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Action aggregation and defuzzi� cation in
Mamdani-type fuzzy systems

D T Pham* and M Castellani
Manufacturing Engineering Centre, School of Engineering, University of Wales, Cardiff, Wales, UK

Abstract: This paper discusses the issues of action aggregation and defuzzi� cation in Mamdani-type
fuzzy systems. The paper highlights the shortcomings of defuzzi� cation techniques associated with the
customary interpretation of the sentence connective ‘and ’ by means of the set union operation. These
include loss of smoothness of the output characteristic and inaccurate mapping of the fuzzy response.
The most appropriate procedure for aggregating the outputs of different fuzzy rules and converting
them into crisp signals is then suggested. The advantages in terms of increased transparency and
mapping accuracy of the fuzzy response are demonstrated.

Keywords: fuzzy logic, output aggregation, defuzzi� cation, COG method, MOM method, weighted
average

NOTATION

aY semi-support of membership
function Y

a1(a), a2(a) extremes of the a-cut
A , B fuzzy terms
An area of nth fuzzy term of a fuzzy

space partition
AY area of fuzzy term Y
COGn centre of gravity of nth fuzzy term of

a fuzzy space partition
f(x) function
h activation degree
hY activation degree of fuzzy action Y
T (x) transformation function
x variable
Xn, Y n fuzzy terms
2aY support of triangular fuzzy term Y

a, b, g, d parameters
·X(x), nX(x) membership value of element x of

universe of discourse X

1 INTRODUCTION

In the design of fuzzy logic (FL) [1] systems, the
Mamdani model [2, 3] has its strong points in its
closeness to Zadeh’s method of fuzzy reasoning and
for its human-like representation of the response policy.
Being close to Zadeh’s de� nition of FL, it allows a
natural extension to the fuzzy domain of the familiar
crisp modus ponens logical inferencing rule. As opposed
to Takagi and Sugeno’s model [3, 4], Mamdani’s model
expresses the output using fuzzy terms instead of
mathematical combinations of the input variables. The
Mamdani model has its main shortcoming in its
unsuitability for the analysis of closed-loop system
stability. However, in many applications, this issue is
not critical. For the above reasons, the Mamdani model
is still the basis for many industrial FL applications and
a full understanding of its properties would be of value
in realizing further successful implementations and
developments.

The focus of the paper is on the interactions between
the output space partition, the rule aggregation operator
and the defuzzi� cation procedure. The basic properties
of the aggregation and the defuzzi� cation operations are
summarized and a survey of output defuzzi� cation
procedures is presented. The limitations and advantages
of the current procedures are discussed with particular
regard to their transparency and mapping accuracy.
Following the discussion, the most appropriate proce-
dure for converting the output of the fuzzy rules into
crisp signals is described. The suggested procedure
allows full � exibility in the de� nition of the output
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partition, maintaining the transparency and predict-
ability of the behaviour of the system. Moreover, the
aggregation and defuzzi� cation algorithm adopted in
this work has a modular structure that lends itself to
direct expression as a fuzzy neural network (FNN)
architecture.

2 AN ANALYSIS OF MAMDANI-TYPE FL
SYSTEMS

A block diagram of the information � ow in a general
Mamdani FL system is given in F ig. 1. The lower section
of the ‘FL System’ block represents the fuzzy knowl-
edge, while the upper part contains the knowledge
processing operators.

The fuzzy knowledge base (KB) can be acquired from
human expertise or automatically generated via machine
learning techniques [5]. This static information is
expressed in terms of fuzzy production rules mapping
a set of conditions on to a set of actions, where each
condition (action) is de� ned by the linguistic value of an
input (output) variable. Individual rules are joined
together by the sentence connective ‘else’ to form the
overall rule base (RB) [2]. Because rules involving
multiple outputs can always be decomposed into a set
of single-output rules [5], in the rest of this paper only
rules de� ned over a one-dimensional output space will
be considered. Accordingly, each rule consequent is
meant to de� ne one single-output action.

The partition of the input (output) space into a set of
linguistic terms generates a symbolic description of the
physical space. The ‘link’ between the real world and its
linguistic expression is given by fuzzy membership
functions (MFs) [1], which characterize the interpreta-
tion of the fuzzy input–output relationship.

The operators represented in the upper part of the ‘FL
System’ block perform the symbolic processing of
dynamic knowledge and the direct and inverse transfor-
mations between linguistic terms and numerical data. A
desirable property of the fuzzy operators is a consistent
behaviour irrespective of the nature of the stored
knowledge. The absence of interactions between the
processing algorithms and the KB is particularly
important for the transparency and predictability of
fuzzy systems.

The symbolic processing of fuzzy information is
performed using the compositional rule of inference,
which allows the determination of the activation of each
rule consequent according to the degree of matching of
the antecedent. Zadeh’s sup-min [6] and Larsen’ s sup-
prod [5] are the most popular composition operators.
The overall fuzzy output is normally created by super-
position of the individual rule actions. This implies the
interpretation of the rule connective ‘else’ with the union
operation, which is normally implemented through the
pointwise max operator [5]. Consequently, only infor-
mation having the maximum activation value is used for
generating the crisp signal, sometimes discarding the
contribution of entire rules.

Two operators are needed, one to convert the input
numerical data into qualitative information and the
other to perform the inverse process on the qualitative
output of the system [6]. In F ig. 1, these two operators
have been represented as two logical blocks, the fuzzi� er
and the defuzzi� er, added respectively at the input and
the output of the fuzzy system. In the fuzzi� er block,
each numerical observation is mapped on to a fuzzy set
(direct mapping). Most commonly, this fuzzy set is a
fuzzy singleton. The fuzzi� ed input is then matched with
the rule antecedents and a set of fuzzy actions is
generated. The overall fuzzy action is expressed as a
possibility (truth) distribution over the universe of

Fig. 1 Mamdani FL System: information � ow
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discourse and it needs to be converted into some
numerical output.

There is not yet a commonly accepted procedure for
converting qualitative information into a numerical
form (inverse mapping). Unlike the fuzzi� cation process,
which is a one-to-one mapping from the input space to
the possibility interval, the defuzzi� cation procedure
poses the problem of � nding a suitable many-to-one
mapping from a possibility distribution to the output
space. The choice of the crisp value best representing
such a possibility distribution is normally affected by
factors such as problem requirements and implementa-
tion constraints. The two most commonly used defuzzi-
� cation procedures in FL are the centre of gravity
(COG) method and the mean of max ima (MOM )
method [5, 7], both having advantages and shortcomings
that will be discussed later. Alternative methods include
Yager and F ilev’s basic defuzzi� cation distribution
(BADD) [8, 9], semi-linear defuzzi� cation (SLIDE) and
modi� ed-SL IDE (M-SLID E) [10], Jiang and Li’s Gaus-
sian distribution transformation-based defuzzi� cation
(GTD), polynomial transformation-based defuzzi� cation
(PTD) [11] and multimode-oriented PTD (M-PTD)
[12, 13], Runkler and G lesner’s ex tended centre of area
(XCOA) [14] and Saade’ s approach unifying defuzzi� -
cation with the comparison of fuzzy sets [15]. Mizumoto
[16] compares the in� uence of several rule aggregation
and output defuzzi� cation methods on the control
response of a simulated plant, and presents two
algorithms, the height method and the area method,
that bring together aggregation and defuzzi� cation of
fuzzy actions. The height method has also been adopted
by Cherkassky and Mulier [17] under the name additive
defuzzi� cation.

The overall crisp relationship mapped by the ‘FL
System’ block of Fig. 1 is therefore not only dependent
on the KB de� nition but also on the mathematical
operators chosen to manipulate it [18].

3 AGGREGATION AND DEFUZZIFICATION OF
RULE ACTIONS

3.1 Aggregation of fuzzy actions

In a fuzzy system, once the conditions of the rules have
been matched, a set of actions is activated. Each rule
whose antecedent has a non-zero matching degree will
contribute an output with an activation value equal to
the matching degree of the antecedent. The max
operator is by far the most common implementation
of the rule aggregation operation. According to this
procedure, the overall fuzzy output is calculated from
the set of individual outputs taking the maximum truth
value where one or more terms overlap. F igure 2 shows
an example of max aggregation for two overlapping
actions A and B with activation degrees of 0.3 and 0.8
respectively.

Alternative aggregation operations have been pro-
posed generally based on a different implementation of
the union operation. The most common examples
replace the max operator with other triangular co-
norms such as the algebraic sum or the bounded product
[5, 16]. As the ordering of the rules is unimportant, any
operation possessing the properties of commutativity
and associativity is a candidate for implementing the else
connective. In practice, the quality of the choice is

Fig. 2 sup composition

ACTION AGGREGATION AND DEFUZZIFICATION IN MAMDANI-TYPE FUZZY SYSTEMS 749

C12700 # IMechE 2002 Proc Instn Mech Engrs Vol 216 Part C: J Mechanical Engineering Science
 at Cardiff University on April 4, 2012pic.sagepub.comDownloaded from 

http://pic.sagepub.com/


normally affected by the type of composition rule used.
Even though several studies support the association of
the union operation to the sup-star composition rule (see
reference [5] for an overview), successful results have
been reported using an additive procedure [16, 17].

3.2 Output defuzzi� cation

The overall fuzzy output generally constitutes a multi-
modal non-zero truth distribution of possible crisp
values over a subset of the output space. In the
defuzzi� cation stage, one of those possible crisp values
has to be selected as the output crisp signal. The design
of a sound defuzzi� cation method is important as it will
affect the interpretation of the fuzzy response policy.
The � rst aim is always to be able to generate a crisp
value that will be representative of the output possibility
distribution.

For this purpose, some desirable defuzzi� cation
properties are outlined in reference [7], of which the
basic ones are consistency, section invariance and
monotonicity. A consistent defuzzi� cation method
maps convex crisp sets to their centroid. F rom this, it
follows that the empty set and the universal set are both
defuzzi� ed to their centre and a fuzzy singleton is
defuzzi� ed to its sole non-zero truth element. Section
invariance guarantees that the defuzzi� ed value is
uniquely dependent on the output space elements having
a non-zero truth value. Outside this set, any modi� ca-
tion of the fuzzy universe of discourse does not affect the
defuzzi� ed value. Monotonicity requires that, for any
decrease (increase) in the truth degree of a single-output
space element, the defuzzi� cation result remains
unchanged or is moved away from (closer to) that
element. This property implies that the contribution of
each single-output space element to the � nal defuzzi� ed
value increases with the degree of truth of that element.

A desirable defuzzi� cation procedure should also
require a low computational effort to allow its
implementation in real-time applications. At the same
time, it should allow a smooth response and mapping
accuracy to be obtained over all or most of the output
space.

Finally, an ideal defuzzi� cation method should ease
the design of the fuzzy system and keep the decision-
making logic transparent to the user. The manipulation
operators should not add any overhead to the system
design and analysis.

Any defuzzi� cation method possessing the above-
mentioned properties is a good candidate for imple-
mentation in an FL expert system. The following section
provides a critical overview of some of the most
common defuzzi� cation methods. For an application-
oriented overview of defuzzi� cation methods the reader
is referred to reference [19].

4 MAIN DEFUZZIFICATION TECHNIQUES

4.1 Maxima methods

Once the shape of the output possibility distribution has
been determined, a quick and simple defuzzi� cation
procedure is to pick up one of the crisp values having a
maximum truth degree (maxima methods) [7, 20].
Possible choices are the � rst (smallest), the last (largest)
or, in the case of a unimodal possibility distribution, the
median value. By far the most common maxima method
is to select the mean value of elements with maximum
truth degrees (MOM method) [5, 7].

The strength of maxima methods lies in their
simplicity and speed of execution, but their major
weakness is in not being truly fuzzy. They are section
invariant and monotonous, but as a consequence of only
considering elements of highest membership degrees,
information not related to rules of maximal activation is
ignored. This causes a loss of the smooth output
characteristic generated by the gradual transitions
from input space areas where different rules prevail
[18]. The crisp response curve does not retain the
continuous and gradual nature of the input–output
fuzzy relationship and it is characterized by brisk
discontinuities of the kind produced by a multilevel
relay system. The functional identity between a multi-
level relay and an FL system using symmetrical MFs,
the sup-star composition rule and the MOM defuzzi� ca-
tion procedure has been demonstrated in reference [21].

For control applications, the type of multirelay
control characteristic induced by maxima procedures
may also show some of the limitations of such systems.
Suboptimal control performances in terms of steady
state error, minimization of control effort and plant
� uctuations have occasionally been associated with the
use of the MOM method [22, 23]. To retain the smooth
output transitions typical of FL control, it is necessary
for the defuzzi� cation procedure to consider also values
whose membership degree is other than maximal. The
most popular alternative to maxima methods is to
calculate the � nal crisp value from the area of the output
possibility distribution (area-based methods).

4.2 Area-based methods

A well-known area-based procedure is to select the
defuzzi� cation result as the centroid of the output
possibility distribution COG method [5, 7]. A close
variant is the centre of area (COA) method [7], which
selects the crisp value as the position where the output
area can be split into two equal halves. If the output
distribution is symmetrical, the two methods give
identical results.

The COG defuzzi� cation method is section invariant,
monotonous and consistent, and its deterministic
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response curve is characterized by a smooth and
continuous behaviour. In control applications, com-
pared to maxima methods, the COG rule gives a
superior steady state performance and a reduction of
control effort and plant oscillations [22, 23]. On the
other hand, a better transient performance using the
MOM defuzzi� cation procedure has been reported [22].
This is probably because the output of the MOM
method is characterized by fewer but larger variations,
corresponding to the boundaries between neighbouring
rules. Given the same RB, this allows larger corrections,
which should explain the superior transient response.

4.3 Other methods

Modelled on the application of the COG procedure,
several learning algorithms have been proposed for
output defuzzi� cation. The general idea underlying all
these methods is to perform some transformation of the
output possibility distribution according to an auto-
matically generated set of parameters. A generic
transformation on a fuzzy term X can be written as [11]

nX x ·X x T x 1

where nX x is the new membership value of the element
x [ X , ·X x is the original value and T x is any
transformation function. Some examples of such func-
tions are:

BADD method [8, 9]:

T x ·X x g¡1 2

where g is an automatically learned parameter.
SLIDE method [10]:

T x
1 ¡ b, x 4 a
1, x a

»
3

where a and b are parameters to be learned.
M-PTD method [11, 12]:

T x
N

j 0

bj ·X x ¡ 0 5 j

2

4

where bj are parameters that are adaptively tuned and
·X x and T x are discrete functions.

In all of the above procedures, the kind of transfor-
mation induced by T x is a distortion of the output
possibility distribution in order to increase or decrease
the weight of elements of higher membership values. The
more the transformation magni� es the differences
between low and high membership values, the more
the defuzzi� cation method will approximate the MOM
characteristic. In the limiting case, all values except the
maximal will be brought to zero and the defuzzi� cation
procedure will correspond to the MOM method. On the

other hand, if the transformation is the identity
function, the defuzzi� cation procedure will correspond
to the COG method. A similar approach has been
adopted in reference [15], where the output possibility
distribution is defuzzi� ed to the value

y
1

0
da1 a 1 ¡ d a2 a Š da 5

In equation (5), d is a parameter set by the designer and
a1 a and a2 a are the two extremes of an a-cut X a

a [ U ·X a 5a [3] of output possibility distribution X
de� ned over universe of discourse U. The aim of
this procedure is to magnify the contribution of the
elements on one side of the centroid of the output
distribution. In this way, more or less drastic actions can
be achieved.

These algorithms can help to tune the output of the
system but they also introduce a considerable computa-
tional overhead for the determination of the transfor-
mation parameters and in some cases in the
defuzzi� cation procedure. The action of some of the
parameters is also not immediately obvious and this can
affect the transparency of the fuzzy system. It is
preferable whenever possible to tune the behaviour of
the system directly by acting on the shape of the output
MFs. The response curve of the system can be made
more or less smooth by adjusting the overlap of the
output terms, and efforts towards an adaptive behaviour
should be focused in the same direction. Changes in the
behaviour of the system should re� ect variations in the
response policy that should be encoded in the RB and
the input and output space partitions. Keeping the fuzzy
knowledge conceptually separate from the operators can
considerably improve the transparency and predictabil-
ity of the fuzzy system.

5 COMPARISON OF DEFUZZIFICATION
RESULTS

To illustrate the in� uence of different defuzzi� cation
procedures on the overall system response, a general
single-input–single-output Mamdani-type fuzzy system
is used for modelling a linear crisp relationship. The task
has been chosen for the straightforwardness of the KB
design and the ease of detecting any divergence from the
desired behaviour. As multidimensional fuzzy spaces are
generated by performing the Cartesian product of their
one-dimensional components [5], the results achieved in
the example can be readily extended to more complex
multi-input fuzzy rules.

The system adopts Zadeh’s sup-min composition rule
of inference and interprets the logical connectives else
and and respectively using the max and min operators.
By varying the defuzzi� cation method and keeping the
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rest of the system unaltered, it is possible to compare the
effect of different defuzzi� cation procedures.

The approximate fuzzy mapping is de� ned by
partitioning the input and output spaces each into � ve
fuzzy terms, respectively X0–X4 and Y 0–Y 4, delimited by
triangular MFs equally spaced between consecutive
peaks. Differently from many FL implementations, in
this experiment the two terms at the extremes of the
output universe of discourse keep a symmetrical
triangular shape and their peaks do not correspond to
the space boundaries. This con� guration avoids certain
deformations of the input–output characteristic that will
be discussed later. The partition of the input and output
spaces is normalized [3]; i.e. at any point of the universe
of discourse no more than two fuzzy sets overlap and the
sum of their membership degrees is always equal to 1.
The fuzzy mapping is realized by de� ning the � ve rules
listed in Table 1.

The overall fuzzy associative memory (FAM) [24] and
the desired linear crisp behaviour are illustrated in F ig.
3. It is possible to see that the de� nition of the fuzzy map
represents a direct fuzzi� cation of the crisp linear
relationship. Ideally, the fuzzy system should therefore
be able to reproduce the desired response curve.

Figure 4 displays the crisp input–output relationships
produced by two fuzzy systems using respectively the
MOM and COG rules. The input and output fuzzy
partitions are shown next to the input–output coordi-
nate axes and the desired linear characteristic is plotted
for reference. The � gure illustrates the stepwise output
response obtained using the MOM method and already
documented in reference [21] together with the smoother
response given by the COG rule.

The application of the COG method allows a better
reproduction of the desired output, but introduces an
oscillatory behaviour around the reference curve. The
reason for this inaccuracy is that the contribution of
each term to the � nal crisp value is determined by the
portion of its area aggregated into the overall fuzzy
output (see F ig. 2). Fuzzy output terms having a high
activation level will contribute with larger sections of
their total area, therefore driving the � nal crisp output
closer to their centre. Unfortunately, the section of
activated area does not increase linearly with the � ring
strength of an output term, but in convex MFs it grows
more quickly for low � ring strengths. In the case of
triangular MFs, as used in the example of F ig. 4, the
activated area contributing to the total fuzzy output is,
for each term Y i, equivalent to

AY i 2 ¡ hY i aY i hY i ¡aY i h
2
Y i

2aY i hY i 6

where A Y i is the activated area, hY i is the activation level
of Y i and aY i is half the support of the MF. According to
equation (6), the weighting factor (i.e. the portion of
area) for the contribution of each term to the defuzzi� ed
output grows parabolically with the activation degree.

Table 1 Rule base

Rules In Out

1 X 0 Y 0

2 X 1 Y 1
3 X 2 Y 2
4 X 3 Y 3

5 X 4 Y 4

Fig. 3 Fuzzy map and desired behaviour
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The contribution of each rule consequent will there-
fore rise quickly and fade slowly as the input value
crosses the ‘attraction basin’ of the rule. This determines
the distortion of the response of the system towards the
average values between the centroids of the activated
terms. In the example of F ig. 4, the response is biased
towards the intermediate values between consecutive
centroids, alternately overshooting or undershooting the
reference output.

A more severe drawback follows from scaling the
contribution of each action according to the area of its
possibility distribution. Considering, for example, two
non-overlapping actions triggered by a certain set of
conditions, the defuzzi� ed value will be the centroid of
the system composed of their two possibility distribu-
tions. F rom a well-known property of the COG , this is
equivalent to the centroid of a system composed of two
elements, each placed on the centroid of one of the two
distributions and having a possibility equal to the area
of that distribution:

COG
COG 1A 1 COG 2A 2

A 1 A 2
7

where COG, COG1, A1, COG2 and A2 are respectively
the overall centroid position, the centroid position and
area of the � rst distribution, and the centroid position
and area of the second distribution. From the above
formula, it is clear that the defuzzi� ed value will be
closer to the action whose possibility distribution has the

largest area. The rationale for this is the attempt to bring
the output closer to the action of the rule of maximal
activation; this will happen as long as the output space
has been partitioned by a set of MFs of equal areas. In
this case, the action whose possibility distribution has
the largest area will correspond to the action belonging
to the rule of maximal activation.

However, if different output linguistic terms have
possibility distributions of different areas, the COG
method will no longer guarantee a defuzzi� ed value
close to the action of maximal activation. Actions whose
MF encompasses a large area will dominate the response
curve in a way that is proportional to the size of their
area. A consequence is that output terms having MFs
de� ned with a high vagueness (fuzziness) will contribute
with a large area and consequently dominate the output
of the fuzzy system. Considering, for example, an action
Y de� ned by a triangular MF of base 2aY (i.e. the
support) and � ring strength hY, its contribution AY to
the � nal crisp output is determined by equation (6). AY

increases with hY in a parabolic way, but it also grows
proportionally to aY . In a triangular MF, aY gives a
measure of the fuzziness of the linguistic term—the
fuzzier the de� nition, the larger aY . For instance, if two
actions have the same � ring strength and A1 is four
times larger than A2, the defuzzi� ed output will be four
times closer to COG1 than to COG2. If A1 is four times
larger than A2 and the � ring strength h2 of the second
rule is equal to 1, then according to equation (6) a � ring
strength h1 equal to 0.13 would be enough for the � rst

Fig. 4 MOM method and COG rule
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rule to bring the defuzzi� ed output to the mid-point
between COG1 and COG 2.

In standard Mamdani-type FL systems where the
max operator is customarily used for action aggrega-
tion, the application of the COG method has therefore
the undesirable effect of weighting the linguistic
outputs proportionally to their imprecision. Moreover,
the smoothness of the output transition between two
neighbouring rules is affected by the MF area
mismatch between their rule actions. Rule actions
having possibility distributions of large area will
prevail until their activation level becomes very low,
at which point the output of the system briskly
changes to the value indicated by the action of the
neighbouring rule.

Figure 5 illustrates this for an input–output relation-
ship similar to the one plotted in F ig. 4. The numbers of
input and output MFs have been decreased to three, the
reference output has been kept as a straight line and the
RB has been reduced to the � rst three rules of Table 1.
Compared to the MF of the other two actions, the MF
of Y 1 in the second rule encompasses an area four times
larger. The output of the MOM method has been kept
to show the boundaries between the areas where
different rules prevail. The plot reveals the dominance
of the second output term well beyond the points where
the ‘steps’ in the MOM response mark the end of the
area of prevalence of the second rule.

Saade [15] has pointed out the fact that the totality of
the crisp output range is not used as a weakness of the
COG method. The closest the output can approach the
boundaries of its interval of de� nition are in fact the
centroids of the two MFs at the extremes of the fuzzy
partition. Unless fuzzy singletons are employed, these
values will never coincide with the output range
extremes. Therefore, there are always two bands of
values at the bottom and at the top of the output range
that are not ‘reachable’ by the fuzzy system (see also
reference [7]). F igure 6 shows this situation for a fuzzy
system partitioning the input and the output spaces into
three linguistic terms each and using the � rst three rules
of Table 1 to model the usual linear relationship. To
maximize the response interval, the peak values of the
two MFs at the extremes of the action range have been
set to the output interval extremes. The area under the
second output MF is twice the area of the other two
terms in order to maintain a normalized partition of the
output universe of discourse.

In an approximate mapping, the feature of rarely
recommending actions close to the extremes of the
output range can generally be considered desirable, as it
avoids extreme responses in the presence of uncertainty.
However, problems arise when attempting to compen-
sate a possible slower transient response by adjustments
of the fuzzy mapping. To enlarge the action range, it is
necessary to bring the centroid of the extremal MFs

Fig. 5 Output curve distortion: MF of Y 1 is 4 times wider than those of Y 0 and Y 2
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closer to the limits of the output range. This can be
accomplished by reducing the width and hence the area
of the extreme MFs. Unfortunately, as shown above, the
response characteristic is affected by the relative areas
encompassed by the output MFs. Reducing the areas of
the two extreme terms will therefore cause a distortion
of the response curve.

Figure 6 shows the kind of deformation introduced
when the support of the two extreme MFs is half the
width of the other term. To obtain a smoother output
characteristic, a � ner space partition has now to be
introduced to reduce the mismatch between the area of
the extreme output terms and the area of the third term.
The designer will therefore have to enlarge the size of the
RB, increasing the complexity of the system and
affecting therefore its transparency and speed of
execution.

The use of fuzzy singletons to enlarge the output
range would limit the � exibility of the system design. In
particular, it would be impossible to modulate the
response of a single rule according to its activation
degree by conveniently shaping the MFs of the rule
actions. Moreover, there is a sizeable amount of
literature featuring non-singleton fuzzy MFs where the
introduction of such a constraint would imply a major
review of the interpretation of the fuzzy algorithm.

The BADD, SLIDE and M-PTD defuzzi� cation
methods will approach the behaviour of either the
MOM or COG method according to the tuning of the
transformation parameters. Saade’s method is essen-

tially an area-based procedure and as such it will behave
similarly to the COG method. None of the procedures
listed in Section 4.3 will therefore overcome the short-
comings affecting the MOM and COG methods.

6 AN IMPROVED INTERPRETATION OF FUZZY
RULE ACTIONS

The above analysis showed the inadequacy of maxima
procedures and the drawbacks of area-based methods
when combined with the implementation of action
aggregation through the max operator. For the process
of output defuzzi� cation, area-based methods seem to
be the most appropriate choice due to their properties of
consistency, section invariance and monotonicity and
the straightforwardness of the algorithm. Nonetheless, it
is necessary to � nd an alternative aggregation procedure
to avoid the weighting of the contribution of each
output according to the area of its possibility distribu-
tion.

It is clear that changing the implementation of the
union operation does not serve the purpose, as it would
only modify the way of forming the pointwise combina-
tions of the possibility values of the actions in the overall
output distribution. It is therefore necessary to change
the process of MF superposition related to the oper-
ation of set union. To this end, Mizumoto [16]
and Cherkassky and Mulier [17] proposed that the

Fig. 6 COG defuzzi� cation range
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aggregation operator be implemented through an
additive procedure.

The idea behind these methods is to compute the � nal
crisp value from the properties of each separate action
rather than from an aggregated fuzzy output [16]. Each
action term is � rst defuzzi� ed into a representative point
and then combined with the values of the other actions
to work out the � nal crisp output. The COG defuzzi-
� cation method is still used for the choice of each action
representative and for the combination of the action
centroids in the overall crisp output. Each action
representative is weighted by a factor related to the
� ring strength of the rule. The overall process can
therefore be divided into two cascaded operations of
centroid defuzzi� cation. The � rst defuzzi� cation is
applied to obtain the discrete fuzzy set composed of
the action centroids and their activation degrees, while
the second defuzzi� cation operation yields the � nal
output out of that set. The defuzzi� ed output COG can
be written as

COG i COG i f hi

i f hi
8

where COG i and f hi are respectively the centroid
position and a general function of the activation degree
of the ith term. If the function f is the activation-
dependent area of the output possibility distribution, the
defuzzi� cation becomes Mizumoto’s area method. If f
corresponds to the identity function, the operation is

referred to as the height method [16] or additive
defuzzi� cation [17].

Because the scaling factor of each rule action is still
the area of its possibility distribution, the area method
cannot be expected to overcome the drawbacks of other
area-based methods. The height method is instead a
good algorithm for the process of action aggregation
and defuzzi� cation.

In the computation of the crisp output, the height
method does not take into account the areas of the MFs
of the actions. Only the rule activation degree appears in
the calculation of the contribution of each action.
Therefore, terms of wide possibility distribution will
not dominate the output of the controller and will not
affect the smoothness of the response curve. At the same
time, at the level of each individual rule, the centroid-
based procedure allows the tuning of the location of the
representative point of the action according to the
degree of activation of the rule. De� ning the output
terms through asymmetric possibility distributions
allows the shifting of the COG of the rule output
according to the activation degree.

Figure 7 shows the response curves of two fuzzy
systems using respectively the COG and the height
methods. The same single-input–single-output example
of F ig. 4 was employed to enable the results to be
plotted. However, the procedure adopted is general and
valid for any n-dimensionally complex input space. It is
possible to see that the output characteristic of the FL
system using the height method coincides with the

Fig. 7 COG rule and height method
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desired straight line. In particular, its response curve is
not affected by the oscillatory behaviour caused by the
combination of the COG method with the max
aggregation operator.

Moreover, the system response is now not distorted
towards the centroids of MFs with larger areas. F igure 8
shows the results of applying the height method and the
standard union aggregation and COG defuzzi� cation
procedure to the same example as F ig. 6. Even though
the MF of the second rule action encompasses an area
twice as large as the other two output terms, the
response curve obtained using the height method
remains undistorted and follows a straight line.

The defuzzi� cation range of the height method does
not improve upon the one obtainable by combining
union aggregation and COG defuzzi� cation. The
system’s output still does not cover the full output scale
and the extreme output values are not reached. Because
of this limited output range, the slope of the straight line
plotted in F ig. 8 is smaller than the desired one.

Nevertheless, it is now possible to widen the output
range, while restricting the width of the extremal MFs
without further distorting the output characteristic.
F igure 9 shows the result of reducing the support of
the extreme MFs by a factor of 10. The response
obtained using the height method is compared with the
output of a standard fuzzy system using max aggrega-
tion and COG defuzzi� cation. It is possible to see how
the former is now almost identical to the desired
behaviour, while the latter has an almost � at character-

istic with two sharp steps at the extremes of the sampling
space.

The height method therefore gives substantial advan-
tages in action aggregation and defuzzi� cation in FL
systems. It is interesting to note that none of the authors
who investigated this method have noted such advan-
tages. In reference [16] various aggregation and defuzzi-
� cation methods were compared on the basis of the
results obtained for the fuzzy control of a simulated
plant. The study was limited to the performance of the
fuzzy controller, without giving any analysis of the
reasons underlying the results. Cherkassky and Mulier
[17] proposed the height method for its ease of
implementation and system analysis. This is particularly
true when symmetrical output MFs are used. In this
case, the representative point of each fuzzy action is
constant and equal to the middle point of the support of
the term. Each action term can therefore be described
through a single parameter corresponding to the centre
of its MF , allowing a considerable simpli� cation of the
architecture of the system. Under this form, the fuzzy
inferencing becomes equivalent to a special case of the
Takagi–Sugeno model, where the linear combinations of
the input variables are replaced by constant values in the
rule consequents. Because of its ease of implementation,
this particular representation has often been adopted in
FNN applications.

The main limitation of the height method in
comparison with the union aggregation and COG
defuzzi� cation procedure is in the reduced use of the

Fig. 8 COG rule and height method: defuzzi� cation range
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information related to the MF shape. This information
is in fact utilized now only to determine the representa-
tive point for each individual term. In particular, since
the contribution of each action is no longer dependent
on the area of its possibility distribution, differences
between the MF shape of different actions cannot now
be used to tune the fuzzy output.

7 CONCLUSIONS AND FURTHER WORK

This paper has focused on the operations of aggregation
and defuzzi� cation of fuzzy rule actions in Mamdani-
type fuzzy systems. The superior transparency and
mapping accuracy of the height method with respect
to the usual combination of the union of fuzzy sets with
maxima or area-based methods have been demon-
strated. Because of the modular way in which the crisp
output is formed, the height method is also well suited to
an FNN implementation.

The above conclusions were drawn independently of
the implementation of the fuzzy inferencing operators
and the compositional rule of inference (e.g. sup-max ,
sup-prod, etc). The results presented are therefore valid
for a wide range of problems. The only constraint in
applying the proposed procedure is that the sentence
connective else should be generally interpreted through
the union operation.

Further work should be directed at studying the
effects of the shape of the output MFs on the overall
crisp output and its interaction with the action
aggregation and defuzzi� cation procedures. Additional
studies should also be conducted on the issue of closed-
loop stability when applying the proposed FL method
with asymmetrical output MFs.
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