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SYNOPSIS 

This thesis describes the steps taken to develop normal strength (30-80 MPa) self-

compacting concrete mixes with 20mm maximum size aggregate. For the self-

compacting concrete mixes with 20mm maximum size of aggregate fulfilment of the 

flow and cohesiveness criteria are found insufficient for the mix design. It is found that 

they must additionally meet the passing ability criterion.  

A Lagrangian particle based method, the smooth particle hydrodynamics (SPH), is used 

to simulate the flow of SCC mixes. An incompressible SPH method is employed to 

simulate the flow of such non-Newtonian fluids whose behaviour is described by a 

Bingham-type model, in which the kink in the shear stress versus shear strain rate 

diagram is first appropriately smoothed out. The basic equations solved in the SPH are 

the incompressible mass conservation and Navier-Stokes equations.  

The yield stress of SCC mixes is predicted in an inverse manner using the SPH 

simulation methodology and matching the measured and simulated t500, tstop and the 

final spread of the cone flow test. It is found that the yield stress of SCC mixes varies 

only slightly with an increase in the characteristic compressive strength of the mix. The 

plastic viscosity on the other hand shows a marked increase. The latter was estimated by 

a micromechanical procedure proposed by Ghanbari & Karihaloo (2009) based on the 

measured viscosity of the cement paste alone and on the volume fractions of the mix 

constituents. 

The SPH simulation methodology was also used for predicting the distribution of large 

coarse aggregates in the cone spread. This distribution was found to be indeed very 

similar to that revealed in the cut sections of the hardened test cone spread. These large 

coarse aggregates had been painted with non-toxic non-water soluble paints prior to 

being used in the test mix. 

The simulation of SCC mixes revealed that the cone lift rate in the slump flow test has a 

significant effect on the flow pattern and the measured t500. The latter decreases as the 

cone lift rate increases from 0.1 to 1 m/s. The effect on the spread (i.e. tstop) is, however, 

insignificant. 
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1.1. Scope of the research  

Concrete has achieved great importance as structural material in the last century; it has 

been widely used as a construction material with the advantages of strength, durability, 

resistance to fire, cost-effectiveness and on-site fabrication. The properties of hardened 

concrete depend on its properties in the fresh state. In practice, concrete that can be 

readily placed into formwork is referred to as workable. Among the most important 

properties of fresh concrete is ‘‘workability’’; it generally refers to the consistency, 

flow-ability, pump-ability, compact-ability, and passing-ability of a mix. However, the 

required external energy (i.e. vibration) to compact the mix depends on the workability 

of the mix. With the increased use of heavily reinforced and/or complex shaped 

concrete elements there is a growing need for decrease in production time with no 

increase in man power, providing adequate compaction of such abnormal elements can 

be difficult with the restricted access for vibrators. For that reason self-compacting 

concrete (SCC) was developed. 

Self-compacting concrete, a new category of high-performance concrete with excellent 

deformability and segregation resistance, was first developed in Japan in 1988. The 

necessity of this type of concrete was proposed by Okamura in 1986. Self-Compacting 

Concrete (SCC), also referred to as ‘‘Self-Consolidating Concrete’’, has recently been 

one of the most important developments in the building industry because of its very 

attractive properties in the fresh state as well as after hardening. The use of SCC will 

lead to a more industrialised production, reduce the technical costs of in-situ cast 

concrete construction, improve the quality, durability and reliability of concrete 

structures and eliminate some of the potential for human error. 

Self-compacting concrete should flow through and fill the gaps in heavy reinforcement 

and corners of formwork without any need for vibration and compaction. In addition, it 
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should have the ability to flow around obstacles while maintaining good suspension of 

coarse particles in the matrix (no segregation), thus avoiding arching near obstacles and 

blockage during flow. In other words, self-compacting concrete mixes should have high 

fluidity, passing ability and appropriate level of homogeneity (segregation resistance). 

Self-compacting concrete, just as normal concrete, contains particles of different sizes 

and specific gravity (heterogeneous). The high fluidity of SCC mixes can cause 

instability of its constituents, if the mixes do not have enough cohesiveness. Therefore it 

is important to control the volume fractions of the constituents. In the last two decades, 

self-compacting concrete with its special properties is becoming an attractive alternative 

to normal vibrated concrete.  

Cement paste characteristics and the volume fractions of the mix constituents have a 

major influence on the properties of the SCC in both the fresh and hardened states, for 

instance on workability, strength and durability. Because flow-ability is a main attribute 

of SCC, the accurate prediction and control of its rheology is crucial for its successful 

production. 

The accurate prediction of the essential rheological characteristics of SCC provides a 

useful tool to model the flow and to understand the flow behaviour in the fresh state. 

The flow of SCC is best described by a Bingham-type constitutive model. This model 

contains two material properties, namely the yield stress (τy) and plastic viscosity (ƞ). 

The yield stress of all SCC mixes is low in comparison with normal vibrated concrete 

and changes only marginally over a wide range of plastic viscosities. The plastic 

viscosity of a homogeneous cement paste can be measured accurately by using 

viscometers but after adding coarse aggregate to the paste the results obtained by using 

rheometers usually fluctuate and do not follow any trend due to the heterogeneous 
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nature of the mix. It is thus necessary to use alternative theoretical methods to predict 

the plastic viscosity of a heterogeneous SCC mix. 

The accurate prediction and control of the flowing behaviour, and the homogeneity 

(coarse aggregate distribution) of an SCC mix are very important to ensure the quality 

of the final product. The most cost-effective way to fully understand and assess this 

behaviour is by carrying out numerical simulations, and comparing them with 

experiments. The plastic viscosity of an SCC mix is first predicted accurately by a 

micromechanical procedure, whereas its yield stress is back calculated by matching 

simulations with experiments. The numerical simulation of the flow is also used to track 

the distribution of coarse aggregate particles during flow and to assess the effect of cone 

lift rate (CLR) on the flow pattern and the results recorded in the slump flow test.       

1.2.  Research objectives 

 To produce a wide range of normal strength self-compacting concrete (SCC) 

mixes with a maximum aggregate size (g) of 20 mm ranging in cube compressive 

strength from 30 to 80 MPa .The mixes should have good flow-ability, passing 

ability and cohesiveness without segregation.  

 To record accurately the time t500  (the time when the mix spread reaches 

500mm), and spread of each mix in the slump flow test. 

 To predict the plastic viscosity of the developed SCC mixes using the 

micromechanical procedure depending on the plastic viscosity of the paste and 

the volume fractions of the ingredients.  

 To simulate the entire cone flow test from the moment the cone was lifted until 

the mix stopped to flow using the three dimensional mesh-less Smoothed Particle 

Hydrodynamics (SPH) computational approach, treating the SCC mix as a non-

Newtonian Bingham fluid. 
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 To investigate whether the yield stress τy of the mix can be accurately estimated 

from the measured t500 and spread knowing the plastic viscosity of the mix.  

 To compare the distribution of coarse aggregate particles in the cone spread after 

it stopped to flow as revealed by the numerical simulation with the distribution of 

the coarse aggregate particles of the corresponding sizes in the cut sections of the 

cured test cone spread. 

 To investigate the effect of the cone lift rate (CLR) on the flow pattern and t500 in 

the slump flow test.  

1.3. Research methodology 

To achieve the above objectives research was undertaken in five stages: 

 Firstly, self-compacting concrete (SCC) mixes with a maximum size of aggregate 

20 mm of varying strengths are developed to meet the flow-ability, passing 

ability and segregation resistance criteria. The design of SCC mixes followed the 

mix proportioning method proposed by Deeb and Karihaloo (2013) and the 

traditional trial-and-error approach, starting from vibrated concrete mixes that 

had been tested in the same laboratory. The flow-ability, passing ability and 

segregation resistance for each mix were checked using the slump cone, J-Ring 

and L-box tests. All mixes had no visible signs of segregation. In the slump cone 

test times (t500, tstop), spread and cone lift rate (CLR) for each mix were recorded 

for later use.   

 Secondly, the plastic viscosity of the SCC mixes is estimated from the known 

plastic viscosity of the cement paste. For this, concrete was regarded as a two-

phase suspension of solid and liquid phases. The liquid matrix phase consisted of 

cement paste i.e. cement and cement replacement material, water and super-

plasticiser or viscosity modifying agent (VMA) if it was used. The plastic 
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viscosity of the homogeneous paste can be accurately measured. The increase in 

the plastic viscosity of the paste due to the addition of a solid phase (filler, fine 

and coarse aggregates) to this paste is predicted from a two-phase model. The 

model is applied in several stages until all ingredients of SCC have been 

accounted for.  

 Thirdly, the entire cone flow test is then simulated from the moment the cone was 

lifted until the mix stopped to flow using the three dimensional Lagrangian 

particle-based technique, the so-called smoothed particle hydrodynamics (SPH) 

computational approach, treating the SCC mix as a non-Newtonian Bingham 

fluid. The basic equations solved in the SPH are the incompressible mass 

conservation and Navier-Stokes equations. The yield stress τy of the mix is 

accurately estimated from the measured t500 time and spread knowing the plastic 

viscosity of the mix. The plastic viscosity of the SCC needed for this simulation 

is predicted by a micromechanical procedure, as mentioned above.  

 Fourthly, the 3D simulations of SCC are focused on tracking the distribution of 

large aggregates (8 ≤ g < 12, 12 ≤ g < 16, 16 ≤ g < 20 and g ≥ 20 mm) during the 

flow. This distribution was found indeed to be very similar to that revealed in the 

cut sections of the hardened test cone spread. The large coarse aggregates had 

been painted with non-toxic non-water soluble paints prior to being used in the 

test mix.  

 Fifthly, the SPH simulation technique is used to investigate the effect of the cone 

lift rate on the flow pattern and t500 in slump flow test. 
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1.4. Outline of the thesis  

The contents of this thesis are organised into eight chapters, followed by bibliographical 

references. For clarity of presentation, each chapter is divided into sections and sub-

sections, as required. A brief overview of the contents of various chapters follows. 

Chapter 2 gives a general overview of SCC for instance its basic properties, materials 

used in its production with their influence on its characteristics in the fresh and 

hardened states and a review of workability tests on the fresh SCC. Also some practical 

examples of structures made with SCC are presented. 

Chapter 3 gives a brief review of the rheology of self-compacting concrete. Different 

methods used for simulating the flow of SCC which are available in the literature are 

reviewed. An overview of smooth particle hydrodynamic approach, its concept, particle 

interpolation, kernel functions, density and gradient evaluation are presented together 

with a corrected particle interpolation formulation. The three-dimensional Lagrangian 

form of the governing equations of flow used to model the flow of SCC namely, the 

mass and momentum conservation equations are described in the same chapter. Next to 

that the formulations relating to incompressible SPH and coupling of SPH formulation 

with a suitable Bingham-type model to represent the rheological behaviour of SCC are 

also presented in this Chapter. 

Chapter 4 describes the steps taken to develop self-compacting concrete mixes of 

varying strengths. In the design of such mixes, the flow-ability, good cohesiveness and 

passing ability criteria must be met. Times t500, tstop and average spread diameter have 

been recorded in slump flow test for all developed mixes. The plastic viscosities of the 

SCC mixes so developed are then estimated by the micromechanical procedure.  
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Chapter 5 describes the three-dimensional incompressible Lagrangian SPH method 

used to model all the developed mixes from the moment the cone is lifted until the mix 

stops to flow. This chapter is dedicated to investigating whether the yield stress τy of the 

mixes can be accurately back calculated from the measured t500 and spread knowing the 

plastic viscosity of the mix.  

Chapter 6 describes the simulations of SCC mixes focussing on the distribution of 

large aggregates (8 ≤ g < 12, 12 ≤ g < 16, 16 ≤ g < 20 and g ≥ 20 mm) during the flow. 

The numerical results are shown to be in very good agreement with experimental results 

made in the laboratory with the corresponding sizes of colour coded coarse aggregate. 

Chapter 7 describes the simulation of the flow of self-compacting concrete mixes for 

different cone lift rates (CLR) ranging from 0.1 to 1.0 m/s to investigate the effect of the 

cone lift rate (CLR) on the flow pattern and t500.  

Chapter 8 summarises the main conclusions on the basis of the research work 

embodied in Chapters 4 to 7. Recommendations for future research will be also made. 

The thesis concludes with an alphabetical list of references to the works in the literature, 

cited in the text, and several appendices. Some of the work described in this thesis has 

been published or is in the process of publication, and has been presented at two 

Conferences. For easy reference, these publications are listed below. 

1- Badry F, Kulasegaram S and Karihaloo B L, (2015). Estimation of the yield 

stress and distribution of large aggregates from slump flow test of self-

compacting concrete mixes using smooth particle hydrodynamics simulation”, J 

Sustainable Cement-based Materials, doi:10.1080/21650373.2014.979266 (in 

press)  
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2- Badry F, Kulasegaram S and Karihaloo B L, (2015). Effect of cone lift rate on 

the flow time of self-compacting concrete, Magazine of Concrete Research, 

doi:10.1680/macr.14.00379 (in press) 

3- Karihaloo B L, Kulasegaram S and Badry F, (2015). On the accurate estimation 

of the rheological properties of self-compacting concrete, J Chinese Ceramic 

Society, 43(10), pp.1396-1400. doi: 10.14062/j.issn.0454-5648.2015.10.09  (in 

press)  

4- Badry F, Karihaloo B L, Kulasegaram S, (2015). Simulation of the flow of non-

Newtonian self-compacting concrete. The 23rd UK Conference of the 

Association for Computational Mechanics in Engineering 8 – 10 April 2015, 

Swansea University, Swansea,(ACME UK 2015). 

5- Badry F, Karihaloo B L, Kulasegaram S, (2015). Simulation of the Flow of Non-

Newtonian Self-Compacting Concrete. IV International conference on Particles-

Based methods, Fundamentals and Applications, 28-30 September 2015, 

Barcelona, Spain, (PARTICLES 2015). 
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2.1. Introduction 

Concrete is one of the most important structural materials, and today it is difficult to 

find constructional design without using concrete. In the last two decades, concrete has 

no longer remained a material just consisting of cement, aggregates, and water, but it 

has become an engineered customised material with several new constituents to meet 

many varied requirements of the construction industry. Increasing population and 

modern cities demand new aspirant structural design ideas and increase the demands on 

reinforced concrete structures. The shapes and sections of elements are becoming more 

complex as is the reinforcement which is becoming denser and clustered. The complex 

section shapes i.e. irregular or slender architectural members, heavy and closely spaced 

reinforcement raise problems of casting, compacting and filling the concrete element. 

Therefore, concrete produced for such members should be able to pass the dense rebar 

net without blocking or segregating. The design, production and quality control of such 

concrete is a big challenge. An inability to completely fill the formwork and non-

efficient vibratory compaction (i.e. inclusion of irregularly distributed pockets of 

entrapped air voids or segregation) tends to cause durability issues for the concrete in 

the hardened state, and if this leads to chemical corrosion of reinforcement, can 

compromise strength, on top of the obvious aesthetic problems.  This problem has been 

facing engineers for many years.  

Self-compacting or self-consolidating concrete (SCC), a latest innovation in concrete 

technology is being regarded as one of the most promising developments in the 

construction industry due to its numerous advantages over conventional vibrated 

concrete. Self-compacting concrete is a modern concrete technology developed in 

Japan; it falls into the category of high performance concrete. It is getting more 

technical and economic attention due to the following advantages: assuring the project 
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quality, reducing noise, accelerating construction progress, improving construction 

environment and reducing project total cost. Self-compacting concrete in its fresh state 

exhibits a low resistance to flow to ensure high flow-ability, and a moderate viscosity to 

maintain a homogeneous deformation through restricted sections. Also, SCC can pass 

through congested reinforcing steel bars while compacting under its own weight without 

any external vibration. Such concrete can improve the homogeneity necessary to ensure 

good bond development with reinforcing steel, adequate structural performance, and 

improved durability.  

Architectural designers have a good opportunity to show their creativity by exploiting 

the properties of SCC. In the past, they did not have such a freedom to select the shapes 

and sizes of elements. Complex shapes, larger span bridges, underwater structures, 

congested reinforced and slender members can be built with this highly promising 

material for the future of in-situ and pre-cast construction industries. 

The SCC is a breakthrough in concrete technology and is now regarded as a good 

alternative to normal vibrated concrete. SCC was first used in Japan and made its 

European debut in Sweden in the 1990s. Now nearly all the countries in Europe conduct 

some form of research and development into this material. However the applications are 

still few and vibrated concrete is still considered as the standard concrete. As extensive 

research into SCC continues to gain a complete picture of its characteristics the 

confidence in using such concrete will undoubtedly increase.  

In this Chapter, a general overview of the properties and applications of SCC will be 

given, highlighting the influence of materials used on its characteristics in both fresh 

and hardened states. Finally, the rheological properties and testing methods in the fresh 

state will be discussed.  
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2.2.  History of development  

In the eighties of the last century, the durability of concrete structures was a major topic 

of interest in Japan. Another topic worldwide was underwater concrete construction. 

Research in Japan, the UK, and North America led to the production of new concrete 

mixes with a high degree of washout resistance. Strength, durability and aesthetics of 

concrete elements after hardening still depended on the quantity and quality of vibration 

to which the mix was subjected to get adequate compaction by skilled workers. 

However, at the same time lack of the skilled construction workers required for standard 

vibrated concrete in Japan was leading to a reduction in the quality of construction work 

and durability. This, in turn, led to the development of SCC with the concept being first 

tried in Japan in the mid-1980s (Gaimster and Dixon, 2003; Okamura and Ouchi, 2003).  

The first SCC mix was proposed by Okamura (1986) at Tokyo University, who also 

conducted a fundamental study on the workability of SCC. The first prototype of 

proportioning for SCC was completed in 1988, using the same constituent materials as 

used in standard vibrated concrete, the main purpose of SCC was to avoid vibrating the 

unreachable zones and to eliminate noise caused by vibration, besides shortening the 

construction time (Okamura and Ouchi, 2003). 

This technology spread to Europe starting from Sweden to other Scandinavian countries 

at the end of the 1990s (Billberg, 1999). In Denmark, SCC has been used in significant 

amounts with an annual production reaching approximately 20% and 30% of the total 

concrete production in ready-mix and pre-cast industries, respectively (Thrane et al., 

2004). Other countries, such as the UK, France and Germany, have also been 

developing and using the material. Moreover, in the beginning of the 21st century, the 

SCC started to be of interest in the USA (Ouchi et al., 2003). The ways of producing 

SCC are quite different in different countries depending on the traditions and available 
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materials. However, the current annual production of SCC indicates that challenges still 

need to be overcome, as SCC has a lower stability (segregation resistance) compared 

with vibrated concrete (Thrane et al., 2004). 

Recently SCC has seen a spurt in its development as a result of the use of various 

materials such as pulverized-fuel ash (PFA), ground granulated blast furnace slag 

(GGBS), condensed silica fume (CSF), and fillers (e.g. limestone powder) but the main 

reason has been the development of new types of chemical additives (super-plasticizer, 

SP and viscosity modifying agents, VMA). Although the current overall production of 

SCC is still relatively small compared to conventional concrete (Gaimster and Dixon, 

2003), the global gap is narrowing indicating that in the future there is likely to be an 

even greater demand for all types of SCC. 

2.3.  Self-compacting concrete: Definition 

The British Standard (BS EN 206-9 2010) defines “SCC is the concrete that is able to 

flow and compact under its own weight, fill the formwork with its reinforcement, ducts, 

box-outs etc., whilst maintaining homogeneity”. 

Other researchers (Khayat et al., 1999; Bartos and Marrs, 1999) have defined SCC in 

almost the same terms as a highly flow-able concrete that should meet the following 

requirements: 

 Flow-ability: SCC should have the ability to completely flow (horizontally and 

vertically upwards, if necessary) and fill all spaces in formwork without any 

external compaction.  

 Passing ability: SCC should pass through heavy reinforcing steel bars without 

any blockage or/ nesting. 
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 Segregation resistance: SCC should remain homogeneous and cohesive without 

any separation of its heavy components (aggregates or/and fibres), throughout the 

entire construction process (mixing, transporting, handling, placing, casting, etc.). 

2.4.   Advantages and disadvantages of using SCC 

The use of SCC on site offers many advantages (Naik et al., 2004):  

 Eliminating vibration and lower noise level: There are environmental 

advantages as well, among these being the removal of noise from vibration, 

Figure 2.1. This is particularly relevant for the precast industry where for larger 

factories noise can be a considerable problem. 

 

Figure 2.1: Filling by SCC without vibration (www.concreteconstruction.net) 

 Easy placement and filling: The impressive filling ability, flow-ability and 

passing ability of SCC eases placement significantly even with very complex 

formwork shape and/or heavy reinforcement and eliminates honeycombing, blow 

holes and grout loss. 

 Better surface finish: Better visual appearance, surfaces mostly free of voids, 

and   lower variation of strength, Figure 2.2. 
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Figure 2.2: Surface finish of Perham, MN tower using SCC with no repairs 

 Reduced cost of skilled labour and construction time: SCC can be placed at a 

faster rate without vibration resulting in reducing manpower and saving 

construction time.  

 Improved durability: The structural durability is improved by using dense 

matrix of SCC that also improves bond with reinforcement. 

 Environmentally friendly production: Fillers can be waste or recycled 

materials. 

 Safety of formwork: With no vibrators used in casting, the loads imposed on the 

formworks are reduced.  

Domone (2006) reviewed sixty-eight case studies of using self-compacting concrete 

(SCC) from 1993 to 2003, focussing on the reasons for using SCC instead of vibrated 

concrete VC. The result of this review was that: 

 In 67% of the case studies, SCC was used because of its technical advantages in 

situations where vibration was either difficult or impossible due to the heavy 

reinforcement or inaccessibility; 
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 In 14% of the case studies, SCC was used for economic reasons as it saved costs 

on skilled labour and reduced construction time; 

 In 10% of the case studies, SCC was used for new types of structure such as thin 

sections, pre-cast units and steel/concrete composites; 

 In the remaining case studies, SCC was used to improve working conditions by 

reducing noise levels.   

A possible disadvantage of using SCC compared with vibrated concrete is the 

unavoidable fluctuations in the property of raw materials.  If the mix proportions cannot 

be adjusted in time, it is difficult to guarantee the quality of SCC (Ji et al., 2008). 

Moreover, due to the nature of SCC and high fluidity, handling and transporting of SCC 

become sensitive operations. In addition the high cost of some materials such as super-

plasticiser which is only partly compensated by the low cost of labour.  

Another major disadvantage of SCC is that there is a lack of globally agreed test 

standards and mix designs (Douglas, 2004). However, recent research results overcome 

this disadvantage, as will be described below. 

2.5. Properties of self-compacting concrete in fresh state 

2.5.1. Workability (flow ability and filling ability) 

Workability is a way of describing the performance of concrete in the plastic state and 

for SCC it is refers to the ability of the mix to deform and undergo changes in shape 

with completely filling all areas and corners of the formwork horizontally and 

vertically, if needed while maintaining its homogeneity. Often workability is 

characterized by the following properties: filling ability, passing ability, and stability 

(segregation resistance). The workability of SCC is characterized by the fluidity and 
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cohesion of the mix, and is mainly assessed using the slump flow test described later in 

this chapter. 

Kennedy (1940) proposed the ‘Excess Paste Theory’ to explain the mechanism 

governing the workability of concrete. He reported that the mixes should have enough 

paste to cover the surface area of the aggregate and excess paste to minimize the 

internal friction among the aggregates and to give better flow-ability. Without the paste 

layer, friction and interlock between the aggregates would be increase dramatically, and 

it would be impossible to achieve workability. 

 

Figure 2.3: Excess paste layer around aggregates (After: Oh et al., 1997) 

Figure 2.3 illustrates the action of layers of cement past around aggregates. Okamura 

recommends that the aggregate content should be reduced in order to avoid blockage 

(Okamura and Ouchi, 1999). The thickness of the paste layer would be best related to 

the diameter of the aggregates (Oh et al., 1997). 

2.5.2. Passing ability  

Passing ability refers to the ability of SCC mix to deform and pass through closely 

spaced reinforcement or obstacles without blocking, whilst maintaining good 

homogeneity, thus avoiding coarse aggregate arching, blockage and segregation during 

flow. The J-ring and L-box tests are the most common methods used to assess the 

passing ability of a SCC mix.  
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With an increase in the volume fraction, maximum size and irregularity in the shape of 

coarse aggregates, the expectation of blocking would increase. Moreover, the presence 

of fibres in self-compacting fibre reinforced concrete would make it more difficult to 

pass through gaps in the reinforcement.  

Okamura and Ouchi (2003) reported that during flow of SCC the potential of collision 

and contact between particles increases as the distance between the particles decreases, 

resulting in an increase in the internal stresses when concrete is deformed, particularly 

near obstacles causing blockage. Research shows that the energy required for flowing is 

consumed by the increase of internal stresses. Limiting the coarse aggregate content 

whose energy consumption is high can effectively reduce the risk of blockage. Figure 

2.4 shows how the normal stress could be generated due to the approach of coarse 

aggregate particles near obstacles. 

 

Figure 2.4: Normal stress generated in mortar due to approaching coarse aggregate particles 

(After: Okamura and Ouchi, 2003)  

Using a highly viscous paste is another way to avoid the blockage of coarse aggregates 

during SCC flow throw obstacles by preventing localized increases in internal stress due 

to the approach of coarse aggregate particles, thus increasing the SCC  passing ability 

(Okamura and Ouchi,  2003). Roussel et al. (2009) stated that a low viscosity cement 

paste and thus a very fluid SCC might be more prone to have its coarsest particles 

blocked in closely spaced reinforced zones. This is related to the instability of the 

material, and to the increase in the local volume fraction of coarse aggregates near an 
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obstacle because the material is not stable as shown in Figure 2.5; in this case, the 

material is too fluid to carry its own particles during the flow.  

 

Figure 2.5: Local increase of the aggregate volume fraction due to dynamic segregation. A low 

viscosity cement paste could increase the risk of blocking by allowing for a strong segregation 

within the material (After: Roussel et al., 2009) 

With reducing gaps between steel bars blocking possibility can be further increased. 

The spacing between bars is typically recommended to be 3 times the maximum 

aggregate size (EFNARC, 2005).  

2.5.3. Segregation and bleeding resistance (homogeneity/cohesiveness)  

Segregation resistance is the ability of SCC to remain uniform and cohesive throughout 

the entire construction process (mixing, transporting, handling, placing, casting and 

etc.). In other words, the coarse aggregates are suspended in the matrix and distributed 

homogeneously. Stability of a SCC is controlled by the cohesiveness of the mix and the 

viscosity of the concrete mix which can be increased by reducing the free water content 

and increasing the volume fraction of  fines (Khayat et al., 1999).  

Viscosity is the main factor controlling the segregation resistance and bleeding, 

therefore increasing the viscosity of a SCC mix could prevent segregation and/or 

bleeding. Bleeding is a special case of segregation due to the settlement of solid 

particles in which water moves upwards by capillary action and separates from the mix. 

A little bleeding is acceptable for concrete, but excessive bleeding can lead to a 



Chapter 2: Self-compacting concrete  

21 

 

decrease in strength, high porosity, and poor durability particularly at the surface 

(Douglas, 2004). 

In order to prevent concrete bleeding or segregation, two simple methods can ensure 

adequate stability; the first tactic is based on using low w/c, high powder content, 

mineral admixtures, and low aggregate volume fraction and adjusting the workability by 

adding adequate amount of super-plasticiser (SP). The second approach  involves a 

viscosity-modifying admixture (VMA), low or moderate powder content and super-

plasticiser (Bonen et al., 2004). The first approach will used in Chapter 4 to optimise 

SCC mixes 

2.6. Main differences between SCC and normal vibrated concrete 

The composition of SCC is quite similar to conventional vibrated concrete. It consists of 

cement, aggregates, water and admixtures.  However, the aggregate volume fractions 

are different. Coarse aggregate is less in content, and fine materials are large in content. 

Figure 2.6 shows visually the typical differences between the volume fractions of 

ingredients in self-compacting concrete (SCC) and standard vibrated concrete (VC). 

 

Figure 2.6: Comparison between VC and SCC  mixes (After: Okamura and Ouchi, 2003) 

Due to the material properties and the proportion of the dense matrix of SCC, the 

internal air bubbles liberate to the surface without any external vibration. High fluidity 

and moderate viscosity give the SCC its distinctive characteristics, passing ability 
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through and around heavy rebars without blockage and filling ability of any corners in 

the formwork without any segregation or bleeding. The impressive properties of SCC in 

the fresh state mostly lead to  high strength, better bond with rebars and enhance the 

durability of concrete in the hardened state (Looney et al., 2012). 

2.7. Proportioning of SCC mixes 

In order to produce a SCC, concrete should have high fluidity and good cohesiveness 

without segregation or bleeding, in other words it must be as fluid as possible to fill 

areas and corners of the formwork, under its own weight and pass through closely 

spaced reinforcement without blockage or segregation. The method of proportioning the 

amounts of materials and admixtures is crucial to achieve these objectives. Okamura 

and Ouchi (2003) suggested three main rules to select SCC ingredients: 

 Limiting aggregate content; 

 Using super-plasticizer;  

 Reducing water-powder ratio. 

 

Figure 2.7: Effect of each parameter on the SCC properties.   Increases,   decreases 

Figure 2.7 illustrates the influence of each parameter on the mechanism of achieving 

self-compatibility. 
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Limiting aggregate content: The flowing ability, the filling ability and passing ability 

of SCC mixes are restricted by the friction between the aggregates. By reducing the 

volume fraction and maximum size of coarse aggregates, and using smooth rounded 

aggregates instead of crushed ones, the above properties would be enhanced, thus 

improving the workability and optimizing the packing density of the skeleton. Rounded 

particles have been shown to achieve higher packing densities than crushed particles 

(Douglas, 2004). The effect of coarse aggregate on the rheology of SCC will be 

explained in section 2.14.2.   

High amount of super-plasticiser (SP): Using the optimum dose of SP gives the SCC 

mix high flow-ability and passing ability while maintaining the homogeneity at an 

acceptable level. The super-plasticiser disperses flocculated cement particles, by 

reducing the attractive forces and increasing the repulsion forces among them. A high 

amount of SP would result in segregation and a low amount would limit the fluidity. 

The overall performance of SCC is improved with a good degree of cohesiveness 

(Kwan and Ng, 2010). The effect of SP on the rheology of SCC will be explained in 

section 2.14.2. 

High paste volume: the distinct property of SCC mixes compared with VC mixes is 

that they contain a high volume of paste to ensure aggregate separation (Tviksta, 2000). 

Okamura and Ouchi (2003) reported that the deformation of SCC during flow can 

increase the internal stresses, particularly near obstacles. The energy required for 

flowing is consumed by these excess internal stresses, which may cause blockage. 

However, a high viscosity paste prevents localized increases in internal stresses due to 

the approach of coarse aggregate particles. A high amount of fine particles leads to an 

increase in the workability and cohesiveness thus reducing the possibility of the 

interlocking of coarse particles which could result in a blocking behaviour (Khayat, 
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2000). Due to the necessity of a large amount of fine materials, cement replacement 

materials such as GGBS, silica fume, fly ash, etc. are usually used to increase the 

amount of fines, in order to avoid excessive heat generation. The effect of paste content 

on the rheology of SCC will be explained in section 2.14.2. 

Using Viscosity modifying agents (VMA): These products are generally cellulose 

derivatives, polysaccharides or colloidal suspensions. The use of VMA gives the same 

effect as the fine particles in minimising bleeding and coarse aggregate segregation by 

thickening the paste and retaining the water in the skeleton. For normal strength SCC 

with high water to binder content, the introduction of such products seems to be 

justified. On the other hand, they may be less useful for high performance SCC with 

low water to binder ratio. Viscosity agents are assumed to make SCC less sensitive to 

water variations.  Because of the small quantities of viscosity agents required, however, 

it may be difficult to achieve accuracy of dosage (Tviksta, 2000). VMA is used 

generally to enhance the stability of fluid concrete and to facilitate the casting of 

congested or restricted areas. The enhanced cohesiveness of such concrete can reduce 

structural defects resulting from increased porosity under aggregates and embedded 

reinforcement. This can lead to improved tensile strength, impermeability, and bond 

strength with reinforcement (Khayat, 1998).  

2.8. SCC Mix design 

There is no unique mix design solution for the production of SCC and a wide variety of 

methods have been used (Domone et al., 1999). Extensive research has been dedicated 

to achieve self-compatibility. Three methodologies of mix proportioning can be 

distinguished depending  on the method of providing viscosity : "Powder- type" by 

increasing the powder content, "VMA-type" using viscosity modifying admixture 

(VMA) and "Combined- type"  with a balance  between increasing powder content and 
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using a viscosity agent depending on the constructional conditions, material availability, 

limitations of concrete production plant. 

2.8.1. Powder-type SCC 

This was the first proposed prototype. It is characterized by a high powder content and 

low water to powder ratio, in other words, improving the plastic viscosity by limiting 

the free water content and using a superplasticiser to provide flow-ability. Mixes in this 

type are sensitive to changes in the constituent materials because of high powder 

content. Okamura and Ozawa (1995) suggested a simple mix proportioning 

methodology for SCC mixes (Figure 2.8):  

 Fix the coarse aggregate content at 50% of solid volume and the fine aggregate 

content at 40% of mortar volume;  

 Depending on the properties of mortar, choose the water to powder ratio in the 

range of 0.9-1;  

 The self compactability is achieved by adjusting the super-plasticiser dosage and 

the final water to powder ratio.  

This Japanese method with a high paste content and relatively independent 

consideration of gravel and sand has been adopted and used in many European countries 

as a starting point for the development of SCC (Brouwers and Radix, 2005). 

 

Figure 2.8: A typical mix design of SCC (After: Ouchi et al., 1996)  
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‘The Chinese method’ is an alternative method developed by Su and Miao (2003). This 

method can result in less paste and hence saving the most expensive constituents, 

namely cement and filler. Proportioning in this method starts with packing all coarse 

and fine aggregates, and then filling of the aggregate voids with paste. Concrete with 

normal strength can be obtained with this method, while in Japanese method a higher 

strength concrete can be attained (Brouwers and Radix,  2005). 

2.8.2. VMA-type SCC 

A high dosage of VMA is added to the mix of SCC to control and increase the plastic 

viscosity without increasing the powder content. A higher amount of super-plasticiser or 

higher water-powder ratio is required to achieve flow-ability compared with the 

powder-type method. 

2.8.3. Combined-type SCC 

A small amount of VMA is added to the powder-type SCC to develop and improve the 

robustness of the mix. In this type of mix proportioning, the VMA used is less 

compared with VMA-type SCC and the powder content and water to powder ratio are 

less than those in the powder-type SCC. The viscosity is provided by the VMA along 

with the powder. This type of SCC was reported to have high filling ability, high 

segregation resistance and improved robustness (Rozière et al., 2007).  

2.8.4. Cardiff method of SCC mix proportioning 

Recently a rigorous method for proportioning normal and high strength SCC mixes 

based on their plastic viscosity has been proposed by Karihaloo and Ghanbari (2012) 

and Deeb and Karihaloo (2013). It exploits the expression for the plastic viscosity of an 

SCC mix developed by Ghanbari and Karihaloo (2009) using micro-mechanical 

principles. This method produces a bewildering array of mixes that reach the target 

plastic viscosity, but does not give any practical guidelines on how to choose the most 
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appropriate mix, Moreover, the method was developed on the basis of reference mixes 

of a range of known cube compressive strength, but the latter was not explicitly 

imposed as a design criterion. Abo Dhaheer et al. (2015a, b)  have overcome the above 

shortcomings of this method. Practical guidelines in the form of design charts have been 

provided for choosing the mix proportions that achieve the target plastic viscosity in the 

range of 3–15 Pa s, and the target cube compressive strength in the range of 30–80 

MPa. This method will be explained in Chapter 4. 

2.9. Cement replacement materials (CRMs) 

High flow-ability and stability (segregation resistance) are the main distinct 

characteristics of SCC. They are attained by limiting the coarse aggregate volume 

fraction, the maximum aggregate size and reducing water-powder ratio together with the 

addition of super-plasticiser (SP) (Ouchi et al., 1998). However, for such a concrete to 

remain cohesive during the flow (mixing, transporting and placing), special attention 

has to be paid to mix proportioning. The increased flow-ability may cause segregation 

and bleeding which can be overcome usually by enhancing the viscosity of concrete 

mix. This is usually done by increasing the volume fraction of paste, by reducing the 

maximum aggregate size or by using viscosity modifying admixtures (VMA) (Khayat et 

al., 1999). However, chemical admixtures are expensive and may contribute to 

increasing the cost of concrete. On the other hand, including high powder content in a 

mix by using a high volume of cement has the disadvantage related to a higher 

temperature rise and shrinkage during hydration in addition to increase in SCC cost. 

Alternatively, a replacement of a proportion of cement with other materials is in certain 

circumstances desirable. Cement replacement materials (CRMs) are a better way to 

impart high workability to the mix by enhancement of particle distribution, 

cohesiveness and improvement of certain mechanical and rheological properties, as well 
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as reduction of the risk of thermal cracking, in addition to a reduction in the total cost of 

SCC. The CRMs or mineral admixtures as they are called are generally industrial by-

products and have therefore economic and environmental benefits.   

All CRMs have physical and chemical advantages; physical is the particle size is same 

or smaller than Portland cement particle and the chemical is their ability to exhibit 

pozzolanic behaviour and become a part in the hydration reactions. The main 

component of Pozzolans is silica (SiO2) in a reactive form, which on its own has little or 

no cementitious value. However, using fine CRMs in the presence of moisture they will 

chemically react with calcium hydroxide at ordinary temperatures to form cementitious 

compounds (Domone and Illston, 2010; Lewis et al., 2003). The most common CRMs 

used are ground granulated blast furnace slag (GGBS), micro-silica or silica fume (SF) 

and pulverised fuel ash or fly ash (FA). 

2.9.1. Ground granulated blast furnace slag (GGBS)   

Ground granulated blast-furnace slag (Figure 2.9) is a by-product from the blast-

furnaces for iron production. It is classified by EN 15167-1 and EN 15167-2 (or BS 

6699) according to its level of reactivity. Many countries around the world have 

successfully used GGBS in many applications as a cement replacement material. As 

well as the obvious economic and environmental advantages of using what is essentially 

a recycled material, GGBS has appreciable advantages in terms of the hardened 

concrete finish and durability (Uysal and Yilmaz, 2011; Boukendakdji et al., 2012; 

Dinakar et al., 2013).  

Using GGBS as a part of cement content in self-compacting concrete has many 

advantages related to increasing its compatibility, workability and durability, besides an 

increase in the resistance to sulphate and chloride attack (Roussel, 2007). The powder of 

GGBS has lower density than Portland cement; therefore replacing a part of cement by 
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GGBS will increase the paste volume, which subsequently increases the cohesiveness, 

deformability and segregation resistance.  

 

Figure 2.9: Ground granulated blast-furnace slag (GGBS)  

The smoother surface texture of the slag particles and slow rate of hydration compared 

to cement tend to lower the water demand in mixes having blended cement and GGBS 

than in mixes having cement only (Lewis et al., 2003). For SCC mixes GGBS has a 

positive effect on the workability, and from extensive experimental work, the results 

indicate that for SCC mixes containing GGBS, as GGBS content increases, water-to-

binder ratio decreases for the same workability (Oner and Akyuz, 2007). GGBS blended 

concrete has lower strength at an early age but the strength increases as the curing 

period is extended, so that GGBS blended concrete will get to a higher strength than 

cement concrete only, the reason being that the slow pozzolanic reaction and that the 

formation of calcium hydroxide requires time (Figure 2.10). 
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Figure 2.10: Strength gain from 7 to 365 days in concrete containing GGBS (After: Oner and 

Akyuz, 2007) 

Depending on the desired properties, 50 per cent of cement mass in the mix can be 

replaced by GGBS (Ramachandran et al., 1981). Oner and Akyuz (2007) reported that 

the compressive strength of concrete mixes containing GGBS increases as the amount 

of GGBS increases, till an optimum limit at around 55% of the total binder content, the 

compressive strength does not improve with adding more of GGBS (Figure 2.11), 

which can be explained by the presence of unreacted GGBS, acting as a filler material 

in the paste. A high volume fraction of GGBS may affect the stability of SCC resulting 

in reduced robustness with problems of consistence control, while slower setting can 

also increase the risk of segregation (EFNARC, 2005).  

Figure 2.11: Compressive strength development of 175 dosage cement (left) and 280 dosage (right) 

(After:Oner and Akyuz , 2007) 

 

Kg/m3 Cement content 
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2.9.2. Micro-silica or condensed silica fume (SF)  

The general term micro-silica or trade names condensed silica fume and silica fume are 

often used to describe by-products extracted from the exhaust gases of ferrosilicon, 

silicon, and other metal alloy smelting furnaces. It is almost pure silica consisting 

primarily of amorphous (non-crystalline) silicon dioxide (SiO2) powder. The very fine 

spherical particles or microspheres have a mean diameter about 0.15 microns. It is an 

additive that has become a feature of mix design for both high strength, and self-

compacting concrete (Mehta, 1986).  

Due to its significant fineness (Figure 2.12) when micro-silica is added to Portland 

cement concrete it improves its compressive strength, bond strength and abrasion 

resistance. It also significantly reduces the concrete permeability by blocking the 

capillary channels. Each microsphere is on average 100 times smaller than an average 

cement grain. Silica fume is a highly reactive pozzolan when used in concrete because 

of its fine particles, large surface area, and the high SiO2 content. Standard 

specifications for micro-silica used in cementitious mixtures are given in ASTM C1240 

and EN 13263. 

 

Figure 2.12: Micro-silica 

Silica fume performs two roles in concrete (Siddique and Khan, 2011) : 
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 Pore-size refinement and matrix densification: The presence of silica fume in 

the Portland cement concrete mixes causes considerable reduction in the volume 

of large pores at all ages. It basically acts as filler due to its fineness because of 

which it fits into the spaces between grains.  

 Pozzolanic reaction: When Portland cement in concrete begins to react 

chemically, it releases calcium hydroxide (CH); these CH crystals are a source of 

weakness because cracks can easily propagate through or within these crystals 

without any significant resistance affecting the strength, durability and other 

properties of concrete. Silica fume reacts with this CH to form additional binder 

material called Calcium Silicate Hydrate (C-S-H) which is very similar to the 

Calcium Silicate Hydrate formed from Portland cement and water and therefore 

reduces the CH content. 

Adding silica fume to concrete increases the cohesion and the yield stress (explained 

later) of a SCC mix, thus decreasing the slump flow in fresh state (Carlsward et al., 

2003).  As a result SCC containing silica fume is less prone to segregation and bleeding 

than concrete without silica fume. Rao (2003) reported that the workability of mortar 

slightly decreases as the silica fume content is increased. This is due to the higher 

specific surface of silica fume, which increases the water demand to complete 

hydration.  

In the case of Portland cement, 18% micro-silica (by weight of cement) is theoretically 

enough for the total consumption of calcium hydroxide produced during the primary 

reaction of cement with water (Papadakis, 1999). However, as the small micro-silica 

particles also physically fill the pores, more than 25% micro-silica should be added to 

concrete to get the densest granular mixture (Richard and Cheyrezy, 1995). 
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Duval and Kadri (1998) have studied the influence of micro-silica blended with cement 

on some of the properties of fresh and hardened concretes. It was found that micro-silica 

increased the compressive strength at most by 25%, but the workability of concretes 

was best when its content was between 4 and 8%. 

2.9.3. Fly ash (FA) 

Fly ash (or pulverised fuel ash) is a by-product of coal-fired electricity generating 

plants. Fly ash (Figure 2.13) has pozzolanic properties; therefore, it can be used as a 

partial cement replacement in SCC.  

According to the type of coal used in the power stations, there are two classes of fly ash, 

i.e. class C fly ash and class F fly ash.  

The class C fly ash is produced from the burning of younger lignite or sub-bituminous 

coal. This class generally contains more than 20% lime (CaO). Conversely, the class F 

fly ash is obtained from the burning of harder, older anthracite and bituminous coal. 

This fly ash is pozzolanic in nature and contains less than 20% lime (CaO).  The use of 

fly ash as a partial replacement for Portland cement is generally limited to Class F fly 

ash. 

Fresh and hardened properties are generally improved when fly ash is used in SCC 

mixtures. It can replace up to 30% by mass of Portland cement increasing the strength, 

chemical resistance and durability of SCC. However, the rate of strength gain in 

concrete mixes containing fly ash is slower than in concretes made with only Portland 

cement. 
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Figure 2.13: Fly ash (lab photograph) 

FA particles are mostly spherical in shape, therefore replacing a part of cement in SCC 

mix can improve its workability while reducing water demand (Koehler, 2007). 

Lachemi (2001) found that the use of fly ash and GGBS in SCC reduces the amount of 

super-plasticiser needed to obtain slump flow spread as compared with concrete made 

with Portland cement only. Shah and Modhera (2014) stated that an increase in fly ash 

from 30% to 70% leads to a high slump spread from 730 to 780 mm. 

FA increases the compressive strength, improves durability and reduces drying and 

autogenous shrinkage of SCC (Obla et al., 2003). 

Sonebi (2004) stated that the use of fly ash reduced the rheological properties of SCC, 

both the yield stress and plastic viscosity. However, Park et al. (2005) found that fly ash 

slightly reduced yield stress but increased the plastic viscosity of super-plasticised 

pastes.  

2.10. Using limestone powder in SCC 

Fillers such as limestone powder (referred to hereafter as LP) are usually by-products or 

cheap materials (Figure 2.14) and are often used as a bulk constituent in self-

compacting concretes to enhance certain properties of SCC, where a low proportion of 

coarse aggregate may be desirable. 
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Figure 2.14: Limestone Filler (< 2mm) 

The use of LP particularly in self-compacting concrete is widespread in the World 

today. The principal recognised advantages of using limestone powder as a mineral 

additive are associated with its effect on cost and workability, and not for its effect on 

strength (Şahmaran et al., 2006). Natural limestone is not a pozzolanic material. 

However the effect of LP on workability can be attributed to its physical and not its 

chemical properties, although the shape and size of limestone particles varies widely 

depending on the type of LP used (Yahia et al., 2005). Its action can be related to a 

change in the microstructure of the cement matrix associated with the small size of the 

particles, showing an enhancement in the packing density of powder, increasing the 

stability and the cohesiveness of fresh SCC.  

Surabhi et al. (2009) reported that replacing up to 20% of cement with limestone 

powder can enhance fresh and hardened properties of SCC with same water to binder 

ratio. Figure 2.15 shows that replacing cement with 20% of limestone powder can 

increase the slump flow spread and can result in a moderate flow time t500. 
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Figure 2.15: Fresh properties of SCC using limestone powder (After: Surabhi et al., 2009) 

However, Yahia et al. (2005) reported that excessive amounts of fine particles mean a 

significant rise in the surface area of powder and an increase in inter-particle friction, 

due to solid-solid contact, which may cause a substantial rise in the viscosity, affecting 

the ability of the mixture to deform under its own weight and pass through obstacles. 

2.11. Effect of super-plasticiser (SP) on SCC 

The fresh behaviour and flow pattern of self-compacting concrete affect the hardened 

properties of concrete which is dominated primarily by the dispersing of its 

components. When cement particles contact with water, particles have different charges 

(positive and negative) which lead to them grouping together to form flocks. The flocks 

also trap the free water (Figure 2.17) which is necessary to lubricate the particles during 

the flow.  As a result internal friction occurs within the mix, restricting its flow-ability 

as the particles will not be able to flow pass each other with ease. The demand for a 

high level of workability, together with good stability of the mix for SCC has led to the 

use a number of chemical admixtures. Super-plasticisers or high-range water-reducing 

admixtures (HRWRAs) contribute to the achievement of denser packing and lower 

porosity in concrete by increasing the flow-ability (without increasing water content). 
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Moreover the hydration of the cement particles is improved by greater dispersion and 

this is necessary in producing SCCs of high strength and good durability. 

 

Figure 2.16: Polycarboxylate-based super-plasticiser 

HRWRAs (Figure 2.16) have been used to improve the flow-ability of concrete with 

low water to binder ratio (w/b). The particles of superplasticiser, which are generally in 

the form of long molecules, contain a small negative charge; they will tend to repel each 

other. When these long molecules become associated with the individual cement 

particles, the particles of cement are repulsed from each other. SP adsorb onto the 

cement particle surfaces and break up the flocks, leaving individual cement grains, 

which can pass each other easily, making the mix more fluid.  

Figure 2.17 illustrates the deflocculating of cement particles and freeing of the trapped 

water through the dispersing action of SP. However, a high amount could cause 

segregation and bleeding.  

 

Figure 2.17: Method of de-flocculation and water liberation with use of super-plasticiser. 
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There are mainly four categories of superplasticiser, namely the sulfonated melamine 

formaldehyde condensates (plasticiser), sulfonated naphthalene formaldehyde 

condensates, modified lignosulfonates, and carboxylated acrylic ester co-polymers or 

poly-carboxylic ethers (Kong et al., 2003). Figure 2.18 shows the progression in the 

development of admixture technology. 

 

Figure 2.18: Development in admixture technology (After: Dransfield, 2003) 

Polycarboxylate-based HRWRAs with their different structures and modes of action 

play a very vital role in self-compacting concrete and are an essential component in 

SCC production. 

Old types of SP namely Sulfonate-based HRWRAs consist of anionic polymers that 

adsorb onto the cement particles and impart a negative charge, resulting in electrostatic 

repulsion.   

Figure 2.19 illustrates the effect of sulfonate-based polymer on the dispersion of cement 

paste by electrostatic repulsion. 
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Figure 2.19: Schematic picture of sulfonate-based HRWRAs and the related electrostatic repulsion 

effect on the dispersion of cement particles (After: Collepardi, 2005) 

On the other hand, polycarboxylate-based HRWRAs consist of flexible, comb-like 

polymers with a main polycarboxylic backbone and grafted polyethylene oxide side 

chains. The physical effects of superplasticizer molecules can be considered being of 

the following three types: physical adsorption under the effect of Van der Waals and 

electrostatic forces, Long-range repulsive forces due to a reconfiguration of the 

superficial charges, and steric repulsive forces among adjacent superplasticizer 

molecules and adjacent cement particles (Aïtcin et al., 2008). The backbone, which 

includes ionic carboxylic or sulfonic groups, adsorbs onto a cement particle and the 

non-ionic side chains extend outward from the cement particle. The side chains 

physically separate cement particles, which is referred to as steric hindrance as 

illustrated in Figure 2.20 (Koehler, 2007). Polycarboxylate-based HRWRAs may 

function by both electrostatic repulsion and steric hindrance  (Li et al., 2005) or only by 

steric hindrance  (Blask and Honert, 2003; Li et al., 2005) depending on the structure of 

the polymer. 
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 Figure 2.20: Schematic picture of the polycarboxylate-based super-plasticiser and its steric 

hindrance effect on the dispersion of cement particles (After: (Collepardi 2005) 

Polycarboxylate-based super-plasticisers are more sensitive than sulfonate-based super-

plasticiser to the amount of mixing energy (Koehler and Fowler,  2007). 

2.12. Viscosity modifying agents (VMA) 

VMAs, also known as anti-washout admixtures have been in use for a long time. They 

were mainly used for underwater concreting in the past, but are now also used in self-

compacting concrete. VMA can be added to the concrete mixes to improve segregation 

resistance, cohesiveness and reduce bleeding. In general these admixtures increase yield 

stress and plastic viscosity. They may be also used as an alternative to increasing the 

powder content or reducing the water content of a concrete mixture (Koehler et al., 

2007).   

Acrylic- or cellulose- based water-soluble polymers or polysaccharides of microbial 

sources, such as welan gum are the commonly used viscosity-modifying agents in 

concrete. Water-soluble polymers can imbibe some of the free water in the system, thus 

increasing the viscosity of the cement paste which, in turn, enables the paste to hold 

aggregate particles in a stable suspension.  

When using a VMA in SCC mixes it is necessary to take into account its compatibility 

with the super-plasticiser used. For instance, cellulose derivatives are incompatible with 

a naphthalene-based super-plasticiser, whereas welan gum is compatible (Khayat, 

1995). Adding VMAs to SCC mixes can alter cement hydration, resulting generally in a 
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decrease in the compressive strength, flexural strength and modulus of elasticity of 

hardened concrete (Khayat, 1995). 

2.13. Testing self-compacting concrete in fresh state 

Workability is a way of describing the performance of concrete in the plastic state and 

for SCC, workability is often characterized by the following properties: filling ability, 

passing ability, and stability (segregation resistance) (PCI, 2003). 

Assessing the workability of SCC mix can be divided into three categories as proposed 

by (Tattersall, 2003):  

 Qualitative assessment; it is a general description of concrete behaviour such as 

workability, flow-ability, stability, compatibility, pump-ability…etc. without any 

attempt to quantify. This was discussed previously in this Chapter. 

  Quantitative empirical assessment to be used as a simple description of 

quantitative behaviour such as slump flow test, L-box test…etc. 

  Quantitative fundamental assessment; it is a description related to rheological 

terms of concrete, e.g. plastic viscosity, fluidity and yield value. 

The most important way to understand the flow behaviour of SCC is the quantitative 

fundamentals. Different types of rheometers can be using to test the rheological 

properties of SCC mixes. However, these tests are sensitive, expensive and they can be 

rather time-consuming, therefore they are not suited for use at the working site, (Utsi et 

al., 2003). Therefore, it is important to find suitable workability test methods easy to use 

inside as well as outside the laboratory, and to calibrate them with the rheological 

parameters. Researchers studying the use self-compacting concrete have developed 

laboratory tests to understand more fully the movement and consolidation of self-
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compacting concrete  and successfully implementing in practice, for instance slump 

flow test, J-ring test, L-box test, U-box test, V-funnel test and wet sieve stability…etc. 

The workability tests recommended by British standard (BS EN 206-9 2010) are the 

slump flow test for flowing ability, L-box and J-ring tests for passing-ability and filling-

ability, and visual inspection or sieve stability test can be used for segregation 

resistance. The next sections will be devoted to explain these tests.  

2.13.1. Flow-ability test (slump flow test) 

This inexpensive test is a modified version of slump test (ASTM C143). Slump test is 

used to assess the horizontal flow of SCC mainly when there are no obstacles. The test 

measures three different aspects, the filling ability by measuring the horizontal flow 

diameter SF, t500 the time needed SCC to reach 500 mm which indicates the viscosity of 

concrete and the segregation can be visually inspected. Because it is a very simple test, 

the slump test can be done either on site or in the laboratory with inverted or upright 

Abram’s cone. It is usually the test that accepts or rejects a mix at the working site (Utsi 

et al., 2003). The occurrence of unevenly distributed coarse aggregate is considered as 

an indication of segregation, which demonstrates that the concrete segregates during the 

test and may segregate after placing. 



Chapter 2: Self-compacting concrete  

43 

 

 

Figure 2.21: Slump test apparatus with upright cone. 

The cone is placed on a firm non-absorbing levelled flat steel surface with a plane area 

of at least 900 mm x 900 mm, filled with SCC. The guidelines for slump test of 

conventional vibrated concrete recommend that the cone be lifted vertically slowly and 

carefully to ensure a correct result, with the lifting operation taking approximately 3 to 7 

seconds, however for SCC cone should be lifted in 1 to 3 sec in one movement (0.1- 0.3 

m/s) (BS EN12350-8:2010) or lift the cone in 3±1 second to a height of 230±75 mm (≤ 

0.1 m/s)  (C1611 ASTM, 2011). SCC flows out under its own weight. Two horizontal 

perpendicular diameters d1 and d2 as illustrated in Figure 2.21 are recorded and the 

average flow spread diameter SF calculated using Equation (2.1) 

SF= (d1+d2)/2                                                                                                               (2. 1) 

Criteria of acceptance (BS EN12350-8 2010) 

 Achieving a large diameter with no segregation indicates a good deformability 

and a low yield stress. 
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 This test is not acceptable when the largest aggregate size in more than 40mm. 

 The difference between d1 and d2 should be less than 50mm otherwise the test 

should be repeated. 

 Segregation can be detected by visually inspecting a ring of cement paste/mortar 

in the edge of flow, and /or ensuring that no coarse aggregates and fibres have 

lifted in the centre of flow.  

  According to the latest mix design guidelines for self-compacting concretes (BS 

EN 206-9 2010) two viscosity classes are introduced: viscosity class 1 (VS1) and 

viscosity class 2 (VS2) depending on whether t500 < 2 s or ≥ 2 s.  

Long et al. (2014) report that, for pre-stressed precast SCC should have slump flow 

spread values of 635–760 mm.  

Here it should be mentioned that this test is affected by different parameters, such as the 

moisture of the apparatus, different testing person and the speed of lifting the cone 

(Cattaneo and Mola, 2012). The friction can play a role in slightly increasing t500 only 

when using large aggregates.  

2.13.2. Passing ability tests 

2.13.2.1. J-ring test 

This test is intended to assess the passing ability of the concrete through gaps typically 

between rebars. If the concrete flow is blocked then the aggregate size could be too 

large for the particular application (BS EN12350-10: 2010). J-ring is a test used usually 

with a slump test to evaluate the flow through tight openings including spaces between 

reinforcing bars and other obstructions without segregation or blocking. For this test, 

the slump test apparatus is used with an open steel rectangular section ring with 10 (or 
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16 in some cases to represent light or dense reinforcement ) steel rods (ϕ16mm) and 100 

mm height, as shown in the Figure 2. 22. The gap between the bars is 78 mm ± 1 in case 

of 10 bars.  

 

Figure 2.22: J-ring test apparatus 

After filling the cone with concrete without using any vibration or rodding, the slump 

cone is lifted vertically allowing the concrete to flow freely through the bars. The time 

needed for the flow to reach 500 mm diameter is recorded as t500J, and the flow allowed 

to stop before recording the average of two diameters measured in two perpendicular 

directions. Flow spread of the J-ring (SFJ) indicates the restricted deformability of SCC 

and can be expressed using Equation (2.2) 

SFJ = (d1+d2)/2                                                                                                            (2. 2) 

 Flow time t500J is recorded. 

 Blocking step PJ is calculated using Equation (2.3). 

0

2121

4
h

hhhh
P

yyxx

j 


                                         (2. 3) 

 



Chapter 2: Self-compacting concrete  

46 

 

where: 

∆h0: is the height of concrete at the centre of flow. 

∆hx1, ∆hx2, ∆hy1, ∆hy2 are heights of concrete at positions just outside the J-ring. 

Criteria of acceptance 

  Chan et al. (2010), has defined a limitation to evaluate passing ability of SCC 

with or without steel fibres using the J-ring can be assessed relative to the flow 

spread (SF) of the same mix using the slump test as described in Table 2.1: 

Table 2.1: Passing ability criteria (ASTM C1621) 

(SF-SFJ) Passing ability rate Notes 

<25mm 0 No visible blocking 

25mm-50mm 1 Minimal to noticeable blocking 

>50mm 2 Noticeable to extreme blocking 

 The blocking step PJ should be less than 10mm based on EFNARC (2005). 

 This test is not acceptable when the maximum aggregate size is more than 40mm. 

 The difference between d1 and d2 should be less than 50mm otherwise the test 

should be repeated. 

 Segregation can be evaluated visually, a ring of cement paste/mortar in the edge 

of flow, and /or ensuring that no coarse aggregates have lifted in the centre.  

Long et al. (2014) reported that for a pre-stressed precast SCC slump flow spread minus 

J-Ring flow diameter should be ≤75 mm. 
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2.13.2.2.  L-box test 

The L-box test was also developed in Japan to test underwater concrete, and it has been 

adopted to test highly flow-able concretes. L-box test is used to assess the filling and 

passing ability of SCC in a confined space, or in other words the ability of concrete to 

pass though reinforced bars without blocking or segregation to fill a complex form. The 

apparatus (Figure 2.23) consists of a long rectangular trough with a vertical 

column/hopper at one end. A gate is fitted to the base of the column allowing discharge 

of SCC into the horizontal trough. Adjacent to the gate is an arrangement of bars which 

permits assessment of the blocking potential to be made. Concrete is poured into the 

vertical leg, and the sliding door is raised to allow the concrete to flow into the 

horizontal section. Typically, reinforcement bars are placed at the entrance of the 

horizontal section to gauge the passing ability of the concrete. (H1, H2) are the heights 

of concrete at the beginning and end of the horizontal section, respectively. The ratio 

H2/H1 represents the filling ability or levelling ability, and typically, this value should 

be 0.8∼1, while the passing ability can be detected visually by inspecting the area 

around the rebars. 

In L-box, 2 or 3 smooth steel bars with 12 mm diameter can be used to represent light or 

dense reinforcement with distance between them 59 and 41 mm, respectively. 

Generally, the spacing of the reinforcing bars should be at least three times the 

maximum aggregate size (Ferraris, 1999). 
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Figure 2.23: L-box test apparatus  

The passing ability ratio PL should be calculated: 

   

1

2

H

H
PL                                                                                                               (2. 4) 

H1 is the mean depth of concrete in the vertical section of the box after the flow of SCC. 

H2 is the mean depth of concrete at the end of the horizontal section of the box. 

Also the flow speed can be measured by the time taken to reach the distance of 200 mm 

(t200) or 400 mm (t400) from the gate. 

Criteria of acceptance 

 For this test, at least 14 liter of SCC should be prepared in accordance with (BS 

EN12350-10: 2010). 

 No signs of segregation or bleeding. 

 Passing ability ratio PL should be between 0.8 and 1 

 There is no recommendation for t200 and t400 values, but longer values represent 

higher viscosity. 
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It should be mentioned that this test is very sensitive to the operators, for example, in 

regard to the lifting speed of the gate (Nguyen et al., 2006).  

2.13.3.  Segregation resistance tests 

A number of empirical tests have been reported to evaluate SCC segregation. 

2.13.3.1. Visual examination 

The visual examination method is carried out by inspecting the periphery of the 

concrete after measuring the slump flow spread and rating it from 0 to 3 (PCI, 2003). 

However it is an inadequate method because it depends on the experience of the 

individual and fails to evaluate segregation quantitatively. 

2.13.3.2. Sieve stability test 

The dimensions used for the segregation column test are (500x150x100) mm. The test 

involves samples of concrete being taken from the top part and bottom part of a column 

shaped apparatus via doors after the apparatus has been jolted 20 times and allowed a 

static settlement period of 5 min. Those samples are washed out on a 5mm sieve and 

dried out to determine the proportion of coarse aggregate. Segregation resistance is 

expressed as the ratio between coarse aggregate mass in the top part and coarse 

aggregate mass in the bottom part.  

2.14. Rheology of SCC: Quantitative fundamental study 

Rheology is the study of the deformation and flow of matter under stress (Tattersall and 

Banfill, 1983), and knowing the rheological parameters (yield stress and plastic 

viscosity) of the fluid provides a quantitative fundamental way of characterizing the 

filling/passing ability and stability of SCC. Rheology has been studied for many years 

through the development of SCC. Self-compacting concrete is a viscous non-Newtonian 

fluid, described by a bi-linear Bingham-type rheological model (defined in Chapter 3) , 
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in which the flow only starts once the shear stress has reached a critical value called the 

yield stress τy. Bingham model contains two material properties, namely the yield stress 

τy and the plastic viscosity η (Papanastasiou, 1987). The mix composition and the 

characteristics of self-compacting concrete constituents strongly affect the rheology and 

fresh state behaviour of SCC.  

Understanding rheological parameters of SCC, namely the plastic viscosity and the 

yield stress, provides a quantitative and fundamental way of characterizing the 

deformability, passing ability and stability of SCC, which are critical for concrete 

industry as they affect all the mechanical properties in the hardened state.  

2.14.1. Measuring the rheological parameters of Bingham model 

Plastic viscosity η is the measure of the resistance to flow due to internal friction. It can 

also be regarded as the ability of this fluid to resist shear or angular deformation, which 

is mainly due to the interaction between fluid particles. SCC should have a high 

viscosity in order to suspend aggregate particles in a homogenous manner within the 

concrete matrix without segregation, excessive bleeding, or paste separation. The yield 

stress is the measure of the minimum amount of energy required to make SCC initiate 

flow. Flow starts once the shear stress becomes higher than the yield stress. However, 

when its value becomes equal or lower than the yield stress, the flow stops. To be 

considered SCC, concrete must flow easily under its own weight, so its yield stress 

should be as low as possible. 

It has generally been known that the slump property of a normal fresh cementitious mix 

is mainly governed by its yield stress (Kong et al., 2003). When the yield stress of a 

fresh concrete mix is greater than the gravitational stress, the fresh mix is prevented 

from completely collapsing to the plate surface. As the yield stress becomes less than 

the gravitation stress, the slump height decreases. In this process, the contribution of the 
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viscosity to the fresh properties is considered to be relatively small. Once the 

gravitational stress acting on the fresh mix is much greater than the yield stress, the 

fresh mix completely collapses onto the plate, followed by the spreading of the mix over 

the plate surface. The role of viscosity is more important during spreading. The flow 

stops when the gravitational stress is equal or less than the yield stress. This idea will be 

adopted numerically to estimate the yield stress in Chapter 6. 

It is known from the literature that the yield stress of SCC mixes is very low  

(Dransfield et al., 2003), around 200 Pa (Deeb et al., 2014a,b) in comparison with 

normal concretes (thousands of Pa), and remains nearly constant over a large range of 

plastic viscosities as shown in Figure (2.24). 

 

Figure 2.24: Rheology of several types of concrete (After: Dransfield et al., 2003) 

Rheometers are used to measure the rheological parameters of general viscous liquids 

(such as cement pastes) and solid-liquid suspensions (such as self-compacting 

concretes). A wide range of rheometers is commercially available such as the coaxial 

cylinder rheometers, parallel plate rheometers and impeller rheometers (Domone, 2003). 

Domone (2003) reported that for a given concrete mix, logically, any rheometer should 

give the same values of these two fundamental parameters τy and η.  But in practice that 



Chapter 2: Self-compacting concrete  

52 

 

is not the case. Banfill et al. (2001) proved the difference between the values by using a 

series of comparative tests in which three instruments were taken to the same laboratory 

and used simultaneously to test a series of fresh concrete mixes with a wide different 

range of rheological characteristics. Figure 2.25 shows an example of how two different 

rheometers gave totally different responses for the same mix. 

 

Figure 2.25: Two different responses for a single SCC mix tested by two rheometers (After: Feys et 

al. 2007) 

In both cases the yield stress values were somewhat more consistent than those of 

plastic viscosity. These inaccurate results, which are often with a large scatter with 

mixes containing long fibres, have triggered research into alternative prediction 

techniques for plastic viscosity (Krieger, 1959; Struble and Sun, 1995). 

Ghanbari and Karihaloo (2009) have proposed a micromechanical procedure for 

calculating the plastic viscosity of SCC with or without steel fibres. This procedure is 
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based on the rheology of concentrated suspensions and the knowledge of the plastic 

viscosity of cement paste alone or of the cement paste with SP and/or VMA. This 

procedure has been shown to predict the plastic viscosity of SCC mixes with or without 

fibres that agree very well with measured values. Details of this micromechanical 

procedure will be explained in Chapter 4.  

Many researchers (Grünewald, 2004; Thrane et al., 2007; Tregger et al., 2007; Roussel, 

2006) have found a relationship between the rheological characteristics (yield stress and 

plastic viscosity) of a self-compacting concrete mix and the measured parameters in the 

slump flow test (slump flow spread and t500). Further, it is recognized that the plastic 

viscosity can be related to the time t500 but that the slump flow spread is a function of 

both the yield stress τy and the density of SCC. In general, both the yield stress and the 

plastic viscosity increase with time, as the concrete hardens (Castro and Liborio, 2006). 

2.14.2. Effect of materials and mix proportions on the Bingham constants 

Rheological properties of SCC vary with different mix proportions and material 

components, and it is important to understand how the yield stress and the plastic 

viscosity of concrete mixes vary. There is a considerable amount of published 

information on this which can be summarised as follows:  

 Both yield stress and the plastic viscosity decrease with an increase in the water 

to powder ratio (Ramachandran and Beaudoin, 2000; Banfill, 2006). Figure 2.26 

shows the effect of water to cement ratio on both the plastic viscosity and yield 

stress of the paste. 
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Figure 2.26: Typical effect of water-cement ratio on Bingham constants for cement paste (After: 

Domone and Thurairatnam, 1988) 

 Domone and Thurairatnam (1988); Banfill (2006) have reported that the yield 

stress decreases with increasing super-plasticiser concentration as illustrated in 

Figure 2.27, while super-plasticiser has a different effect on the plastic viscosity 

depending on  the type of super-plasticiser. For example, solid-based super-

plasticisers like naphthalene-based, lead to an increase in the plastic viscosity, 

while the liquid-based super-plasticisers such as Gelenium ACE 333 have the 

opposite effect. 

 

Figure 2.27: Typical effect of superplasticiser on Bingham constants for cement paste (After: 

Domone and Thurairatnam, 1988). 
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 Increasing the volume fraction of aggregate (with angularity) results in a high 

plastic viscosity and yield stress, however aggregate with round and smooth 

surface tends to have opposite effect on both the plastic viscosity and yield stress 

(Ramachandran and Beaudoin, 2000; Koehler and Fowler, 2007). 

 There is contradictory evidence available in the literature on the effect of GGBS 

replacement on the viscosity of cement paste, depending on the type of 

viscometer used (Nehdi and Rahman, 2004). Some results show a slight decrease 

in viscosity, while others show the opposite trend.  

 Ramachandran and Beaudoin (2000) report that yield stress increases with low 

fly ash contents and decreases with high contents of fly ash. Rahman et al. (2014) 

agreed that for various types of SCC, an increase in fly ash or limestone filler 

content leads to a decrease in the yield stress, while Banfill (2006) reached 

opposite conclusion that pulverized-fuel ash (PFA) reduces both the yield stress 

and plastic viscosity.  

 Increasing the paste content reduces the yield stress, but has the opposite effect 

on the plastic viscosity.  

 Silica fume considerably increases yield stress and initially reduces plastic 

viscosity (Ramachandran and Beaudoin, 2000). Small amounts of SF reduce the 

plastic viscosity, with almost no effect on the yield stress; however, above a 

threshold level of SF, which depends on the cement content, there is a substantial 

increase in the yield stress, followed by an increase in the plastic viscosity. 
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2.15. SCC applications 

As of today, self-compacting concrete remains a nascent technology with limited use in 

comparison with that of vibrated concrete. However a lot of amazing structures have 

been built with SCC, for instance:  

 The Burj Khalifa Dubai structure represents the state of-the-art in super high-

rise buildings. During its construction the most recent accomplishments in all 

fields have been united, including concrete production technology. Several 

different concrete mixes were used in this project. It was necessary to place 

230000m3 of fresh concrete. That is the quantity that was built-in into tower, 

podium and office annex excluding foundations.  SCC grade 50 was used in floor 

structures and C60 and C80 in vertical load-bearing members. The structure has 

sufficient rigidity, toughness and high load-bearing capacity. In the course of 

construction of the building the concrete was pumped to higher and higher 

heights so it was necessary to provide extraordinary flowing ability of concrete 

through pipes. A world record was achieved in November 2007 when concrete 

was pumped to a height of 601m. Everything in this fantastic project was 

carefully planned; for example the concrete mix for the piles which are 1.5m in 

diameter and 43 meters long with design capacity of 3000 tonnes each was a 60 

MPa mix based on a triple blend with 25% fly ash, 7% silica fume, and a water to 

cement ratio of 0.32. A viscosity modifying admixture was used to obtain a 

slump flow of 675 +/- 75mm to limit the possibility of defects during 

construction. Total height, 818 m, was reached on 17 January, 2008. 
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Figure 2.28: Burj Khalifa in Dubai 

 Arlanda Airport Control Tower, Stockholm, Sweden 

The total height of the tower is 83m. The structure of the pillar consists of two 

shafts having different dimensions which is emphasised by two-colour design. 

There are several eccentrically placed circular floor structures at the top. Facade 

walls are parts of a cone. The tower was completed and opened in 2001. Today it 

represents a symbol of Stockholm. During the construction stage, the inner 

formwork was climbed by a crane while the outer scaffolding and formwork 

were self-climbing. SCC was used in order to achieve the concreting speed of a 

standard floor height h=3.27m in a 4 day climbing cycle of formwork and to 

ensue high-quality concrete placing without vibration. The decreased noise level 

during concrete placing enabled concreting during the night shift. 
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Figure 2.29: Arlanda Airport Control Tower, Stockholm, Sweden  

 Ušće Shopping Centre  

The Ušće Shopping Centre was designed by a company from Belgrade. The 

building work started in mid-2007. As many as 5000 people worked on the 

construction of the building at a particular moment. Upon opening on March 31, 

2009, Belgrade gained the largest Shopping centre in the region with 130,000 m2 

in area. Concrete MB40 was specified for foundations, floor structures, columns, 

etc. to shorten the construction periods and to obtain high-quality visible part of 

the structure. Peripheral walls of underground structures were built with SCC. 

Fresh SCC reached flow-ability class SF3 (SF = 850mm). Hardened concrete was 

MB 40. Columns of underground floors were also made with SCC. Flow-ability 

of this fresh concrete was SF = 900mm, and class of hardened concrete was 

MB60. Concrete in foundation slabs was SCC, with flow-ability of fresh concrete 

SF = 900mm. Hardened concrete was MB40. Foundation slab thickness of 300 

mm provided complete watertight concrete.  
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Figure 2.30: Ušće Shopping Centre 

These are only some of the most recent and most modern architectural buildings in 

which SCC was used. It is expected that the implementation of SCC in the future will be 

more frequent and wider. 

2.16. Concluding remarks 

The majority of concrete cast relies on compaction to ensure that adequate strength and 

durability is achieved. Insufficient compaction will lead to the inclusion of voids, which 

not only lead to a reduction in compressive strength but strongly influence the natural 

physical and chemical protection of embedded steel reinforcement afforded by concrete. 

The self-compacting concrete is an advanced type of concrete that homogeneously fills 

formwork of different shapes and geometry under its own weight, without any 

additional compaction, passes through closely spaced reinforcement without showing 

any blockage or segregation. The use of self-compacting concrete changes the basic 

material technology concepts and transforms the concrete construction process. The 

unique properties of SCC open the possibilities for automation of concrete construction 

and concrete product manufacturing processes and allow building concrete structures in 

more efficient ways. The use of SCC has many advantages including increased 

construction productivity, improved jobsite safety, and enhanced concrete quality.  

These benefits, however, must be measured against the potentially higher material costs 
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and the need for greater technical expertise and quality control measures. It has been 

successfully used for a wide range of precast and ready mix concrete applications. 

This chapter gave a general overview of SCC including:  

 Properties, the basic principle of its mix design.  

 The mechanism of achieving self-compacting ability.  

 Influence of cement replacement materials and admixtures on the characteristics 

of SCC in the fresh state. It was concluded that in the fresh state, CRMs enhance 

self-compacting ability, fluidity and cohesiveness while improving its 

performance in the hardened state.   

  The rheology of SCC was introduced, with an overview of the rheological 

parameters and the effects of materials and mix proportions on the Bingham 

constants.  The most popular methods of testing SCC were introduced including 

the slump flow test, J-ring test, L-box test and sieve stability test. 

There is however scope for a systematic development of SCC mixes and a need to 

understand the influence of rheological parameters on their flow characteristics. This 

will be undertaken in the present Thesis.   

The next Chapter will give a brief review of how to model the flow of fresh self-

compacting concrete. 
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3.1. Introduction 

This chapter gives a brief summary of the rheology of SCC and the methods of 

simulating its flow. Details may be found in the PhD thesis of Deeb (2014).   

3.1.1. Rheology 

Rheology is the science of flow and deformation of matter under stress (Tattersall and 

Banfill, 1983). From rheology point of view, self-compacting concrete is often 

modelled as a Bingham fluid (Vasilic et al., 2011). This model contains two parameters: 

1. Yield stress τy, which is the minimum shear stress that an SCC mix has to overcome 

to start flowing. 2. Plastic viscosity: The measure of the resistance of SCC to flow due 

to internal friction. Concrete with higher plastic viscosity takes longer to flow. It is 

closely related to t500 and v-funnel time (the higher the plastic viscosity, the longer t500 

and v-funnel time). 

Most numerical simulations consider only the steady-state of the flow while the 

thixotropic state i.e. the loss of workability of concrete during the flow is not been taken 

into account. However, SCC can exhibit shear thickening behaviour which means the 

plastic viscosity ƞ increases with the shear rate 


 (e.g. in pumping and mixing); in this 

case, SCC can be modelled by the Herschel-Bulkley model (Vasilic et al., 2011). 

The Bingham constitutive model is described by the equations 

yy ττττ                                                                               (3.1) 

yττ0                                                                                              (3.2) 

From a computational point of view, it is expedient to represent the piecewise bi-linear 

Bingham constitutive relation with its associated discontinuity at zero shear rate by a 

continuous function (Papanastasiou, 1987). 



Chapter 3: Rheology of SCC and methods of simulating fresh concrete flow 

63 

 

 

 
 me 1ττ y                                                                                                                         (3. 3)

 

 

Figure 3.1:A bi-linear Bingham fluid constitutive model replaced by the continuous function (3.3) 

(After: (Ghanbari, 2011)    

where m is a very large number. It can be seen from Figure 3.1 that the continuous 

function in Equation (3.3) approaches the bi-linear function for large m. On the scale of 

the figure, the discontinuity at τy cannot be distinguished for m =5000 and 50000.  

The Herschel-Bulkley model is a generalization of the Bingham model in such a way 

that, upon deformation, the viscosity can be shear thinning or shear thickening. The 

constitutive equation is  

yy ττττ  n                          (3. 4) 

yττ0                       (3. 5) 



Chapter 3: Rheology of SCC and methods of simulating fresh concrete flow 

64 

 

 

For a shear thinning fluid, the index n may have any value between 0 and 1.0; the 

smaller the value of n, the greater is the degree of shear thinning. For a shear thickening 

fluid, the index n will be greater than unity. 

3.1.2. Fluid classifications 

Fluids have been classified in the literature as Newtonian or non-Newtonian depending 

on whether their response to shear rate is linear or non-linear, or as compressible or 

incompressible depending on their response to pressure. In this thesis, we shall be 

dealing with a non-Newtonian, incompressible fluid. 

3.2. Simulation of SCC flow 

The modelling of fresh concrete flow is an important issue for the construction industry. 

Concrete which has not been properly cast and compacted may be prone to defects such 

as honeycombs, air voids and aggregate segregation which are a major problem 

affecting the durability of concrete structures in service (Patzák and Bittnar, 2009; 

Dufour and Pijaudier-Cabot, 2005).  

The computational modelling methods of concrete flow can be divided into two main 

groups: 1. Methods that treat concrete as a homogeneous medium, and 2. Methods that 

treat it as a heterogeneous medium. Choosing the right technique depends on the 

purpose of the simulation and whether the solid components of concrete are considered 

as separate particles or are embedded inside the mortar. 

3.2.1. Simulation of concrete as a homogeneous medium 

In this simulation concrete is regarded as a viscous fluid without particle inclusions. It is 

the easiest and fastest way to simulate fresh concrete. The drawback of this method is 

that the particle blocking and segregation cannot be predicted (Roussel, 2007). This 

approach has been taken by many researchers, e.g.  Mori and Tanigawa (1992), Thrane 



Chapter 3: Rheology of SCC and methods of simulating fresh concrete flow 

65 

 

 

et al. (2004), Kitaoji et al. (1997), Kurokawa et al. (1997), Roussel and Coussot (2005),  

Roussel (2006), Patzák and Bittnar (2009), and Gao and Fourie (2015). They used either 

specialised mesh-based finite element approaches or the standard computational fluid 

dynamics (CFD) approach. 

3.2.2. Simulation of concrete as a heterogeneous medium 

Self-compacting concrete (SCC) in fresh state can exhibit a fluid-like behaviour or a 

granular medium-like behaviour depending on whether the volume fraction of coarse 

aggregates in the viscous suspension is small or large. 

Gram (2009) used the Discrete Element Method (DEM) commercial software PFC3D to 

model the flow of SCC. Martys (2005) used the Dissipative Particle Dynamics method 

(DPD) which allowed for much larger time steps, as opposed to DEM. 

Mori and Tanigawa (1992) used the so-called Visco-plastic suspension element method 

(VSEM) where concrete is divided between mono sized spherical coarse aggregates and 

mortar. Dufour and Pijaudier-Cabot (2005) used a finite element method with 

Lagrangian integration points (FEMLIP) to model the flow of concrete in L-Box. 

Švec et al. (2012) have modelled the free surface flow of suspension of rigid particles in 

a non-Newtonian fluid using the Lattice Boltzmann method combined with Immersed 

Boundary Method and particle dynamics. This model is efficient and robust allowing 

simulations of tens of thousands of particles.  

The Smooth Particle Hydrodynamics (SPH) will be used in the present research. Due to 

the fact that SCC undergoes large deformations during the flow and the fact that it 

contains particles of different sizes, SPH is an ideal computational method to represent 

with a good margin of accuracy its rheological behaviour. Unlike the mesh-based 

methods, SPH as a particle-based method does not require re-meshing. This method has 
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been tested and proved to be efficient and accurate in modelling SCC without fibres by 

Kulasegaram et al. (2011) and SCC with fibres by Kulasegaram and Karihaloo (2012), 

and Deeb et al. (2014a,b). 

3.3. The governing equations of concrete flow 

The flow of SCC can be described by the equations of fluid motion: the continuity, 

momentum and energy conservation equations which are based on the fundamental 

physical laws of conservation. However, when there is no change in the temperature 

during test and the heat flux in a continuum is absent, the energy can be assumed to be 

identically conserved. Also, as the viscosity and density are not affected by the 

temperature, the energy conservation equations can therefore be ignored. 

3.3.1.  Continuity equation (the mass conservation) 

The continuity equation or the mass conservation equation in the Lagrangian form is 

0
D

Dt


  v                                                             (3. 6) 

For an incompressible fluid, the density is constant, and therefore (3.6) becomes 

0 v                                  (3. 7) 

Here ρ, t, and v the fluid particle density, time, and particle velocity respectively.  

D denotes the substantial or material derivative. 

3.3.2.  The momentum conservation equations  

If gravity g is the only body force acting on the continuum the momentum conservation 

equations in the Lagrangian form can be written in the compact vectorial form as 

gτ
v

 .P
Dt

D



11
                                                                                           (3. 8) 

where P, g and τ  are pressure, gravitational acceleration, and shear stress, respectively. 
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3.4.  Domain Discretization 

In the numerical simulations, the continuum problem domain needs to be divided into a 

finite number of discrete components in order to solve the above governing equations. 

The discretization technique is different according to the numerical method used. Figure 

3.2 illustrates the mesh-based and mesh-less discretizations of a geometrical domain. 

 

Figure 3.2: Comparison between grid method (left) and particle method (right) for the same 

geometry (After: Vesenjak and Ren, 2007) 

3.4.1.  Mesh-based method 

In the grid or mesh-based method, the continuum domain is divided into small discrete 

domains connected to each other by nodes. Accuracy of the numerical approximation is 

closely related to the mesh topography (i.e. shape, size...etc.). Examples of mesh-based 

method are the finite element method (FEM), the finite difference method (FDM), and 

the finite volume method (FVM). Because the generation of the mesh for a grid method 

is a prerequisite, for complicated problems  it can be more difficult than solving the 

problem itself since the results are based on the quality of the mesh (Vesenjak and Ren, 

2007). Therefore, mesh-less methods become more attractive to treat problems where it 

is difficult to used grid based methods.  

3.4.2.  Mesh-less method 

In particle (or mesh-less) methods a domain is represented by a set of nodal points or 

particles without using any mesh to connect those nodes. In these methods, large 
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deformations, moving interfaces, difficult boundary conditions and complex geometries 

are easy to handle, since the connectivity among nodes is generated as part of the 

computation. A number of mesh-free methods have been proposed for the analysis of 

fluid flow such as the smoothed particle hydrodynamics (SPH) (Kulasegaram and 

Karihaloo, 2012) (Deeb et al., 2014), Element Free Galerkin Method (EFGM) (Yang, 

2013), Reproducing Kernel Particle Method (RKPM) (Xiong et al., 2005) and Cloud 

Method (Burke et al., 2010), etc. These methods share some common features, but are 

different in the means of function approximation and the implementation process (Liu 

and Liu, 2010). 

3.4.2.1. Eulerian and Lagrangian approaches 

There are two fundamental approaches to describe the physical governing equations: 

Eulerian and Lagrangian. 

- The Eulerian approach is a spatial description; it is used to track a certain fixed 

location in the flow field and follows the change in properties, as different 

materials pass through that location (Figure 3.3).  

 

Figure 3.3: Different fluid elements at different times at a fixed location in the fluid flow 
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- The Lagrangian approach is used to track a material element of the fluid as it 

moves, and the changes in its properties, e.g. velocity are monitored (Figure 3.4). 

 

Figure 3.4: Fluid particle motion from time t1 to time t2 

The Vortex, Finite Point set (FPM), gradient smoothing (GSM) and smooth particle 

hydrodynamics (SPH) are examples of Lagrangian methods. 

The two derivatives, Lagrangian and Eulerian  are related to each other, e.g. for velocity 

 vv
vv





 .

tDt

D
                        (3. 9) 

where the term .v is the convective derivative, which defines the time rate of change 

as the fluid element moves from one location to another in the flow field. 

3.5.  Numerical approximation- Smoothed particle hydrodynamics (SPH) 

 

Figure 3.5: SPH model (After: (Frédéric and Gilles, 2005) 

Lucy (1977), and Gingold and Monaghan (1977) independently proposed the 

Lagrangian particle-based numerical method SPH, to solve particular astrophysical 

problems. The SPH was first conceived for compressible flow problems in confined 
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flow simulations, until later Monaghan (1994) proposed and developed a modified SPH 

formulation to model free surface in viscid liquid flow. Other researchers have since 

solved various engineering problems including multi-phase problems (Monaghan and 

Kocharyan, 1995), quasi-incompressible flow (Monaghan, 1994; Morris et al., 1997), 

incompressible fluid flow (Shao and Lo, 2003; Solenthaler and Pajarola, 2009), flow 

through porous media (Zhu et al., 1999), viscous fluid flow (Takeda et al., 1994), shock 

simulations (Monaghan and Gingold, 1983), gravity currents (Monaghan, 1996), heat 

transfer (Chaniotis et al., 2002; Cleary et al., 2002), turbulent flows (Welton, 1998), 

interfacial flows, discontinuity and large deformability (Bui et al., 2008; Colagrossi and 

Landrini, 2003) and sloshing problems (Kelecy and Pletcher, 1997; Koshizuka et al., 

1995). The interaction between fluids, free surfaces and many other applications can be 

also simulated using SPH (Amini et al., 2011). 

Bonet and Kulasegaram (2000) applied SPH to simulate metal forming. Other notable 

modifications or corrections to the SPH method were made by Bonet and Kulasegaram 

(2000), and Dilts (1999, 2000). The Lagrangian nature of SPH allows the grid to be 

embedded in the material and thus reduces some of the material interface problems 

associated with Eulerian techniques.  

3.5.1. SPH concept 

SPH is an integral interpolation method to approximate values and derivatives of 

continuous field quantities by using discrete sample points (Gingold and Monaghan, 

1977). The key characteristics of SPH as reported by Liu and Liu (2003) are: 1. Domain 

discretisation: the entire problem domain in the physical space is discretised into a 

finite number of macroscopic volumes of fluid. Each macroscopic fluid volume is 

represented by a particle in SPH. These particles possess individual material properties 

and move according to the governing conservation equations. 2. Kernel 
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approximation: Each particle, say particle ‘a’ carries the field variables such as the 

mass ma, density ρa, pressure Pa,  velocity va,  position ra, temperature (Ta), internal 

energy (Єa), colour (ca) which are represented by integral functions, the so-called kernel 

functions. 3. Particle approximation: The kernel is further approximated using 

particles, by replacing the integration in the integral representation of the field variable 

and its derivatives with summation over all the corresponding values at the 

neighbouring particles in a local domain called the support domain. 4. Lagrangian: The 

particle approximation is performed on all terms related to field variables to produce a 

set of ordinary differential equations (ODEs) in a discretized form with respect to time. 

3.5.2. SPH support domain 

The support for a particle ‘a’ is the domain where all the information for all interior 

particles is used to determine the information at the point ‘a’ (see Figure 3.6). This 

means that any physical property of a particle ‘a’ can be obtained by summing the same 

property of particles that lie in the support domain Ω within a radius ch of the observed 

particle ‘a’ and multiplying the sum by a smoothing function, where c is a scaling 

constant related to the smoothing function (usually equal to 2).  

 

Figure 3.6: Distribution of physical properties of a particle 
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3.5.3. Kernel approximation  

SPH provides a concept to approximate the spatial derivative using particles, which 

therefore makes computing the spatial derivatives in particle-based method as easy as in 

the grid-based methods. SPH is based on integral interpolation; for instance, a 

continuous quantity  xf  over a space Ω can be written as the convolution of the 

quantity and Delta function 

      


 '''ff xxxxx d                                                                                                     (3. 10)            

where Ω is the volume of the domain, '
xd  an elementary volume, and  'xx  is the 

Dirac Delta function i.e. 

 









'

'

'

xx

xx
xx

0

1
                                        (3. 11) 

The Dirac Delta function is approximated with the so-called smoothing kernel function 

W of limited support h  

      


''' h,Wff xxxxx d                  (3. 12) 

W should be differentiable, normalised, and should converge to the Delta function. 

The SPH approximation is highly dependent on the choice of the kernel function. The 

most common kernels are: Gaussian, cubic spline and quartic spline. 
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Figure 3.7: Gaussian and cubic spline shape functions (After: Li and Liu, 2002) 

Figure 3.7 illustrates the Gaussian and the cubic spline functions; they look similar but 

the cubic spline has a more compact support as compared with the Gaussian function. 

3.5.4. Particle interpolation 

The entire domain of the problem is discretised into a limited number of particles N and 

then all the field variables are approximately calculated on these particles. First, the 

infinitesimal volume '
xd  at the location of particle ‘b’ can be approximately replaced by 

the finite volume of the particle Vb where
b

b
b

m
V


 . The inclusion of density

b and mass 

bm  makes SPH the ideal numerical solution to simulate dynamic fluid flow such as the 

flow of self-compacting concrete. The continuous integral in Equation (3.12) can be 

converted to a discretized form of summation over all the particles N.  

      

Figure 3.8: Particle approximation of function f(x) 

a 
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Therefore, the continuous integral in Equation (3.12) can be expressed in the equivalent 

forms of discretized particle approximation (Figure 3.8) 

 
 

 



N

b

b

b

b
b h,W

f
mf

1

xx
x

x


                                      (3. 13) 
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b

bbb WfVf
1

xxx                     (3. 14) 

The differential of this function is given by 

     



N

b

bbb WfVf
1

xxx                                                                 (3. 15) 

where the quantity  xbW  denotes the gradient of the kernel, which is taken as centred 

on the position of particle a (Figure 3.8). The application of Equation (3.14) to compute 

the approximate value for the density of a continuum leads to the classical SPH 

equation 

   



N

b

bbWm
1

xx                (3. 16) 

3.5.5. Corrected SPH integration 

The basic SPH approximations as given by equation (3.14) and (3.15) do not accurately 

reproduce or approximate the function  xf   and its derivative  xf  because they do 

not conserve angular momentum. Therefore corrected SPH equations have been 

developed to address these issues (Bonet and Lok, 1999; Bonet and Kulasegaram, 

2000). Using the corrected gradient of the corrected kernel, the SPH equations (3.14) 

and (3.15) can be rewritten as 

     



N

b

bbb W
~

fVf
1

xxx                    (3. 17) 



Chapter 3: Rheology of SCC and methods of simulating fresh concrete flow 

75 

 

 

     



N

b

bbb W
~~

fVf
1

xxx                                               (3. 18) 

where  xbW
~

 indicates that the kernel function is corrected to satisfy the linear 

consistency conditions, and ‘b’ is the neighbouring particle within the support domain.  

3.5.6. Nearest neighbour search 

One of the most computationally expensive parts of the simulation in SPH is to specify 

a particle’s neighbours in the support domain. Many methods have been implemented to 

ensure an adequate way for neighbourhood search, e.g. Wróblewski et al. (2007), 

Monaghan and Lattanzio (1985), Liu and Liu (2003), and Bonet and Peraire (1991).     

3.5.7. Treatment of boundary conditions 

In SPH, boundary conditions should be imposed to ensure balancing the inner particle 

forces thus preventing those particles from penetrating the wall. A range of methods is 

available in literature to impose boundary conditions in SPH method, e.g. repulsive 

forces (Monaghan, 1994), mirror particles (Takeda et al., 1994; Cummins and Rudman, 

1999) and dummy particles (Dalrymple and Knio, 2001; Shao and Lo, 2003; Lee et al., 

2008; Amini et al., 2011). The dummy particle approach will be used in this thesis (see 

Chapter 5). 

 

3.5.8. Incompressibility and weak compressibility in SPH approach 

Enforcing incompressibility in SPH can be pursued using two different approaches - the 

weakly or quasi-compressible SPH will be referred to as WCSPH (Monaghan, 1994; 

Lee et al., 2008) and the truly incompressible SPH as ISPH (Kulasegaram et al., 2011). 

In this thesis the latter approach will be taken (Chapter 5).  
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3.6. Simulation of SCC flow with ISPH 

For completeness of presentation, a brief description will be given of the incompressible 

SPH simulation method, as applied in this study to simulate the cone flow test. 

A projection method based on the predictor-corrector time stepping scheme is used to 

track the Lagrangian non-Newtonian flow (Chorin, 1968; Cummins and Rudman, 1999; 

Koshizuka et al., 1998) and the incompressibility condition is satisfied exactly through a 

pressure Poisson equation. 

3.6.1. Prediction step 

The prediction step ignores incompressibility and only the viscous stress and gravity 

terms are considered in the momentum Equation (3.8) to obtain an intermediate particle 

velocity *

n 1v  and position by an explicit integration in time: 

t.n

*

n 










 τgvv

1
1                                                                           (3. 19) 

and  

t*

nn

*

n Δ11   vxx                                   (3. 20) 

3.6.2. Correction step  

Then the correction step is applied to enforce the incompressibility condition prior to 

incrementing the time by considering the pressure term in Equation (3.8) 


















1

11 1

Δ
n

*

nn P
t

vv
                 (3. 21) 

where
1nv  is the corrected particle velocity at the time step n+1. Computing Equation 

(3.21) requires the pressure Pn+1. This is obtained by imposing the incompressibility 



Chapter 3: Rheology of SCC and methods of simulating fresh concrete flow 

77 

 

 

condition in the mass conservation Equation (3.6) (as the particle density remains 

constant during the flow) 

0. 1  nv                                             (3. 22)              

 Equations (3.21) and (3.22) give 

*

nn .
t

P 11

2

Δ
 


 v                                   (3. 23) 

where 2 is the Laplacian.  

Once the pressure is obtained from the Poisson Equation (3.23), the particle velocity is 

updated by the computed pressure gradient Equation (3.21), followed by the 

instantaneous particle position: 

tPn

*

nn Δ
1

111 










  vv  

tnnn Δ11   vxx                                (3. 24) 

3.6.3. Time step 

The time step Δt is chosen based on the relevant stability conditions for the given 

problem. In the case of Bingham-type SCC fluid flow, the time step is primarily 

controlled by the effective plastic viscosity. Therefore, the time step size is generally 

decided by (Cummins and Rudman, 1999). 















 2

02

max

01 ,
v

minΔ
rr

t                                                              (3. 25) 

where r0 is the initial particle spacing, maxv  is the maximum particle velocity,
1  and 

2  are the coefficients usually in order of 0.1. These coefficients depend on the choice 

of SPH kernel functions and the nature of the engineering application.   
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3.7. SPH discretisation of the governing equations 

In the governing equations of SCC flow (Equations (3.6) and (3.8)), three terms need to 

be defined in the SPH formulation; these are the divergence of velocity field in the mass 

conservation equation (3.6), the gradients of pressure and viscous terms in the 

momentum  conservation equation (3.8) and the Laplacian term 
1

2

 nP in the Poisson 

equation resulting from enforcing the incompressibility (3.23). 

The divergence of the velocity field can be obtained by identifying f (x) in the Equation 

(3.18) with the velocity term  

 



N

b

bbba W
~~

.V.
1

)( xvv                                                                  (3. 26) 

The gradient of pressure in the momentum equations can be obtained in the similar 

manner as above 

  

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~~

x                                   (3. 27) 

The Laplacian in the pressure Poisson equation (3.23) can be formulated using the 

divergence and gradient operators of the SPH formulation to give 
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The viscous term, τ


1
 can be written in a similar manner as 
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The above incompressible SPH computational strategy described in Sections 3.6 and 3.7 

will be implemented to simulate the flow of SCC mixes in Chapters 5-7. 



Chapter 4   
 

 

 

 

 

 

Development of self-compacting 

concrete mixes with 20mm 

maximum size coarse aggregate 

 

 

 

 

 

 



Chapter 4: Development of self-compacting concrete mixes with 20mm maximum size 

coarse aggregate 

80 

 

4.1. Introduction 

The placement of SCC in congested or complex shape areas requires the use of a highly 

fluid mixture that can spread readily into place and fill the formwork and compact under 

its own weight with minimal /or no segregation (Khayat, 1998). These two conflicting 

objectives (fluidity and stability) are both attained by striking the right balance between 

the solids and liquids in the mix.  

This Chapter will describe the steps taken to develop self-compacting concrete (SCC) 

mixes of a wide range of strengths and performance. The aim was to investigate how the 

proportions of solids and liquids, and the amount of super-plasticiser affect flow and 

passing ability of the SCC mixes, especially when they contain large coarse aggregates 

(20 mm maximum size).  

The plastic viscosity of the SCC mixes so developed was next estimated by the 

micromechanical procedure described by Ghanbari and Karihaloo (2009). This plastic 

viscosity, together with the yield stress of the mix, is needed in the numerical simulation 

of SCC flow (Chapter 5-7).  

The major part of the contents of this Chapter has been published in the journal 

"Sustainable Cement-Based Materials" (see publication 1 in the list in Chapter 1). 
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4.2. Experimental program flow-chart 

The experimental program followed the steps outlined in Figure 4.1. The sequence of 

tests below for each trial mix starts with the most common slump flow test because it is 

easy to perform using a small volume of material. If the mix flows easily without 

segregation, the passing ability is then checked with the J-ring test. Finally the filling 

ability check is performed in the L-box.  

 

Figure 4.1: Experimental program flow chart 

 

Material preparation 

Mixing procedure 

Slump flow test 

 

J-Ring test  

 

L-Box test  

 

Cast, cure and test 

Yes 

Yes 

Yes 

No 

No 

No 
Is the slump flow  

spread > 500 mm diameter 

with no segregation and 

bleeding? 

Did the mix pass  

through the J-ring bars 

without segregation and 

blockage? 

Did the mix pass  

through the L-box bars 

without segregation and 

blockage? 
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4.3. Development of SCC mixes with 20 mm maximum size aggregate 

4.3.1.  Self-compacting concrete 

An extensive laboratory investigation was conducted to produce different grades of self-

compacting concrete mixes with 28 day cube nominal compressive strengths of 30 MPa, 

40 MPa, 50 MPa, 60 MPa, 70 MPa, and 80 MPa. These mixes had to be, on one hand as 

fluid as possible to ensure that they filled the formwork under their own weight, passed 

through closely spaced reinforcement cages without blockage and, on the other hand to 

be stable to prevent segregation of solids during the flow. This investigation followed 

the mix design procedure of Deeb and Karihaloo (2013) and the traditional trial and 

error approach, using the slump cone, J-ring and L-box tests on the trial mixes, until the 

mix that met the flow-ability and passing ability criteria and had no visible signs of 

segregation according to the Code (BS EN 206-9 2010) was  found. The starting mix 

proportions were those of a vibrated mix of nominal strength 40MPa made in the same 

laboratory. The SCC mixes so developed were compared with the corresponding 

vibrated mixes, also made in the same laboratory. In addition, some of the mixes were 

found to match with the mixes according to the rational mix design procedure (and the 

corresponding) design charts very recently proposed by Abo Dhaheer et al. (2015a, b).  

4.3.1.1. Materials and mix preparation 

The trial mixes were prepared in a small planetary mixer by mixing the coarsest 

constituent (coarse aggregate up to 20 mm) and the finest one (GGBS), followed by the 

next coarsest (sand) and next finest constituent (limestone filler), and so on. Before each 

addition, the constituents were mixed for 2 minutes. To fluidize the dry mix, two-thirds 

of the super-plasticiser (SP) was added to the water. One-half of this water-SP mixture 

was added to the dry constituents and mixed for two minutes. One-half of the remaining 

water-SP mixture was then added and mixed for another two minutes. This process was 
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continued until all water-SP mixture was added. The remaining one-third of the SP was 

added and mixed for two minutes just before transferring the SCC mix into the slump 

cone. The horizontal spread up to 500 mm diameter was timed (t500), and the time when 

the flow stopped (tstop) and the corresponding final spread diameter were recorded. If 

any segregation or bleeding was visible, the mix proportions were judiciously altered. 

This trial process was continued until the mix met the flow-ability criterion in BS EN 

206-9 (2010). 

The mix proportions of these mixes are shown in Table 4.1. The binder refers to cement 

plus GGBS (ground granulated blast furnace slag). The trial mixes with 28-day nominal 

cube strengths of 30, 40, 50, 60, 70 and 80 MPa (mixes 1, 2, 3, 4, 5, and 6 in Table 4.1) 

were proportioned guided by the corresponding 40 MPa vibrated concrete (VC) mix 

proportions produced in the same laboratory, as follows: 

- Part of the cement was replaced by the lighter ground granulated blast furnace 

slag (GGBS) to increase the paste volume and lubricate the aggregate particles. 

For the same reason limestone filler (maximum particle size 2mm) was added to 

all SCC mixes;  

- The water to binder ratio was reduced from 0.59 for 30 MPa mix to 0.4 for the 80 

MPa, whereas the super-plasticiser to binder ratio was increased slightly from 

0.0059 for 30 MPa to 0.010 for 80 MPa; 

- The fine aggregate (particle size range 0.15-2 mm) content was slightly decreased 

(by 8.5% to 11%) in the SCC mixes in comparison with the starting vibrated mix;  

- The coarse aggregate (crushed limestone without dust, particle size range 4-

20mm) content was decreased by 18.5% in the 30 to 60 MPa mixes and by 20.5% 
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in the 70 and 80 MPa mixes in comparison with the vibrated mix, in order to 

reduce the inter-particle friction. 

Table 4.1: Mix constituents of the initial VC mix and SCC mixes 1-6 (kg/m3) 

Constituents Initial 

VC Mix 

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 

Cement (kg) 393 220 225 238.63 260 270 280 

Ground granulated blast furnace 

slag (GGBS) (kg) 

0 120 125 130 150 166 170 

Limestone powder < 2mm (kg) 0 278 270 257 235 250 258 

Sand (kg)< 2mm 786 720 720 715 715 700 700 

Coarse aggregates (kg) (crushed 

limestone) <20 mm 

982.5 801 801 801 801 780 780 

Water (kg) 220.1 200 200 200 193 190 180 

Water/binder 0.56 0.59 0.57 0.54 0.47 0.44 0.40 

Super-plasticiser/binder 0 0.0059 0.0060 0.0060 0.0061 0.0069 0.0100 

Super-plasticiser/water 0 0.010 0.010 0.011 0.013 0.016 0.025 

Flow spread(mm) - 700 700 715 735 720 730 

Flow t500 (s) - 1.0 1.1 1.3 1.6 1.6 2.0 

Flow time to stop t stop(s) - 15.7 16.4 17.2 20.3 17.9 20.4 

J-Ring t500j(s) - 1.2 1.2 1.5 1.7 1.6 2.2 

J-Ring Flow spread (mm) - 685 680 700 715 695 710 

L-box t200 (s) - 0.90 1.00 1.2 1.3 1.4 1.6 

L-box t400 (s) - 1.55 1.60 1.80 1.80 1.95 2.1 

L-box Level-off time (s) - 12.0 12.6 13.5 16.3 17.7 20.5 

Density of the mix (kg/m3)  2341.0 2343.1 2343.8 2356.5 2359.0 2372.5 

Compressive strength range  

Average of 3 cubes (MPa) 

- 33-35 42-46 52-54 62-65 70-73 83-84 

Nominal compressive strength 

(MPa) 

40 30 40 50 60 70 80 

 

Table 4.2 gives the densities of the SCC ingredients. 

Table 4.2: The densities of the SCC ingredients (kg/m3) 

Cement GGBS Water SP Limestone FA CA 

2950 2400 1000 1070 2400 2650 2800 

The time taken by the fresh SCC mix to reach a 500mm diameter spread in the slump 

cone flow (t500) as well as the time to stop flowing (tstop) were determined for each mix 
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from time sequencing a video recording of the test with an accuracy of a thousand of a 

second. Moreover from the same videos the rates of cone lifting also have been 

determined from the times taken to lift the cone to a height of 300mm (Table 4.3). The 

resistance to segregation was checked visually. Figures 4.2 to 4.4 show the horizontal 

spread of SCC Mixes 1 to 6,  respectively. All these mixes fall into the low viscosity 

class 1 (VS1) with t500≤ 2 s according to BS EN 206-9: 2010.  

Table 4.3: The cone lift rates for the mixes 1-6 determined from video recordings 

Mix no. 1 2 3 4 5 6 

Cone lift rate 

CLR (m/s) 

0.90 0.9 0.69 0.69 1.00 0.76 

 

 

Figure 4.2: Horizontal spread of SCC Mix 1 (left) and Mix 2 (right) 
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Figure 4.3: Horizontal spread of SCC Mix 3 (left) and Mix 4 (right) 

 

 

Figure 4.4: Horizontal spread of SCC Mix 5 (left) and Mix 6 (right) 

It should be mentioned that in the development of the above mixes, we found no need to 

add a viscosity modifying admixture (VMA) to reduce bleeding or to increase the 

resistance to segregation. 

4.3.1.2. Passing ability test (J-Ring) 

J-ring is a test used in conjunction with the slump cone to assess the passing ability of 

SCC through gaps in the obstacles, e.g. reinforcement. For this test, slump test 
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apparatus is used with an open steel ring with 10 steel rods (diameter = 16mm and 

height = 100mm), as shown in the Figure 4.5. The gap between the bars is 78mm±1.  

 

Figure 4.5: J-ring test apparatus 

After filling the cone with concrete without using any vibration or rodding, the cone is 

lifted perpendicular to the steel base plate allowing the concrete to flow freely. The time 

needed for the flow to reach 500mm diameter is recorded as J-Ring t500j, and the flow 

allowed to stop before recording the spread. All the above mixes that had satisfied the 

flow-ability criterion and had showed no signs of segregation were subjected to the 

passing ability test using the J-ring to ensure that they were able to pass through the 

narrow gaps that exist between the reinforcing bars in a real reinforced concrete 

structural element. For this purpose, a 300mm diameter J-ring apparatus with 10 steel 

rods (each of diameter 16mm) was used, as recommended by The European Federation 

of National Trade Associations (EFNARC, 2005). 
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Figure 4.6: Flow and passing ability of SCC Mix 1 (left) and Mix 2 (right) 

 

Figure 4.7: Flow and passing ability of SCC Mix 3 (left) and Mix 4 (right) 
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Figure 4.8: Flow and passing ability of Mix 5 (left) and Mix 6 (right) 

All the SCC mixes reported in Table 4.1 met the passing ability criterion based on (BS 

EN 12350-12: 2010), (EFNARC, 2005) and (PCI, 2003) recommendations (Figures 4.6- 

4.8). 

However, it is not unusual to find that mixes that pass the flow-ability test do not meet 

the passing ability criterion, especially when large aggregates are present in the SCC 

mix. Figure 4.9 shows large aggregates are nested around the steel rods in an earlier trial 

version of Mix 2 that had met the flow-ability criterion. In such instances, the paste 

content had to be increased.  

 

Figure 4.9: Large aggregates are nested around the steel rods in an earlier trial version of Mix 2 

that had met the flow-ability criterion 
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4.3.1.3. L-box test 

In order to test the ability of a SCC mix to fill the formwork containing reinforcement 

under its own weight, the L-box apparatus with adjustable steel rods (each of diameter 

12mm) was used (BS EN12350-10: 2010; EFNARC, 2005; PCI, 2003). The vertical leg 

of the L-box is filled with the SCC mix. At the bottom of this leg is a gate with two or 

three rods in front of it. When the gate is lifted, the mix flows into the horizontal part of 

the L-box through the gaps between the rods. The times for the mix to reach 200 mm 

(t200) and 400 mm (t400) from the gate are recorded, as well as the time it takes the mix 

to level off in the horizontal leg of the L-box. Again, it is required that no large 

aggregate particles be blocked by the rods.  

The clearance between the bars when using 2 bars and 3 bars is 59∓1mmand 41∓1 

mm, respectively, as illustrated in Figure 4.10. 

 

Figure 4.10: Clearance when using 3 or 2 steel rod bars 

At least 14 litres (BS EN12350-10: 2010) of SCC concrete were prepared in a pan 

mixer and measurements were recorded.  
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Figure 4.11: Flow and passing ability of SCC Mix 1 (left) and Mix 2 (right) 

 

Figure 4.12: Flow and passing ability of SCC Mix 3 (left) and Mix 4 (right) 
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Figure 4.13: Flow and passing ability of SCC Mix 5 (left) and Mix 6 (right) 

Three steel rods were used for SCC mixes (Mix 1 to Mix 6), Figures 4.11 to 4.13. 

All designed mixes that had passed the J-ring test also passed the L-box test without any 

further alteration. 

4.4. Testing in hardened state 

Cube specimens were cast from all SCC mixes that met the flow ability, passing ability 

and no segregation criteria and were cured in water. Some of the cubes from each mix 

were tested in compression at the age of 3 and 7 days in order to follow the trend in 

strength gain, Figure 4.14. As expected, the rate of strength gain increases with 

increasing compressive strength because of the increased amount of binder in the mix. 

The remaining cubes from each mix were further cured in water and then tested at the 

age of 28 days.  The compressive strength range of each SCC mix is given in Table 4.1.  



Chapter 4: Development of self-compacting concrete mixes with 20mm maximum size 

coarse aggregate 

93 

 

 

Figure 4.14: Gain of mean cube compressive strength with age  

4.5. Comparison between self-compacting and vibrated concrete mixes 

The paste to solids ratios by volume in the above self-compacting concrete mixes are 

compared in Table 4.4 with their counterpart vibrated concrete mixes, Taylor (1997), 

ranging in the 28-day compressive strength from 30 to 80 MPa which had also been 

developed in the same laboratory at Cardiff University over many years.  

Table 4.4: Comparison of paste to solids ratio by volume between SCC and VC mixes of equal 

compressive strength 

Compressive strength (MPa) 30 40 60 80 
   

Paste(SCC) 0.442 0.442 0.444 0.457 
   

Solids(SCC) 0.558 0.558 0.556 0.543 
   

Water/Binder (SCC) 0.59 0.57 0.47 0.40 
   

Paste/Solids(SCC) 0.792 0.792 0.798 0.841 
   

Paste(VC) 0.353 0.337 0.316 0.309 
   

Solids(VC) 0.647 0.663 0.684 0.691 
   

Water/Binder (VC) 0.56 0.50 0.44 0.39 
   

Paste/Solids(VC) 0.545 0.509 0.462 0.447 
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Table 4.4 confirms that, for the same compressive strength and almost the same water to 

binder ratio, the paste to solids ratio in a SCC mix is much higher than in the 

counterpart vibrated concrete mix. 

 

Figure 4.15: Paste to solids ratio by volume in SCC and vibrated concrete (VC) mixes (Taylor,1997) 

It should be noted that the compressive strength of concrete can be increased mainly by 

decreasing the water to binder ratio which can be achieved by either increasing the 

binder content or decreasing the water content. These changes have an opposite effect 

on the volume of paste; an increase in the binder content increases this volume, whereas 

a decrease in the water content reduces it. This explains the different trends for SCC and 

VC mixes observed in Figure 4.15. 

4.6. Estimation of the plastic viscosity  

The rheology of SCC is best described by the Bingham constitutive model. This model 

contains two material properties, namely the yield stress τy and the plastic viscosity ƞ. 

The yield stress of SCC mixes is very low (around 200 Pa)  in comparison with normal 
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concretes (thousands of Pascal) and remains nearly constant over a wide range of plastic 

viscosities (Dransfield, 2003).  

The viscosity of a homogeneous viscous fluid such as the cement paste can be measured 

accurately which cannot be said about heterogeneous viscous fluids such as SCC. 

Ghanbari and Karihaloo (2009) have developed a micromechanical procedure for 

accurately estimating the plastic viscosity of SCC from the known plastic viscosity of 

cement paste and the volume fraction of the solid constituents. This procedure has been 

shown to predict the plastic viscosity of SCC mixes that agree very well with measured 

values (Ghanbari and Karihaloo, 2009). Deeb, et al. (2014a, b)  used the same procedure 

to estimate the plastic viscosity of the SCC mixes with steel fibres. 

There is contradictory evidence available in the literature on the effect of GGBS 

replacement on the viscosity of cement paste, depending on the type of viscometer used 

(Nehdi and Rahman, 2004: Table 1 page 1998). Some results show a slight decrease in 

the viscosity, while others show the opposite trend. Therefore we assume  

ƞc ≈ ƞb 

where 

ƞc = viscosity of cement paste alone 

ƞb= viscosity of cement paste containing GGBS 

The plastic viscosities of the cement pastes used in the SCC mixes (Tables 4.1) 

developed above, which is mainly influenced by water to cement and super-plasticiser 

to water ratios, (Sun et al., 2006) was estimated to be between 0.145 Pa s and 0.315 Pa 

s. The effect of air voids (volume fraction = 2%) on the viscosity of cement paste is 

calculated using Eq. 4.1 (see below for explanation) 

 ƞb+airvoids=ƞb (1+𝜙air voids)                                                                                             
(4. 1)
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LF (S) 

Binder (L) 
 

FA (S) 

Binder + LF (L) 
 

CA (S) 

Binder + LF 

+ FA (L) 

)( 111  fairbc   )( 2212  fcc 

 

)( 3323  fcc 

 

Table 4.5: Estimated plastic viscosity of cement paste (cement + GGBS + water + SP + air voids) 

Mix No. w/b ƞb ƞb+ air voids 

1 0.59 0.145 0.148 

2 0.57 0.170 0.173 

3 0.54 0.195 0.199 

4 0.47 0.270 0.275 

5 0.44 0.290 0.296 

6 0.40 0.315 0.321 

In the procedure proposed by Ghanbari and Karihaloo (2009), a viscous concrete mix is 

regarded as a succession of two-phase suspensions. At each stage, the suspension 

consists of a liquid phase in which is suspended a discrete solid phase. Figure 4.16 

shows the hierarchy of these two-phase liquid-solid suspensions used in the estimation 

of the plastic viscosity of all mixes developed above based on the viscosity of the binder 

paste used in them.  

 

 

 

 

  

Figure 4.16:  Hierarchy of two-phase liquid-solid suspensions constituting an SCC mix showing the 

liquid (L) and solid (S) phases in each suspension. 

In Figure 4.16  

LF= Limestone filler 

FA= Fine aggregate 

CA= Coarse aggregate 

The plastic viscosity of the i-th liquid-solid suspension can be estimated from the plastic 

viscosity of the preceding phase as follows: 
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1 ( )Ci Ci i if                         (4. 2) 

with bC  0  being the known plastic viscosity of the binder paste. For instance, 

limestone filler (LF) materials form the solid phase in the viscous binder paste (with air 

voids) in the first liquid-solid suspension. The plastic viscosity of this suspension is 

calculated from the known plastic viscosity of the binder paste (with air voids) (Table 

4.5). This process is repeated until all the solid ingredients of SCC have been accounted 

for. 

The function ( )i if  depends only on the volume fraction of solid phase i  

0

i
i

i

v

v v
 


                  (4. 3) 

where 

vi: volume of solid phase i; v0: volume of the continuous matrix liquid phase in which 

the solid phase i is suspended;  

If the volume fraction is less than 10%, the function ( )i if  can be expressed by the 

Einstein equation in the following form  

( ) 1 [ ]i i if                      (4. 4) 

where [ ]  is a numerical factor. It equals 2.5 for rigid spheres and 1.0 for spherical 

voids arranged in a random hexagonal form and when the distance between them is 

large compared to the mean particle or void diameter. It was subsequently shown that 

the numerical factor 2.5 is accurate even for ellipsoidal particles with aspect ratio less 

than 3. The expression for spherical voids was used above in Eq. 4.1. 
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However, when the volume fraction of solid phase exceeds 10% but is less than the 

maximum possible volume fraction m , then  ( )i if   depends not only on the volume 

fraction of the solid phase but also on how they are dispersed in the fluid and on their 

shape. m  represents the situation in which the particles have the minimum possible 

separation, i.e. the void fraction (porosity) is the least and the viscosity is infinite. The 

value is 0.74 for hexagonal closed packing, 0.637 for random hexagonal packing, and 

0.524 for cubic packing.  

This dependence is captured by the formula proposed by Krieger and Dougherty (1959) 

given below:
 

[ ]
( ) (1 ) mi

i i

m

f
 





                      (4. 5) 

The numerical factors [ ]  and m  depend upon the shear rate; the former tends to 

decrease with increasing shear rate (i.e. shear thinning), whereas the latter shows the 

opposite trend. However [ ]  and m  change in such a way that an increase in the one 

leads to a decrease in the other, but the product of the two changes remains practically 

the same and equal on average to 1.9 for rigid spheres. The numerical factor changes 

because the packing changes from loose to dense as the volume fraction of solid phase 

increases. 

4.7. Application to designed SCC mixes 

In this section the plastic viscosity of mix compositions (Table 4.1) is determined using 

the above micro-mechanical procedure proposed by Ghanbari and Karihaloo (2009). As 

mentioned above, this plastic viscosity together with yield stress is necessary to 

simulate the flow of SCC mixes. 
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The calculation of the plastic viscosity will be demonstrated on the example of Mix 3. 

The plastic viscosities of all SCC mixes developed above have been calculated in the 

same manner. 

Step 1: Estimating the plastic viscosity of the liquid phase (binder paste (CP)) 

The plastic viscosity of the binder paste (cement + GGBS+ super-plasticiser +water + 

air) is estimated (Table 4.5) to be: 

ƞcp ( cp) = 0.199 Pa s                                                                                                  (4. 6) 

Step 2: The first solid phase limestone filler (LF) is added to the liquid binder phase, as 

shown in Figure 4.17 

 

Figure 4.17: The first solid phase (LF) is added to the liquid phase (Paste) 

The volume fraction of the solid phase is determined using Equation (4.7) 

CPLF

LF
LF

vv

v


                   (4. 7) 

Here, LFv  is the volume of the solid phase (LF), CPv  is the volume of the continuous 

liquid phase in which the solid phase is suspended. 

CP(Cement+ GGBS 
+ 

SP 
+ 

Water +air voids) 
 

        LF  
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After calculating the volume of each ingredient in the mix (Table 4.1) using the 

densities from Table 4.2 the volume of paste is 35.0CPv m3 

The volume fraction of LF is (See Tables 4.1 and 4.2) 

35.0105.0

105.0


LF  

%102307.0 LF                                       (4. 8) 

Using Equation (4.5) for cubic packing with [η] ϕm = 1.9 and ϕm= 0.524, gives 

01.3)
524.0

2307.0
1()( 9.1  

LFLFf                                      (4. 9) 

Based on Equation (4.2) the plastic viscosity of the mix so far is: 

sPa 599.0199.0x 01.3)(  CPLFCPLF                                        (4. 10) 

Step 3: Next add the fine aggregates (FA) to the liquid phase from the previous step 

(Figure 4.18) 

 

Figure 4.18:  Adding the second solid phase (fine aggregates) 

The volume fraction of FA is 

Cement +GGBS 
 

+ Water + SP + Air+ LF 

 

 

               FA 
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%103676.0 FA                      (4. 11) 

Using Equation (4.4) for random hexagonal packing with [η]ϕm = 1.9 and ϕm= 0.637, 

gives 

13.5)
637.0

3676.0
1()( 9.1  

FAFAf                                         (4. 12) 

Based on Equation (4.2) the plastic viscosity of the mix so far is: 

sPa 07.3599.0x13.5)(  CPLFFACPLFFA                                       (4. 13) 

Step 5: Final step is adding the coarse aggregates (CA) to the liquid phase from the 

previous step (Figure 4.19) 

 

Figure 4.19: Adding the next solid phase (coarse aggregates) 

The volume fraction of CA is: 

%102804.0 CA                           (4. 14) 

Using Equation (4.4) for hexagonal closed packing with [η]ϕm = 1.9 and ϕm= 0.74, gives 

47.2)
74.0

2804.0
1()( 9.1  

CACAf                              (4. 15) 

Based on Equation (4.2) the eventual plastic viscosity of the SCC mix 3 is: 

sPa 6.707.3x47.2)(  CPLFFACACPLFFACA                            (4. 16) 

Cement + GGBS 
+ 

Super plasticiser 
+ 

Water + Air+ LF+FA 

 

Coarse aggregates 
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Table 4.6: Estimated plastic viscosity of SCC mixes 

Mix Plastic viscosity, Pa s 

Mix 1 6.57 

Mix 2 7.31 

Mix 3 7.60 

Mix 4 9.31 

Mix 5 9.36 

Mix 6 10.62 

The plastic viscosities of the SCC mixes reported above (see Table 4.1) estimated using 

the procedure just described are given in Table 4.6. Judging by the excellent predictive 

capability of this procedure (Ghanbari and Karihaloo, 2009), it is reasonable to assume 

that the plastic viscosities given in Table 4.6 are very accurate. The use of three packing 

types from the loose cubic in Step 2 to dense hexagonal close in Step 3 is justified by 

the fact that the mix packing increases progressively as more solid material is added.  

4.8. Comparison of the SCC mixes with the rational mix design 

As mentioned above, the SCC mixes of Table 4.1 were proportioned using the rigorous 

method proposed by Deeb and Karihaloo (2013) based on the desired plastic viscosity 

of the mix and the traditional trial and error. The desired viscosity depends on the 

application and can be chosen following the EFNARC guidelines (2005). The rational 

mix proportioning method of Deeb and Karihaloo (2013) exploits the expression for the 

plastic viscosity (Eq. 4.2) of an SCC mix developed by Ghanbari and Karihaloo (2009).  

As described above, this expression shows how the known plastic viscosity of the paste 

is increased by the addition of solid phase particles, i.e. filler, fine and coarse 

aggregates. The contribution of each of the solid phases to the overall increase depends 

on its volume fraction and shape of its particles. As a result, the final expression for the 

plastic viscosity of an SCC mix is the product of the known plastic viscosity of the paste 

and contributions of each of the solid phases. Whilst this method for proportioning SCC 
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mixes is rigorous and based on sound physical principles, it produces a bewildering 

array of mixes that reach the target plastic viscosity but does not give any practical 

guidelines on how to choose the most appropriate mix. That is why it had to be 

combined with the traditional trial and error based on a vibrated concrete mix. 

Moreover, the method was developed on the basis of reference mixes of a range of 

known cube compressive strength, but the latter was not explicitly imposed as a design 

criterion. 

Very recently  Abo Dhaheer et al. (2015 a, b) have overcome the above shortcomings of 

this method for proportioning SCC mixes and provided practical guidelines in the form 

of design charts for choosing the mix proportions that achieve the target plastic 

viscosity in the range 3 to 15 Pa s and the target cube compressive strength in the range 

30 to 80 MPa. It is therefore appropriate to check whether or not the SCC mixes of 

Table 4.1 fall within the design charts provided by Abo Dhaheer et al. (2015a). In the 

design charts (typical charts for cube compressive strengths ranging from 30 to 80 MPa 

are shown in Figures 4.20-4.25) the vertical axis gives the ratio of the mass of a solid 

phase to the desired plastic viscosity. As seen from Figures 4.20-4.25, the charts give 

four curves, each with mean and scatter. The bottom most curve gives the mass of 

binder (i.e. cementitious material, cm), the second curve from bottom gives the 

combined mass of binder and LP (i.e. limestone powder), the third  curve from bottom 

gives the combined mass of binder, LP and FA, and finally the top curve gives the 

combined mass of binder, LP, FA and CA. Thus knowing the desired plastic viscosity it 

is possible to calculate the masses of binder, LP, FA, and CA in a stepwise manner 

beginning with the bottom curve on the chart corresponding to the desired cube 

compressive strength.  
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It is important to distinguish LF used in SCC mixes of Table 4.1 from LP used in design 

charts. The LP refers only to the fine fraction (≤125 μm) of LF; the coarser fraction of 

LF (125 μm -2 mm) is regarded as a part of FA in the charts. In the LF used in mixes 1-6 

of Table 4.1 it has been found by particle size analysis that the fractions of fine and 

coarse LP are in the ratio 0.4 to 0.6. This will be used below. It is however clear that 

this distinction makes no change to the mix plastic viscosity. Also, Abo Dhaheer et al. 

(2015b) have shown that it has very little, if any, effect on the cube compressive 

strength of the mix.  

Let us check if the mixes 1-6, Table 4.1 (cube compressive strength from 30 to 80 MPa, 

plastic viscosity from 6.57 to 10.62 Pa s) could have been proportioned using the 

corresponding design charts of Abo Dhaheer et al. (2015a) reproduced in Figures 4.20-

4.25.  

Table 4.7: Comparison of the mixes 1- 6 (Table 4.1) with the rational mix design 

 cm 

(cement + 

GGBS) 

 

cm +  0.4 

LF = cm 

+ LP 

 

cm + LP 

0.6 LF + 

FA 

 

cm + LP 

+0.6 LF 

+ FA + 

CA 

Compressive 

strength, 

MPa 

w/b ƞmix, 

 

Pa s 

Mix 1 (kg) 340 451.2 1338 2139 30 0.59 6.57 

(Column / ƞmix) 51.7 68.7 203.6 325.6    

Mix 2 (kg) 350 458 1340 2141 40 0.57 7.3 

(Column / ƞmix) 48 63 183 293    

Mix 3 (kg) 368.6 471.4 1340.6 2141.6 50 0.54 7.6 

(Column / ƞmix) 48 62 176 282    

Mix 4 (kg) 410 504 1360 2161 60 0.47 9.31 

(Column / ƞmix) 44 54 146 232    

Mix 5 (kg) 436 536 1386 2166 70 0.44 9.34 

(Column / ƞmix) 47 57 148 232    

Mix 6 (kg) 450 553.2 1408 2188 80 0.40 10.62 

(Column / ƞmix) 42 52 133 206    
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The entries above for mixes 1-6 of Table 4.1 are plotted on Figures 4.20-4.25; the 

vertical line corresponds to the plastic viscosity of a given mix (last column in Table 

4.6), whereas the four horizontal lines correspond to entries in row (Column / ƞmix ) of 

this mix. 
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Figure 4.20: Ingredient mass (kg) normalised by mix plastic viscosity vs plastic viscosity for 30 MPa 

mix (After: Abo Dhaheer et al., 2015a) 

 



Chapter 4: Development of self-compacting concrete mixes with 20mm maximum size 

coarse aggregate 

107 

 

 

Figure 4.21: Ingredient mass (kg) normalised by mix plastic viscosity vs plastic viscosity for 40 MPa 

mix (After: Abo Dhaheer et al., 2015a) 
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Figure 4.22: Ingredient mass (kg) normalised by mix plastic viscosity vs plastic viscosity for 50 MPa 

mix (After :Abo Dhaheer et al. 2015a) 
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Figure 4.23: Ingredient mass (kg) normalised by mix plastic viscosity vs plastic viscosity for 60 MPa 

mix (After :Abo Dhaheer et al. 2015a) 
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Figure 4.24: Ingredient mass (kg) normalised by mix plastic viscosity vs plastic viscosity for 70 MPa 

mix (After :Abo Dhaheer et al. 2015a) 
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Figure 4.25: Ingredient mass (kg) normalised by mix plastic viscosity vs plastic viscosity for 80 MPa 

mix (After :Abo Dhaheer et al. 2015a) 
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From Figures 4.20-4.23 above it can be noted that the mix proportions of SCC mixes 1- 

4  of Table 4.1 with cube compressive strengths 30, 40, 50 and 60 MPa  fall within the 

ranges obtained by the rational method  for proportioning SCC mixes proposed by Abo 

Dhaheer et al. (2015a). However, the mix proportions of cm and LP of SCC mixes 5-6 

of Table 4.1 with cube compressive strengths of 70 and 80 MPa (Figures 4.24-4.25) fall 

slightly outside the ranges obtained by the rational method. This is no doubt a result of 

the fact that the above design charts followed the typical ranges of the various 

constituents suggested by EFNARC (2005). The EFNARC guidelines however 

recognize that “these proportions are in no way restrictive and many SCC mixes will 

fall outside the range for one or more constituents” (EFNARC, 2005). 

4.9. Critical remarks 

Self-compacting concrete is a two phase (solid and liquid) particle suspension and is 

very fluid. The challenge then is to maintain the flow-ability of the suspension and to 

avoid the segregation of the phases. The development of self-compacting concrete 

mixes is a complex and sensitive process, requiring a balance to be struck between 

flow-ability and non-segregation of constituent materials. These aims can be achieved 

by increasing the paste volume fraction and decreasing the large aggregate volume 

fraction. Our extensive investigations lead us to the following major conclusions. 

Self-compacting normal strength concrete mixes with maximum size of aggregate 20 

mm designed to satisfy the flow-ability and stability (i.e. resistance to segregation) 

criteria using the slump cone flow test may not meet the passing ability criterion. It is 

additionally necessary to check that the mixes meet the passing ability criterion using 

the J-ring and L-box tests. These mixes often need to be more flow-able than required 

by the slump flow test, in order to satisfy the passing ability test.  
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The viscosity of SCC mixes so produced can be accurately estimated using a 

micromechanical procedure based on the known plastic viscosity of the cement paste 

and the mix proportions. The plastic viscosity of the homogeneous paste can be 

measured accurately using the traditional viscometers (Heirman et al., 2008). The 

measurement of the plastic viscosity of heterogeneous SCC, using the rheometers often 

gives inaccurate results with a large scatter (Ghanbari and Karihaloo, 2009). 

The mix proportions of the SCC mixes developed in this Chapter are shown to fall 

within the ranges obtained using the recently proposed rational method for 

proportioning (Abo Dhaheer et al., 2015a). 

An appropriate computational strategy using the SPH method will implemented in the 

next Chapter to back calculate the yield stress of self-compacting concrete mixes from 

slump flow test. 
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5.1. Introduction 

Simulation of the flow of SCC is a significantly useful and inexpensive way to 

understand the behaviour of SCC in the fresh state. It can be used as a tool to accurately 

estimate some of the constitutive properties of SCC mix. It has been described in 

Chapter 3 that the SCC mix behaves like a non-Newtonian fluid best described by a 

Bingham model. This model contains two crucial material parameters, the yield stress τy 

and the plastic viscosity η.   

This Chapter will focus on the numerical simulation of the normal strength (30 to 80 

MPa) SCC mixes developed in the previous Chapter (Table 4.1) using the three 

dimensional incompressible SPH methodology (Chapter 3). The entire cone flow test 

was simulated from the moment the cone was lifted until the SCC mix stopped to flow. 

The SPH numerical simulation was employed here to back calculate the yield stress τy 

of the mix from the measured t500 time and the final spread diameter, knowing the 

plastic viscosity of the mix (Table 4.6) as discussed in Chapter 4. 

5.2.   Initial configuration and boundary conditions  

When solving the mass and momentum conservation equations (3.6) and (3.8), 

appropriate initial and boundary conditions have to be applied.  

Three types of boundary conditions need to be considered in the simulation of slump 

cone test:  

i. Zero pressure condition (i.e. atmospheric pressure) on the free surface; 

ii. Dirichlet (or first-type) boundary condition has to be imposed on the normal 

component of the velocity field at the walls and the bottom plates; this 

component must vanish.  
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iii. Neumann (or second-type) boundary condition has to be imposed on the pressure 

gradient; this zero pressure gradient is used only for solving the pressure Poisson 

equation (3.23) 

The rate of cone lift will be assumed to be 1 m/s (compare with the actual cone lift rates 

given in Table 4.2). This sets the initial condition at t = 0. The part of the mix which is 

not in contact with the cone surface during the lifting of the cone is a free surface with 

pressure p = 0, but the part in contact is subjected to sliding frictional resistance (Figure 

5.1 (d)). For realistic simulations, the friction between the SCC mix and the contacting 

surfaces should be considered. After several trials on mix 1, an appropriate dynamic 

coefficient of friction (DCOF) for numerical simulations was chosen to be 0.54 Ns/m 

for all mixes. This value of the coefficient was determined by comparing the numerical 

simulations and experimental test results for a given t500 of mix 1 (Table 5.1). 

Table 5.1: simulation trials on mix 1 to determine the dynamic coefficient of friction between SCC 

and rigid boundaries  

Mix No. Trial coefficient 

of friction 

Plastic 

viscosity 

(Pa s) 

Yield stress 

(Pa) 

t500 

experimental 

(s) 

t500 

simulated 

(s) 

Mix1 (30MPa) 0.52 6.57 175 1.0 0.9 

 0.53    0.9 

 0.54    1.0 

 0.55    1.1 

The effect of the frictional boundary condition depends on the relative tangential 

velocity between the contacting surface and the fluid flow and ensures that slip with 

friction boundary condition is enforced along the tangential direction of the contacting 

surfaces. 

In SPH, a number of techniques have been developed in the past to enforce various 

boundary conditions. Some of these techniques have been mentioned in Chapter 3. In 

this research, the technique based on arrays of dummy rigid particles (Koshizuka et al., 
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1998) was used to implement the cone wall and base plate boundary conditions, as 

illustrated in Figure 5.1. 

 

Figure 5.1: (a) Three dimensional view, (b) Two dimensional section, (c) Dummy particles for 

enforcing boundary conditions, (d) Slump cone test boundary conditions (p – pressure, vn – normal 

velocity, vt – tangential velocity, and cf – the dynamic coefficient of friction). Pressure vanishes on a 

free surface. Note that the condition that the normal pressure gradient vanishes on rigid surfaces is 

only needed in the solution of the pressure Poisson Equation (3.23). 

Four arrays of rigid dummy particles placed outside the wall particles of the cone were 

used to implement the wall boundary conditions. The thickness of the array containing 

the dummy particles depends on the kernel smoothing length h. If the smoothing length 

h=2ro, where ro is the initial particle spacing, four arrays of dummy particles at a 

spacing ro between the lines were used.  
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The boundary conditions along the slump wall are same as on the bottom plate. 

However, as the cone is lifted, the condition p = 0 is imposed on the newly formed free 

(exposed) surfaces of the flowing SCC mix. Figure 5.1d shows the slump cone test 

initial configurations and enforced boundary conditions. 

5.3. Treatment of aggregates in SPH modelling of slump cone test 

The number of particles used to represent the volume of the test cone contents sets a 

lower limit on the volume element that can be distinguished from the homogeneous 

mass, i.e. the resolution of the modelling technique. In the simulations below, a total of 

23,581 particles have been used to represent the volume of mix in the cone (5.498 × 106 

mm3) giving a resolution of 233.15 mm3 per particle if all particles have the same 

density as the viscous homogeneous continuum. The resolution will be somewhat 

different if the particles have different densities (see Table 5.3). Thus, in all the mixes 

the large aggregates that can be distinguished from the homogeneous mass must have a 

volume exceeding this minimum. It is for this reason that only the aggregates of size 8 

mm and above could be treated as discrete identities.  

Sieve analysis was first performed to determine the grading curve of aggregate particle 

sizes within a given test sample. According to the sieve analysis of the SCC mixes 1–6 

(Table 4.1), Table 5.2 presents the volume fractions of coarse aggregates in the size 

ranges (g ≥ 20, 16 ≤ g < 20, 12 ≤ g < 16 and 8 ≤ g < 12 mm).  

Table 5.2: volume fractions of coarse aggregates for each range (g ≥ 20, 16 ≤ g < 20, 12 ≤ g < 16 and 

8 ≤ g < 12 mm) for all mixes  

Mix No. g ≥ 20 16 ≤ g < 20 12 ≤ g < 16 8 ≤ g < 12 < 8 

Mix (1 – 4) 2.93% 8.67% 5.39% 8.38% 74.63% 

Mix (5 and 6) 2.86% 8.45% 5.26% 8.18% 75.25% 
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For the purpose of modelling, each aggregate size range was replaced by a single 

aggregate size that best represented the range as illustrated in Figure 5.2. This required, 

at times, the size range to be further subdivided and the sieve analysis to be repeated. 

The representative aggregate size in each size range is given in Table 5.3. 

 

Figure 5.2: The coarse aggregate sieve analysis with size ranges (g ≥ 20, 16 ≤ g < 20, 12 ≤ g < 16 and 

8 ≤ g < 12 mm) and the average size for each range. 

It should be mentioned that the average sizes of particles in the size ranges 8 ≤ g < 12 

and 12 ≤ g < 16 were skewed towards the lower and upper limits, respectively as shown 

by additional sieve analysis in the sub-ranges 12 ≤ g < 14 and 14 ≤ g < 16 (Figure 5.2). 

This is reflected in the average particle sizes in these two ranges in Table 5.3. 

The assigned volume (Va) for each particle size which appears in the discrete form of 

SPH equations is equal to the ratio of its actual mass to the density of the continuum. 

An example is presented below on how to calculate the assigned volume of the discrete 
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particles in mix 1. We first calculate the density of the mortar (i.e. cement + GGBS + 

Limestone powder + FA + water + SP + CA particles < 8 mm in size) whose volume 

fraction is 0.7463 (Table 5.2).  It can be calculated as follows using the rule of mixtures. 

The density of SCC mix1 = sum of the volume fractions of CA > 8 mm x density of CA 

+ volume fraction of mortar x density of mortar, i.e.  2341 = (0.0293 + 0.0867 +0.0539 

+ 0.0838) x 2800 + 0.7463 x density of mortar. This gives the density of mortar 

(particles < 8 mm) to be 2185 kg/m3. 

The number of particles of each size used in the simulation Np is calculated as follows: 

Np= volume fraction x volume of cone/volume of one particle 

Np (g ≥ 20)        = 0.0293 x 5498000 / 4189.2 = 38 

Np (16 ≤ g <20) = 0.0867 x 5498000 / 2806.44 = 170 

Np (12 ≤ g < 16) =0.0539 x 5498000 / 1596.41 = 186  

Np (8 ≤ g < 12) = 0.0838 x 548000 / 448.96 = 1027 

Np (<8)            = 23581- (38+170+186+1027) = 22160 

Next the assigned volume Va (mm3) for each size is = actual average volume x actual 

density/ density of continuum: 

Va (g ≥ 20)          = 4189.2 x 2800 / 2341= 5010.6 

Va (16 ≤ g <20)   = 2806.44 x 2800 / 2341= 3356.7 

Va (12 ≤ g < 16)  = 1596.41 x 2800 / 2341= 1909.4 

Va (8 ≤ g < 12)    = 448.96 x 2800 / 2341= 537.0 

Va (< 8)               = 185.15 x 2185 / 2341= 172.8 
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Table 5.3: Volume fractions of aggregates larger than or equal to 8 mm in mix 1, Np and Va is the 

number and assigned volume of the particles representing them in the 3D simulation of slump cone 

test. 

SCC 

 Mix 1 

Particle 

range 

(mm) 

Representative 

particle 

diameter 

(mm) 

Density 

(kg/m3) 

Volume 

fraction 

(%) 
3D slump cone test  

     Np Va / particle 

(mm3) 

 

          g ≥ 20 20 2800 2.93 38 5010.6  

Aggregates 

g ≥8 mm 

16 ≤ g <20 17.5 2800 8.67 170 3356.7  

 12 ≤ g < 16 14.5 2800 5.39 186 1909.4  

 8 ≤ g < 12 9.5 2800 8.38 1027 537.0  

Particles  

<8 mm 

     g < 8  8 mm 2185 74.63 22160 172.8  

        

Total  - 2341 100 23581   

5.4. Estimation of mix yield stress   

It should be mentioned that in previous studies (Kulasegaram et al., 2011; Kulasegaram 

and Karihaloo, 2012; Deeb et al., 2014, a, b) the yield stress τy was assumed to be equal 

to 200 Pa irrespective of the mix characteristic compressive strength. Here we estimate 

it in an inverse manner which requires a trial-and-error approach; for a given mix and 

plastic viscosity (Table 4.6), an arbitrary initial trial yield stress is assumed (200 Pa) and 

the mix flow is simulated. If the computed t500 time and the final spread diameter differ 

by more than one per cent from the measured values in the test, then the simulation is 

repeated with a new trial yield stress. This process is repeated until the computed and 

measured times are nearly the same. It should be mentioned that in all trial simulations 

the dynamic coefficient of friction was not altered and the plastic viscosity of the mix 

was equal to that given in (Table 4.6).  
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The simulations were carried out on HPZ820 workstation (clock 3.3 Hz, Intel Xeon 

CPU E5-26430). The time taken to simulate the flow for 15 s was approximately 7 days. 

However, as this workstation allows four programs to be run simultaneously, four trial 

flows up to 15 s were simulated in approximately 10 days.  

The numerical results of this trial and- error procedure for the six mixes are shown in 

Figures 5.3-5.8, and the estimated yield stresses of the six mixes are given in Table 5.4. 

Figures 5.3-5.8 illustrate the numerical mix spread diameter for each yield stress trial 

with respect to flow time from the moment the flow started until the mix stopped to 

flow. These figures are sectioned into two parts to illustrate the flow characteristics at 

the most crucial times of the flow i.e. t500 and tstop. From Figures 5.3-5.8, it is clear that 

for a given mix, the yield stress has a noticeable influence on t500. However, it can be 

noted from Table 5.4, the estimated yield stress varies only marginally with SCC 

compressive strength, thus confirming the observations made in (Ghanbari and 

Karihaloo, 2009) and the use of a nominal value (200 Pa) in several previous 

studies(Kulasegaram et al., 2011; Kulasegaram and Karihaloo, 2012; Deeb et al., 2014, a,b). 

 

Figure 5.3: Effect of changing τy on the tstop and the final spread of mix 1.  
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Figure 5.4: Effect of changing τy on the tstop and the final spread of mix 2.  

 

Figure 5.5: Effect of changing τy on the tstop and the final spread of mix 3.  
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Figure 5.6: Effect of changing τy on the tstop and the final spread of mix 4.  

 

Figure 5.7: Effect of changing τy on the tstop and the final spread of mix 5.  
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Figure 5.8: Effect of changing τy on the tstop and the final spread of mix 6.  

 

Table 5.4: Numerically estimated yield stress of mixes 1–6. 

Mix No. Spread/mm t500 /s Viscosity 

(Pa s) 

τy (estimated)  

 Pa Test Numerical Test Numerical 

1 (30MPa) 700 700 1.0 1.0 6.57 175 

2 (40MPa) 700 704 1.1 1.1 7.31 175 

3 (50MPa) 715 720 1.3 1.3 7.60 178 

4 (60MPa) 735 733 1.6 1.6 9.31 180 

5 (70MPa) 720 720 1.6 1.6 9.36 180 

6 (80MPa) 730 739 2.0 2.0 10.62 190 

5.5. Conclusions 

All the self-compacting concrete mixes developed in the Chapter 4 have been simulated  

using a three dimensional corrected Lagrangian incompressible SPH method in the 

slump cone test from the moment the cone was lifted until the mix stopped to flow. The 

plastic viscosities of the mixes have been calculated using the micromechanical model 

described in Chapter 4. 

As demonstrated in this Chapter, the yield stress of an SCC mix can be predicted in an 

inverse manner using the SPH simulation methodology by comparing the measured and 
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simulated t500, and the final spread diameter. The yield stress of SCC mixes varies only 

slightly with an increase in the characteristic compressive strength of the mix. The 

plastic viscosity on the other hand shows a marked increase with the increase in the 

characteristic compressive strength of the mix. 

The SPH simulation methodology provides a useful tool for predicting the yield stress 

of SCC mixes accurately. As argued in Chapter 2, the measurement of τy by rheometers 

is inconsistent and fraught with inaccuracies.  
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6.1. Introduction 

An essential requirement of a SCC mix is that heavier aggregate particles do not 

segregate from the paste but stay homogeneously distributed during the flow. If not, a 

non-homogenous distribution during transport or placement can have an adverse effect 

on the properties of hardened concrete. 

In this Chapter two mixes (30 and 50 MPa) from the 6 mixes developed and reported in 

Chapter 4 have been chosen to investigate the distribution of coarse aggregates during 

the numerical simulations as well as slump flow tests. The aim of the simulations is to 

compare the distribution of coarse aggregate particles larger than or equal to 8 mm in 

the cone spread after it stopped to flow as revealed by the numerical simulations with 

the distribution of the aggregate particles of the corresponding sizes in the cut sections 

of the cured cone spread obtained during the laboratory slump flow tests.  

6.2. Colour coding of coarse aggregates in the slump flow mixes 

Tracking the coarse aggregate particles during the flow of SCC is very challenging. A 

novel idea was implemented in this study to track the movement of large coarse 

aggregates (g ≥ 8 mm) at least after the flow had stopped. In two mixes (1 and 3) the 

large coarse aggregate particles in the size ranges 8 ≤ g < 12, 12 ≤ g < 16, 16 ≤ g < 20 

and g ≥ 20 mm of the test SCC mixes (Table 4.1) were colour coded with non-toxic 

non-water soluble paints, so that the outlines of the aggregate particles could be clearly 

distinguished in the cut sections of the hardened cone spread and can be easily 

compared with the numerical simulations. 

Figure 6.1 show the coloured aggregates that were used in the test mixes 1 and 3. The 

slump cone spread produced using coloured aggregates was allowed to dry for 24 hours 

after the flow had stopped. The hardened slump “pancake”  was then carefully scraped 
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from the steel base plate and placed in a water tank for a further 7 days, after which it 

was cut along two diagonal perpendicular sections with a diamond saw (Figures 6.2 and 

6.3). The number of aggregates in the different size ranges (according to their different 

coloured outlines) was counted. Table 6.1 lists the number of different size aggregates 

counted along the two diagonal sections of the cone spreads in the two test mixes. From 

the cut sections, it was evident that the coarse aggregates were evenly distributed; the 

larger particles were suspended in the paste and had not gravitated to the bottom. 

 

Figure 6.1:  Colour-coded coarse aggregates; g ≥ 20 mm (white, top), 16 ≤ g < 20 mm (green, bottom 

right), 12 ≤ g < 16 mm (red, bottom centre), and 8 ≤ g < 12 mm (yellow, bottom left) 
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Figure 6.2: (a) Cut-hardened slump cone spread (mix 1) (b) Coloured coarse aggregate outlines in 

section (mix 1). 

 

Figure 6.3: (a) Cut-hardened slump cone spread (mix 3) (b) Coloured coarse aggregate outlines in 

section (mix 3). 

Table 6.1: Number of coarse aggregate particles in the size ranges 8 ≤ g < 12, 12 ≤ g < 16,16 ≤g< 20 

and g ≥ 20 mm in the two diametrical sections of hardened cone spread of mixes 1 and 3. 

  g ≥ 20 mm 16 ≤ g < 20 mm 12 ≤ g < 16 mm 8 ≤ g < 12 mm 

Mix 1 Section 1 6  13  12  22 

 Section 2 4 12 12 32 

Mix 3 Section 1 3 14 11 28 

 Section 2 5 12 14 25 
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6.3. Modelling of coarse aggregates in SPH simulation 

6.3.1. Modelling of slump cone test 

As it was mentioned in the Chapter 5, a total of 23,581 particles have been used to 

represent the volume of mix in the cone (5.498 × 106 mm3) giving a resolution of 

233.15 mm3 per particle or particle diameter 7.6 mm if all particles have the same 

density as the viscous homogeneous continuum. The resolution will be somewhat 

different if the particles have different densities (see Table 5.1). Thus, in all the mixes 

the large aggregates that can be distinguished from the homogeneous mass must have a 

volume exceeding this minimum. It is for this reason that only the aggregates of size 8 

mm and above could be treated as discrete identities during the numerical simulation. 

In order to be able to monitor the velocity vectors and positions of aggregates of 

different representative sizes, as well as those of the fluid particles representing the 

paste, the particles were represented by distinct colours as shown in Figure 6.4. Further, 

the following steps were taken during the numerical simulations.  

 All particles representing the mix were generated randomly; 

 Particles representing the mortar as well as the large aggregates form a 

homogeneous mass and have the same continuum properties except for their 

assigned volumes; 

 The masses of the SPH particles representing the various aggregate particles in 

the SCC mix were calculated based on their respective volume fractions in the 

mix; 

 Particles representing the large aggregates according to their assigned volumes 

were tagged (and colour coded as shown below) throughout the simulation in 

order to monitor their velocity vectors and positions. 
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Figure 6.4: Schematic sketch of particle representation when simulating large aggregate 

distribution 

6.4. Simulation results 

The 3D numerical simulations of the slump cone test highlight the distribution of the 

large aggregates (larger than or equal to 8 mm) in the mix. Figures 6.5, 6.6 and 6.7 

illustrate the 3D simulation of the SCC mix 1. The results of numerical simulation 

performed on mix 3 are illustrated in Figures 6.8, 6.9 and 6.10. It was observed that the 

larger aggregates indeed stayed homogeneously distributed in the mix exactly as in the 

slump cone test in the laboratory at all times during the flow. The surface of the spreads 

when the flow stopped after 15.7 s for mix 1 (Figure 6.7) and 17.2 s in the case of mix 3 

(Figure 6.10) looks smooth as a ‘pancake’ identical to that observed in the laboratory 

test on these mixes.  
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Figure 6.5:  Flow of SCC mix 1 after 0.2 s in 3D and 2D section showing the large aggregates 

 

Figure 6.6: Flow pattern of SCC mix 1 after 1.0s (t500) showing the large aggregates 

 

 

 

 

 

 

 

Figure 6.7: Flow spread of SCC mix 1 after 15.7s (tstop) showing the large aggregates 
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Figure 6.8: Flow of SCC mix 3 after 0.2 s in 3D and 2D section showing the large aggregates 

 

Figure 6.9: Flow pattern of SCC mix 3 after 1.1s (t500) showing the large aggregates 

 

Figure 6.10: Flow spread of SCC mix 3 after 17.2s (tstop) showing the large aggregates 

16 ≤ g < 20mm 

g≥ 20mm 

12 ≤ g < 16mm 

8 ≤ g < 12mm 

g < 8 mm 

16 ≤ g < 20mm 

g≥ 20mm 

12 ≤ g < 16mm 

8 ≤ g < 12mm 

g < 8 mm 

16 ≤ g < 20mm 

g≥ 20mm 

12 ≤ g < 16mm 

8 ≤ g < 12mm 

g < 8 mm 



Chapter 6: Assessing the distribution of large aggregates during the flow of self-compacting 

concrete mix 

135 

 

The simulated slump flow spread was also cut by diametrical perpendicular planes A 

and B (Figure 6.11), after it had stopped to flow (tstop= 15.7 s for mix 1 and 17.2 s for 

mix 3). These sections are shown in Figures 6.12 and 6.13 for mixes 1 and 3, 

respectively. The number of larger aggregates in the cut sections was counted and are 

listed in Table 6.2. 

 

Figure 6.8: Flow spread after 15.7 s mix 1 (mix 3 after 17.2 s) and the cut sections A and B  

 

 

Figure 6.9: Diametrical cross-sections (A and B) of slump flow spread of mix 1 after 15.7 s 

 

A 

B 
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Figure 6.10: Diametrical cross-sections (A and B) of slump flow spread of mix 3 after 17.2 s 

Table 6.2: Number of coarse aggregate particles in cut sections of mixes 1 and 3 

Nominal 

aggregate size 

 g ≥ 20 mm 16 ≤ g < 20 mm 12 ≤ g <16 

mm 

8 ≤ g < 12 mm 

Mix 1 Section A 1 5 7 12 

 Section B 3 4 3 13 

Mix 3 Section A 3 8 5 13 

 Section B 1 5 8 15 

The average number of large aggregate particles in the cut sections counted in the 

experimental cone spread and in the simulated cone spread are compared in Table 6.3.  

Table 6.3: Average number of coarse aggregates along two perpendicular sections of mixes 1 and 3 

Mix Size range 

(mm) 

Average 

number in 

experiment 

Average 

number in 

simulation 

Ratio of 

average 

number in 

experiment to 

average 

number of 20 

mm 

Ratio of 

average 

number in 

simulation to 

average 

number of 20 

mm 

Mix 1         g ≥ 20 5.0 2.0 1 1 

 16 ≤ g < 20 12.5 4.5 2.50 2.25 

 12 ≤ g <16 12.0 5.0 2.40 2.50 

 8 ≤ g < 12 27.0 12.5 5.40 6.25 

      

Mix 3          g ≥ 20 4.0 2.0 1 1 

 16 ≤ g < 20 13.0 6.5 3.33 3.25 

 12 ≤ g <16 12.5 6.5 3.12 3.25 

 8 ≤ g < 12 26.5 14.0 6.62 7.00 

A 

B 
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As the volume fractions of the aggregates of different size ranges (but not their actual 

numbers) are the same in the test mixes and simulations, their numbers in the cut 

sections of the test cone spread and the simulated spread must necessarily be correlated. 

This correlation may, for instance, be revealed by considering the ratio of the average 

number of aggregates of a certain size range to the number of aggregates of the largest 

size. This has been done for the test and simulated cone spread in columns 5 and 6 of 

Table 6.3 from which it is seen that the relative numbers of aggregates of different size 

ranges are indeed nearly the same. 

6.5. Conclusions 

The simulation of SCC mixes using the SPH methodology is capable of accurately 

predicting the distribution of large coarse aggregates in the simulated cone spread. This 

distribution is indeed very similar to that revealed in the cut sections of the hardened 

test cone spread. These large coarse aggregates had been painted with non-toxic non-

water soluble paints prior to being used in the test mix. The colour coding of the coarse 

aggregates as described above has proved very effective in identifying various sizes of 

coarse aggregates in the cut section of the cone spread. Further, the experiments and 

numerical simulations also revealed that the coarse aggregates were evenly distributed 

and suspended by the paste without being gravitated to the bottom of the flow. This 

confirmed the fact that the two test mixes were indeed self-compacting mixes behaving 

as a homogeneous mass despite the presence of heavy aggregates. 
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7.1. Introduction 

Workability was defined as a way of describing the performance of concrete in the 

plastic state, and for a self-compacting concrete (SCC) it is often characterised by the 

following properties: flow ability, filling ability, passing ability and stability 

(segregation resistance) (PCI, 2003).  

The flow ability of SCC is characterised by its fluidity and cohesion, and is often 

assessed using the slump flow test. This is an inexpensive test; it is a modified version 

of the standard slump test (ASTM, C143/C143M), and has been advocated as a more 

useful test for SCC (Domone, 1998). The slump flow test is used to assess the 

horizontal flow of SCC and self-compacting fibre-reinforced concrete (SCFRC), mainly 

when there are no obstacles. 

7.2. The slump cone test guidelines  

The guidelines for slump testing of conventional vibrated concrete recommend that the 

cone be lifted vertically, slowly and carefully, to ensure a correct result, with the lifting 

operation taking approximately 2-5 s (BS EN 12350-2) and 5 ± 2 s (ASTM, C143/C143 

M). Wilson and Stowe (1971), however, reported that for a normal vibrated concrete a 

slight but significant difference was observed in slump due to a change in cone lift rate.  

In general, for SCC there is no precise recommendation for how fast the cone must be 

lifted. Thus, in ASTM C1611M1-14  (2014) it is recommended that the cone be raised 

in 3 ± 1 s to a height of 230 ± 75mm (cone lift rate < 0.1 m/s).  

In BS EN 12350-8 (2010) it is recommended that the cone be lifted in 1–3 s in one 

movement, implying that the flow characteristics (e.g. t500 and flow spread) are 

insensitive to a three-fold change in the cone lift rate. Thus identical mixes (i.e. mixes 

with identical plastic viscosity and spread) tested according to these standards would 
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exhibit very different t500 leading to the erroneous conclusion that they have different 

yield stresses. In fact, a careful examination of published data on SCC mixes that have 

been tested for flow-ability according to ASTM C1611M1-14  (2014) shows that their 

t500 is consistently and significantly longer than that of similar mixes (i.e. mixes having 

nearly the same plastic viscosity and spread) tested according to BS EN 12350-8 

(2010). Several examples are given in Table 7.1. 

Table 7.1: comparison between nearly similar mixes tested for flow-ability according  to BS EN 

12350-8 (2010) and  ASTM C1611M1-14  (2014) 

Parameter  Mix 1 Mix 1 Mix 2 Mix 2 Mix 5 Mix 3 

Table 4.1  Table 4.1  Table 4.1  

Plastic 

viscosity ƞ 

(Pa s)  

6.57 6.17 7.31 7 9.36 9.35 

Spread (mm) 700 700 700 650 720 710 

t500 (s) 1.0 6 1.1 2.5 1.6 3 

1  ASTM; Jadiri and Rand  (2010), 2  ASTM;  Youjun et al. (2007), 3 ASTM; Gesoǧlu et al. (2009) 

No systematic investigation on the effect of cone lift rate on the SCC flow 

characteristics has been reported in the literature, although it has been recognised 

(Emborg et al., 2003) that the details of some influencing factors are still missing. The 

present study aims to fill in this blank with the help of computational modelling and 

laboratory testing.  

7.3. SCC mixes and numerical simulation of the slump flow test 

In the numerical simulations (Chapter 5 and 6) a fixed cone lift rate of 1 m/s was used 

as one of the control variables. 

The major aim of the this Chapter is to investigate the effect of the cone lift rate on the 

SCC flow and to verify whether the use of cone lift rate of 1 m/s in Chapter 5 was 

prudent. 
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All mixes developed in Chapter 4 have been re-simulated from the moment the cone 

was lifted until the mix stopped flowing using the SPH computational approach. The 

numerical simulations were conducted with various cone lift rates ranging between 0.1 

and 1.0 m/s to investigate the effect of cone lift rate on the predicted t500. The actual 

cone lift rates for the test mixes 1-6 were given in Table 4.3. 

7.4. Investigation of the effect of cone lift rate (CLR) on the slump   

flow characteristics 

Full 3D computer simulations of the SCC slump flow test of all the mixes were carried 

out using the SPH technique described in Chapter 3. Figures 7.1 and 7.2 give examples 

of the numerically observed flow behaviour of mix 1 when two different cone lift rates 

were used. In the figures the coloured particles show coarse aggregates in the size (g in 

mm) ranges; g ≥ 20 (blue), 16 ≤ g < 20 (green), 12 ≤ g < 16 (red), and 8 ≤ g < 12 

(yellow). 
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Figure 7.1: Slump flow bell-shaped pattern of SCC mix 1 after 0.2 s in a 3D configuration (a) and 

2D section (b) at a cone lift rate of 0.15 m/s 

 

 

 

 

 

 

 

 

Figure 7.2: Slump flow pattern of SCC mix 1 after 0.2 s in a 3D configuration (a) and 2D section (b) 

at a cone lift rate of 1 m/s. Note the absence of the bell shape 

a 

b 

b 
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It can be seen from Figure 7.1 that the flow test with a slow cone lift rate of 0.15 m/s 

produces a bell-like flow pattern after 0.2 s due to the fact that the top part of the 

content of the cone is still in contact with its surface. The bell-like pattern is absent after 

0.2 s when a cone lift rate of 1 m/s was used (Figure 7.2) because at this fast rate the 

entire content of the cone has been released from the cone during this time. This flow 

behaviour is consistent with observations made during the laboratory trials (mix 1) at a 

cone lift rate of 0.9 m/s (Figure 7.3).  

 

Figure 7.3: Bell-like flow pattern absent at a CLR 0.9 m/s in mix 1. 

For other mixes, the cone lift rate during the laboratory trials varied between 0.69 and 

1.0 m/s (Table 4.3). 

Figure 7.4 illustrates the relationship between the cone lift rate and t500 predicted by the 

numerical simulations for the six test mixes. It can be seen that t500 decreases 

considerably as the cone lift rate is increased from 0.1 to 0.5–0.7 m/s, depending on the 

mix compressive strength. However, the influence of cone lift rate on t500 becomes less 

pronounced when the cone lift rate is between 0.5–0.7 and 1.0 m/s for all mixes having 

a nominal cube compressive strength between 30 and 80MPa. 
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However, as expected, the cone lift rate has an insignificant influence on tstop (i.e. the 

spread) as exemplified by the 30MPa mix in Figure 7.5. 

 

Figure 7.4: Variation in t500 with cone lift rate for mixes having a cube compressive strength in the 

range 30–80 MPa  
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Figure 7.5: Variation in tstop with cone lift rate for mix 1 

7.5. Conclusions 

From the numerical simulations, which are consistent with laboratory observations, the 

following conclusions can be drawn. 

 The cone lift rate has a significant effect on the measured t500. The latter decreases 

as the cone lift rate is increased from 0.1 to 1 m/s. The effect on the spread (i.e. tstop) 

is, however, insignificant. 

 For SCC mixes having a cube compressive strength between 30 and 80MPa the 

reduction in t500 with the cone lift rate is not monotonic but exhibits a bilinear 

response with a distinct discontinuity at approximately 0.5–0.7 m/s, depending on 

the mix grade. In the range of cone lift rate between 0.1 and 0.5–0.7 m/s, which 

covers the range recommended in BS EN 12350:2010 (BSI, 2010), t500 reduces at a 

fast rate. The rate of reduction slows considerably when the cone lift rate is 

increased beyond 0.5–0.7 m/s. 
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 Judging by the trend, if the mixes were tested at the cone lift rate (<0.1 m/s) 

recommended in ASTM C1611M1-14 (ASTM, 2014), the t500 of all mixes would be 

longer than that corresponding to the cone lift rate of 0.1 m/s in Figure 7.4. 

 It is recommended that, in practice, the cone be lifted in one movement to a height 

of 300 mm in 0.5 s or less in order to minimise the influence of the cone lift rate on 

t500. 

 It is hoped that the results of the present investigation will help to bring much 

needed precision to the rather loose current recommendations given in the relevant 

American and British standards. 
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8.1. Conclusions 

The main conclusions on the basis of the research work embodied in Chapters 4 to 7, 

inclusive, are summarised below: 

 The development of self-compacting concrete mixes is a complex and sensitive 

process, requiring a balance to be struck between flow-ability and non-

segregation of constituent materials. These aims can be achieved by increasing 

the paste volume fraction and decreasing the large aggregate volume fraction. 

Self-compacting normal strength concrete mixes with maximum size of aggregate 

20 mm designed to satisfy the flow-ability and stability (i.e. resistance to 

segregation) criteria using the slump cone flow test may not meet the passing 

ability criterion. It is additionally necessary to check that the mixes meet the 

passing ability criterion using the J-ring and L-box tests (Chapter 4). 

 The yield stress of an SCC mix can be predicted in an inverse manner using the 

SPH simulation methodology and matching the measured and simulated t500, tstop 

and the final spread. The yield stress of SCC mixes varies only slightly with an 

increase in the characteristic compressive strength of the mix. The plastic 

viscosity on the other hand shows a marked increase (Chapter 5). 

 The SPH simulation methodology provides a useful tool for predicting the yield 

stress of SCC mixes accurately. This is particularly relevant to the 

characterisation of an SCC mix because the measurement of τy by rheometers is 

inconsistent and fraught with inaccuracies (Chapter 5). 

 The simulation of SCC mixes using the SPH methodology is capable of 

accurately predicting the distribution of large coarse aggregates in the simulated 

cone spread. This distribution is indeed very similar to that revealed in the cut 
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sections of the hardened test cone spread. These large coarse aggregates had been 

painted with non-toxic non-water soluble paints prior to being used in the test 

mix (Chapter 6).  The SPH methodology is therefore most suitable for assessing 

the segregation resistance of SCC mixes. 

 The cone lift rate has a significant effect on the measured t500. The latter 

decreases as the cone lift rate increased from 0.1 to 1.0 m/s. The effect on the 

spread (i.e. tstop) is, however, insignificant (Chapter 7). 

 For SCC mixes having a cube compressive strength between 30 and 80MPa the 

reduction in t500 with the cone lift rate is not monotonic but exhibits a bilinear 

response with a distinct discontinuity at approximately 0.5–0.7 m/s, depending on 

the mix grade. In the range of cone lift rate between 0.1 and 0.5–0.7 m/s, which 

covers the range recommended in BS EN 12350:2010 (BSI, 2010), t500 reduces at 

a fast rate. The rate of reduction slows considerably when the cone lift rate is 

increased beyond 0.5–0.7 m/s (Chapter 7). 

 It is recommended that, in practice, the cone be lifted in one movement to a 

height of 300 mm in 0.5 s or less in order to minimise the influence of the cone 

lift rate on t500. It is hoped that the results of the present investigation will help to 

bring much needed precision to the rather loose current recommendations given 

in the relevant American and British standards (Chapter 7). 
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8.2. Recommendations for future research 

 It would be advisable to measure the plastic viscosity of the paste with a 

viscometer rather than estimating it from published data. 

 It would be interesting to study self-compacting concrete (SCC) mixes whose 

plastic viscosity is well above the upper limit of approximately 11 Pa s. This 

may require the mixes to have a more viscous paste achieved, for example by 

adding a viscosity modifying agent (VMA). Such mixes are likely to be used for 

casting on ground rather than for pumping to higher floors. 

 It would be interesting to investigate if the large scatter in the published data on 

t500 is due to effect of the cone lift rate revealed in this thesis. There is reason to 

believe that this is so because the data from North America where the ASTM 

standard is used always shows that the t500 is much longer, up to twice, than for a 

similar mix tested in Europe according to the EN standard. 

 There is an obvious need to accelerate the simulation process using the SPH, if it 

is to be used for simulating the flow of SCC into practical size formworks and in 

the presence of dense reinforcement.  
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