.

For comparison, a conventional fuzzy logic controller (FLC) was developed based on human expertise in manipulating the liquid levels in the same three-tank plant. With this controller, the responses of the plant when the set points were 200 and 400 mm were as shown in Figs 2 and 3 respectively. Although the FLC performed similarly to the FIR controller, it took 2 days for an engineer with a strong fuzzy logic control background to gain the required knowledge and convert it into fuzzy rules. On the other hand, the construction of the FIR controller required only less than 15 min. It is expected that, for more complex plants, the difference in development times will be even larger, which clearly demonstrates the advantage of the FIR approach.

Fig. 3 Responses of the three-tank plant with the set points raised from 0 to 400 mm

Fig. 4 Responses of the three-tank plant to a disturbance

5 CONCLUSION

The three-tank plant is an MIMO plant and therefore the fuzzy relational equation describing its dynamics is a multiple-decision-variable equation. The proposed FIR control approach first involves transforming this fuzzy relational equation into a number of linear single-decision-variable equations. These equations are then solved using one of the available algorithms to deduce appropriate control inputs to the plant. Experiments have shown that FIR controllers can provide satisfactory steady state and transient responses and successfully reject disturbances and handle set point changes.

ACKNOWLEDGEMENTS

This work formed part of the ITEE project funded by the Welsh Assembly and the European Commission under the ISW ERDF Programme. The authors are grateful to the sponsors for their support.

REFERENCES

- 1 Arnould, T. and Tano, S. Interval-valued fuzzy backward reasoning. *IEEE Trans. Fuzzy Systems*, November 1995, 3(4), 425–437.
- 2 Lee, C. C. Fuzzy logic in control systems: fuzzy logic controller—part II. *IEEE Trans. Systems, Man, and Cybernetics*, 1990, **20**(2), 419–437.
- 3 Pham, D. T. and Li, D. Fuzzy backward reasoning control. In Proceedings of 6th UK Workshop on *Fuzzy Systems*, Brunel University, Uxbridge, Middlesex, September 1999.
- 4 Tsukamoto, Y. and Terano, T. Method of solution to fuzzy inverse problem (in Japanese). *Trans. Soc. Instrument and Control Engrs*, 1979, **15**(1), 21–25.
- 5 Wang, P. Fuzzy Set Theory and Its Applications (in Chinese), 1983 (Shanghai Science and Technology Publisher, Shanghai, PR China).
- 6 Li, G. and Fang, S. C. Solving interval-valued fuzzy relation equations. *IEEE Trans. Fuzzy Systems*, May 1998, 6(2), 321–324.
- 7 Stephanopoulos, G. Chemical Process Control, 1984 (Prentice-Hall, London).