
1 3

Hum Genet (2015) 134:851–864
DOI 10.1007/s00439-015-1566-1

ORIGINAL INVESTIGATION

The somatic autosomal mutation matrix in cancer genomes

Nuri A. Temiz1,4 · Duncan E. Donohue1,5 · Albino Bacolla1,2 · Karen M. Vasquez2 · 
David N. Cooper3 · Uma Mudunuri1 · Joseph Ivanic1 · Regina Z. Cer1,6 · Ming Yi1 · 
Robert M. Stephens1 · Jack R. Collins1 · Brian T. Luke1 

Received: 17 February 2015 / Accepted: 12 May 2015 / Published online: 23 May 2015 
© The Author(s) 2015. This article is published with open access at Springerlink.com

genome-wide sets of somatic mutations as a 96-element 
vector, a procedure that only captures the immediate 
neighbors of the mutated nucleotide. Herein, we present 
a 32  ×  12 mutation matrix that captures the nucleotide 
pattern two nucleotides upstream and downstream of the 
mutation. A somatic autosomal mutation matrix (SAMM) 
was constructed from tumor-specific mutations derived 
from each of 909 individual cancer genomes harboring a 
total of 10,681,843 single-base substitutions. In addition, 
mechanistic template mutation matrices (MTMMs) repre-
senting oxidative DNA damage, ultraviolet-induced DNA 
damage, 5mCpG deamination, and APOBEC-mediated 
cytosine mutation, are presented. MTMMs were mapped to 
the individual tumor SAMMs to determine the maximum 
contribution of each mutational mechanism to the overall 
mutation pattern. A Manhattan distance across all SAMM 
elements between any two tumor genomes was used to 
determine their relative distance. Employing this metric, 
89.5 % of all tumor genomes were found to have a nearest 
neighbor from the same tissue of origin. When a distance-
dependent 6-nearest neighbor classifier was used, 86.9  % 
of all SAMMs were assigned to the correct tissue of ori-
gin. Thus, although tumors from different tissues may have 
similar mutation patterns, their SAMMs often display sig-
natures that are characteristic of specific tissues.

Introduction

Cancer is promoted by a diverse set of genetic and epige-
netic alterations in the soma, including single-base substi-
tutions (SBSs), insertions and deletions, chromosome and 
DNA segment copy number variations (CNV), as well as 
chromosomal translocations and rearrangements. Next-
generation sequencing has become a powerful tool for 
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identifying these alterations (Meyerson et  al. 2010), pro-
viding an unprecedented opportunity to further our under-
standing of tumorigenesis. The mutations in each tumor 
genome reflect the net contribution from each of the indi-
vidual mutational mechanisms that played a role in the 
onset of disease and its subsequent development (Stratton 
2011), modified by the influence of cellular processes such 
as DNA replication (Lawrence et  al. 2013), transcription, 
and the DNA repair pathways (Vogelstein et  al. 2013). 
Whereas “driver” mutations enable positive selection, 
“passenger” mutations are, by definition, simply tolerated 
and provide no proliferative advantage or disadvantage to 
tumor cells (Stratton et al. 2009; Vogelstein et al. 2013); the 
molecular mechanisms leading to the generation of driver 
and passenger mutations are however expected to be simi-
lar. Hence, because passenger mutations vastly outnumber 
driver mutations, in the absence of selection the overall 
SBS mutation pattern is believed to capture the compos-
ite history of the mutational processes that acted upon the 
tumor cells. Mutational patterns are in turn determined by 
chemical reactions, not only with respect to initial base 
modification by chemical or enzymatic activity (e.g., cyto-
sine deamination) but also through subsequent interactions 
with DNA repair mechanisms, as well as long-range inter-
actions at both intermolecular and atomic levels, such that 
these patterns may be heavily influenced by the local nucle-
otide sequence context (Holmquist and Gao 1997; Pfeifer 
et al. 2005). Indeed, sequence-specific mutational biases in 
germline mutational spectra (Cooper et al. 2011), and more 
specifically in genes implicated in tumorigenesis (Ivanov 
et al. 2011), have been shown to be consequent to the basic 
properties of a range of different mutational mechanisms 
(Bacolla et al. 2014; Helleday et al. 2014).

Although many mutational processes generally manifest 
simultaneously within a tumor, UV-induced DNA damage 
has been specifically implicated in melanoma and other 
skin cancers (Armstrong and Kricker 2001; Hodis et  al. 
2012; Wikonkal and Brash 1999). It comprises a set of sig-
nature mutations that result from the formation of photo-
products, such as cyclobutane pyrimidine dimers (CPDs) 
and pyrimidine 6-4 pyrimidone photoproducts at two adja-
cent pyrimidines (Banerjee et  al. 1988; Beauchamp and 
Lacroix 2012). The majority of UV-induced damage is CPD 
mediated (Pfeifer and Besaratinia 2012). It is well estab-
lished that nucleotide excision repair (NER) represents the 
main pathway for correcting CPDs (Batty and Wood 2000). 
However, NER proteins display strong sequence-depend-
ent biases in the repair rates of CPDs (Holmquist and Gao 
1997; Suter et al. 2000; Tornaletti and Pfeifer 1994), which 
serve to influence the final (i.e., observable) mutational 
spectrum.

Oxidative DNA damage originates endogenously 
from reactive oxygen species and exogenously from 

ionizing radiation and certain chemicals (Bacolla et  al. 
2014; Dizdaroglu 2012; Maynard et al. 2009). One of the 
most common oxidative base modifications, 8-oxo-7,8-di-
hydroguanine, is highly mutagenic (Dizdaroglu 2012; 
Grollman and Moriya 1993; Maynard et  al. 2009) and is 
excised by the base excision repair (BER) pathway (May-
nard et al. 2009). Signatures of oxidative damage have been 
attributed to G → T, G → C and A → T transversions, as 
well as G → A transitions, in various tumor types, includ-
ing lung cancer (Lee et  al. 2010; Pleasance et  al. 2010b) 
and melanoma (Agrawal et  al. 2011; Pleasance et  al. 
2010a).

5-Methyl-CpG (5mCpG) dinucleotides have been firmly 
established as hotspots of gene mutation in human pathol-
ogy, both in the germline (Cooper et al. 2010) and the soma 
(Pfeifer 2006), and specifically including tumor suppressor 
genes (Mort et al. 2008). Mutation at this doublet is charac-
terized by C → T transitions (i.e., TpG on one strand and 
CpA on the complementary strand) following spontaneous 
5mC deamination or oxidation involving thymine glycol 
intermediates (Bacolla et  al. 2014; Lee and Pfeifer 2003; 
Rubin and Green 2009; Yoon et al. 2001).

A number of cancer genome sequencing projects have 
reported the absolute numbers of single-nucleotide transi-
tions (C → T, T → C) and transversions (G → C, G → T, 
A → C, A → T) in various tumors (Agrawal et al. 2011; 
Bueno et al. 2010; Chapman et al. 2011; Lee et al. 2010; 
Pleasance et  al. 2010a, b; Turajlic et  al. 2012). However, 
attempts to dissect cancer genomic mutational spectra to 
reveal the underlying mutational processes (Nik-Zainal 
et  al. 2012; Pfeifer 2010; Pfeifer and Hainaut 2011; Ste-
phens et al. 2012) have proven to be extremely challenging.

Various studies have proposed the use of ‘mutation land-
scapes’ as a means to infer the nature of the mutational 
processes underlying tumorigenesis (Alexandrov et  al. 
2013a, b; Burns et al. 2013; Lawrence et al. 2013; Pfeifer 
and Besaratinia 2009; Roberts et  al. 2013). In these stud-
ies, sites of single-base substitutions (SBSs) were analyzed 
either in a sequence-independent context (Lawrence et  al. 
2013; Roberts et  al. 2013), in the center of trinucleotide 
motifs (Burns et al. 2013; Nik-Zainal et al. 2012), or at the 
second position of tetranucleotide sequences (Bacolla et al. 
2013). The trinucleotide motif pattern can be represented as 
a 96-element vector with 32 unique trinucleotides and three 
possible mutations of the central element. Following this 
representation, more than 20 distinct mutational signature 
patterns were recognized using nonnegative matrix factori-
zation (Alexandrov et  al. 2013a, b); some of these signa-
tures contained components that could be associated with 
specific mutational processes (Helleday et al. 2014).

An early investigation examined the effect of neighbor-
ing nucleotides on mutation frequencies in human germline 
exonic mutations (Krawczak et  al. 1998), and determined 
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that nucleotides two positions upstream of the mutation site 
were capable of exerting a significant effect on both muta-
tion type and frequency. Activation-induced deaminase 
(AID) is known to cause cytosine mutations at WRC motifs 
(W is a weak acid, A or T, and R is a purine), suggesting 
that the nucleotide two bases upstream of the mutation 
site is important (Carpenter et  al. 2010). An examination 
of inherited mutations from reconstructed ancestral states 
identified 3.5- and 3.3-fold excesses of T → C transitions 
at the second position of ATTG and ATAG motifs, respec-
tively, and a 3.4-fold excess of A → C transversions at the 
first position of ACAA motifs (Panchin et al. 2011). Like-
wise, we have previously reported that in melanoma gua-
nines at GRA motifs undergo ~twofold more frequent sub-
stitutions than guanines at GR(C|T|G) motifs (Bacolla et al. 
2013). Finally, SBSs along mononucleotide repeats are 
often heavily influenced by long-range interactions caused 
by charge transfer mechanisms along the DNA (Bacolla 
et al. 2015).

Thus, nucleotides two or three base-pairs away from of 
the mutation site appear to exert an influence on the muta-
tion, implying that modeling single-base substitutions at 
the central position of trinucleotide motifs may be inad-
equate to the task of fully describing the effects of distal 
nucleotides on the mutational processes.

Herein, we use a pentanucleotide (which includes two 
nucleotides upstream and downstream of the mutation) as 
the basic motif and a 32 ×  12 somatic autosomal muta-
tion matrix (SAMM) to capture the overall mutation pat-
tern within various types of cancer. We present the SAMMs 
obtained from autosomal somatic mutations in 909 differ-
ent cancer genome samples from 21 publically available 
whole-genome sequencing datasets, comprising a total of 
10,681,843 single-base substitutions (Table  1). We also 
derive mechanistic template mutation matrices (MTMMs) 
representing estimated mutation patterns putatively ema-
nating from the four mutational mechanisms studied here: 
oxidative damage, UV-induced damage involving CPD for-
mation, deamination of 5mCpG, and the action of members 
of the APOBEC family of cytosine deamination enzymes. 
By comparing the MTMMs against the overall SAMM 
from each cancer sample, we were able to infer the likely 
maximum contribution of each mutational mechanism in 
each case.

Methods

SAMM generation

To illustrate the procedure used to generate the somatic 
autosomal mutation matrix (SAMM), the following 
example of a single-base substitution (SBS) is provided: 

CTGAT → CTAAT. In previous studies that looked at muta-
tions in the central position of the trinucleotide (Burns et al. 
2013; Nik-Zainal et al. 2012), the SBS TGA → TAA would 
have been used. To allow for redundancy (TGA → TAA 
is the same as the complementary TCA → TTA), the 32 
unique trinucleotides require a purine (A or G) in the cen-
tral position being mutated. This is presented as a 96-ele-
ment array (32 unique trinucleotides with three possible 
mutations at the central position). The SAMM uses the 
same set of 32 trinucleotides, but mutations are allowed at 
all three positions. For CTGAT → CTAAT, the first trinu-
cleotide represents the first three nucleotides of the pen-
tanucleotide and the mutation is CTG → CTA. Since the 
central nucleotide is a pyrimidine, the reverse complement 
is used and the mutation is stored as CAG →  TAG and 
is denoted by CAG.1t (1t denotes that the first nucleotide 
has been mutated to a thymine). The second trinucleotide 
represents the central three nucleotides of the pentanucleo-
tide and the SBS is TGA → TAA (denoted TGA.2a), and 
the third trinucleotide represents the SBS GAT  →  AAT 
(denoted GAT.1a). The overall SAMM is given by a 32 × 4 
dimensional matrix where each column represents a unique 
trinucleotide and each row displays each of the four possi-
ble mutations at each of the three positions. Since a specific 
nucleotide cannot be mutated to itself, any given SAMM 
has three zero elements in each row, yielding a total of 288 
(32 × 9) non-zero elements. Whereas the SAMM contains 
three times as many non-zero elements as the 96-element 
vector, each mutation contributes three elements within 
the SAMM, thereby expanding the information on the 
local nucleotide environment surrounding the SBS without 
requiring any increase in the overall number of mutations.

The reference human genome assembly hg19 was 
used to capture the pentanucleotide centered around each 
selected SBS. For each of the three trinucleotides repre-
senting a mutation, a count matrix was increased by one. 
Once all SBSs were processed, the counts were divided by 
the number of times each trinucleotide appeared in hg19 
to obtain mutation frequencies. The final SAMM was 
obtained by scaling the frequency matrix, so that the sum 
of all elements equaled unity (Table 2).

Only autosomal somatic mutations were considered, 
since the occurrence of each trimer in hg19 would have 
to be determined individually for males and females, and 
in many cases the gender of the individual providing the 
original tumor sample was unknown. In addition, pentam-
ers were allowed to contain only one mutation; hence, the 
number of SBSs examined for each dataset was fewer than 
the number in the original dataset. Preliminary bootstrap 
sampling from a large sample dataset showed that 2000 
SBSs were needed to achieve a 97.5  % confidence level 
that the SAMM was within a Manhattan distance of 0.156 
to the SAMM representing the mutational processes of the 
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sample (data not shown). Thus, the minimum number of 
SBSs used to generate a SAMM was 2000.

MTMM generation

Analysis of SBSs at the trinucleotide level of granular-
ity allows for the differentiation of underlying mutational 
mechanisms (Nik-Zainal et  al. 2012). We used a similar 
32 × 12 matrix to develop models in the form of mechanis-
tic template mutation matrices (MTMMs) representing four 
canonical mechanisms known to cause somatic mutations: 
(i) oxidative DNA damage, which accounts for mutations 
resulting from oxidation reactions and direct or indirect 
ionizing radiation; (ii) UV-induced DNA damage, which 
includes mutations arising from CPDs; (iii) 5mCpG deami-
nation, which models mutations mediated by the deamina-
tion of 5mC; and (iv) the action of the APOBEC family of 
cytosine deamination enzymes.

The most common mutations caused by oxidative dam-
age are G → T (C → A) transversions, although G → C 
(C →  G) transversions and G → A (C → T) transitions 
are also observed (Dizdaroglu 2012). It has been previ-
ously shown that one electron oxidation correlates with the 

vertical ionization potential (VIP) of DNA bases (Senthil-
kumar et  al. 2003), and in this investigation, we assume 
that mutations caused by oxidative damage follow first-
order kinetic with an activation energy (Ea) equal to the 
VIP. Therefore, the mutation frequency is proportional to 
e(−VIP/kT), where k is Boltzmann’s constant and T is the tem-
perature in degree Kelvin.

The susceptibilities of the 32 unique trinucleotides to 
oxidation were estimated by calculating vertical ioniza-
tion potentials (VIPs) for DNA trimer fragments, which 
included DNA backbone and sodium counter-ions. Three-
dimensional structures of the 32 possible DNA double-
stranded trinucleotides were built using w3DNA (Zheng 
et al. 2009). Hydrogen atoms, atomic charges, and charged 
sodium counter-ions were assigned according to the 
amber99 force field (Wang et al. 2000) using UCSF CHI-
MERA (Yang et al. 2011). Sodium counter-ions were posi-
tioned next to the four DNA backbone phosphates. The 
ground state structure of each trinucleotide was energy-
minimized in vacuo using a 10,000-step steepest-descent 
algorithm and the amber99 force field in GROMACS 4.5.1 
(Hess et  al. 2008). Cutoffs of 10 and 14 Å were used for 
Coulombic and van der Waals interactions, respectively.

Table 1   Details of the 21 whole-genome sequencing datasets examined in this study

Sanger: ftp://sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/
a  ICGC: ftp://data.dcc.icgc.org/current/

Dataset Label #Samples Total #SBSs Sourcea

Acute lymphoblastic leukemia ALL 1 7442 Sanger

Acute myeloid leukemia (South Korea) LAML-KR 4 377,876 ICGC

Breast triple negative/lobular cancer BRCA-UK 18 165,808 ICGC

Breast cancer Breast 77 534,046 Sanger

Esophageal adenocarcinoma ESAD-UK 16 290,325 ICGC

Liver cancer NCC LINC-JP 31 329,052 ICGC

Liver cancer RIKEN LIRI-JP 188 1,922,567 ICGC

Liver cancer Liver 84 790,487 Sanger

Lung adenocarcinoma Lung_Adeno 23 1,386,149 Sanger

Malignant lymphoma DKFZ MALY-DE 37 267,052 ICGC

Melanoma Melanoma 25 1,841,735 (Berger et al. 2012)

Ovarian cancer QCMG OV-AU 89 833,427 ICGC

Pancreatic cancer OICR PACA-CA 45 333,342 ICGC

Pancreatic cancer QCMG PACA-AU 137 954,081 ICGC

Pancreatic cancer endocrine neoplasms QCMG PAEN-AU 12 430,28 ICGC

Pancreatic cancer Pancreas 14 103,032 Sanger

Medulloblastoma Medulloblastoma 11 35,125 Sanger

Pediatric brain tumors BMBF PBCA-DE 16 46,147 ICGC

Prostate adenocarcinoma PRAD-UK 3 18,763 ICGC

Prostate cancer Prostate 7 21,603 Sanger

Renal clear cell carcinoma RECA-EU 71 379,756 ICGC

Total 909 10,681,843

ftp://sanger.ac.uk/pub/cancer/AlexandrovEtAl/somatic_mutation_data/
ftp://data.dcc.icgc.org/current/
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VIPs were computed using Kohn–Sham density func-
tional theory (Kohn et al. 1996), whereby hydrogen bond-
ing and stacking interactions between base-pairs (Ribeiro 
et  al. 2011) were modeled by employing the Minnesota 
M06-2X density functional (Zhao and Truhlar 2008a, b), 
as implemented in the GAMESS electronic structure pack-
age (Schmidt et  al. 1993). As a first step, we tested the 
reliability of the M06-2X functional for the prediction of 
gas-phase VIP of natural guanine and adenine against a 
variety of basis sets (Dunning 1989; Harihara and Pople 
1973) ranging from small (6-31G(d)) to large (cc-pVQZ) 
(Table  3). High accuracy was obtained with the big-
gest basis set, 8.22  eV (predicted) vs. 8.24  eV (experi-
mental) for guanine, and 8.48  eV (predicted) vs. 8.44  eV 

(experimental) (Orlov et al. 1976) for adenine. The smaller 
6-31G(d) basis also provided excellent estimates of 8.02 
and 8.32  eV for guanine and adenine, respectively. Thus, 

Table 2   SAMM for the acute lymphoblastic leukemia sample PD4020a

Fractional mutation frequencies (7442 SBSs)

Motif 1.a 2.a 3.a 1.t 2.t 3.t 1.c 2.c 3.c 1.g 2.g 3.g

AAA 0 0 0 0.000461 0.000546 0.000649 0.000188 0.000154 0.000256 0.000154 0.000154 0.000324

AAT 0 0 0.000264 0.000448 0.000264 0 0.000105 0.000158 0.000501 0.000158 0.000501 0.00029

AAC 0 0 0.00108 0.000405 0.000405 0.002611 0.000135 0.000135 0 0.000135 0.000585 0.000675

AAG 0 0 0.007979 0.000099 0.000493 0.001543 0.000033 0.000296 0.018453 0.00023 0.000328 0

AGA 0 0.023608 0 0.000267 0.00234 0.000326 0.000089 0.044194 0.000178 0.000385 0 0.000326

AGT 0 0.000488 0.000204 0.000326 0.000936 0 0.000448 0.001303 0.000204 0.000488 0 0.000163

AGC 0 0.000979 0.000606 0.000233 0.000699 0.001305 0.000093 0.000699 0 0.000093 0 0.000373

AGG 0 0.001615 0.004405 0.000294 0.000661 0.001468 0.00022 0.000771 0.004552 0.00022 0 0

TAA 0.000504 0 0 0 0.00041 0.000473 0.000252 0.000126 0.000189 0.000189 0.000032 0.000221

TAT 0.000319 0 0.000351 0 0.000256 0 0.000192 0.000288 0.000319 0.000256 0.000319 0.000192

TAC 0.000232 0 0.00081 0 0.000405 0.001389 0.000289 0.000058 0 0.000116 0.000347 0.000984

TAG 0.000255 0 0.007126 0 0.000356 0.001476 0.000204 0.000153 0.018986 0.000051 0.000305 0

TGA 0.000167 0.054179 0 0 0.004883 0.000201 0.000368 0.046353 0.000067 0.000201 0 0.000468

TGT 0.000293 0.001073 0.000358 0 0.000976 0 0.00013 0.000943 0.000586 0.000293 0 0.000163

TGC 0 0.001179 0.000816 0 0.001179 0.001587 0.000181 0.000408 0 0.000091 0 0.000499

TGG 0.000106 0.002586 0.003189 0 0.000957 0.001169 0.000106 0.001453 0.005137 0.000142 0 0

CAA 0.001803 0 0 0.012343 0.000139 0.000312 0 0.000139 0.000104 0.024062 0.000139 0.000277

CAT 0.002253 0 0.000179 0.017593 0.00025 0 0 0.000358 0.00025 0.009476 0.00025 0.000179

CAC 0.001607 0 0.000956 0.012946 0.000043 0.001868 0 0.000087 0 0.005951 0.000217 0.001129

CAG 0.002477 0 0.010743 0.019492 0.000161 0.000965 0 0.000161 0.012223 0.011869 0.000193 0

CGA 0.000295 0.035959 0 0.020927 0.002063 0.000295 0 0.007958 0.000295 0.003832 0 0.000589

CGT 0.000776 0.024316 0 0.016814 0.000259 0 0 0 0 0.001811 0 0

CGC 0.001084 0.011925 0.000271 0.019784 0 0.001897 0 0.000271 0 0.001626 0 0.000813

CGG 0.000468 0.009822 0.003976 0.021749 0.000468 0.000234 0 0.000468 0.002339 0.000935 0 0

GAA 0.037661 0 0 0.004192 0.000233 0.000133 0.032704 0.000067 0.0001 0 0.000366 0.000566

GAT 0.024472 0 0.000246 0.002948 0.000295 0 0.032236 0.000098 0.000393 0 0.000393 0.000246

GAC 0.015498 0 0.000554 0.00173 0.000208 0.001661 0.018681 0.000277 0 0 0.000415 0.000761

GAG 0.037753 0 0.006079 0.003291 0.000116 0.001123 0.05026 0.000194 0.009487 0 0.000426 0

GGA 0.002454 0.012271 0 0.00055 0.002708 0.000042 0.000677 0.012779 0.000169 0 0 0.000381

GGT 0.001518 0.000562 0.000225 0.000956 0.000787 0 0.000899 0.00045 0.000394 0 0 0.000056

GGC 0.001037 0.000819 0.000873 0.000437 0.000382 0.001965 0.000437 0.000164 0 0 0 0.000327

GGG 0.003413 0.000693 0.005046 0.000742 0.000297 0.000841 0.001435 0.000247 0.001929 0 0 0

Table 3   Computed and experimental ionization potentials of guanine 
and adenine using different basis sets

Basis set Guanine Adenine

6-31G(d) 8.02 8.32

cc-pVDZ 8.01 8.32

cc-pVTZ 8.19 8.45

cc-pVQZ 8.22 8.48

Expt. 8.24 8.44
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the 6-31G(d) basis set was employed because it was practi-
cal and adequate for assessing the relative VIP differences 
between DNA fragments.

VIP values (Table  4) were used to determine mutation 
frequencies at guanines and adenines. For mutations at the 
guanine base, we assigned G → T, G → A, and G → C 
and their complements (C  →  A, C  →  T, and C  →  G) 
an experimentally observed ratio of 8:3:1, respectively 
(Kamiya et  al. 1992). This ratio accounts for the bias 
of G → T (C → A) transversions and allows us to relate 
different types of mutations to the G →  T transversions. 
Since guanine is the most easily oxidized base, a ratio of 
1/20, estimated from the experimental standard ionization 
potentials of adenine and guanine, was used to add adenine 
mutations (Bushnell et  al. 2011). This first-level approxi-
mation does not take into account A → T (T → A) trans-
versions (although these mutations have been observed 
experimentally (Dizdaroglu 2012), due to the lack of an 
experimentally observed ratio relating A → T transversions 
to A → C transversions. These mutation frequencies were 
then scaled so that they sum to 1.0. The resulting oxidative 
damage (OxD) MTMM is given in Supplemental Table 1a, 
and a heatmap is shown in Supplemental Figure 1a.

To model the likelihood of photoexcitation-mediated 
pyrimidine dimerization for each of the 24 unique trinucle-
otide sequences containing pyrimidine–pyrimidine steps, 
we assumed that the rate-limiting step for this first-order 
process was a π–π* transition of a pyrimidine base. This 
was performed by calculating the vertical singlet excita-
tion energy (VSEE) corresponding to the most likely π–π* 

electronic transition at one or more neighboring pyrimi-
dines. The mutation frequency for a given trinucleotide 
sequence is therefore proportional to e(−VSSE/kT).

Computations were performed for DNA trimer frag-
ments with the DNA backbone without sodium counter-
ions, since the counter-ions had low-energy unoccupied 
3s/3p orbitals that gave rise to many low-lying excited 
states having (i) the wrong character and (ii) essentially 
zero intensity or likelihood of transition. VSEEs of the 
sodium-free DNA trimer fragments were computed by 
CIS (Foresman et  al. 1992) using the 6-31G(d) basis set, 
as implemented in the GAMESS. Although the CIS method 
is known to consistently overestimate vertical excitation 
energies (Webb 2006), it is the only practical quantum 
mechanical approach to model the large systems employed 
here. Since our goal was to compare the relative excita-
tion energies of the DNA fragments, the 6-31G(d) basis set 
was used. The most likely π–π*-type electronic transition 
occurring on one or more neighboring pyrimidines must be 
identified to model the relative probability of pyrimidine 
dimerization within a DNA trimer. As each DNA trimer 
contains exactly three pyrimidines, there will be three cor-
responding low-lying π–π*-type singlet excited states. 
Thus, for each DNA trimer, we identified the three lowest 
excited states that were of pyrimidine character by exam-
ining the nature of the molecular orbitals characterizing 
the excited state. We then determined which of these three 
pyrimidine-associated excited states had the highest oscil-
lator strength representing the intensity, or likelihood, of 
transition.

Table 4   Computed vertical 
ionization potential (VIP) and 
vertical singlet excitation energy 
(VSEE) of the most likely 
pyrimidine π–π* transition 
(among the lowest three) for 
each of the DNA fragments

a  The number of the excited state (ground state = 0) is given in parentheses

Guanine-centered Adenine-centered

Sequence (5′-NGN-3′) VIP (eV) VSEE (eV)a Sequence (5′-NAN-3′) VIP (eV) VSEE (eV)a

GGG 5.39 6.40 (6) GAG 5.74 6.34 (5)

GGA 5.50 6.37 (5) GAC 5.88 6.34 (5)

GGT 5.54 6.37 (5) GAA 5.89 6.29 (3)

AGG 5.57 6.39 (5) CAG 5.91 6.35 (5)

TGG 5.59 6.39 (5) GAT 5.91 6.34 (4)

CGG 5.60 6.36 (5) AAG 5.92 6.22 (3)

GGC 5.63 6.37 (6) CAC 5.92 –

TGA 5.64 6.26 (3) TAG 5.93 6.35 (4)

AGA 5.66 6.32 (5) CAT 6.04 –

CGA 5.79 6.31 (4) TAC 6.05 –

AGT 5.81 6.29 (4) CAA 6.05 6.23 (2)

CGT 5.86 – AAC 6.11 6.32 (4)

CGC 5.88 – AAA 6.37 6.27 (3)

TGT 5.90 – TAA 6.51 6.24 (3)

AGC 5.95 6.32 (5) AAT 6.52 6.23 (3)

TGC 5.97 – TAT 6.55 –
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Nucleotide excision repair (NER) is highly biased in 
terms of its sequence context dependence in the efficiency 
of CPD repair (Cai et al. 2009; Holmquist and Gao 1997; 
Kunkel 2011; Suter et  al. 2000; Tornaletti and Pfeifer 
1994). Therefore, we combined the VSEE values (Table 4) 
with experimentally derived sequence-dependent NER effi-
ciencies to compute the UV-induced DNA damage model 
matrix elements. The resulting UV-induced DNA damage 
(CPD) MTMM is given in Supplemental Table  1b, and a 
heatmap is shown in Supplemental Figure 1b.

Mutations arising from 5mCpG deamination did not 
require molecular modeling. Hence, we assigned equal 
probabilities to C  →  T (and G  →  A on the opposite 
strand) transitions at CpG sites. While other motifs such as 
CHG (where H = A, C, or T) sites are also methylated in 
the human genome and can also give rise to deamination 
(Cooper et  al. 2010; Lister et  al. 2009), these events are 
comparatively rare and would not have contributed appreci-
ably to our model. Hence, the deamination model is cur-
rently confined to 5mCpG dinucleotides and involves only 
four of the 32 possible trinucleotides (CGN). The resulting 
MTMM representing 5mCpG deamination (CpG) is given in 
Supplemental Table 1c, and a heatmap is shown in Supple-
mental Figure 1c.

The action of the APOBEC family of cytosine deami-
nases has been shown to generate clusters of mutations 
(Alderton 2012; Lada et  al. 2012), in addition to isolated 
mutations (Roberts and Gordenin 2014a). To generate 
an APOBEC MTMM, each dataset was examined to find 
regions where more than five sequential mutations had an 
average spacing of 1 kb or less (Alexandrov et al. 2013a). 
Mutations within these regions were examined and a poten-
tial APOBEC pattern was determined if at least 50  % of 
all mutations within the region were TC(A|T) →  T(T|G)
(A|T) SBSs (Roberts and Gordenin 2014b) on the reference 
or complementary strand. Within each putative ABOBEC 
cluster, all NTC(A|T)N pentanucleotides were stored, as 
well as the observed variant nucleotide (T|G). A total of 316 
cancer genomes contained at least one putative APOBEC 
cluster, comprising 8,504 possible APOBEC mutations. 
Each stored pentanucleotide was then used to update the 
APOBEC MTMM for each of the three composite trinu-
cleotides (NTC, TC(A|T), and C(A|T)N). The resulting 
MTMM representing cytosine deamination by APOBEC is 
given in Supplemental Table 1d, and a heatmap is shown in 
Supplemental Fig. 1d.

Maximum contribution of MTMMs

Given a SAMM from a tumor sample, the maximum con-
tribution from each mutational mechanism was determined 
by identifying each trimer element in the MTMM that 
contributed at least 1 %. The ratio of the observed scaled 

frequency from the sample to the mechanistic scaled fre-
quency yields a component factor. Therefore, the minimum 
factor across all elements of the MTMM represents the 
maximum possible contribution of that mechanistic tem-
plate to the sample’s SAMM. In other words, if the MTMM 
is multiplied by this maximum contribution and subtracted 
from the sample’s SAMM, at least one of the elements 
associated with this mechanism will be reduced to zero.

Comparison and display of SAMMs

The heatmap of a given SAMM was drawn using an in-
house program that generates input for the imaging pro-
gram fly (http://martin.gleeson.com/fly/). The scaled 
mutation frequencies were multiplied by 100 and used to 
determine the intensity of the red color. A value above 6.5 
yields full red, 6.5–5.5 gives a slightly weaker red and so 
on, until values below 0.5 are white. With this procedure, 
the heatmaps for all SAMMs employ the same scale and 
hence can be directly compared.

A comparison of different SAMMs from the same cancer 
genome dataset was performed using unweighted average 
linkage hierarchical clustering. Clustering and the resulting 
dendrogram were produced by the program Multidendrogram 
(Fernandez and Gomez 2008). Comparing two SAMMs, one 
has the option of either measuring the similarity between 
SAMMs or their difference. A similarity metric could be 
(1  −  r), where r is the Pearson correlation coefficient, or 
could be obtained by measuring the difference in the pro-
jection of each sample’s SAMM onto one or more template 
SAMMs, such as the MTMMs outlined above. If a given 
MTMM dominates in many different samples’ SAMMs, 
such as from 5mCpG deamination, then these SAMMs would 
appear to be very similar. In the analysis presented here, the 
difference between SAMMs is used. The distance between 
SAMMs is determined by the Manhattan distance between 
them, which represents the sum of the absolute difference in 
scaled frequencies over all matrix elements. If the contribu-
tion of a given mutational MTMM dominates the SAMMs of 
two different samples, these effects will tend to cancel each 
other out and other SBSs that populate different elements of 
the SAMMs will determine their relative distance.

An in-house program was written in Fortran to calculate 
the Manhattan distance between all pairs of mutation land-
scapes from a list of landscapes and to construct a distance 
matrix that could be further processed by the program. In 
cases where the number of samples was too large for the 
dendrogram to provide sufficient information about their 
relative difference, a Sammon map was produced instead. 
A Sammon projection (Sammon 1969) attempts to map the 
distribution of objects from high dimensional space into 
lower dimensional space by placing the objects in a distri-
bution that minimizes

http://martin.gleeson.com/fly/
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In this equation, d∗i,j is the actual distance between a 
pair of objects in higher dimensional space and di,j is the 
approximate distance after mapping to lower dimensional 
space. The relative error squared is then summed over all 
pairs of objects. The actual distances are their Manhattan 
distances and the approximate distances are their Euclidean 
separations after mapping to two-dimensional space.

A near-optimal placement of each object was determined 
using an in-house Evolutionary Programming algorithm. A 
putative solution represents a given position of each sample 
in two dimensions, and the cost of this solution is the Sam-
mon score described above. Each putative solution (parent) 
generates a new putative solution (offspring), randomly 
moving a small number of samples in the two-dimensional 
plane. Initially, a sample could be moved by up to 10 % of 
the maximum inter-landscape distance in either direction, 
which was reduced by 2  % every 1000 generations. The 
cost of each offspring is its Sammon score. Once all parent 
solutions have generated an offspring solution, the 16,000 
putative solutions are examined and the 8000 solutions with 
the lowest cost become the parents for the next generation. 
In other words, deterministic selection is employed. At the 
end of the final generation, the two-dimensional mapping 
of the samples with the lowest Sammon score represents 
the Sammon map of the relative orientation of the samples 
such that their distances are preserved to the greatest possi-
ble extent. The simulation we employed used a population 
size of 8000, which proceeded for 40,000 generations.

Since the Sammon score described above behaves very 
differently for distances above 1.0 compared to distances 
below 1.0, all values in the distance matrix were multiplied 
by 100 before the mapping began. The program displays 
the final positions of the objects by generating an input file 
to the graphics program fly.

Determining the tissue of origin

The first examination simply identified the most similar 
SAMM to a given SAMM and determined if they corre-
sponded to the same tissue. This was performed using the 
Manhattan distances between pairs of SAMMs. A more 
extensive test used a distance-dependent k-nearest neighbor 
classifier to predict the tissue of origin for each SAMM. If 
Si is the ith nearest SAMM to the given one, with a distance 
of D(Si), the probability that it corresponds to the same tis-
sue, P(T(Si)), is given by

∑

i<j

(

di,j − d∗i,j

)2

d∗i,j

P(T(Si)) =
β

D(Si)

In this equation, β is equal to D0.5/2, where D0.5 is the 
distance where the probability of corresponding to this 
tissue equals 0.5. Each of the k-nearest neighbors was 
used to increment the probabilities of corresponding to 
their respective tissues. To ensure that an outlier was not 
forced to belong to a tissue group, an extra probability was 
included. This probability, labeled P (und), is the probabil-
ity that the predicted tissue for a given SAMM is Undeter-
mined, and is given an overall value of k (0.1). This means 
that for the ith nearest neighbor SAMM, if the probability 
of corresponding to a given tissue is 0.1, there is an equal 
probability that the SAMM corresponds to an Undeter-
mined tissue type.

Once the probabilities of corresponding to each tissue 
type were determined, they and P(und) were scaled so that 
the sum of the probabilities was 1.0. In the first prediction 
of the tissue of origin, the given SAMM was assigned to 
the jth tissue type, Tj, if P (Tj) was at least 0.5. If no value 
of P (Tj) was at least 0.5, the predicted tissue type of this 
SAMM was Undetermined. The second prediction used a 
Maximum Likelihood assignment where the predicted tis-
sue of origin was simply the one with the largest P (Tj), or 
Undetermined if P (und) was larger than any P (Tj).

Results and discussion

In this study, we make use of quantum mechanical cal-
culations to derive VIP and VSEE data for specific DNA 
sequences, and then use this information to obtain frequen-
cies of SBSs in cancer genomes. The rationale for applying 
VIP values to address the issue of SBSs in cancer genomes 
is based on a large number of theoretical and experimental 
studies performed during the past 30 years on short DNA 
oligomers (Kanvah et al. 2010; Saito et al. 1998; Yoshioka 
et  al. 2003). This composite work has led to the conclu-
sion that chemical reactivity of DNA bases to attacking 
oxidants is influenced by the energy required to abstract an 
electron from the DNA, and that the values of this energy 
are strongly sequence context dependent, being influenced 
by the differential ability of electrons to fastly migrate 
from one base to another based on the types of the DNA 
bases. We have recently applied this knowledge to estab-
lish correlations between VIPs and mutation frequencies 
in cancer genomes (Bacolla et al. 2013), and now expand 
these relationships to infer quantitatively contributions to 
mutagenesis in cancer genomes. We apply the same ration-
ale to VSEE, although in this case we are not aware that 
correlations with UV-induced mutations have already been 
reported.

The individual samples from each dataset were used to 
construct a SAMM and the Manhattan distance between 
each SAMM was determined (Supplemental Table  2a–t); 
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no entry is given for the single cancer genome sample in 
the acute lymphoblastic leukemia (ALL) dataset. If more 
than two samples per dataset were present, then the sam-
ples were clustered. The ensuing dendrograms are shown in 
Supplemental Figure 2a–t, the heatmaps and top five muta-
tion frequencies are reported in the Supplemental Figures, 
and the maximum contribution of each MTMM to the over-
all SAMM for each cancer genome is presented in Sup-
plemental Table 3a–u. A detailed discussion of each data-
set in Table 1 is provided in the Supplemental Results and 
Discussion. Here, we focus on the results for the full set of 
909 cancer genome samples from the 21 datasets by dis-
cussing the maximum possible contributions from the four 
mutational mechanisms, and addressing the question as to 
whether the differences in SAMMs may be used to deduce 
the tissue of origin for each sample.

Maximum contributions from the four mutational 
mechanisms

The extent to which the four mutational mechanisms 
accounted for the total SAMM of a sample varied greatly. 
For example, in the SAMM for DO49436 (PACA-CA), 
the four canonical mechanisms combined to account for 
58.3 % of the scaled mutation frequencies, although a large 
proportion (43.9 %) was conferred by the 5mCpG deamina-
tion template. We realize that these estimates are only an 
approximation since the assumption that each mutational 
mechanism contributed to different and non-overlapping 
elements of the SAMM is unlikely to be the case, while 
other mutational mechanisms, which we have not consid-
ered here, may also be operational. At one extreme, 78 of 
the cancer genomes could have 50 % or more of the muta-
tion frequencies in their SAMMs accounted for by the set 
of four canonical mutational mechanisms. Of these 78 
cancer genomes, 65 were pancreatic cancers. At the other 
extreme, in 27 of the 909 SAMMs, fewer than 20 % of all 
mutation frequencies could be attributed to these muta-
tional mechanisms. Contained within this latter set were 21 
of the 25 melanoma cancer samples.

In 18 of the SAMMs examined, up to 25 % of all scaled 
frequencies matched the oxidative damage MTMM, and all 
but three (83.3  %) were associated with lung adenocarci-
nomas; the remaining three were renal cancers. The oxida-
tive damage MTMM was constructed from first principles 
using vertical ionization potentials as the rate-limiting step; 
finding large contributions in the lung cancers examined 
was a confirmatory observation. The maximum contribu-
tion attributed to the UV-induced damage template was 
small across all SAMMs, the highest value being 13.2  % 
in DO45169, from the LIRI-JP_icgc dataset. UV-induced 
damage is expected to make a significant contribution to 
the SAMMs of skin cancers but, as mentioned above, these 

types of cancer display SAMMs that are not well described 
by any of our canonical mechanisms. Interestingly, 23 of 
the top 25 (92 %) were liver cancers. Thus, it is possible 
that (1) the MTMM for UV-induced damage via CPD for-
mation is insufficient to describe this process; (2) the NER-
dependent repair corrections we have introduced correlated 
poorly with cancer biology; or (3) specific hotspots, such 
as GRA (R = A|G) motifs (Bacolla et al. 2013), should be 
given additional weight.

The SAMMs from 94 different cancer genomes had a 
maximum contribution from 5mCpG deamination MTMM 
of at least 35  %. Of these, 82 (87.2  %) were pancreatic 
cancers as well as seven of the 16 pediatric brain tumor 
genomes. In 28 cancer genomes, the maximum contribu-
tion of this mechanism was less than 5 %.

There also appeared to be strong tissue specificity in 
relation to the putative maximum contribution of cytosine 
deamination by APOBEC enzymes. In the 28 SAMMs 
where 10  % or more of the total scaled frequencies were 
consistent with this mechanism, 21 were breast cancers. 
By contrast, there were 55 cancer genomes whose SAMMs 
contained a maximum contribution of less than 1 % from 
the APOBEC-signature MTMM.

Inferring the cancer tissue of origin

Although some tissue specificity was evident for each of 
the four mutational mechanisms, the majority of all muta-
tion frequencies were not accounted for by any of these 
mutational mechanisms. Thus, it is possible that at least 
some of these “orphan” mutation frequency patterns are tis-
sue or cell-type specific. Mutation patterns, along with clin-
ical, transcriptional and other data have been integrated to 
improve the classification of tumor subtypes (Hoadley et al. 
2014; Kandoth et al. 2013). We have used our Manhattan 
distances to place all 908 SAMMs (excluding the single 
ALL cancer genome) in relation to one another to assess 
the extent to which the correct tissue of origin of a tumor 
can be inferred from its position relative to all tumor sam-
ples, based on the identity of its nearest neighbor.

For example, a breast tumor SAMM would be identified 
as having the correct tissue of origin if the nearest neigh-
bor were to belong to either of the breast cancer datasets. 
The same would be true for the three liver cancer datasets 
as well as the four pancreatic cancer datasets. Samples 
from the medulloblastoma and pediatric brain cancer data-
sets were also assigned to the same tissue of origin. The 
results are reported in Supplemental Table  4, which lists 
each sample and its dataset, as well as the nearest neighbor 
sample, its dataset, and the distance between their SAMMs. 
We were gratified that our procedure was able to identify 
the correct tissue of origin 89.5  % of the time, a finding 
which supports the emerging view that cell-type-specific 
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mutational processes are prevalent in cancer biology 
(Hoadley et al. 2014).

Extending our analysis further, a distance-dependent 
k-nearest neighbor classifier was used to predict the tis-
sue of origin. Along with the single ALL cancer genome, 
the four samples in the LAML-KR dataset were excluded 
from this analysis due to an insufficient number of sam-
ples. The remaining 904 cancer genomes were placed 
into 11 Groups, or cancer types, as shown in Supplemen-
tal Table 5a. The initial analysis used 6-nearest neighbors 
(k = 6) and the unnormalized probability of belonging to 
a neighbor’s Group was 0.5 when the Manhattan distance 
to this neighbor was 0.5 (D0.5 = 0.5, β = 0.25). The value 
for D0.5 appeared reasonable since, overall, the average 
distance to the nearest neighbor SAMM was 0.143 with a 
standard deviation of 0.065.

Once the probabilities were scaled to a sum of 1.0, each 
SAMM was assigned to a particular Group if the prob-
ability of belonging to that Group was at least 0.5; other-
wise the predicted tissue of origin was Undetermined. The 
results for each of the 11 Groups are shown in Supplemen-
tal Table 5b, and the distribution of probabilities across all 
11 Groups and the Undetermined Group is shown for each 
sample in Supplemental Table  6. Overall, 86.9  % of all 
samples were assigned to the correct tissue of origin from a 
comparison of those correctly classified and those assigned 
to the wrong tissue of origin, and 8.8 % of all samples had 
an Undetermined tissue of origin.

For the 95 breast cancers, 94 were correctly classified; 
sample DO1001 from the BRCA-UK dataset had a prob-
ability of 0.976 of being Undetermined (Supplemental 
Table 6). 288 of the 303 liver tumors were assigned to the 
correct tissue of origin; six were assigned to the wrong tis-
sue, and nine were Undetermined. Conversely, none of the 
10 prostate samples were assigned the correct tissue of ori-
gin; six were assigned to the wrong tissue and four were 
Undetermined.

To reduce the number of SAMMs with an Undetermined 
classification, a maximum likelihood procedure was used 
where each SAMM was assigned to the cancer tissue type 
with the highest probability, independent of its value. When 
this was done, only the DO1001 sample from the BRCA-
UK dataset had an Undetermined classification (Supple-
mental Table 5c). Overall, 83.5 % of all samples (754 of the 
remaining 903 SAMMs) were assigned to the correct tissue 
of origin. Here, all the prostate SAMMs were assigned to 
incorrect tissues of origin.

To determine the effect of the classification accuracy 
on the number of nearest neighbors (k), the classifications 
were performed with k varying from three to eight. If the 
final assignment was made by requiring the scaled prob-
ability to be at least 0.5, between 2.5 and 8.8 % of all sam-
ples were Undetermined, and between 85.7 and 89.2 % of 

the remaining SAMMs yielded the correct tissue of origin 
(Supplemental Table  5d). When the maximum likelihood 
criterion was used, between 82.4 and 86.0  % of the 903 
SAMMs were correctly classified (Supplemental Table 5e), 
and only DO1001 was Undetermined.

To examine the effect of varying D0.5 on the classifi-
cation accuracy, a distance-dependent 6-nearest neigh-
bor classifier was used with D0.5 varying from 0.4 to 0.7. 
Requiring the scaled probability to be at least 0.5 (Sup-
plemental Table 5f) caused between 8.3 and 9.2 % of the 
SAMMs to have an Undetermined tissue of origin and 
between 86.7 and 87.1 % of the remaining samples to be 
assigned to the correct tissue of origin. The maximum like-
lihood procedure yielded an 83.5  % correct classification 
with DO1001 being Undetermined for all values of D0.5 
(Supplemental Table 5 g).

Overall, these results suggest that the classification accu-
racy for the tissue of origin is relatively insensitive to the 
number of nearest neighbors and the value of D0.5. While 
the maximum likelihood criterion reduced the number of 
Undetermined tissues of origin, forcing these outliers into 
one of the 11 tissue Groups led to a larger number of incor-
rect classifications, thereby reducing the percentage of 
SAMMs assigned to the correct tissue of origin.

To compare these results with a standard k-nearest 
neighbor classifier that does not use D0.5 and P (und), 
the classification of tissue of origin was repeated varying 
k from three to eight. Requiring a scaled probability of 
at least 0.5 for a classification (Supplemental Table  5h), 
between 0.1 and 4.2  % of the samples had an Undeter-
mined tissue of origin. The highest level was for 7-nearest 
neighbors, where for 38 SAMMs their seven neighboring 
SAMMs were heterogeneous enough to allow no prob-
ability to exceed 0.5. For the remaining samples, between 
83.3 and 86.0 % were assigned to the correct tissue of ori-
gin, with the accuracy generally decreasing as the number 
of neighbors increased, as expected. When a maximum 
likelihood criterion was used (Supplemental Table  5i), an 
Undetermined assignment was not allowed and between 
82.5 and 86.1 % of all SAMMs were assigned to the cor-
rect tissue of origin. The breakdown by Groups is shown in 
Supplemental Table 5j and 5k, respectively. It is interesting 
to note that the DO1001 sample from the BRCA-UK data-
set was allocated a correct tissue of origin even though all 
of the distance-dependent classifications found it to be an 
outlier.

We believe that integrating our approach with current 
diagnostic tools could serve to improve tumor classifica-
tion scores. This would necessitate increasing the number 
of cancer genomes for each tissue type and including more 
tissue types in the analysis, but this analysis nevertheless 
constitutes a promising start. In addition, refinement of the 
SAMMs representing specific mutation mechanisms and 
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increasing the number of MTMMs might also improve the 
tissue of origin classification, since maximizing the amount 
of contributory information should improve the prediction.

Conclusions

There are several aspects to this investigation which, we 
believe, set our analysis of cancer genome mutational spec-
tra apart from all other studies to date. First, by analyzing 
pentamer motifs, we have captured the influence of two 
nucleotides upstream and downstream of the mutation sites 
without loss of discriminatory power. This information is 
stored as a 32 ×  12 somatic autosomal mutation matrix 
(SAMM). Second, we constructed canonical MTMMs 
representing four of the most common mutational mecha-
nisms, viz., oxidative damage, UV-induced CPD forma-
tion, methylation-mediated deamination and APOBEC-
induced deamination. For the oxidative damage MTMM, 
we applied quantum chemical calculations to derive verti-
cal ionization potentials, which were then used to establish 
mutational patterns for all relevant trinucleotide motifs. Of 
the 15 sample SAMMs that contained the strongest sig-
nature from this mechanism, 13 represented lung cancers. 
This suggests that loss of an electron is the rate-limiting 
step in this mutational mechanism. We believe this is a rel-
evant conclusion since it applies the findings accumulated 
over the past 30  years from the studies of electron trans-
fer reactions on short DNA oligomers to the field of human 
cancer biology. Thus, the MTMM shown in Supplemental 
Figure  1a and Supplemental Table  1a may represent the 
true pattern for oxidative damage. Third, by calculating the 
Manhattan distance between SAMMs from different sam-
ples, we constructed a Sammon map that provides an ‘ana-
tomical’ representation of how cancer tissues are related to 
each other, and shows sub-clusters containing specific can-
cer types. Note that this is very different from measuring 
projections of a sample’s SAMM along mechanistic or any 
other non-orthogonal signatures, since this procedure will 
not preserve distance. We believe that preserving the inter-
sample distance is critical for achieving high-resolution 
clustering.

We show that cancer tissue preference exists for each 
MTMM (lung for oxidative damage, skin for photodamage, 
pancreatic cancer for 5mCpG deamination and breast can-
cer for APOBEC activity). Most importantly, Manhattan 
distances were able to achieve 89.5 % accuracy in placing 
tumor SAMMs of the same tissue type as nearest neigh-
bors, implying that our in-depth analysis of single-base 
substitution patterns nears the diagnostic power currently 
attained by clinical and pathological analyses. Thus, our 
approach may eventually augment current diagnostic pro-
cedures by helping to improve tumor classification scores. 

Nevertheless, the existence of prominent mutational signa-
tures over and above the four mutational processes consid-
ered here, and the finding that specific types of tumor were 
consistently misclassified, highlights the need to further 
address the mechanisms underlying the origin of mutations 
in a tissue- or cell-type-specific fashion.
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