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Abstract

Automatic feature recognition aids downstream processes such as engineering
analysis and manufacture. Not all features can be defined in advance; a
declarative approach allows engineers to specify new features without having
to design algorithms to find them. Naive translation of declarations leads
to executable algorithms with high time complexity. Database queries are
also expressed declaratively; there is a large literature on optimising query
plans for efficient execution of database queries. Our earlier work investigated
applying such technology to feature recognition, using a testbed interfacing a
database system (SQLite) to a CAD modeler (CADfix). Feature declarations
were translated into SQL queries which are then executed.

The current paper extends this approach, using the PostgreSQL database,
and provides several new insights: (i) query optimisation works quite differ-
ently in these two databases (ii) with care, an approach to query translation
can be devised that works well for both databases, and (iii) when finding
various simple common features, linear time performance can be achieved
with respect to model size, with acceptable times for real industrial model-
s. Further results also show how lazy evaluation can be used to reduce the
work performed by the CAD modeler, and how estimating the time taken to
compute various geometric operations can further improve the query plan.
Experimental results are presented to validate our main conclusions.
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1. Introduction

Feature recognition aims to extract certain substructures from a solid
model; it has been the subject of extensive research during the past thirty
years [1, 2, 3]. One major application of feature recognition is for comput-
er aided process planning, the generation of sequences of instructions for
manufacturing [4]. More recently, its use for simplifying engineering analysis
has become more important: small features may be removed or replaced by
stress concentration factors, for example. Furthermore, meshing of defea-
tured models is typically both quicker and more robust, and as the resulting
mesh has fewer elements, the time needed for analysis is reduced [5, 6, 7].
Manually finding feature instances is tedious, and in extreme cases, infeasible
to carry out reliably, as complex models may have tens of thousands of small
features of many types and forms.

Fig. 1, which extends a figure in [8], gives some typical industrial features.
Some are common, such as slots and holes, while others such as notches may
be infrequent. Traditional feature recognition algorithms face two challenges.
Firstly, different applications need to find different features: parts of a shape
which are important for machining may be quite different to those which
can be ignored during engineering analysis. In fact, system builders cannot
anticipate in advance all applications to which feature finding may be put,
and all things a user may consider to be a feature. Ultimately, therefore, users
of a feature finder must themselves be able to define features. The second
issue is that many approaches to feature finding have high computational
complexity: times taken to find features can rise rapidly when dealing with
complex features and large detailed models.

The first issue above is challenging as it is difficult for engineering end
users to define their own effective algorithms for finding features. One solu-
tion is to use a declarative approach: this allows users of a feature finder to
simply state what properties a feature has, and how a feature is composed,
rather than having to give an algorithm to find instances of the feature. How-
ever, naively turning such a definition into an algorithm results in a series of
nested loops, which takes far too long to execute for any non-trivial feature.
Gibson pioneered such declarative approach, and considered six specific op-
timizations which could be used to transform the naive code into a faster
algorithm [9, 10]. He showed that this could effectively solve various 2D fea-
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(a) Through-hole (b) Cone (c) Buttress

(d) Fin (e) Pocket (f) Pyramid

(g) T-junction (h) X-junction (i) I-beam

(j) C-beam (k) Rib (l) Notch

Figure 1: Common industrial features, including some noted in [8]
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ture recognition problems. However 3D problems involving complex features
and large models required further optimisation.

In previous work [11], we made the significant observation that relation-
al database management systems (DBMS) also use a declarative language,
SQL, to formulate database queries, and that much research has gone into
optimising the executable plans into which the queries are translated [12].
We demonstrated that these optimisations built into a DBMS could be tak-
en advantage of when turning declarative feature definitions into executable
algorithms for finding features. We used a high-level declarative feature lan-
guage, allowing end-user engineers to define new features of interest. Finding
fetures—instances of these declarations—was translated into an SQL query,
which was then input to a relational DBMS (SQLite) coupled to a CAD
modeler (CADfix) as a back end. Geometric and topological information is
processed instead of data from tables. Our main conclusions were as follows:
naive translation of a feature declaration based on e distinct entities (faces,
edges, vertices, subfeatures, etc.) leads to an execution plan with e nested
loops, so feature finding takes time O(ne) for a model with n entities. How-
ever, SQLite’s optimiser was often capable of optimising such plans into ones
taking time O(n2) for simple features, giving a significant improvement, and
times which are viable for a real system. We discussed which optimizations
in SQLite’s query optimizer led to this performance, and also compared them
to the specifically crafted optimizations devised by Gibson [10].

This paper builds upon that previous work. We have replaced the SQLite
database engine with PostgreSQL, as its query optimizer is considered to be
more powerful (it also allows more complex SQL queries which we expect to
be useful in future research). Doing so has provided us with several further
insights: (i) query optimisation works quite differently in these two databas-
es, (ii) with care, an approach to query translation can be devised that works
well for both databases, despite these differences, (iii) for various simple com-
mon features, more or less linear performance can be achieved with respect
to model size, and (iv) acceptable performance can be achieved for real in-
dustrial models. PostgreSQL is clearly a more suitable database engine for
a CAD feature recogniser, as SQLite typically gives quadratic performance.
We also present further results. We have investigated (i) how lazy evaluation
can be used to reduce the work performed by the CAD modeler, and (ii) how
estimates of the time taken to compute various geometric operations can be
used to further improve the query plan. We also analyze how linear time per-
formance is achieved, and compare the PostgreSQL optimisation approach
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with SQLite query optimization and Gibson’s work. Experimental results
are presented to validate our main conclusions.

The rest of this paper is organized as follows. Section 2 discusses previous
work. Section 3 overviews our architecture, while Section 4 details our con-
tributions to feature recognizer speed: effective translation, lazy evaluation,
and selectivity. Section 5 presents our experimental results and discusses
them, while Section 6 concludes the paper and considers future work.

2. Previous Work

2.1. Feature recognition

We start by briefly summarising prior work on feature recognition, much
of which is historical—yet the need for feature recognition is perhaps greater
now than ever before.

Since the seminal work on geometric model analysis and classification
by Kyprianou [13], much work has considered feature recognition. Various
different approaches have been taken [4], and various ways can be used to
classify them: according to how features are defined, according to the ap-
proach used to finding them, according to the application area, whether the
method is fully automatic or interactive, and so on.

One approach is design-by-features, but this is generally unsatisfactory
as it only considers features for one purpose, typically manufacturing, and
a completely different set of features may be relevant in, say, engineering
analysis. It also cannot handle legacy models not designed in this way. The
alternatives are automatic feature recognition and interactive feature recog-

nition. The former has attracted the most attention, with a certain degree
of success [3, 4]. Many approaches are rule-based [4], but lack of suitable
domain knowledge acquisition mechanisms has been a limiting factor. Most
contemporary systems deal mainly with fixed, orthogonal features, and less
attention has been paid to non-orthogonal and arbitrary features [4]. Inter-
active feature recognition is more flexible, either allowing manual assistance
when finding features, or allowing the user to define new features. For ex-
ample, Gao [6] allows features to be defined graphically interactively, and
a graph-based feature recognition method is used to segment a CAD mesh
model to a region-level representation from which features are extracted.

Feature recognition systems can be classified according to the underly-
ing CAD model representation, typically boundary representation (B-rep) or
constructive solid geometry (CSG). Features are defined in terms of relations
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between components which form substructures. Algorithms can also be cat-
egorised according to approach [3, 4], three main ones being graph-based,
volumetric decomposition, and hint-based. The graph-based approach first
translates a B-rep model and a target feature into attributed face adjacency
graphs (AAG), and then performs graph matching. There are many variants
of this basic approach; a few allow users to define their own features, and work
well for simple features [14, 15]. There are two main drawbacks to graph-
based approaches. Firstly, they are less successful at coping with interacting
features, and features with variable topology, like n-sided prisms for any n.
Secondly, they are slow. In general, subgraph matching has exponential com-
plexity. Thus, some partitioning strategy or hints must be used [16, 17], but
even then times can be too long for large models or complex features. Vol-
ume decomposition and recomposition approaches are also quite general, and
good at dealing with interacting features, but they are again computationally
intensive and limited to low degree analytical surfaces [16]. Hint-based ap-
proaches are computationally efficient for small features but use hard-coded
features—it is not easy for end users to modify them or define new ones [16].

Most work concerns fixed algorithms for finding predetermined features,
and is not flexible enough to let engineers define their own features, a ne-
cessity for many particular real-world applications. Features may however
be represented by data instead of code. In the former case, execution algo-
rithms may be generated automatically. For example, in [18] features are
defined in a special language embedded in Common Lisp, using a surface-
based attributed adjacency graph which satisfies additional conditions such
as topological restrictions. A serious problem facing approaches based on
code generation is the computational complexity of feature finding: a naive
execution plan involves multiple nested for loops, one for each entity involved
in the feature. Gibson [10] showed how to overcome this problem to some
degree, giving six specific ways to optimize execution plans; we build upon
his ideas.

Feature recognition methods can be specialised to focus on a specific ap-
plication domain such as machining [19], injection moulding [8], NC milling
of free-form surfaces [20, 21], blends [22], and assembly [23]. Taking one spe-
cific domain, in recent years, computer aided engineering analysis has become
ever more widely used, leading to a requirement for model simplification, the
aim being to remove (typically small) features which have little effect on the
analysis results. The resulting models can be meshed more quickly and ro-
bustly for finite element analysis, and in turn analysed more quickly, as the
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meshes are simpler. Feature identification for simplification has traditionally
been done by hand. Models may contain tens of thousands to millions of
edges and faces, amongst which there may be many small features. Manual-
ly finding features is tedious and error prone, leading to interest in methods
to find analysis features [5]. Different applications need different kinds of
features, so typically, such specialised recognition methods are not flexible
enough as a basis for a universal feature recognition system, in which the
user can define arbitrary new features. Instead, engineers have to choose an
appropriate approach based on priorities such as design objectives in a given
application field [16].

A key point often overlooked is that it is infeasible to hard-code all pos-
sible useful features for all possible domains in advance [16]—application
domain engineers need to be able to supply their own feature definitions for
new tasks. However, engineers who understand what a feature is may not be
expert in devising geometric algorithms to find such features. Useful meth-
ods must also take into account the large number of edges and faces in real
models: efficient methods are needed, and simple algorithms devised by an
engineer are unlikely to be efficient. He may not be an expert programmer,
even if he is an application domain expert.

In summary, an ideal feature recognition system should be general, allow-
ing end users to define new kinds of features relevant to their application, but
it should leave the system to devise an efficient algorithm. This suggests a
declarative rather than procedural approach to feature definition. However,
the algorithm generator will need optimisation techniques to ensure sufficient
performance.

2.2. Database query optimisation

Information is retrieved from relation databases using declarative queries,
and if they are naively translated into execution plans, the time taken is far
too long. There is thus a large body of work on optimising query processing.
This can be put to use to efficiently retrieve features from CAD models using
declarative feature definitions.

We start by very briefly reviewing the structure of a database query in
SQL, the high level declarative language typically used [24]. An example
might be:

1 SELECT c.tstamp

2 FROM commits c, actions a

3 WHERE a.file IN
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4 (SELECT id FROM files WHERE path = ... )

5 AND a.commit_id = c.id

6 AND c.id >5

7 GROUP BY c.tstamp DESC

8 HAVING agg();

Listing 1: Example SQL query

This is an implicit join SQL query. Items after SELECT name the infor-
mation the user wishes to retrieve from the database. The keyword FROM is
followed by several range tables, which are the source of the target informa-
tion. WHERE specifies various predicates the selected elements should satisfy.
They can include subqueries such as the SELECT clause in brackets; they can
also be join predicates like the one equating a.commit_id to c.id, which
connects two range tables via a common value. The predicates in WHERE

statements are evaluated on all tuples, generating a temporary target list,
while the HAVING clause further aggregates the temporary target list to
produce the final results. We will use this idea later.

When the query is executed, a query optimizer is used to determine a suit-
able plan, or algorithm, from the declarative form of the query. Considerable
effort may be put into query planning, as the savings over straightforward
plans may be significant, and indeed turn an infeasible query into a feasi-
ble one. Query optimisation is a mature field [25]. Normally, a declarative
query is first turned into a relational calculus expression, and the query op-
timizer then generates various execution paths with equivalent results, using
two stages: rewriting and planning [25]. The former rewrites the declara-
tive query in the expectation that the new form may be more efficient. An
example of this approach is sargable rewriting (i.e. a transformation to take
advantage of an index). Planning transforms the query at a procedural lev-
el, via relational algebra transformations. Then a cost based planner is used
to choose the plan predicted to be fastest based on statistical information
about the database. System-R, one of the earliest databases to support SQL,
pioneered such optimzation [26]. Its use of dynamic programming to select
the best query plan has been adopted by most commercial databases [25].

Space precludes a full discussion of query optimisation technology; for
more information see [12]. However, we note that the planner may generate
the search space by transforming the query in the following ways:

Generalizing join sequencing Join clauses combine records from two or
more tables in a database. There are many kinds of joins, such as ex-
plicit joins, implicit inner joins, left joins, full outer joins, cross joins,
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etc. This step finds an efficienty execution order for procssing multiple
joins. Because join tuples are not necessarily symmetric, and the op-
erations are commutative and associative, a translated execution tree
with Cartesian products may result in poor performance for some order-
s of evaluation [26]. Approaches include turning asymmetric one-sided
outer joins into equivalent but re-orderable expressions [27] by shuffling
GROUP BY and JOIN [28], an important optimization supported by most
current database systems [29, 30, 31, 32]

Multi-block query transformation A multi-block query including sever-
al select-from-where structures in a single query can be converted to
a single block query via view merging, nested subquery merging (also
called subquery flattening [29]), and semijoin-ike techniques [26].

Scan methods Database systems use various methods, including sequential
scans, index scans, and bitmap index scans, to scan tables. Index
and bitmap index scanning are much more efficient than sequential
scanning, because only parts of the table have to be considered [30].
The planner chooses an appropriate scan method based on selectivity,
a quantity which determines the effectiveness of an index in terms of
the proportion of the data filtered out [33].

Join optimization Declarative joins can be translated into procedural al-
gorithms in various ways. The main approaches include use of nested
loops, hash joins, and merge joins. Nested loops are normally used for
small tables while the other approaches work much better for large
tables [33]. Such optimizations is also widely used in mainstream
database systems [30, 31, 32]

2.3. Gibson’s work

As our work follows on from Gibson’s, we now describe his contribution
in more detail. He suggested that a declarative approach to feature defini-
tion could be an effective solution to the problem of allowing user-defined
features [9, 10, 34]. He also noted that naive translation of the declarative
form into an execution plan leads to very inefficient algorithms, and that
optimisation of such plans is necessary.

He defined features in a language with similarities to EXPRESS [35]. Fea-
tures are based on entities, and predicates linking them. Such a declaration
can be rewritten as a set of nested FOR loops, one per entity in the definition,
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and IF statements, one per predicate. Executing this takes exponential time
in the number of entities in the feature definition, so is infeasible for any-
thing but trivial features. Gibson investigated six strategies for optimizing
this basic plan; they are clearly related to those used in database optimiza-
tion, although Gibson did not consider this point of view. His strategies
belong to four categories with respect to their effect on time complexity:

Strength reduction and loop re-sequencing Both methods aim to re-
duce time spent inside a nested loop. They reduce recognition time
by some constant factor but do not change the time complexity, which
remains O(nk) where k is number of loops and n is the total number
of entities in the model. In SQL, join reordering is analogous to loop
re-sequencing [36].

Entity classification and featuretting These are both ways of splitting a
declarative definition into parts. This reduces the time complexity from
O(nk) to O(max(nk1

1 , . . . , nkm
m )) where m is the number of parts and ni

is the number of entities in part i. Database systems do not typically
automatically split queries into parts, so we cannot rely on the optimser
in a database engine to do this for us. However, if the user defines
features in terms of subfeatures (a natural divide-and-conquer approach
to problem solving), such a split is achieved manually, reducing time
complexity.

Indexing Precomputing an index allows required entities to be immediately
determined, rather than having to check each one by one during query
processing, and is an effective technique used both in Gibson’s approach
and database engines. Time improvements depend on the selectivity
of the index.

Assignment This approach narrows the search space by finding WHERE s-
tatements containing equalities and associated conditions. The key
idea is to replace an inner loop by the results satisfying the outer loop
conditions, reducing the time complexity. Database subqueries share a
common goal with Gibson’s assignment approach, but adopt flattening
which works differently in detail.

2.4. Our previous work

Our previous work [11] extended Gibson’s work from 2D to 3D models,
more typical of real engineering, and considers a greater number of basic
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entities. We followed his declarative approach, but rather than devising an
ad-hoc set of query optimisations, we took advantage of database optimi-
sation techniques. We translated declarative feature definitions into SQL
queries which could then be automatically optimised by a database engine,
SQLite, before evaluation using a CAD modeler, CADfix. SQLite has a
compact but effective query optimizer [29]: it provides sargable rewriting
including BETWEEN and OR optimizations, and provides algebraic space and
method-structure space transformations such as reordering joins, subquery
flattening, automatic indexing and group-by optimizations. Its nearest neigh-
bor heuristic planner provides an efficient polynomial-time algorithm to select
a good plan. Our experiments showed that this approach could effectively
find various basic features (in particular through-holes, notches, and slots)
in models, and experimentally showed that the time complexity is reduced
from exponential to approximately quadratic for these simple features. The
main optimization processes used by SQLite to achieve this are reordering
joins, using a covering index, and subquery flattening.

In this paper, we have replaced the database engine by PostgreSQL. One
goal was to see whether the optimizations provided by SQLite could be repli-
cated, and to determine whether different database engines would arrive at
similar query execution plans when used for feature recognition. As our re-
sults later show, SQLite and PostgreSQL take very different approaches to
query optimization. Our previous approach for translating feature declara-
tions into SQL queries which worked well for SQLite was much less successful
when used with PostgreSQL. This led us to reconsidering how to perform
translation, leading to a new approach which works well with both databas-
es. We also show that PostgreSQL query optimization is more powerful for
reasons explained later; the result is now that simple features can be found
in linear time. Further motivation for moving to PostgreSQL was its more
powerful indexing facilities, and facilities for recursive SQL queries which we
hope to make use of in our future work.

We also extend our earlier work by considering further improvements
that can be brought about by lazy evaluation, and by using estimates of
time required to compute various geometric operations.

3. Optimization in a feature recognizer

While a declarative approach enables users to write feature definitions
rather than algorithms for finding them, but naively turning them into algo-
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rithms leads to a series of nested loops with exponential time complexity with
respect to the number of entities in the feature definition. Optimizing such
algorithms is therefore essential for a declarative approach to be of realistic
industrial use. As we have already explained, our goal is to let a database
engine carry out this optimization for us, allowing us to leverage the large
body of research on database query optimization.

The first important contribution of this paper is an approach to trans-
lating feature definitions into carefully designed queries, which work well
for multiple database systems. Different database systems take different ap-
proaches to query optimization, and if the query is presented to a database is
in a form which is not well handled by the optimizer in a particular database,
poor performance will be the result.

The second idea we consider is lazy evaluation. Some geometric predi-
cates, e.g. determining whether the area of a curved face exceeds a threshold,
require intensive calculation. For efficiency, rather than evaluating such a
predicate for all relevant entities, it is better to only evaluate it for those
entities for which it is definitely needed. For example, if a face fails to meet
some other constraint such as being connected to a certain edge, we may
never need its area.

Thirdly, when we do have to perform geometric computations, some are
much cheaper than others. It may be quicker to perform a simple compu-
tation on many entities rather than a very slow computation on just a few
entities. In cases when multiple predicates filter a list of entities, determining
how many entities there are of various kinds, and how long different predi-
cates are expected to take to compute, can be used to choose the best order
for applying each filter.

The second and third optimizations above are typically absent from data-
base systems, as most queries are based on reading data from tables, which
is quick, and takes a more or less constant amount of time.

We now briefly summarise our system architecture, which remains essen-
tially unchanged from our earlier work, apart from the additional selectivity
module and training models; see [11]. The feature recognizer includes a trans-
lator, importer, query planner, executor, and selectivity trainer, interfaced
to a CAD modeler. Commands to open a model, or draw feature instances
on the CAD model, are handled by the command analyzer, and requests are
passed to the modeler. Another command is used to declaratively define a
feature. When some further command requires execution of the definition,
the translator turns it into SQL which is in turn optimized by the query plan-
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Figure 2: Feature recognition architecture

ner internal to the chosen database engine. The importer analyzes the query
and caches necessary simple relations retrieved from the CAD modeler for
speed; only topological relations and edge convexity information are treated
in this way. The query planner analyzes the query as well as the numbers of
entities in the basic topological relations to determine the expected cheapest
plan. This takes into account the cost of computing each predicate. The ex-
ecutor executes the chosen query plan, using data from the local cache and
other information requested directly from the CAD modeler. The resulting
feature instances can be output in text format or drawn on the original CAD
model.

In this implementation of our approach, PostgreSQL is used as the DBMS
engine—it is free, has open source which aids understanding of its query opti-
mizer, and has clearly structured code which facilitates linking it to the CAD
modeler. PostgreSQL supports a range of query optimization approaches.
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The most important include (i) alternative ways to access data using sequen-
tial scans, bitmap index scans, or index scans according to filter selectivity
(using statistics obtained by ANALYZE), (ii) alternative ways of processing
joins to shrink the search space and reduce time complexity, using nested
loops, hash joins, merge joins or procedural code, and (iii) reordering join
sequences. PostgreSQL’s optimizer uses System R’s dynamic programming
approach when the number of tables is small, but switches to a genetic al-
gorithm to solve the join ordering problem when there is a large number of
FROM tables [37, 38].

CADfix [39, 40] is used as the CAD modeler. It is a commercial geom-
etry translation and repair package primarily intended for 3D model data
exchange between different engineering systems and applications. It already
provides some defeaturing tools, although we do not make use of these. We
use CADfix (via its API) to load CAD models (and repair them to ensure
consistent, connected topology), and to interrogate their topology and geom-
etry. It is also used to draw the features found.

4. Improvements to Query Translation and Execution

We now discuss the three main contributions of this paper which improve
query translation and execution: effective translation, lazy evaluation and
predicate ordering.

4.1. Effective translation

The first contribution considers how to translate declarative feature def-
initions into SQL queries which can be efficiently processed by the database
engine, independently of how it subsequently performs query optimization.

4.1.1. Approach

Features are defined in terms of necessary component entities, relation-
ships between them, and characteristics they should exhibit. The entities
include faces, edges and vertices, as well as subfeatures. Predicates provided
include:

1 Bounds(edge_id:e, face_id:f)

2 V_bounds_e(vertex_id:v, edge_id:e)

3 Valency(face_id:f, int:i)

4 Face_has_number_of_vertices(face_id:f, int:imin , int:imax)

5 Face_has_number_of_edges(face_id:f, int:imin , int:imax)

6 Face_has_number_of_loops(face_id:f, int:imin , int:imax)
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7 Face_has_geometry(face_id:f1, facetype:t)

8 Plane_normal_aligned_within(face_id:f, vector:v, angle: a)

9 Cylinder_axis_aligned_within(face_id:f, vector:v, angle:a)

10 Cone_axis_aligned_within(face_id:f, vector:v, angle:a)

11 Ellipsoid_axis_aligned_within(face_id:f1, vector:v1, angle:a1

,vector:v2 , angle:a2)

12 Torus_axis_aligned_within(face_id:f, vector:v, angle:a)

13 Cone_angle_in_range(face_id:f, angle:amin , angle:amax)

14 Sphere_centre_near(face_id:f, point:p, real:r)

15 Ellipsoid_centre_near(face_id:f, point:p, real:r)

16 Torus_centre_near(face_id:f, point:p, real :r)

17 Sphere_radius_in_range(face_id:f, real:rmin , real:rmax)

18 Cylinder_radius_in_range(face_id:f, real:rmin , real:rmax)

19 Cone_min_radius_in_range(face_id:f, real:rmin , real:rmax)

20 Cone_max_radius_in_range(face_id:f, real:rmin , real:rmax)

21 Torus_radii_in_range(face_id:f, real:rmin1 , real:rmax1 ,

22 real:rmin2 , real:rmax2)

23 Ellipsoid_radii_in_range(face_id:f, real:rmin1 , real:rmax1 ,

24 real:rmin2 , real:rmax2 , real:rmin3 , real:rmax3)

25 Face_area_in_range(face_id:f, real:rmin , real:rmax)

26 Edge_has_geometry(edge_id:e1, edgetype:type)

27 Convexity_is(edge_id:e1 , convexitytype:type)

28 Edge_length_in_range(edge_id:e, real:rmin , real:rmax)

29 Body_has_number_of_faces(body_id:b, int:imin , int:imax)

30 Body_has_number_of_edges(body_id:b, int:imin , int:imax)

31 Body_has_number_of_vertices(body_id:b, int:imin , int:imax)

Listing 2: Supported predicates

The predicates—truth functions returning a Boolean answer—are care-
fully chosen to be simple. This both aids the user who is writing feature def-
initions, and in translating the definitions into queries. For example, when
using Bounds(edge_id:e,face_id:f), the user does not need to think in
terms of following all edges around the boundary of a face, but simply in
terms of which edges belong to that boundary.

The translator transforms each predicate into a query fragment; multiple
predicates are connected using AND. As noted, there are various ways to
translate SQL queries and alternative plans differ in efficiency.

Predicate clauses can include attribute predicates and relational predi-

cates. The former typically involve only a single entity and some condition

that the entity must satisfy, encoding a binary relation. Such predicates can
be written as SQL fragments in a straightforward way. For example:

1 Definition: Convexity_is(edge , convex)
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2 SQL fragment: edge.convexity = convex

These predicates act as filters. A query optimizer can efficiently deal with
them by indexing the data.

Relational predicates are more complex and typically involve two (or
more) entities, indicating some relationship between them. Bounds(edge, face)

is of this type; it indicates connectivity of some face and some edge. It is one
of the most important predicates, used in almost every feature definition.
Since the edge and face are arbitrary, when executing a feature query, we
must in principle iterate over all faces and all edges to determine which ones
satisfy this relationship. As such a predicate involves two variables, it cannot
be effectively written as a filter (in our previous paper, Bounds(edge, face)

was translated as an EXISTS subquery, but further experiments have show
this not to be efficient).

Our previous work [11], based on the SQLite database, straightforwardly
translated feature definitions into SQL queries using a series of EXISTS claus-
es. Entities satisfying bounds predicates linking edges and faces (and similar
predicates) were found using a preloaded, cached range table:

1 Definition: bounds(e1, f1);

2 SQL fragment: EXISTS (SELECT bounds.edge FROM bounds

3 WHERE bounds.face = f1.face AND

4 bounds.edge = e1.edge)

5 Range table: bounds(edge int , face int);

As SQLite effectively performs self-join optimization, bounds were handled
efficiently, allowing simple features could be found in time roughly O(n2) for
models with n entities. However, on replacing SQLite with PostgreSQL, we
found that this was no longer the case. PostgreSQL has no self-join opti-
misation, and instead uses a strategy based on cross-joins via a Cartesian
product. Such optimisation fails to reduce complexity of nested loops corre-
sponding to multiple predicates, and even for simple models, it would take
days to return results. This led us to rethink the way translation was per-
formed. For flexibility, the translator should work in a way which leads to
good query processing times independently of the choice of the underlying
database engine used.
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Assuming that we are dealing with manifold models1, each edge bounds
only two faces, so the number of bounds relationships is twice the number of
edges. We can take advantage of this observation by, instead of thinking in
terms of edge-face pairs joined by a bounds relationship, thinking in terms
of edge-face1-face2 triples. We extract and cache these in a full-edge-form

table. For a given edge, the triples edge-face1-face2 and edge-face2-face1

are both cached, as a feature definition might insist that face1 has a lower id
than face2, or vice versa (to prevent a symmetric feature from being reported
multiple times with different labelings, for example). This doubles the table
size, but provides more flexibility, and has little impact on performance, as
we show later.

Feature declarations can be automatically rewritten to use the full-edge-
form relationship, rather than the bounds relationship. Feature definitions
often specify e.g. that two edges border the same face, or that they belong to
different faces. This can be expressed using an equality or inequality predi-
cate. The translator can simply and efficiently turn the bounds relations in
the user’s definition into full-edge-form predicates automatically. For exam-
ple, the SQL fragment full_edge_e1.f2=full_edge_e2.f1 corresponds to
the need to find a pair of tuples with patterns ei, fa, fb and ej, fb, fc

in the full-edge-form table. Typically, many relations of this kind will occur
in the WHERE clause of the generated query. This approach replaces the need
to iterate over all possibilities to find a pair of a face and an edge satisfy-
ing a bounding relationship by simply having to determine those few tuples
which match a pattern indicating equality. Most database systems can recog-
nize such relations as corresponding to inner joins, and can readily optimize
them [30, 31, 32].

An example of a definition of a notch feature from our previous work is
given in Fig. 3. (It includes explicit statements of inequality of various faces,
an issue we return to shortly). Our previous approach translation approach
for the SQLite database results in the SQL query:

1 SELECT f1.face , f2.face ,f3.face , f4.face ,

2 e1.edge , e2.edge , e3.edge ,e4.edge ,e5.edge

3 FROM faces AS f1 , faces AS f2 , faces AS f3 , faces AS f4 ,

4 edges AS e1, edges AS e2, edges AS e3, edges AS e4,

5 edges AS e5

1Even if the models are non-manifold, the number of non-manifold edges is typically
small, as is the number of faces around each one, so this idea still works.
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DEFINE NOTCH AS

F1,F2,F3,F4:face; E1,E2,E3,E4,E5:edge;

SATISFYING

Bounds(E1,F1); Bounds(E1,F2); Bounds(E2,F2);

Bounds(E2,F3); Bounds(E3,F1); Bounds(E3,F4);

Bounds(E4,F1); Bounds(E4,F3); Bounds(E5,F1);

Bounds(E5,F4); Lower_id(F1,F2); Lower_id(F3,F4);

Different_id(E2,E1); Different_id(E3,E1);

Different_id(E4,E1); Different_id(E5,E1);

Convexity_is(E1,CONCAVE); Convexity_is(E2,CONVEX);

Convexity_is(E3,CONVEX); Convexity_is(E4,CONVEX);

END

Figure 3: Notch feature and definition

6 WHERE f1.face <f2.face

7 AND f3.face <f4.face

8 AND e2.edge <>e1.edge

9 AND e3.edge <>e1.edge

10 AND e4.edge <>e1.edge

11 AND e5.edge <>e1.edge

12 AND EXISTS

13 (SELECT bounds.edge

14 FROM bounds

15 WHERE bounds.face=f1.face

16 AND bounds.edge=e1.edge)

17 AND EXISTS

18 (SELECT bounds.edge

19 FROM bounds

20 WHERE bounds.face=f2.face

21 AND bounds.edge=e1.edge)

22 AND EXISTS

23 (SELECT convexity.edge

24 FROM convexity

25 WHERE convexity.type=1

26 AND convexity.edge=e1.edge)

27 AND EXISTS

28 (SELECT bounds.edge

29 FROM bounds

30 WHERE bounds.face=f2.face

31 AND bounds.edge=e2.edge)

32 AND EXISTS

33 (SELECT bounds.edge

34 FROM bounds

35 WHERE bounds.face=f3.face

36 AND bounds.edge=e2.edge)

37 AND EXISTS

18



38 (SELECT convexity.edge

39 FROM convexity

40 WHERE convexity.type=2

41 AND convexity.edge=e2.edge)

42 AND EXISTS

43 (SELECT bounds.edge

44 FROM bounds

45 WHERE bounds.face=f1.face

46 AND bounds.edge=e3.edge)

47 AND EXISTS

48 (SELECT bounds.edge

49 FROM bounds

50 WHERE bounds.face=f4.face

51 AND bounds.edge=e3.edge)

52 AND EXISTS

53 (SELECT convexity.edge

54 FROM convexity

55 WHERE convexity.type=2

56 AND convexity.edge=e3.edge)

57 AND EXISTS

58 (SELECT bounds.edge

59 FROM bounds

60 WHERE bounds.face=f1.face

61 AND bounds.edge=e4.edge)

62 AND EXISTS

63 (SELECT bounds.edge

64 FROM bounds

65 WHERE bounds.face=f3.face

66 AND bounds.edge=e4.edge)

67 AND EXISTS

68 (SELECT convexity.edge

69 FROM convexity

70 WHERE convexity.type=2

71 AND convexity.edge=e4.edge)

72 AND EXISTS

73 (SELECT convexity.edge

74 FROM convexity

75 WHERE convexity.type=2

76 AND convexity.edge=e5.edge)

77 AND EXISTS

78 (SELECT bounds.edge

79 FROM bounds

80 WHERE bounds.face=f2.face

81 AND bounds.edge=e5.edge)

82 AND EXISTS
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83 (SELECT bounds.edge

84 FROM bounds

85 WHERE bounds.face=f4.face

86 AND bounds.edge=e5.edge);

Listing 3: notch query old translation

However, using the full-edge-form approach, this is now translated into the
following SQL:

1 SELECT full_edge_e1.edge AS e1 ,

2 full_edge_e2.edge AS e2 ,

3 full_edge_e3.edge AS e3 ,

4 full_edge_e4.edge AS e4 ,

5 full_edge_e5.edge AS e5 ,

6 full_edge_e1.face1 AS f1 ,

7 full_edge_e1.face2 AS f2 ,

8 full_edge_e2.face2 AS f3 ,

9 full_edge_e3.face2 AS f4

10 FROM full_edge full_edge_e5 ,

11 full_edge full_edge_e4 ,

12 full_edge full_edge_e3 ,

13 full_edge full_edge_e2 ,

14 full_edge full_edge_e1

15 WHERE full_edge_e1.face2=full_edge_e2.face1

16 AND full_edge_e1.face1=full_edge_e3.face1

17 AND full_edge_e1.face1=full_edge_e4.face1

18 AND full_edge_e1.face2=full_edge_e5.face1

19 AND full_edge_e2.face2=full_edge_e4.face2

20 AND full_edge_e2.face1=full_edge_e5.face1

21 AND full_edge_e3.face1=full_edge_e4.face1

22 AND full_edge_e3.face2=full_edge_e5.face2

23 AND full_edge_e1.convexity =1

24 AND full_edge_e2.convexity =2

25 AND full_edge_e3.convexity =2

26 AND full_edge_e4.convexity =2

27 AND full_edge_e3.face2 <>full_edge_e2.face2

28 AND full_edge_e3.face2 <>full_edge_e1.face2

29 AND full_edge_e3.face2 <>full_edge_e1.face1

30 AND full_edge_e2.face2 <>full_edge_e1.face2

31 AND full_edge_e2.face2 <>full_edge_e1.face1

32 AND full_edge_e1.face2 <>full_edge_e1.face1

33 AND full_edge_e5.edge <>full_edge_e4.edge

34 AND full_edge_e5.edge <>full_edge_e3.edge

35 AND full_edge_e5.edge <>full_edge_e2.edge

36 AND full_edge_e5.edge <>full_edge_e1.edge

37 AND full_edge_e4.edge <>full_edge_e3.edge
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38 AND full_edge_e4.edge <>full_edge_e2.edge

39 AND full_edge_e4.edge <>full_edge_e1.edge

40 AND full_edge_e3.edge <>full_edge_e2.edge

41 AND full_edge_e3.edge <>full_edge_e1.edge

42 AND full_edge_e2.edge <>full_edge_e1.edge ;

Listing 4: notch query new translation

In practice, only bounds and convexity predicates are translated into SQL
fragments represented by WHERE clauses. Other predicates involving geome-
try, area, etc., are translated into SQL fragments in a HAVING clause. This
design permits lazy evaluation, as we describe later. Bounds and convexity
predicates are almost always needed, and can be determined at little cost,
so there is no need to use lazy evaluation in these cases. This approach
is consistent with previous methods based on adjacency graphs, which use
topological information to find potential parts of features and then other
conditions to refine the results.

4.1.2. Uniqueness of entities

Feature declarations are difficult to write correctly, and as in other areas
of geometric computing, special cases can often cause difficulties. Consider,
for example, through holes. A through hole in a cube, or most other models,
has end loops which lie on distinct faces. However, a through hole through a
cylinder can have both end loops lying on the same face, which is a special
case. Whether such a special case should be permitted or excluded is a
matter for the user. However, it is clear that in most cases, if a feature
definition mentions e.g. two faces f1 and f2, it is the intent that they should
be distinct. In our current system, we make this assumption for all entities in
feature declarations, so the Different_id clauses in the notch example are
no longer needed. This makes it easier for users to write feature declarations.
If necessary, the user may override this assumption by adding clauses of the
form ALLOWING f1=f2 to state that some particular entities may be the same.

This assumption differs from the way an SQL query finds features: each
entity is filtered out from a range table, and there is no guarantee that
values are distinct. To ensure that entities with different names are distinct,
a straightforward approach would be to insert an SQL fragment like f1<>f2
into the final query for each pair of entities of the same kind.

A further issue is that many features are symmetric in some way, and this
can lead to repeatedly finding the same solution in which the names of the
entities are permuted. For example, see the notch in Fig. 3: interchanging
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the roles of faces F1 and F2, and F3 and F4 (as well as various edges) gives
another interpretation of the same notch. Such symmetries are in general
difficult to detect and handle automatically, and we currently leave this to
the user to resolve. One way to do this is to add further conditions on the
identities of entities. For example, if the user adds Lower_id(F1, F2), it
will prevent notch features from being reported twice.

4.1.3. Performance

Using the EXPLAIN ANALYZE database command when executing a feature
query provides information about the plan the database uses. Our experi-
ments show that, to reduce computational complexity, PostgreSQL uses hash
joins, while SQLite relies on indexing. We consider in detail how the query
is optimized by PostgreSQL with our new approach, and how our old trans-
lation is optimized by SQLite. We start by supposing a basic feature with
only Bounds and Convexity predicates. While in principle features with
other geometric predicates (e.g. concerning face type) will theoretically take
longer, using lazy evaluation as proposed in next section helps to overcome
this problem.

In practical SQL queries, it is common for two tables to be connected
by equi-join predicates. In feature queries, the Bounds predicates are such
equi-join predicates, and the query is an implicit inner join query. When at
least one join input is small, they can be effectively computed using nested
loops; merge joins are an improvement when there are two large inputs.
However, if (as is typically true) main memory is plentiful, hash joins provide
substantially better performance than nested loops and merge joins [41].
They are the most frequently used join algorithm in current commercial
database systems [42], and are responsible for PostgreSQL’s better feature
recognition performance than SQLite’s.

In our previous feature finder, predicates were translated into EXISTS

subqueries. Such subqueries are multi-block queries, and usually they will
be turned into single block queries by merging any subqueries into the main
body. While SQLite has subquery flattening optimization, it is not used
for EXISTS subqueries [29], as confirmed by examining execution plans. A
typical query fragment using the old translation might be

1 EXISTS (SELECT valency.face FROM valency WHERE

2 valency.degree =4 and valency.face=f1.face) AND

3 EXISTS (SELECT convexity.edge FROM convexity WHERE

4 convexity.type=2 AND convexity.edge=e1.edge) AND
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5 EXISTS (SELECT bounds.edge FROM bounds WHERE

6 bounds.face=f1.face AND bounds.edge=e1.edge) AND

with a corresponding execution plan of

1 0|0|0| SCAN TABLE faces AS f1 (~500000 rows)

2 0|0|0| EXECUTE CORRELATED SCALAR SUBQUERY 1

3 1|0|0| SEARCH TABLE valency USING AUTOMATIC

4 COVERING INDEX (DEGREE =? AND FACE =?) (~7 rows)

5 0|1|5| SCAN TABLE edges AS e1 (~250000 rows)

6 0|0|0| EXECUTE CORRELATED SCALAR SUBQUERY 2

7 2|0|0| SEARCH TABLE convexity USING AUTOMATIC

8 COVERING INDEX (TYPE=? AND EDGE =?) (~7 rows)

9 0|0|0| EXECUTE CORRELATED SCALAR SUBQUERY 3

10 3|0|0| SEARCH TABLE bounds USING AUTOMATIC

11 COVERING INDEX (FACE=? AND EDGE =?) (~7 rows)

The execution plan shows that EXISTS introduces correlated subqueries:
inner queries depend on outer queries. In this example, the inner tables
valency, convexity, and bound have references to the outer table edges as e1.

Consider the valency query first. The executor executes the outer table
scan on faces, taking time O(f) where f is the number of faces, and then
execute the inner scan on the valency table using an automatically created
covering index. This a temporary index just used in this query to find tuples
satisfying the subquery predicates. It comes at a cost of O(f log(f)), as the
valency table has the same number of entities as the face table, and sorting
is needed to make the index. Then, similarly, the outer query goes through
all edge rows, and for each row, searches in an index. This would result in
O(e log(e)+ fe log(b))) where b is the size of the bounds table; the convexity
table is the same size as the edge table. However, the bounds table contains
2e entries, so this is overall O(e log e). Now, Euler’s theorem tells us that in
general O(e) = O(f) = O(n) where n is the number of entities in the model,
so processing EXISTS takes time O(n2 log(n)): subqueries correspond to outer
tables each running an inner scan over a unique index. As log(n) varies
slowly, this explains the quasi-quadratic performance empirically observed in
our previous paper.

The new scheme proposed in this paper is more efficient; exists clauses
of the type used above are not required. The simplest kind of hash join
includes two steps: first the smaller relation is used to construct a hash table,
then larger relation table’s tuples are used to probe the hash table to find
matches. To understand the performance, consider the simplest situation:
two (unindexed) relational tables R and S, both with t tuples. The cost
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is composed of four linear components: reading the inner table, hashing
the inner table, reading outer table, and probing the hash table, giving a
total cost of O(n). In fact, in the queries used for feature finding, we get
this performance, as shown in our experiments, where we also give further
execution details of using the hash join.

4.2. Lazy evaluation

The idea of lazy evaluation is to avoid computing things until the very
moment that they are defintely needed—there is no point in computing things
which may later turn out to be unnecessary. For example, suppose p(x)

and q(y) are predicates, which may be expensive to evaluate. Consider the
expression p(x) AND q(y). We could evaluate both and then compute the
result using logical AND. However, if p(x) is false, the overall expression must
be false, and we do not need to compute q(y) at all, saving unnecessary
work. (This assumes that the predicates have no side-effects).

In our feature finder, predicates are evaluated at runtime either by local
lookup in cache tables, or remotely by the CAD modeler. Some remote
predicate calculations may take a long time. Thus, for example, we wish to
avoid computing the area of every face in the model when finding features
such as small pockets—it is almost certainly better to first find the pockets,
and then just compute the areas of faces definitely belonging to pockets.
Lazy evaluation can help to ensure that we only evaluate predicates on a
small candidate set.

Lazy evaluation is realized in our system by steps in the translation stage,
the importer, and the executor. As Fig. 2 shows, the translated query is first
analyzed by an importer, which then retrieves basic relations and entity prop-
erties of the model from the CAD modeler. Returned topological information
such as bounds relations, and geometric properties which can be rapidly de-
termined such as face and edge geometric type, are cached locally in database
tables. Bounds relations are cached as full-edge-form tables and geometric
information is cached in (id, property) tables. These are used as range
tables in the final query. Computationally intensive predicates are expressed
as foreign SQL functions and evaluated at the execution stage, by calling the
CAD modeler directly.

When predicates are evaluated is determined by how a feature definition
is translated into an SQL query. Predicates placed in WHERE clauses are
evaluated on all tuples of the range tables. Predicates placed in HAVING

clauses are only evaluated on temporary results which fulfil the conditions

24



in the WHERE clauses. Thus, our translator puts potentially computationally
intensive predicates into HAVING clauses for efficiency. The only predicates
treated differently are basic topological predicates (which can be optimized
by hash joins) and fast geometry predicates (which can be optimized by using
an index)—these are placed into WHERE clauses.

For example, if the user wants to find large step ribs (see Fig. 4), whose
middle face has an area greater than 50 units, a feature definition might be
translated as:

1 SELECT full_edge_e1.edge AS e1 ,

2 full_edge_e2.edge AS e2 ,

3 full_edge_e3.edge AS e3 ,

4 full_edge_e4.edge AS e4 ,

5 full_edge_e5.edge AS e5 ,

6 full_edge_e6.edge AS e6 ,

7 full_edge_e7.edge AS e7 ,

8 full_edge_e8.edge AS e8 ,

9 full_edge_e9.edge AS e9 ,

10 full_edge_e10.edge AS e10 ,

11 full_edge_e11.edge AS e11 ,

12 full_edge_e12.edge AS e12 ,

13 full_edge_e1.face1 AS f1 ,

14 full_edge_e4.face2 AS f2 ,

15 full_edge_e2.face1 AS f3 ,

16 full_edge_e7.face1 AS f4 ,

17 full_edge_e8.face1 AS f5 ,

18 full_edge_e9.face1 AS f6 ,

19 full_edge_e10.face2 AS f7,

20 full_edge_e3.face2 AS f8 ,

21 full_edge_e1.face2 AS f9

22 FROM full_edge full_edge_e12 ,

23 full_edge full_edge_e11 ,

24 full_edge full_edge_e10 ,

25 full_edge full_edge_e9 ,

26 full_edge full_edge_e8 ,

27 full_edge full_edge_e7 ,

28 full_edge full_edge_e6 ,

29 full_edge full_edge_e5 ,

30 full_edge full_edge_e4 ,

31 full_edge full_edge_e3 ,

32 full_edge full_edge_e2 ,

33 full_edge full_edge_e1

34 WHERE full_edge_e1.face2=full_edge_e2.face2

35 AND full_edge_e1.face2=full_edge_e3.face1
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36 AND full_edge_e1.face2=full_edge_e4.face1

37 AND full_edge_e1.face1=full_edge_e5.face1

38 AND full_edge_e1.face1=full_edge_e6.face1

39 AND full_edge_e2.face2=full_edge_e3.face1

40 AND full_edge_e2.face2=full_edge_e4.face1

41 AND full_edge_e2.face1=full_edge_e6.face2

42 AND full_edge_e2.face1=full_edge_e8.face2

43 AND full_edge_e2.face1=full_edge_e10.face1

44 AND full_edge_e2.face1=full_edge_e12.face1

45 AND full_edge_e3.face1=full_edge_e4.face1

46 AND full_edge_e3.face2=full_edge_e11.face2

47 AND full_edge_e3.face2=full_edge_e12.face2

48 AND full_edge_e4.face2=full_edge_e5.face2

49 AND full_edge_e4.face2=full_edge_e7.face2

50 AND full_edge_e4.face2=full_edge_e9.face2

51 AND full_edge_e4.face2=full_edge_e11.face1

52 AND full_edge_e5.face1=full_edge_e6.face1

53 AND full_edge_e5.face2=full_edge_e7.face2

54 AND full_edge_e5.face2=full_edge_e9.face2

55 AND full_edge_e5.face2=full_edge_e11.face1

56 AND full_edge_e6.face2=full_edge_e8.face2

57 AND full_edge_e6.face2=full_edge_e10.face1

58 AND full_edge_e6.face2=full_edge_e12.face1

59 AND full_edge_e7.face2=full_edge_e9.face2

60 AND full_edge_e7.face2=full_edge_e11.face1

61 AND full_edge_e8.face2=full_edge_e10.face1

62 AND full_edge_e8.face2=full_edge_e12.face1

63 AND full_edge_e9.face2=full_edge_e11.face1

64 AND full_edge_e10.face1=full_edge_e12.face1

65 AND full_edge_e11.face2=full_edge_e12.face2

66 AND full_edge_e1.convexity =1

67 AND full_edge_e2.convexity =2

68 AND full_edge_e3.convexity =1

69 AND full_edge_e4.convexity =2

70 AND full_edge_e5.convexity =1

71 AND full_edge_e6.convexity =1

72 AND full_edge_e7.convexity =1

73 AND full_edge_e8.convexity =1

74 AND full_edge_e9.convexity =1

75 AND full_edge_e10.convexity =1

76 AND full_edge_e11.convexity =1

77 AND full_edge_e12.convexity =1

78 AND full_edge_e10.face2 <>full_edge_e9.face1

79 AND full_edge_e10.face2 <>full_edge_e8.face1

80 AND full_edge_e10.face2 <>full_edge_e7.face1
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81 AND full_edge_e10.face2 <>full_edge_e4.face2

82 AND full_edge_e10.face2 <>full_edge_e3.face2

83 AND full_edge_e10.face2 <>full_edge_e2.face1

84 AND full_edge_e10.face2 <>full_edge_e1.face2

85 AND full_edge_e10.face2 <>full_edge_e1.face1

86 AND full_edge_e9.face1 <>full_edge_e8.face1

87 AND full_edge_e9.face1 <>full_edge_e7.face1

88 AND full_edge_e9.face1 <>full_edge_e4.face2

89 AND full_edge_e9.face1 <>full_edge_e3.face2

90 AND full_edge_e9.face1 <>full_edge_e2.face1

91 AND full_edge_e9.face1 <>full_edge_e1.face2

92 AND full_edge_e9.face1 <>full_edge_e1.face1

93 AND full_edge_e8.face1 <>full_edge_e7.face1

94 AND full_edge_e8.face1 <>full_edge_e4.face2

95 AND full_edge_e8.face1 <>full_edge_e3.face2

96 AND full_edge_e8.face1 <>full_edge_e2.face1

97 AND full_edge_e8.face1 <>full_edge_e1.face2

98 AND full_edge_e8.face1 <>full_edge_e1.face1

99 AND full_edge_e7.face1 <>full_edge_e4.face2

100 AND full_edge_e7.face1 <>full_edge_e3.face2

101 AND full_edge_e7.face1 <>full_edge_e2.face1

102 AND full_edge_e7.face1 <>full_edge_e1.face2

103 AND full_edge_e7.face1 <>full_edge_e1.face1

104 AND full_edge_e4.face2 <>full_edge_e3.face2

105 AND full_edge_e4.face2 <>full_edge_e2.face1

106 AND full_edge_e4.face2 <>full_edge_e1.face2

107 AND full_edge_e4.face2 <>full_edge_e1.face1

108 AND full_edge_e3.face2 <>full_edge_e2.face1

109 AND full_edge_e3.face2 <>full_edge_e1.face2

110 AND full_edge_e3.face2 <>full_edge_e1.face1

111 AND full_edge_e2.face1 <>full_edge_e1.face2

112 AND full_edge_e2.face1 <>full_edge_e1.face1

113 AND full_edge_e1.face2 <>full_edge_e1.face1

114 AND full_edge_e12.edge <>full_edge_e11.edge

115 AND full_edge_e12.edge <>full_edge_e10.edge

116 AND full_edge_e12.edge <>full_edge_e9.edge

117 AND full_edge_e12.edge <>full_edge_e8.edge

118 AND full_edge_e12.edge <>full_edge_e7.edge

119 AND full_edge_e12.edge <>full_edge_e6.edge

120 AND full_edge_e12.edge <>full_edge_e5.edge

121 AND full_edge_e12.edge <>full_edge_e4.edge

122 AND full_edge_e12.edge <>full_edge_e3.edge

123 AND full_edge_e12.edge <>full_edge_e2.edge

124 AND full_edge_e12.edge <>full_edge_e1.edge

125 AND full_edge_e11.edge <>full_edge_e10.edge
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126 AND full_edge_e11.edge <>full_edge_e9.edge

127 AND full_edge_e11.edge <>full_edge_e8.edge

128 AND full_edge_e11.edge <>full_edge_e7.edge

129 AND full_edge_e11.edge <>full_edge_e6.edge

130 AND full_edge_e11.edge <>full_edge_e5.edge

131 AND full_edge_e11.edge <>full_edge_e4.edge

132 AND full_edge_e11.edge <>full_edge_e3.edge

133 AND full_edge_e11.edge <>full_edge_e2.edge

134 AND full_edge_e11.edge <>full_edge_e1.edge

135 AND full_edge_e10.edge <>full_edge_e9.edge

136 AND full_edge_e10.edge <>full_edge_e8.edge

137 AND full_edge_e10.edge <>full_edge_e7.edge

138 AND full_edge_e10.edge <>full_edge_e6.edge

139 AND full_edge_e10.edge <>full_edge_e5.edge

140 AND full_edge_e10.edge <>full_edge_e4.edge

141 AND full_edge_e10.edge <>full_edge_e3.edge

142 AND full_edge_e10.edge <>full_edge_e2.edge

143 AND full_edge_e10.edge <>full_edge_e1.edge

144 AND full_edge_e9.edge <>full_edge_e8.edge

145 AND full_edge_e9.edge <>full_edge_e7.edge

146 AND full_edge_e9.edge <>full_edge_e6.edge

147 AND full_edge_e9.edge <>full_edge_e5.edge

148 AND full_edge_e9.edge <>full_edge_e4.edge

149 AND full_edge_e9.edge <>full_edge_e3.edge

150 AND full_edge_e9.edge <>full_edge_e2.edge

151 AND full_edge_e9.edge <>full_edge_e1.edge

152 AND full_edge_e8.edge <>full_edge_e7.edge

153 AND full_edge_e8.edge <>full_edge_e6.edge

154 AND full_edge_e8.edge <>full_edge_e5.edge

155 AND full_edge_e8.edge <>full_edge_e4.edge

156 AND full_edge_e8.edge <>full_edge_e3.edge

157 AND full_edge_e8.edge <>full_edge_e2.edge

158 AND full_edge_e8.edge <>full_edge_e1.edge

159 AND full_edge_e7.edge <>full_edge_e6.edge

160 AND full_edge_e7.edge <>full_edge_e5.edge

161 AND full_edge_e7.edge <>full_edge_e4.edge

162 AND full_edge_e7.edge <>full_edge_e3.edge

163 AND full_edge_e7.edge <>full_edge_e2.edge

164 AND full_edge_e7.edge <>full_edge_e1.edge

165 AND full_edge_e6.edge <>full_edge_e5.edge

166 AND full_edge_e6.edge <>full_edge_e4.edge

167 AND full_edge_e6.edge <>full_edge_e3.edge

168 AND full_edge_e6.edge <>full_edge_e2.edge

169 AND full_edge_e6.edge <>full_edge_e1.edge

170 AND full_edge_e5.edge <>full_edge_e4.edge
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171 AND full_edge_e5.edge <>full_edge_e3.edge

172 AND full_edge_e5.edge <>full_edge_e2.edge

173 AND full_edge_e5.edge <>full_edge_e1.edge

174 AND full_edge_e4.edge <>full_edge_e3.edge

175 AND full_edge_e4.edge <>full_edge_e2.edge

176 AND full_edge_e4.edge <>full_edge_e1.edge

177 AND full_edge_e3.edge <>full_edge_e2.edge

178 AND full_edge_e3.edge <>full_edge_e1.edge

179 AND full_edge_e2.edge <>full_edge_e1.edge

180 GROUP BY full_edge_e1.edge ,

181 full_edge_e2.edge ,

182 full_edge_e3.edge ,

183 full_edge_e4.edge ,

184 full_edge_e5.edge ,

185 full_edge_e6.edge ,

186 full_edge_e7.edge ,

187 full_edge_e8.edge ,

188 full_edge_e9.edge ,

189 full_edge_e10.edge ,

190 full_edge_e11.edge ,

191 full_edge_e12.edge ,

192 full_edge_e1.face1 ,

193 full_edge_e4.face2 ,

194 full_edge_e2.face1 ,

195 full_edge_e7.face1 ,

196 full_edge_e8.face1 ,

197 full_edge_e9.face1 ,

198 full_edge_e10.face2 ,

199 full_edge_e3.face2 ,

200 full_edge_e1.face2

201 HAVING get_area(full_edge_e1.face2) >50;

The result in this case is that the area function is called many fewer
times—only for mid-faces of step ribs, and not for all model faces. Further-
more, cacheing is used: each time we evaluate the area function for a face,
we first see if the result is already available first examine in a local table. If
not, a remote call is made to CADfix to calculate the result, which is then
also cached in the local table. Similar gains are provided for other feature
definitions involving expensive predicates.

4.3. Predicate ordering

Query optimisation in database systems includes reordering subtasks in
a query to make it more efficient—if a series of filters is applied, we would
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like the first filter to reject as much of the data as possible so that subse-
quent filters have less data to process. Standard database query optimization
chooses an approach based on statistical information, including the fraction
of column entries that are null, the average size in bytes of column entries,
whether the number of distinct values is likely to increase as the table grows
or not, and so on [43]. In database processing it is usually assumed that
retrieving each data item takes a constant amount of time, whereas in our
system, some information must be computed by the CAD modeler, and so
time taken may vary considerably according to the predicate involved. We
therefore modify the standard database query optimizer to take this into
account.

Our approach is based on the idea of selectivity, the probability that a
given predicate will return FALSE. Consider a HAVING clause with multiple
predicates; these may be evaluated in any order without affecting the result.
If a given predicate is false, and we evaluate it first, we then do not need
to evaluate the other predicates. If all predicates took the same time to
evaluate, for efficiency, we should thus evaluate them in decreasing order of
selectivity, as explained earlier. However, the fact that some take longer to
evaluate than others should also be takent into account: if all were equally
likely to be false, it would be preferable to evaluate the fastest ones first,
to reduce the number of slower evaluations. These two requirements can
be combined into an overall optimal order of evaluating the predicates We
defining merit, m = sc, where s is the selectivity of a predicate, and c is the
expected time cost of evaluating it. The fastest way to evaluate a clause is
to evaluate the predicates in order of decreasing merit.

However, in general, we know neither the selectivity, nor the cost of exe-
cuting a given predicate, for a given model. Instead, we can obtain estimates
for these quantities by a prior offline analysis of a collection of CAD models.
Ideally these would be models of a similar kind to the one being considered—
a collection of similar water pumps, for example, if we are finding features in
a water pump.

Let P (a1, . . . , an) be a predicate with n arguments, which for simplicity
we take to be discrete values. Suppose the training set has M models. The
selectivity for the kth model taken individually is

sk = Ok/Ik, (1)

where Ok is the number of entities (edge, face or subfeature) in model k for
which the predicate P is true, and Ik is the number of entities in model k
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that P can be applied to. The average selectivity of this predicate over the
whole training set is

E(s) =
M∑
1

Ok/
M∑
1

Ik. (2)

When predicates involve continuous values, the definition of selectivity
needs to be modified somewhat. For example, face area is a continuous vari-
able, with a corresponding predicate which checks if it is within a given range:
face_area_in_range(face_id:int, rmin:real, rmax:real). Selectivity
is now

s =

∫ rmax

rmin

P (A) dA /

∫
∞

−∞

P (A) dA (3)

where P (A) is the probability density that an arbitrary face has a certain
area. In practice, this is estimated by constructing a histogram of face areas
for all models.

We can also estimate the average time for executing each predicate by
processing the same collection of models offline.

Suppose a query has two predicates p1 and p2, with average costs c1 and
c2 and average selectivities s1 and s2. We can estimate the times taken to
execute these in different orders to be:

p1 then p2 : t12 = s1c1 + s1s2c2 (4)

p2 then p1 : t21 = s2c2 + s1s2c1,

and choose the order of execution accordingly. This analysis may be readily
generalised to larger numbers of predicates.

5. Experiments

We now describe various experiments carried out to validate whether the
ideas above work in practice, and in particular whether they enable features
to be found at a reasonable speed. We consider the optimizations provided
by our new approaches to translation, lazy evaluation, selectivity separately,
and conclude with a test involving some more realistic models.

5.1. Translation

Naive translation of a declarative feature definition, as already noted,
results in an algorithm using nested loops, with time complexity O(nk) where
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(a) Notch (b) Slot (c) Step-rib

Figure 4: Artificial models for performance testing

k is the number of entities in the feature, for a model with n entities. Clearly,
for large models, and any realistic value of k, this is infeasible. Our previous
approach to translation into an SQL query using EXISTS clauses achieved
approximately O(n2) performance for basic features (notch, slot, through-
hole) with SQLite [11].

When we replaced the database engine by PostgreSQL, still using the
same strategy, the performance was much worse; indeed no feature finding
results were returned in any reasonable time. Analysis of the cause led to
the new translation approach given here. We now examine how quickly it
can find features, using both SQLite and PostgreSQL.

We consider two experiments. We first compared the old and new trans-
lation approaches using the same database engine (SQLite); the experiments
show that the expected improved computational complexity is observed. Sec-
ondly, we compared the relative performance of two different database en-
gines (SQLite and PostgreSQL).

5.1.1. Old and new translation using SQLite

In our comparison of old and new translation approaches, we used the
same test models as in our previous paper; they comprise an increasing num-
ber of blocks (2n where n = 0, . . . , 11), each containing a feature which may
be a notch, slot, or step-rib. Fig. 4 shows the models for n = 2.

Fig. 5 gives a log-log plot of the time taken in milliseconds to find all
features of the given type in each model, versus the total number of edges
in that model (step-ribs took too long to find using the old approach, so no
results are presented in that case). Performance in this log-log plot approxi-
mately follows a straight line relationship in each case, indicating that time
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Figure 5: Performance comparison between new and old translation using SQLite

taken to find features is reasonably modelled as t = αnp where p is the slope
of the line and n is the number of entities. (The graph plots the number of
edges, which is proportional to the total number of entities). In practice, as
we are interested in the asymptotic behaviour of the algorithms (for larger
models), we measure the slope past the point at which the slope seems to
stabilize. The slopes given in Table 1.

It is clear that, although both translations are effectively optimised by
the database engine, the computational complexity is quite different. The
old approach results in O(n2) performance for notch and slot features. For
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Translation Approach Notch Slot Step-rib
Old 1.98 1.98 —
New 0.89 0.90 2.12

Table 1: Exponent of performance of old and new translations using SQLite

Database Engine Notch Slot Step-rib
SQLite 0.89 0.90 2.12

PostgreSQL 0.91 0.94 0.95

Table 2: Performance of new translation using SQLite and PostgreSQL

step-rib features the system failed to return results in an acceptable time—
step-ribs contain many more entities (9 faces and 12 edges) than notches
(4 faces and 5 edges) or slots (5 faces and 8 edges). In contrast, the new
translation approach results in roughly linear performance for notch and slot
features, and approximately quadratic performance for step-rib features.

5.2. New translation using SQLite and PostgreSQL

Next, we compare how well the new translation works in SQLite and
PostgreSQL. Performing tests on the same models as before leads to the re-
sults in Fig. 6; the corresponding slopes are given in Table 2. Approximately
linear complexity is achieved using PostgreSQL.

This result is significant, as it implies that a system based on these ideas
should scale to very large industrial models. As far as we know, no other
published feature finder displays linear performance; indeed many papers
note the exponential complexity of graph based feature finders [16].

To further understand why PostgreSQL achieves linear performance for
step-ribs while SQLite does not, we must further analyse the optimizations
used by each database engine. They are quite different. Fig. 7 shows part of a
typical SQLite query plan for slot feature recognition. SQLite optimizes the
query mainly by use of automatic covering indexes, and no changes are made
to the order of joins. As temporary index creation requires sorting, the time
taken must be at least O(n log n). In practice, finding notch and slot features
has almost linear performance, while finding step-ribs takes qudratic time.
Detailed consideration of the query plans reveal that although notch, slot,
and step-rib features all use a covering index, they are used quite differently.
For step-ribs, execution steps like the below are included:
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Figure 6: Performance of new translation using SQLite and PostgreSQL

1 0|0|11| SCAN TABLE full_edge AS full_edge_e1 (~50000 rows)

2 0|1|0| SEARCH TABLE full_edge AS full_edge_e12 USING AUTOMATIC

COVERING INDEX (convexity =?) (~7 rows)

where table full edge is defined as

1 full_edge(edge INTEGER , face1 INTEGER , face2 INTEGER ,

convexity INTEGER)

While SQLite processes convexity using a covering index, as almost all
tuples satisfy the convexity constraint, the result is almost a sequential scan
of all tuples, leading to O(n2) overall performance. This is not the case
for notch and slot features. Experiments show that if we create face and
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Scan table 

full_edge_e8

Search table 

full_edge_e7

Search table 

full_edge_e6
USING AUTOMATIC

COVERING INDEX

USING AUTOMATIC

COVERING INDEX

Figure 7: New translation query plan in SQLite

Scan table 

full_edge_e8

Hash join 

Scan table 

full_edge_e6

Hash

Hash join 

Scan table 

full_edge_e3

Hash

Figure 8: New translation query plan using PostgreSQL

edge indexes explicitly, SQLite can also achieve quasi-linear performance for
step-ribs.

Let us now consider the execution plan used by PostgreSQL, as illustrated
in Fig. 8. Here, first the order of range tables is shuffled allowing join re-
ordering optimization to take effect. Tables are accessed sequentially before
pairs are jointly processed by hash joins. As explained in Section 3, the time
complexity of this approach is O(n).

In summary, both query optimizations in SQLite and PostgreSQL give
nearly linear performance in practice for the simplest features, but SQLite
can exhibit worse performance for more complex features.
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Figure 9: Carbine

Figure 10: Switch

5.3. Real World Performance

Real industrial CAD models are more challenging: models may include
hundreds of thousands or even millions of entities. In this case, performance is
potentially a serious problem. In real models, there are more types of entities,
including subfeatures, and features are more complex than the simple ones
used in earlier tests. All of these are big challenges for traditional algorithms.
In this section, we show tests on several larger models to help assess the
potential of our approach for industrial use.

First we compare the performance of the approach in this paper with that
of the method described in our previous work, using increasingly complex
models of a carbine, switch and CPU heat sink (see Figs. 9–11); the features
to be found were again open slots, blind slots, and through holes.

Feature finding (see Table 3) took much less time than when using our
previous approach for the CPU heat sink and switch. Similar times were
achieved for the carbine, probably due to its simplicity. This is in agreement
with our earlier experimental finding that the new approach has lower time
complexity—it scales up better to larger models. These results are very
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Figure 11: CPU heatsink

Model Carbine Switch CPU heatsink
Number of edges 84 330 2388
Number of slots 6 9 24
Unoptimized query 15 hours - -
Old translation (SQLite) 50 ms 220 ms 6940 ms
New translation (PostgreSQL) 47 ms 69 ms 107 ms

Table 3: Time taken to find slots in real models

encouraging, and show that the current approach can rapidly find features
in models of realistic complexity. Feature finding took just 0.1 s even for the
heatsink which has over 2000 edges.

We have also performed further experiments on real industrial models
to assess performance. Fig. 12 shows a moderately complex reducer model
obtained from [44], with 17774 edges. It includes hundreds of open slots,
blind slots, through-holes, and other features. Our feature recognizer can
find such features in this model in a fraction of a second: see Table 4.
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Figure 12: Reducer

Feature Open slot Blind slot Throughhole
Number of features 140 146 164
Time taken 168 ms 176 ms 87 ms

Table 4: Time taken to find various features on a reducer model with 17774 edges

More complex features can be defined using subfeatures—features can
often be decomposed into several similar sub-structures. Finding such sub-
structures first and then combining them into a complete feature simplifies
the writing of feature definitions. For example, we can define an adjacent-
pair-of-blind-slots feature, and seek it in the reducer model. This new feature
comprises two round corner blind slots which are connected by short edges.
We can first find the slot features (with 17 edges and 10 faces), and then
determine which of those are adjacent and connected by short edges. Times
taken for this task are given in Table 5, and again, are suitably low. More
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generally, however, regularly structured features with arbitrary numbers of
elements, such as a ring of holes, a gear, or a row of slots, are most easily de-
fined recursively. This in turns needs a database which can handle recursive
SQL queries; we intend to investigate such an approach in our future work.

Feature round corner bind slot adjacent slot pair
Number of features 5 4
Time taken 168 ms 56 ms

Table 5: Time taken to find adjacent slot pairs in the reducer model

5.4. Lazy evaluation

Lazy evaluation and predicate ordering are of greatest benefit when find-
ing complex features which involve more than simple topological relationships
and edge predicates such as convexity. We use the problem of finding features
satisfying certain area constraints to illustrate the effectiveness of lazy eval-
uation. We compare results obtained by eager and lazy evaluation, CADfix
being used to compute face areas. Results are cached in a temporary face
area table linking face id and face area.

We consider five alternative ways to find feature instances:

• Eager evaluation (a). Pre-calculate and cache areas in a local table,
and translate the corresponding constraint into a filter predicate in a
WHERE clause.

• Eager evaluation (b). Express area computations as remote CAD func-
tions, translate constraints into filter predicates in WHERE clauses, and
evaluate all area computations at execution time by calling CADfix.

• Eager evaluation (c). Express area computations as remote CAD func-
tions, and translate constraints into filter predicates in WHERE clauses.
A local table is used to cache returned areas, so that CADfix is only
asked to compute them once.

• Lazy evaluation (a). Express area computations as remote CAD func-
tions, translate them via HAVING clauses, and evaluate all area compu-
tations at execution time by calling CADfix.
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• Lazy evaluation (b). Express area computations as remote CAD func-
tions, translate them via HAVING clauses. A local table is used to cache
returned areas, so that CADfix is only asked to compute them once.

This leads, for example, to the following different ways of finding large
through-hole features:

1 SELECT full_edge_e1.edge AS e1 ,

2 full_edge_e2.edge AS e2 ,

3 full_edge_e3.edge AS e3 ,

4 full_edge_e4.edge AS e4 ,

5 full_edge_e5.edge AS e5 ,

6 full_edge_e6.edge AS e6 ,

7 full_edge_e1.face1 AS f1 ,

8 full_edge_e3.face1 AS f2 ,

9 full_edge_e1.face2 AS f3 ,

10 full_edge_e2.face2 AS f4

11 FROM full_edge full_edge_e6 ,

12 full_edge full_edge_e5 ,

13 full_edge full_edge_e4 ,

14 full_edge full_edge_e3 ,

15 full_edge full_edge_e2 ,

16 full_edge full_edge_e1 ,

17 face_area fa,

18 face_area fb

19 WHERE full_edge_e1.face1=full_edge_e2.face1

20 AND full_edge_e1.face2=full_edge_e3.face2

21 AND full_edge_e1.face2=full_edge_e5.face1

22 AND full_edge_e1.face2=full_edge_e6.face2

23 AND full_edge_e2.face2=full_edge_e4.face2

24 AND full_edge_e2.face2=full_edge_e5.face2

25 AND full_edge_e2.face2=full_edge_e6.face1

26 AND full_edge_e3.face1=full_edge_e4.face1

27 AND full_edge_e3.face2=full_edge_e5.face1

28 AND full_edge_e3.face2=full_edge_e6.face2

29 AND full_edge_e4.face2=full_edge_e5.face2

30 AND full_edge_e4.face2=full_edge_e6.face1

31 AND full_edge_e1.convexity =2

32 AND full_edge_e2.convexity =2

33 AND full_edge_e3.convexity =2

34 AND full_edge_e4.convexity =2

35 AND full_edge_e5.convexity =3

36 AND full_edge_e6.convexity =3

37 AND full_edge_e3.face1 <>full_edge_e2.face2

38 AND full_edge_e3.face1 <>full_edge_e1.face2

39 AND full_edge_e3.face1 <>full_edge_e1.face1
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40 AND full_edge_e2.face2 <>full_edge_e1.face2

41 AND full_edge_e2.face2 <>full_edge_e1.face1

42 AND full_edge_e1.face2 <>full_edge_e1.face1

43 AND full_edge_e6.edge <>full_edge_e5.edge

44 AND full_edge_e6.edge <>full_edge_e4.edge

45 AND full_edge_e6.edge <>full_edge_e3.edge

46 AND full_edge_e6.edge <>full_edge_e2.edge

47 AND full_edge_e6.edge <>full_edge_e1.edge

48 AND full_edge_e5.edge <>full_edge_e4.edge

49 AND full_edge_e5.edge <>full_edge_e3.edge

50 AND full_edge_e5.edge <>full_edge_e2.edge

51 AND full_edge_e5.edge <>full_edge_e1.edge

52 AND full_edge_e4.edge <>full_edge_e3.edge

53 AND full_edge_e4.edge <>full_edge_e2.edge

54 AND full_edge_e4.edge <>full_edge_e1.edge

55 AND full_edge_e3.edge <>full_edge_e2.edge

56 AND full_edge_e3.edge <>full_edge_e1.edge

57 AND full_edge_e2.edge <>full_edge_e1.edge

58 AND fa.face=full_edge_e1.face2

59 AND fb.face=full_edge_e2.face2

60 AND fa.area > 100

61 AND fb.area > 100;

Listing 5: Eager evaluation (a)

1 SELECT full_edge_e1.edge AS e1 ,

2 full_edge_e2.edge AS e2 ,

3 full_edge_e3.edge AS e3 ,

4 full_edge_e4.edge AS e4 ,

5 full_edge_e5.edge AS e5 ,

6 full_edge_e6.edge AS e6 ,

7 full_edge_e1.face1 AS f1 ,

8 full_edge_e3.face1 AS f2 ,

9 full_edge_e1.face2 AS f3 ,

10 full_edge_e2.face2 AS f4

11 FROM full_edge full_edge_e6 ,

12 full_edge full_edge_e5 ,

13 full_edge full_edge_e4 ,

14 full_edge full_edge_e3 ,

15 full_edge full_edge_e2 ,

16 full_edge full_edge_e1

17 WHERE full_edge_e1.face1=full_edge_e2.face1

18 AND full_edge_e1.face2=full_edge_e3.face2

19 AND full_edge_e1.face2=full_edge_e5.face1

20 AND full_edge_e1.face2=full_edge_e6.face2

21 AND full_edge_e2.face2=full_edge_e4.face2
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22 AND full_edge_e2.face2=full_edge_e5.face2

23 AND full_edge_e2.face2=full_edge_e6.face1

24 AND full_edge_e3.face1=full_edge_e4.face1

25 AND full_edge_e3.face2=full_edge_e5.face1

26 AND full_edge_e3.face2=full_edge_e6.face2

27 AND full_edge_e4.face2=full_edge_e5.face2

28 AND full_edge_e4.face2=full_edge_e6.face1

29 AND full_edge_e1.convexity =2

30 AND full_edge_e2.convexity =2

31 AND full_edge_e3.convexity =2

32 AND full_edge_e4.convexity =2

33 AND full_edge_e5.convexity =3

34 AND full_edge_e6.convexity =3

35 AND full_edge_e3.face1 <>full_edge_e2.face2

36 AND full_edge_e3.face1 <>full_edge_e1.face2

37 AND full_edge_e3.face1 <>full_edge_e1.face1

38 AND full_edge_e2.face2 <>full_edge_e1.face2

39 AND full_edge_e2.face2 <>full_edge_e1.face1

40 AND full_edge_e1.face2 <>full_edge_e1.face1

41 AND full_edge_e6.edge <>full_edge_e5.edge

42 AND full_edge_e6.edge <>full_edge_e4.edge

43 AND full_edge_e6.edge <>full_edge_e3.edge

44 AND full_edge_e6.edge <>full_edge_e2.edge

45 AND full_edge_e6.edge <>full_edge_e1.edge

46 AND full_edge_e5.edge <>full_edge_e4.edge

47 AND full_edge_e5.edge <>full_edge_e3.edge

48 AND full_edge_e5.edge <>full_edge_e2.edge

49 AND full_edge_e5.edge <>full_edge_e1.edge

50 AND full_edge_e4.edge <>full_edge_e3.edge

51 AND full_edge_e4.edge <>full_edge_e2.edge

52 AND full_edge_e4.edge <>full_edge_e1.edge

53 AND full_edge_e3.edge <>full_edge_e2.edge

54 AND full_edge_e3.edge <>full_edge_e1.edge

55 AND full_edge_e2.edge <>full_edge_e1.edge

56 AND calc_area(full_edge_e1.face2) >100

57 AND calc_area(full_edge_e2.face2) >100;

Listing 6: Eager evaluation (b)

1

2 SELECT full_edge_e1.edge AS e1 ,

3 full_edge_e2.edge AS e2 ,

4 full_edge_e3.edge AS e3 ,

5 full_edge_e4.edge AS e4 ,

6 full_edge_e5.edge AS e5 ,

7 full_edge_e6.edge AS e6 ,
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8 full_edge_e1.face1 AS f1 ,

9 full_edge_e3.face1 AS f2 ,

10 full_edge_e1.face2 AS f3 ,

11 full_edge_e2.face2 AS f4

12 FROM full_edge full_edge_e6 ,

13 full_edge full_edge_e5 ,

14 full_edge full_edge_e4 ,

15 full_edge full_edge_e3 ,

16 full_edge full_edge_e2 ,

17 full_edge full_edge_e1

18 WHERE full_edge_e1.face1=full_edge_e2.face1

19 AND full_edge_e1.face2=full_edge_e3.face2

20 AND full_edge_e1.face2=full_edge_e5.face1

21 AND full_edge_e1.face2=full_edge_e6.face2

22 AND full_edge_e2.face2=full_edge_e4.face2

23 AND full_edge_e2.face2=full_edge_e5.face2

24 AND full_edge_e2.face2=full_edge_e6.face1

25 AND full_edge_e3.face1=full_edge_e4.face1

26 AND full_edge_e3.face2=full_edge_e5.face1

27 AND full_edge_e3.face2=full_edge_e6.face2

28 AND full_edge_e4.face2=full_edge_e5.face2

29 AND full_edge_e4.face2=full_edge_e6.face1

30 AND full_edge_e1.convexity =2

31 AND full_edge_e2.convexity =2

32 AND full_edge_e3.convexity =2

33 AND full_edge_e4.convexity =2

34 AND full_edge_e5.convexity =3

35 AND full_edge_e6.convexity =3

36 AND full_edge_e3.face1 <>full_edge_e2.face2

37 AND full_edge_e3.face1 <>full_edge_e1.face2

38 AND full_edge_e3.face1 <>full_edge_e1.face1

39 AND full_edge_e2.face2 <>full_edge_e1.face2

40 AND full_edge_e2.face2 <>full_edge_e1.face1

41 AND full_edge_e1.face2 <>full_edge_e1.face1

42 AND full_edge_e6.edge <>full_edge_e5.edge

43 AND full_edge_e6.edge <>full_edge_e4.edge

44 AND full_edge_e6.edge <>full_edge_e3.edge

45 AND full_edge_e6.edge <>full_edge_e2.edge

46 AND full_edge_e6.edge <>full_edge_e1.edge

47 AND full_edge_e5.edge <>full_edge_e4.edge

48 AND full_edge_e5.edge <>full_edge_e3.edge

49 AND full_edge_e5.edge <>full_edge_e2.edge

50 AND full_edge_e5.edge <>full_edge_e1.edge

51 AND full_edge_e4.edge <>full_edge_e3.edge

52 AND full_edge_e4.edge <>full_edge_e2.edge
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53 AND full_edge_e4.edge <>full_edge_e1.edge

54 AND full_edge_e3.edge <>full_edge_e2.edge

55 AND full_edge_e3.edge <>full_edge_e1.edge

56 AND full_edge_e2.edge <>full_edge_e1.edge

57 AND get_area(full_edge_e1.face2) >100

58 AND get_area(full_edge_e2.face2) >100;

Listing 7: Eager evaluation (c)

In this query, the remote CAD predicate get_area is defined as:

1 CREATE or replace FUNCTION get_area (face integer) RETURNS

2 float AS $$ DECLARE RSLT float;

3 BEGIN

4 SELECT area into rslt FROM face_area WHERE face_area.face=$1;

5 IF NOT FOUND THEN

6 rslt := calc_area ($1);

7 INSERT INTO face_area VALUES ($1 ,rslt);

8 END IF;

9 return rslt;

10 END;

11 $$ LANGUAGE plpgsql;

Listing 8: Lazy cache function

1

2 SELECT full_edge_e1.edge AS e1 ,

3 full_edge_e2.edge AS e2 ,

4 full_edge_e3.edge AS e3 ,

5 full_edge_e4.edge AS e4 ,

6 full_edge_e5.edge AS e5 ,

7 full_edge_e6.edge AS e6 ,

8 full_edge_e1.face1 AS f1 ,

9 full_edge_e3.face1 AS f2 ,

10 full_edge_e1.face2 AS f3 ,

11 full_edge_e2.face2 AS f4

12 FROM full_edge full_edge_e6 ,

13 full_edge full_edge_e5 ,

14 full_edge full_edge_e4 ,

15 full_edge full_edge_e3 ,

16 full_edge full_edge_e2 ,

17 full_edge full_edge_e1

18 WHERE full_edge_e1.face1=full_edge_e2.face1

19 AND full_edge_e1.face2=full_edge_e3.face2

20 AND full_edge_e1.face2=full_edge_e5.face1

21 AND full_edge_e1.face2=full_edge_e6.face2

22 AND full_edge_e2.face2=full_edge_e4.face2
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23 AND full_edge_e2.face2=full_edge_e5.face2

24 AND full_edge_e2.face2=full_edge_e6.face1

25 AND full_edge_e3.face1=full_edge_e4.face1

26 AND full_edge_e3.face2=full_edge_e5.face1

27 AND full_edge_e3.face2=full_edge_e6.face2

28 AND full_edge_e4.face2=full_edge_e5.face2

29 AND full_edge_e4.face2=full_edge_e6.face1

30 AND full_edge_e1.convexity =2

31 AND full_edge_e2.convexity =2

32 AND full_edge_e3.convexity =2

33 AND full_edge_e4.convexity =2

34 AND full_edge_e5.convexity =3

35 AND full_edge_e6.convexity =3

36 AND full_edge_e3.face1 <>full_edge_e2.face2

37 AND full_edge_e3.face1 <>full_edge_e1.face2

38 AND full_edge_e3.face1 <>full_edge_e1.face1

39 AND full_edge_e2.face2 <>full_edge_e1.face2

40 AND full_edge_e2.face2 <>full_edge_e1.face1

41 AND full_edge_e1.face2 <>full_edge_e1.face1

42 AND full_edge_e6.edge <>full_edge_e5.edge

43 AND full_edge_e6.edge <>full_edge_e4.edge

44 AND full_edge_e6.edge <>full_edge_e3.edge

45 AND full_edge_e6.edge <>full_edge_e2.edge

46 AND full_edge_e6.edge <>full_edge_e1.edge

47 AND full_edge_e5.edge <>full_edge_e4.edge

48 AND full_edge_e5.edge <>full_edge_e3.edge

49 AND full_edge_e5.edge <>full_edge_e2.edge

50 AND full_edge_e5.edge <>full_edge_e1.edge

51 AND full_edge_e4.edge <>full_edge_e3.edge

52 AND full_edge_e4.edge <>full_edge_e2.edge

53 AND full_edge_e4.edge <>full_edge_e1.edge

54 AND full_edge_e3.edge <>full_edge_e2.edge

55 AND full_edge_e3.edge <>full_edge_e1.edge

56 AND full_edge_e2.edge <>full_edge_e1.edge

57 GROUP BY full_edge_e1.edge ,

58 full_edge_e2.edge ,

59 full_edge_e3.edge ,

60 full_edge_e4.edge ,

61 full_edge_e5.edge ,

62 full_edge_e6.edge ,

63 full_edge_e1.face1 ,

64 full_edge_e3.face1 ,

65 full_edge_e1.face2 ,

66 full_edge_e2.face2

67 HAVING calc_area(full_edge_e1.face2) >100
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68 AND calc_area(full_edge_e2.face2) >100;

Listing 9: Lazy evaluation (a)

1

2 SELECT full_edge_e1.edge AS e1 ,

3 full_edge_e2.edge AS e2 ,

4 full_edge_e3.edge AS e3 ,

5 full_edge_e4.edge AS e4 ,

6 full_edge_e5.edge AS e5 ,

7 full_edge_e6.edge AS e6 ,

8 full_edge_e1.face1 AS f1 ,

9 full_edge_e3.face1 AS f2 ,

10 full_edge_e1.face2 AS f3 ,

11 full_edge_e2.face2 AS f4

12 FROM full_edge full_edge_e6 ,

13 full_edge full_edge_e5 ,

14 full_edge full_edge_e4 ,

15 full_edge full_edge_e3 ,

16 full_edge full_edge_e2 ,

17 full_edge full_edge_e1

18 WHERE full_edge_e1.face1=full_edge_e2.face1

19 AND full_edge_e1.face2=full_edge_e3.face2

20 AND full_edge_e1.face2=full_edge_e5.face1

21 AND full_edge_e1.face2=full_edge_e6.face2

22 AND full_edge_e2.face2=full_edge_e4.face2

23 AND full_edge_e2.face2=full_edge_e5.face2

24 AND full_edge_e2.face2=full_edge_e6.face1

25 AND full_edge_e3.face1=full_edge_e4.face1

26 AND full_edge_e3.face2=full_edge_e5.face1

27 AND full_edge_e3.face2=full_edge_e6.face2

28 AND full_edge_e4.face2=full_edge_e5.face2

29 AND full_edge_e4.face2=full_edge_e6.face1

30 AND full_edge_e1.convexity =2

31 AND full_edge_e2.convexity =2

32 AND full_edge_e3.convexity =2

33 AND full_edge_e4.convexity =2

34 AND full_edge_e5.convexity =3

35 AND full_edge_e6.convexity =3

36 AND full_edge_e3.face1 <>full_edge_e2.face2

37 AND full_edge_e3.face1 <>full_edge_e1.face2

38 AND full_edge_e3.face1 <>full_edge_e1.face1

39 AND full_edge_e2.face2 <>full_edge_e1.face2

40 AND full_edge_e2.face2 <>full_edge_e1.face1

41 AND full_edge_e1.face2 <>full_edge_e1.face1

42 AND full_edge_e6.edge <>full_edge_e5.edge
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43 AND full_edge_e6.edge <>full_edge_e4.edge

44 AND full_edge_e6.edge <>full_edge_e3.edge

45 AND full_edge_e6.edge <>full_edge_e2.edge

46 AND full_edge_e6.edge <>full_edge_e1.edge

47 AND full_edge_e5.edge <>full_edge_e4.edge

48 AND full_edge_e5.edge <>full_edge_e3.edge

49 AND full_edge_e5.edge <>full_edge_e2.edge

50 AND full_edge_e5.edge <>full_edge_e1.edge

51 AND full_edge_e4.edge <>full_edge_e3.edge

52 AND full_edge_e4.edge <>full_edge_e2.edge

53 AND full_edge_e4.edge <>full_edge_e1.edge

54 AND full_edge_e3.edge <>full_edge_e2.edge

55 AND full_edge_e3.edge <>full_edge_e1.edge

56 AND full_edge_e2.edge <>full_edge_e1.edge

57 GROUP BY full_edge_e1.edge ,

58 full_edge_e2.edge ,

59 full_edge_e3.edge ,

60 full_edge_e4.edge ,

61 full_edge_e5.edge ,

62 full_edge_e6.edge ,

63 full_edge_e1.face1 ,

64 full_edge_e3.face1 ,

65 full_edge_e1.face2 ,

66 full_edge_e2.face2

67 HAVING get_area(full_edge_e1.face2) > 100

68 AND get_area(full_edge_e2.face2) >100;

Listing 10: Lazy evaluation (b)

We performed the following three experiments to determine the impact
of lazy evaluation, Table 6 gives the numbers of features found and Table 7
gives the times taken to find these features in the reducer model in Fig. 12.

Task 1. Find open slots with side face area greater than 20, and bottom
face area greater than 2;

Task 2. Find all through-holes with side face area less than 550 and bore
area smaller than 50;

Task 3. Find all through-holes with cylindrical faces area greater than 100;

As Table 7 shows, the lazy evaluation approach (b) achieved the best per-
formance in each case, being about 6 to 8 times faster than eager evaluation
approach (a), much better than eager evaluation approaches (b) and (c). It
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Task Task 1 Task 2 Task 3
Number of features, any size 140 164 164
Number of features, specified size 35 18 142

Table 6: Feature finding results for various tasks

Experiment Task 1 Task 2 Task 3
Eager evaluation (a) 1215.8 1322.9 1313.8
Eager evaluation (b) 40310.6 51285.7 53308.9
Eager evaluation (c) 11398.9 15471.4 14426.2
Lazy evaluation (a) 228.3 1278.6 400.7
Lazy evaluation (b) 162.7 209.7 155.6

Table 7: Feature finding times (in milliseconds) for the reducer models, using different
evaluation strategies, and different tasks.

is also about twice as fast as lazy evaluation approach (a). Using eager eval-
uation (a) takes about the same time for each task, because of the similar
procedure—first calculate areas of all faces, cache them in a local table and
then perform a filter based query; time is dominated by the area calcula-
tions. Eager evaluation (b) is the slowest approach: the area of each face is
evaluated multiple times. Eager evaluation (c) is better, as caching means
that areas are only computed once. For the same reason, lazy evaluation
approach (b) performs better than lazy evaluation approach (a).

5.5. Predicate ordering

For complex models, when multiple time consuming predicates must be
evaluated, correctly ordering them can improve performance. In this sec-
tion, we show further experiments which not only use lazy evaluation, but
also plan execution order based on selectivity combined with average times
for predicate evaluation. Determining average times and selectivity requires
offline training on a large model set. For this, we used 826 real industrial
models of CPU heat sinks downloaded from micforg [45]. Examples of these
models are shown in Fig. 13.

The model in which features are to be found is shown in Fig 14, which,
like other CPU heat sinks, includes a large base and fins of several different
sizes. Detailed fin structure is illustrated in Fig 15. Each fin is composed of
two cylindrical faces with two tangentially connected side faces, a top face
and a bottom edge loop.
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Figure 13: Examples from CPU heatsink training set

The feature recognition task here is to find small fins, defined as fins
whose side face area is between 10 and 20 square units, and whose top face
has perimeter between 18.5 and 18.7 units. This requires the predicates

1 area_in_range(full_edge_e4.face2 , 10, 20)

2 perimeter_in_range(full_edge_e1.face1 , 18.5, 18.7);

In our feature finder, these range predicates are translated so as to be pro-
cessed in PostgreSQL using lazy evaluation with caching, where in turn the
function calc_area is a remote CAD function call to CADfix.

1 CREATE OR REPLACE FUNCTION area_in_range(face int , lv float ,

50



Figure 14: Model in which we wish to find small fins

hv float) RETURNS boolean AS

2 $$ DECLARE

3 RSLT float; val boolean;

4 BEGIN

5 SELECT area INTO rslt

6 FROM face_area

7 WHERE face_area.face=$1;

8 IF NOT FOUND

9 THEN rslt := calc_area ($1);

10 INSERT INTO face_area VALUES ($1 ,rslt);

11 END IF;

12 RETURN ((rslt > $2) and (rslt < $3)) ;

13 END;

14 $$ LANGUAGE plpgsql;

To estimate the cost and selectivity of the area and perimeter functions,
offline training is performed on the set of training models. The area and
perimeter distributions are shown in Figs. 16 and 17 respectively. Average
times to compute these properties, and their selectivity for the particular
ranges of values used in the test, are given in Table 8.

The target query used to find small fins is as follows, where the two
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Figure 15: Fin detail

Predicate average execution time average selectivity
area in range 1 ms 0.2231
perimeter in range 0.003 ms 0.0084

Table 8: Selectivity and cost of target predicates

predicates in the HAVING clause are the ones being considered for reordering:

1 SELECT full_edge_e1.edge AS e1 ,

2 full_edge_e2.edge AS e2 ,

3 full_edge_e3.edge AS e3 ,

4 full_edge_e4.edge AS e4 ,

5 full_edge_e5.edge AS e5 ,

6 full_edge_e6.edge AS e6 ,

7 full_edge_e7.edge AS e7 ,

8 full_edge_e8.edge AS e8 ,

9 full_edge_e9.edge AS e9 ,

10 full_edge_e10.edge AS e10 ,

11 full_edge_e11.edge AS e11 ,

12 full_edge_e12.edge AS e12 ,

13 full_edge_e1.face1 AS f1 ,
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Figure 16: Histogram of face areas for training model dataset

14 full_edge_e1.face2 AS f2 ,

15 full_edge_e4.face2 AS f3 ,

16 full_edge_e3.face2 AS f4 ,

17 full_edge_e2.face2 AS f5 ,

18 full_edge_e9.face2 AS f6

19 FROM full_edge full_edge_e12 ,

20 full_edge full_edge_e11 ,

21 full_edge full_edge_e10 ,

22 full_edge full_edge_e9 ,

23 full_edge full_edge_e8 ,

24 full_edge full_edge_e7 ,

25 full_edge full_edge_e6 ,
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Figure 17: Histogram of face perimeters for training model dataset

26 full_edge full_edge_e5 ,

27 full_edge full_edge_e4 ,

28 full_edge full_edge_e3 ,

29 full_edge full_edge_e2 ,

30 full_edge full_edge_e1

31 WHERE full_edge_e1.face1=full_edge_e2.face1

32 AND full_edge_e1.face1=full_edge_e3.face1

33 AND full_edge_e1.face1=full_edge_e4.face1

34 AND full_edge_e1.face2=full_edge_e5.face1

35 AND full_edge_e1.face2=full_edge_e6.face1

36 AND full_edge_e1.face2=full_edge_e9.face1

37 AND full_edge_e2.face1=full_edge_e3.face1
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38 AND full_edge_e2.face1=full_edge_e4.face1

39 AND full_edge_e2.face2=full_edge_e5.face2

40 AND full_edge_e2.face2=full_edge_e8.face2

41 AND full_edge_e2.face2=full_edge_e12.face2

42 AND full_edge_e3.face1=full_edge_e4.face1

43 AND full_edge_e3.face2=full_edge_e7.face2

44 AND full_edge_e3.face2=full_edge_e8.face1

45 AND full_edge_e3.face2=full_edge_e11.face1

46 AND full_edge_e4.face2=full_edge_e6.face2

47 AND full_edge_e4.face2=full_edge_e7.face1

48 AND full_edge_e4.face2=full_edge_e10.face2

49 AND full_edge_e5.face1=full_edge_e6.face1

50 AND full_edge_e5.face2=full_edge_e8.face2

51 AND full_edge_e5.face1=full_edge_e9.face1

52 AND full_edge_e5.face2=full_edge_e12.face2

53 AND full_edge_e6.face2=full_edge_e7.face1

54 AND full_edge_e6.face1=full_edge_e9.face1

55 AND full_edge_e6.face2=full_edge_e10.face2

56 AND full_edge_e7.face2=full_edge_e8.face1

57 AND full_edge_e7.face1=full_edge_e10.face2

58 AND full_edge_e7.face2=full_edge_e11.face1

59 AND full_edge_e8.face1=full_edge_e11.face1

60 AND full_edge_e8.face2=full_edge_e12.face2

61 AND full_edge_e9.face2=full_edge_e10.face1

62 AND full_edge_e9.face2=full_edge_e11.face2

63 AND full_edge_e9.face2=full_edge_e12.face1

64 AND full_edge_e10.face1=full_edge_e11.face2

65 AND full_edge_e10.face1=full_edge_e12.face1

66 AND full_edge_e11.face2=full_edge_e12.face1

67 AND full_edge_e1.convexity =2

68 AND full_edge_e2.convexity =2

69 AND full_edge_e3.convexity =2

70 AND full_edge_e4.convexity =2

71 AND full_edge_e5.convexity =3

72 AND full_edge_e6.convexity =3

73 AND full_edge_e7.convexity =3

74 AND full_edge_e8.convexity =3

75 AND full_edge_e9.convexity =1

76 AND full_edge_e10.convexity =1

77 AND full_edge_e11.convexity =1

78 AND full_edge_e12.convexity =1

79 AND full_edge_e12.edge <>full_edge_e11.edge

80 AND full_edge_e12.edge <>full_edge_e10.edge

81 AND full_edge_e12.edge <>full_edge_e9.edge

82 AND full_edge_e12.edge <>full_edge_e8.edge
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83 AND full_edge_e12.edge <>full_edge_e7.edge

84 AND full_edge_e12.edge <>full_edge_e6.edge

85 AND full_edge_e12.edge <>full_edge_e5.edge

86 AND full_edge_e12.edge <>full_edge_e4.edge

87 AND full_edge_e12.edge <>full_edge_e3.edge

88 AND full_edge_e12.edge <>full_edge_e2.edge

89 AND full_edge_e12.edge <>full_edge_e1.edge

90 AND full_edge_e11.edge <>full_edge_e10.edge

91 AND full_edge_e11.edge <>full_edge_e9.edge

92 AND full_edge_e11.edge <>full_edge_e8.edge

93 AND full_edge_e11.edge <>full_edge_e7.edge

94 AND full_edge_e11.edge <>full_edge_e6.edge

95 AND full_edge_e11.edge <>full_edge_e5.edge

96 AND full_edge_e11.edge <>full_edge_e4.edge

97 AND full_edge_e11.edge <>full_edge_e3.edge

98 AND full_edge_e11.edge <>full_edge_e2.edge

99 AND full_edge_e11.edge <>full_edge_e1.edge

100 AND full_edge_e10.edge <>full_edge_e9.edge

101 AND full_edge_e10.edge <>full_edge_e8.edge

102 AND full_edge_e10.edge <>full_edge_e7.edge

103 AND full_edge_e10.edge <>full_edge_e6.edge

104 AND full_edge_e10.edge <>full_edge_e5.edge

105 AND full_edge_e10.edge <>full_edge_e4.edge

106 AND full_edge_e10.edge <>full_edge_e3.edge

107 AND full_edge_e10.edge <>full_edge_e2.edge

108 AND full_edge_e10.edge <>full_edge_e1.edge

109 AND full_edge_e9.edge <>full_edge_e8.edge

110 AND full_edge_e9.edge <>full_edge_e7.edge

111 AND full_edge_e9.edge <>full_edge_e6.edge

112 AND full_edge_e9.edge <>full_edge_e5.edge

113 AND full_edge_e9.edge <>full_edge_e4.edge

114 AND full_edge_e9.edge <>full_edge_e3.edge

115 AND full_edge_e9.edge <>full_edge_e2.edge

116 AND full_edge_e9.edge <>full_edge_e1.edge

117 AND full_edge_e8.edge <>full_edge_e7.edge

118 AND full_edge_e8.edge <>full_edge_e6.edge

119 AND full_edge_e8.edge <>full_edge_e5.edge

120 AND full_edge_e8.edge <>full_edge_e4.edge

121 AND full_edge_e8.edge <>full_edge_e3.edge

122 AND full_edge_e8.edge <>full_edge_e2.edge

123 AND full_edge_e8.edge <>full_edge_e1.edge

124 AND full_edge_e7.edge <>full_edge_e6.edge

125 AND full_edge_e7.edge <>full_edge_e5.edge

126 AND full_edge_e7.edge <>full_edge_e4.edge

127 AND full_edge_e7.edge <>full_edge_e3.edge
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128 AND full_edge_e7.edge <>full_edge_e2.edge

129 AND full_edge_e7.edge <>full_edge_e1.edge

130 AND full_edge_e6.edge <>full_edge_e5.edge

131 AND full_edge_e6.edge <>full_edge_e4.edge

132 AND full_edge_e6.edge <>full_edge_e3.edge

133 AND full_edge_e6.edge <>full_edge_e2.edge

134 AND full_edge_e6.edge <>full_edge_e1.edge

135 AND full_edge_e5.edge <>full_edge_e4.edge

136 AND full_edge_e5.edge <>full_edge_e3.edge

137 AND full_edge_e5.edge <>full_edge_e2.edge

138 AND full_edge_e5.edge <>full_edge_e1.edge

139 AND full_edge_e4.edge <>full_edge_e3.edge

140 AND full_edge_e4.edge <>full_edge_e2.edge

141 AND full_edge_e4.edge <>full_edge_e1.edge

142 AND full_edge_e3.edge <>full_edge_e2.edge

143 AND full_edge_e3.edge <>full_edge_e1.edge

144 AND full_edge_e2.edge <>full_edge_e1.edge

145 AND face_geometry_is(full_edge_e1.face2 ,2006)

146 AND face_geometry_is(full_edge_e3.face2 ,2006)

147 GROUP BY full_edge_e1.edge ,

148 full_edge_e2.edge ,

149 full_edge_e3.edge ,

150 full_edge_e4.edge ,

151 full_edge_e5.edge ,

152 full_edge_e6.edge ,

153 full_edge_e7.edge ,

154 full_edge_e8.edge ,

155 full_edge_e9.edge ,

156 full_edge_e10.edge ,

157 full_edge_e11.edge ,

158 full_edge_e12.edge ,

159 full_edge_e1.face1 ,

160 full_edge_e1.face2 ,

161 full_edge_e4.face2 ,

162 full_edge_e3.face2 ,

163 full_edge_e2.face2 ,

164 full_edge_e9.face2

165 HAVING area_in_range(full_edge_e4.face2 , 10, 20)

166 AND perimeter_in_range(full_edge_e1.face1 , 18.5, 18.7);

Listing 11: Query to find small fins

We compared results obtained using our system based on the PostgreSQL
engine with lazy evaluation, with and without predicate reordering. The test
was repeated 100 times to give an averaged performance result. Each time the
PostgreSQL server was restarted, warmed up and the OS caches (pagecache,
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Method area-perimeter perimeter-area
without reordering 498 ms 393 ms
with reordering 392 ms 392 ms

Table 9: Average feature finding times with and without predicate reordering optimization

dentries and inodes) were cleared.
For both versions, we timed the SQL query with the predicates given in

either possible order: area then perimeter, or perimeter then area. With re-
ordering, the query planner always chooses the predicate ordering perimeter
then area, whichever ordering the predicates are initially provided in: the
much higher cost of computing areas compared to perimeters far outweigh-
s the differences in selectivity. Without reordering, predicates are simply
executed in the sequence given.

Fig. 18 give the times taken to find features in each of the 100 runs in each
case, using the different strategies. Without reordering, the approaches take
different times according to which predicate is evaluated first. Computing
area first, most runs take 350–400 ms, while if perimeter is computed first,
most runs take 490–530 ms. However, if reordering is used, no matter how
the predicates are ordered in the original definition, the times taken in both
cases have closely similar ranges and distributions. Average times are given
in Table 9. As expected, the optimizer-chosen perimeter-then-area ordering
is faster than the alternative area-then-perimeter ordering. The overhead
required to perform the selectivity calculation is negligible.

As effective translation and lazy evaluation already improve performance
greatly, predicate ordering only makes a worthwhile difference for large mod-
els. Most of the time spent is running the query itself, rather than the CAD
computations, so the saving is not much (21% in this case). Nevertheless,
for other more complex predicates that the CAD modeller takes longer to
process, the savings could be greater.

6. Conclusions

This paper has shown that a declarative approach can find simple features
in large scale CAD models in a fraction of a second. The key to this perfor-
mance lies in database optimization techniques. Our particular contributions
here are: (i) a novel approach to translating declarative feature definitions
into SQL queries, with improved performance over our earlier work, (ii) use
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Figure 18: Times taken for for each of 100 runs. N = No reordering of predicates. R =
Reordering of predicates. A = Area first. P = Perimeter first.

of lazy evaluation to avoid computing complex predicates whose results are
not needed, and (iii) use of selectivity to reorder query processing for further
minor improvements.

This work has demonstrated that it is possible to build an efficient, ex-
tensible, feature recognition system based on declarative feature definitions.
Use is made of mature database query optimization technology to achieve
high performance, and indeed linear complexity for simple features.
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