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Abstract. Principal Agent Theory (PAT) seeks to identify the incentives and
sanctions that a consumer should apply when entering into a contract with a
provider in order to maximise their own utility. However, identifying suitable
contracts — maximising utility while minimising regret — is difficult, partic-
ularly when little information is available about provider competencies. In this
paper we show that a global contract can be used to govern such interactions, de-
rived from the properties of a representative agent. After describing how such a
contract can be obtained, we analyse the contract utility space and its properties.
Then, we show how this contract can be used to address the cold start problem
and that it significantly outperforms other approaches. Finally, we discuss how
our work can be integrated with existing research into multi-agent systems.

1 Introduction

Autonomous agents are often assumed to be rational, self interested entities, interacting
with others in order to maximise their own utility. When asked to fulfil a task, they will
therefore do so in a way that maximises their expected utility. When acting as a ser-
vice provider (e.g., in an electronic marketplace), there is thus a risk that the agent will
provide a substandard service. Approaches to mitigate this risk includes the use of elec-
tronic contracts [17, 18], which specify the rewards and penalties (or more generally,
incentives) to be imposed on interacting parties in response to successful or unsuccess-
ful interactions [6]. Principal Agent Theory (PAT) [9, 11, 19, 16] aims to determine the
optimal level of incentives — in the form of rewards and penalties — that an agent
(the principal or consumer) must commit to giving others (the providers) in order to
have the latter act in such a way so as to maximise the principal’s utility. To utilise PAT
an agent requires beliefs about the behaviour of the provider. However, without previ-
ous (potentially negative) experiences, such beliefs cannot be formed. This problem,
of lack of experience with others in the system potentially leading to poor experiences
when operating within the system, is referred to as the cold start problem [23]. Several
approaches have been proposed for addressing the cold start problem, from minimal
expectation or random assignment to the capabilities of the providers [21, 24], to ac-
tive learning [14]. In particular, good results have been shown by using samples of the
society [22].

Apart from the cold start problem, several other difficulties arise when using PAT.
Computing incentives requires solving a highly non-linear optimisation problem. When



combined with the need to select between multiple possible providers, the computa-
tional costs of creating contracts using PAT, and gathering the information needed to
create such contracts, become prohibitive. When dealing with unfamiliar parties hu-
mans often resort to general principles to determine incentives, stemming from cultural,
psychological or legal foundations. In this paper, we build on this intuition, suggesting
that without additional information, an approximate set of incentives can be specified
for all interactions within the system. We envision that a PAT based system would ini-
tially utilise this approximate set of incentives to generate contracts. As more infor-
mation becomes available through repeated interactions, these approximations become
discounted in favour of more accurate incentives to form better contracts. However, in
the case of very simple computationally bound agents, our approximations could con-
tinue to be used. Our work can therefore be seen to address the cold start problem by
allowing an agent to successfully interact with others in the absence of specific infor-
mation about them.

Our contributions are as follows. We describe a procedure for determining suitable
approximate global incentive values. Such incentives aim to be applicable to all agents
in the system, and in defining them, we consider their effects on overall system utility,
which we refer to as the social utility. We define a set of incentives, or a contract, as
suitable if it is the result of a trade-off between the social utility that can be gained, and
the regret of paying too much for a given good or task. Informally, the contract is based
on an average individual provider computed from the profile of all agents in the system.
We experimentally evaluate our contribution, showing how using the global contract
significantly outperforms other techniques aimed at addressing the cold start problem.

In the next section, we provide some background on principal agent theory, fol-
lowing which we describe how global contracts are computed in Section 3. Section 4
discusses another set of experiments evaluating the performance of using the global
contract in solving the cold start problem. Section 5 summarises our results and con-
cludes.

2 Background and Assumptions

2.1 Preliminary Notions

Following [5], we take as given a society of agents A = {x, y, . . .} and a set of tasks
T . A consumer x ∈ A desires to see some task τ ∈ T accomplished and must do so
by having a provider y ∈ A perform the task on its behalf. Given τ ∈ T , let Oτ =
{o0, o1, o2, . . . , on} denote the set of possible outcomes for task τ , where o0 ≡ abs
represents the case where the provider abstained from executing the task. �o induces a
total strict order overOτ , such that intuitively, if oi �o oj , oi is better than oj . mino Oτ
represents the worst possible outcome of task τ , i.e., complete failure, while maxo Oτ
represents complete success. For ease of notation, oi ≺o oj iff oj �o oi. We assume that
all agents share the same task evaluation criteria as well as the same ordering function.

In delegating a task to a provider, the consumer asks the provider to execute it. The
delegation of a task results in the consumer and provider obtaining some utility (for the
consumer, due to the execution of the desired task, and for the provider, due to payment



obtained from the consumer). Given this, the utility gained by the consumer is computed
by the function Ux : Oτ 7→ R, while the provider gains utility V y : Oτ 7→ R.

The task provider has autonomy in selecting the method by which a task will be
carried out. In particular, let Eτ = {e0, e1, . . . , em} denote the set of effort levels they
can apply when performing τ , where e0 ≡ abs identifies the case where the provider
abstains from performing the task. We define a total ordering �e over Eτ such that if
ei �e ej , then ei requires more effort (or is higher than ej . Similarly as before, ei ≺e ej
iff ej �e ei.

Each effort has an associated cost determined by the function Cost : A× Eτ 7→ R.
For ease of notation, for agent y ∈ A, Costy denotes its cost function. Now different
effort levels have an impact on outcomes, which we capture through a probability dis-
tribution: ∀o ∈ Oτ ,∀e ∈ Eτ , py(o | e) represents the probability that agent (provider)
y will achieve the outcome o using effort e. It is assumed that py(abs | abs) = 1.

When delegating, the consumer devises a payment function, or contract, C : A ×
A × T × O 7→ R. We write Cxy:τ (o) for a given o ∈ Oτ to represent the contract
specifying the compensation consumer x will give to provider y given outcome o of
task τ .

Therefore, the net utility nV y for a provider y which achieves an outcome given a
specific effort (including abstention) is:

nV y(o, e) = V y(o) + Cxy:τ (o)− Cost (e) (1)

2.2 A Fair System

In what follows we assume a fair system with the following properties.

(F1): ∀oi, oj ∈ Oτ , if oi �o oj then Ux(oi) ≥ Ux(oj) and V y(oi) ≥ V y(oj);
(F2): ∃oi ∈ Oτ s.t. V y(abs) < V y(oi);
(F3): ∀ei, ej ∈ Eτ , if ei �e ej then Cost (ei) ≥ Cost (ej);
(F4): ∀oi, oj ∈ Oτ , if oi �o oj then Cxy:τ (oi) ≥ Cxy:τ (oj);
(F5): Cxy:τ (abs) = Cost (abs).

(F1) states that the better the outcome of a task, the greater the utility that (indepen-
dently) both the provider and the consumer receive; (F2) that the utility gained from
abstaining cannot be smaller than the utility gained from any outcome; (F3) that the
higher the effort, the higher the associated cost to the provider; (F4) that the better the
outcome, the higher the compensation to the provider according to the contract (incen-
tive); (F5) that the contract covers the costs associated to abstaining behaviour, but no
more. We note that these constraints are not minimal.

Although in reality some of those properties might fail from being satisfied, they
try to capture a minimal set of norms for a free-market society. Far from being un-
questionable, we elicit them as postulates on which we base our proposal in the next
sections.



2.3 Rationality Assumptions

We assume that each provider rationally decides whether or not to accept a contract, and
which effort to use if it does not abstain. In particular, if the provider’s expected utility
is greater than the utility it would obtain abstaining, then the provider will perform
the requested task. Moreover, the provider will utilise the effort on the task which will
maximise its own expected utility. EV y denotes the expected utility for a provider y in
performing a task τ with a contract Cxy:τ , and is computed as follows.

EV y =
∑
e∈Eτ

∑
o∈Oτ

(
p(o|e) (V y(o) + Cxy:τ (o)− Cost (e))

)
(2)

Therefore, if EV y ≤ V y(abs), it is better, or more convenient for the provider to
abstain from accepting the task. If, instead, EV y > V y(abs), then the effort that the
provider will expend on performing the task is as follows.

argmax
e∈Eτ

∑
o∈Oτ

(
py(o | e) (V y(o) + Cxy:τ (o)− Cost (e))

)
(3)

Let delegate denote the non-deterministic function that, given a task τ , a provider
y, and a contract Cxy:τ , returns a pair of elements: (1) an element of Oτ ∪ {abs} which
depends on the effort resulting from y’s decision process (obtained from Eqs. (2) and
(3) ), and (2) the net utility for y.

As mentioned above, we seek a global approximation for incentives. This means
we must consider the effects of task delegation on all agents in the system, and to this
end, we define the social utility as the sum of utilities obtained by delegating a task τ
between all agents in the system, given a contract Cxy:τ :

sU(Cxy:τ ) =
∑
x,y∈A

Ux(ô) + n̂V y (4)

where 〈ô, n̂V y〉 = delegate(τ, y, Cxy:τ ).
Finally, following [20, p. 51], we can compute the regret of a consumer to have

chosen a contract Cxy:τ from a set of contracts Cxy:τ as follows.

Regret(Cxy:τ , o) =

(
min

Cxy:τ∈Cxy:τ
Cxy:τ (o)

)
− Cxy:τ (o) (5)

The regret value is, by definition, negative. However, its value must be interpreted as an
absolute value [20, p. 51].

2.4 Traditional Solutions to the Cold Start Problem

Several approaches have been proposed for solving the cold start problem in contract
negotiation. For the purpose of this work we will focus on three of them.

The first approach is probably the simplest. It proposes that as starting point, one
uses the minimum contract possible according to fair systems requests. In this way, by
incrementing the value of the contract (in the sense of utility paid to the provider for



successful task execution) every time we receive an abstention, we can converge to the
minimum contract while guaranteeing providers not abstain. However, this contract is
not guaranteed to maximise the consumer’s expected utility.

A second approach adopts an exploration strategy, such as Boltzmann selection [6],
whereby, given a set of outcomes for a task, contracts are randomly selected initially
(i.e. the exploration phase), with the best observed contract being chosen after some
time period has elapsed (the exploitation phase). In case the chosen contract does not
guarantee participation, we can iterate the interactions and converge sooner to the min-
imum contract guaranteeing it. However, if the cost of the contract for the consumer is
too high, this will result in high regret.

A third approach utilises sampling. This includes widely adopted techniques for
solving the cold-start problem via active learning [22]. Given a society of agents A
and the set of contracts C, and given a simple sampling procedure [8], the problem
is to determine the number of samples required to achieve some statistical accuracy
requirement.

Since our goal is to identify sufficient samples to obtain non-abstaining behaviours,
we can divide each unit of the search spaceA×C— assumed to be normally distributed
— into one of two classes yielding either abstaining or non-abstaining output. Given the
margin of error d that we consider acceptable in the estimated proportion p in the class
of non-abstaining output, and given the accepted risk α that we can incur that the actual
error is larger than d, then according to [8], we require n samples, computed as follows.

n0 =
t2 p (1− p)

d2

where t is the abscissa of the normal curve that cuts off an area of α at the tails. If n0

|A×C|
is negligible, n0 is a satisfactory approximation, and thus n = n0. Otherwise,

n =
n0

1 + n0

|A×C|
(6)

In the following we identify with Ĉdα the set of sample contracts given the margin of
error d and the accepted risk α.

3 Global Contracts

In order to apply PAT, one must be able to compute the provider’s expected utility,
requiring knowledge about provider costs and success likelihoods for different effort
levels. Therefore, in order to assess its own utility, the consumer should know, for each
provider and for each effort level, the associated cost, as well as the probability of
obtaining each outcome of the task for a given provider’s effort level.

To reduce the computational effort for a consumer to explore providers’ capabili-
ties, we introduce a representative agent ω obtained from the providers present in the
system. ω can be viewed as the simplest stereotype agent [1, 10, 4] for a given society.
The idea is to improve agents’ local computations by providing them with this repre-
sentative agent. Although outside the scope of this work, assessing the quality of the



representative agent is an important issue which can impact on other aspects of a multi-
agent society, e.g., how much can an agent trust the agents in a society in which it enters
for the very first time?

In what follows, without loss of generality and to simplify the presentation, we
assume:

– a single task τ ;
– a fixed shared cost function Cost for all the providers;
– a fixed shared utility function V for all the providers;
– a fixed shared utility function U for all the consumers;
– contracts Cxy:τ such that ∀o ∈ Oτ , Cxy:τ (o) ∈ Z: moreover, we assume a strong

fairness requirement for these contracts, i.e., Cxy:τ (oi)  Cxy:τ (oj) if oi �o oj .

In particular, shared utility functions are widely employed in cooperative contexts
[3], which is also the main focus of our research.

Therefore, the representative agent ω is one such that:

∀o ∈ Oτ ,∀e ∈ Eτ , pω(o | e) =
1

|A|
∑
y∈A

py(o | e)

3.1 Searching for a Suitable Contract as a Linear Problem

Considering a representative agent as the “average” provider in a given society does
not entirely address the problem of identifying a suitable contract. However, by taking
into account Equation (2), we can derive bounds for the contracts, such that values of
contract below the lower bound would have the same effect as the minimum contract
itself, and the same for the upper bound.

The lower bound for contracts is:

∀o ∈ Oτ , Cxω:τ (o) ≥
⌊(

min
e∈Eω

Costω(e)

)
−
(
max
o∈Oτ

V ω(o)

)⌋
(7)

Similarly, the upper bound is:

∀o ∈ Oτ , Cxω:τ (o) ≤
⌈(

max
e∈Eω

Costω(e)

)
−
(
min
o∈Oτ

V ω(o)

)⌉
(8)

Given the bounds of Equations (7) and (8), let Cxω:τ ⊆ Cxy:τ be the set of contracts
that respect them.

Recall that our aim is to identify a suitable global contract given limited knowledge
of the providers, taking into account the trade-off between (i) maximising the social
utility, while (ii) minimising the (absolute value of) regret for the consumer.

Concerning (i), from Equation (2) there is an inverse relationship between the like-
lihood of abstaining from accepting the task and the utility gained by the provider. This
thus limits our search space, as we want to select a contract that is not likely to lead to an
abs result. Concerning (ii), Equation (5) suggests that minimising the chosen contract is
corellated with minimising the (absolute value of the) regret as well. Let us notice that
this requirement does not apply to contracts in general, rather regret minimisation is



enforced only in searching for a suitable contract given the representative agent. There
might be situations where minimising the regret for the consumer is unnecessary: we
will investigate them in future work.

Solving the following linear problem thus addresses the above two aims:

min
Cxω:τ

∑
o∈Oτ

Cxω:τ (o) (9)

subject to ∑
o∈Oτ

Cxω:τ (o)
∑
e∈Eω

pω(o | e) ≥

V ω(abs)−

( ∑
o∈Oτ

∑
e∈Eω

(V ω(o)− Costω(e))

) (10)

and

∀o ∈ Oτ

Cxω:τ (o) ≥
(
min
e∈Eω

Costω(e)

)
−
(
max
o∈Oτ

V ω(o)

)
, and

Cxω:τ (o) ≤
(
max
e∈Eω

Costω(e)

)
−
(
min
o∈Oτ

V ω(o)

) (11)

and

∀oi, oj ∈ Oτ s.t.oi �o oj , Cxω:τ (oi) > Cxω:τ (oj) (12)

In particular, Equation (9) seeks to minimise regret, while Equation (10) constrains
the search space to avoid abstentions. Equations (11) and (12) enforce the lower and
upper bounds on the contract, as well as the fairness constraint respectively.

[7] shows how the contract which provides a solution to the linear problem is a
suitable — i.e., a trade-off between social utility and regret — approximation to the
best solution obtained through exhaustive search.

3.2 Sampling the Society

Deriving a representative agent is clearly a complex task. If there is no a priori knowl-
edge to do so, then performing the derivation forms an instance of the cold start prob-
lem. Therefore, we can adapt the idea of simple sampling discussed in Section 2.4 to
the case of continuous data [8].

Let us assume the society A is distributed as a normal distribution N (µ, σ) with
mean µ and standard deviation σ. Given r the acceptable relative error, and α, the risk
of being mislead by the sample, the size of the sample n required is as follows.

n0 =
t2 S2

r2 µ2



Algorithm 1 Increment Contracts
contractIncrement(Cxy:τ )

1: Input: Cxy:τ a valid contract
2: Output: Cxy:τ an incremented contract
3: Cxy:τ := Cxω:τ
4: for oi ∈ 〈o1, . . . , on〉 s.t. ∀j, k, j > k, oj �o ok do
5: if oi = o1 then
6: Cxy:τ (oi) = Cxy:τ (oi) + 1
7: else
8: if Cxy:τ (oi−1) = Cxy:τ (oi) then
9: Cxy:τ (oi) := Cxy:τ (oi) + 1

10: end if
11: end if
12: end for
13: return Cxy:τ

Here S2 =
∑|A|
i=1(ai−aµ)
|A|−1 ' σ2. If no

|A| is appreciable, n = n0

1+
n0
|A|

(cf. Eq. 6); otherwise

n = n0 [8].
It is worth noticing that we only sampleA, while the equations in Section 2.4 sample

the space A × C. In the following, Arα identifies the sampled space of agents with r
relative error and α the risk of being mistaken; ω̂rα identifies the representative agent
derived from simple sampling of Arα.

4 Global Contract for Cold Start Problem

We now focus on addressing the cold start problem [23], viz. the problem to identify a
suitable contract to be used in PAT with minimal information about providers.

4.1 Searching for Non-Abstaining Contracts

According to Equation (2), given a contract Cxy:τ a provider will abstain from perform-
ing the task τ if doing so will increase its expected utility. In such cases, it is necessary
to increment Cxy:τ towards a “better” (to the provider) fair contract.

To this end, Algorithm 1 defines the contractIncrement procedure which re-
turns the closest higher fair contract Cxy:τ of an contract Cxy:τ given as input.

At line 3 of Algorithm 1, contractIncrement copies the value of Cxy:τ to Cxy:τ ;
at line 6 it increments the value of the contract for the worst outcomeCxy:τ (o1). Then, for
each other outcome oi in the sequence induced by the ordering function �o,
contractIncrement checks if Cxy:τ (oi−1) = Cxy:τ (oi) (line 8). If this is the case,
Cxy:τ (oi) is also incremented to ensure fairness.

The following proposition proves that there are no other contracts “smaller” than
Cxy:τ = contractIncrement(Cxy:τ ) but “greater” than Cxy:τ . Therefore, Cxy:τ is the
closest of the contracts (in terms of increments necessary within them) that are more
convenient (for the provider) than Cxy:τ .



Algorithm 2 Hill-Climbing Contracts
hillC(y, Cxy:τ )

1: Input: y ∈ A, Cxy:τ a valid contract
2: Output: S the number of iterations to non-abstain behaviour
3: S := 0
4: while delegate(τ, y, Cxy:τ ) = abs do
5: S := S + 1
6: Cxy:τ := contractIncrement(Cxy:τ )
7: end while
8: return S

Proposition 1. Given a contract Cxy:τ , and Cxy:τ =

contractIncrement(Cxy:τ ), ∀o ∈ Oτ @Ĉxy:τ ∈ Cxy:τ \ {Cxy:τ , Cxy:τ} s.t. Cxy:τ (o) <

Ĉxy:τ (o) < Cxy:τ (o).

Proof. Let assume that ∃Ĉxy:τ s.t. Cxy:τ (o) < Ĉxy:τ (o) < Cxy:τ (o) for some o ∈ Oτ .
If o = o1, from line 6 of Algorithm 1 Ĉxy:τ = Cxy:τ , quod est absurdum.

If o = oi, i > 1, without loss of generality let us assume Cxy:τ (i) = Ĉxy:τ (oi) + 1 =
Cxy:τ (oi)+2. From l. 9 of Algorithm 1, this implies that Cxy:τ (oi) = Cxy:τ (oi)+1, quod
est absurdum.

While Algorithm 1 derives more convenient (for the provider) contracts, Algorithm
2 implements the sound and complete procedure hillC for computing the distance
of a given contract Cxy:τ from the closest contract which is more convenient (for the
provider) than abstaining from performing the given task.

hillC requires as input the provider y, and a contract Cxy:τ . It returns the number
of interactions with y needed to ensure that y will not abstain. At line 3 it initialises
the variable S which stores the number of interactions with y. Such a variable is incre-
mented (l. 5) every time the delegation process returns abs .1 In such a case, the contract
is incremented (l. 6) using the function contractIncrement (Algorithm 1).

The following proposition proves that hillC (Algorithm 2) is complete and sound.

Proposition 2. Algorithm 2 is sound and complete.

Proof. Immediate from Prop. 1 and Eq. (2).

4.2 Experimental Hypotheses

The procedure hillC takes a contract as input: determining which contract to use first
is the essence of the cold start problem. For the purpose of this work, we compare the
following possible initial contracts:

1 We admit a small abuse of notation: formally delegate returns a tuple of two elements. In this
case we silently assume that returns only the first element of such a tuple, namely the outcome
of task τ or abs .



– Cxy:τ ↓global s.t. ∀o ∈ Oτ , Cxy:τ ↓global(o) = Cxω:τ (o), where Cxω:τ is a solution to
the linear problem of Eqs. (9–12). We denote Cxy:τ ↓global as GLOBAL. In the fol-
lowing, to show the robustness of our approach, we assume that the capabilities of
the representative agents are uniformly perturbed by up to 0.2 from the average.

– Cxy:τ ↓globalS s.t. ∀o ∈ Oτ , Cxy:τ ↓globalS(o) = Cxω̂rα:τ (o), where Cxω:τ is a solution
to the linear problem of Eqs. (9–12). We denote Cxy:τ ↓globalS as GLOBALsample.
We considered α = 0.05, and d = 0.20.

We compare these two contracts to three contracts capturing existing approaches to
dealing with the cold start problem.

– Cxy:τ ↓min s.t. ∀o ∈ Oτ , Cxy:τ ↓min(o) = min
Cxy:τ

Cxy:τ (o) according to Eq. (7). We de-

note Cxy:τ ↓min as MIN;
– Cxy:τ ↓rand s.t. ∀o ∈ Oτ , Cxy:τ ↓rand(o) = rand, where rand is a random number be-

tween 0 and 1 derived from an uniform distribution. We denoteCxy:τ ↓rand as RANDOM;
– Cxy:τ ↓S s.t. ∀o ∈ Oτ , Cxy:τ ↓S(o) = min

Cxy:τ∈Ĉ
Cxy:τ (o) according to Eq. (7). We denote

Cxy:τ ↓S as CONTRACTsample. We considered α = 0.05, and d = 0.20.

Our experimental hypotheses are:

I1 : on average, the procedure hillC invoked on GLOBAL and GLOBALsample (the
contracts derived from the representative agent resp. without or with a sampling ac-
tivity) will require a minor number of interactions to converge to a non-abstaining
contract than if it is invoked on, in order, CONTRACTsample, RANDOM, hillC(MIN);

I2 : GLOBAL and GLOBALsample are more robust with respect to changes of network
structure and distribution of competencies in the network.

4.3 Experimental Settings

We ran a set of experiments to evaluate the hypotheses, as detailed below. For all ex-
periments, we used the following base settings. Oτ = {o1, o2} s.t. o2 �o o1. V (o1) =
−10, V (o2) = 50, and V (abs) = 0. Eτ = {e1, e2, e3} s.t. e3 �e e2, e2 �e e1, and
Cost (e1) = 10, Cost (e2) = 15, Cost (e3) = 20.

Our system consisted of three agent types (G1,G2,G3), described in Table 1. We
considered societies of 100 agents.

Finally, we handcrafted three different distributions of competencies among agents,
namely poorly resp. uniformly resp. highly competent societies. Table 2 details the three
distributions.

For each configuration (distribution of competencies), we generated 10 different
societies (s0–s9) and evaluated each of them 50 times.

4.4 Experimental Evaluation

Figures 1, 2, and 3 qualitatively depict the results of our experiments: each figure refers
to a single distribution of competencies. Figure 1 illustrates our results for poor compe-
tence societies, 2 for uniform competence, and 3 for high competence.
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Fig. 1: Average steps and standard deviation necessary to find a contract which avoids
abstaining: poorly competent agents
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Fig. 2: Average steps and standard deviation necessary to find a contract which avoids
abstaining: uniform distribution of competencies



G1 G2 G3

pg(o1 | e1) 0.80 0.75 0.70

pg(o1 | e2) 0.60 0.55 0.50

pg(o1 | e3) 0.40 0.40 0.20

pg(o2 | e1) 0.20 0.25 0.30

pg(o2 | e2) 0.40 0.45 0.50

pg(o2 | e3) 0.40 0.60 0.80

Table 1: Agents grouped by competencies

Competence p(a ∈ G1) p(a ∈ G2) p(a ∈ G3)

Poor 0.6 0.3 0.1

Uniform 1
3

1
3

1
3

High 0.1 0.3 0.6

Table 2: Distribution of competencies in the network

For each configuration, for each society, Figures 1, 2, and 3 show average and stan-
dard deviation — over the 50 explorations for each society, and over the agents in
the society — of the number of steps needed to find a contract with no abstaining re-
sults when the starting contract is GLOBAL, GLOBALsample, MIN, RANDOM, or
CONTRACTsample. Although it is not always the case that these values are normally
distributed, we chose to represent average and standard deviation for qualitative pur-
poses.

These results have been proven statistically significant using the Wilcoxon Signed-
Rank Test (WSRT) [27] (p < 0.01). From Figures 1, 2, and 3 it is clear that our hypothe-
ses are satisfied. With respect to hypothesis I1 , the average of hillC(MIN) is the high-
est in any configuration and for any society. On average, values of hillC(RANDOM)
are always smaller than hillC(MIN), and hillC(CONTRACTsample) is smaller that
both of them. We also perturbed the representative agent by up to 0.2 to evaluate the
resilience of the generated contract. In such a situation, hillC(GLOBAL) is almost
always the smallest, and barely distinguishable from hillC(GLOBALsample). This is
particularly true when the competencies are distributed uniformly, Figure 2, or society
is highly competent (Figure 3).

Regarding hypothesis I2 , it is worth noting that the distribution of competencies has
an effect on hillC(MIN) which varies in the range [32, 47], where 32 is the minimum
in the case of highly competent societies, and 47 is the maximum in poorly competent
societies: the poorer the agents in terms of competencies, the higher the (average) value
of hillC(MIN). In contrast, both hillC(GLOBAL) and hillC(GLOBALsample) re-
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turns values that are always in the range [0, 8], independent of the configuration and the
societies. This suggests that I2 is also verified by this set of experiments.

In order to test the robustness of our approach, we also perturbed the competencies
of the representative agent by adding uniform noise in intervals of 0.05 between 0 and
0.25 for each pg(o | e). In 53% of cases — 80% between uniformly distributed and
highly competent agents — they lead to non-significant results (p > 0.01) according
to the Kruskal-Wallis test [15]. Only in the case of poorly competent agents were these
perturbations always significant. This supports our previous analysis regarding the ro-
bustness of our approach and the good performance obtained.

5 Conclusions and Future Work

In this paper, we propose techniques to identifying an approximate contract, to be used
by consumers before they have obtained sufficient information to craft a specific con-
tract for interactions with providers within the system. This contract provides a trade-off
between social utility and regret, and is identified by solving a linear optimisation prob-
lem. Our work addresses an instance of the cold-start problem. We evaluated our ap-
proach empirically, comparing it to existing cold-start mitigation techniques, and found
that our heuristic GLOBAL is robust over different network topologies and provider
competencies; furthermore, in its GLOBALsample version, it is also computationally
efficient, sampling only a small subset of agents within the system. Finally, it allows



agents to converge to contracts which minimise the level of abstention with fewer inter-
actions than heuristics derived from existing cold-start mitigation techniques.

In the empirical evaluation presented in this paper we considered binary task out-
comes and discrete domains. Though this covers many situations where an agent is
concerned only with the success or failure of the task, there are situations where a more
fine-grained set of outcomes should be considered. For instance, in the context of infor-
mation sharing, an information consumer might pay more for higher quality data from
information providers. To represent these situations we plan to adapt the formalisms
presented in [2, 25], where the authors discuss a framework for information sharing
with different levels of quality within a multi-agent system. Moreover, our approach
can be integrated with Carmel and Markovitch [6] to improve the effectiveness of their
strategies for explorations.

Moreover, considering (potentially infinite) sets of outcomes and efforts would al-
low us to integrate our work with trust and reputation systems (e.g., [12, 26, 13]). We
envision that an agent, on entering the system, would use the mechanisms described in
the current work, but as it gains experience, would transition to utilising its trust and
reputation mechanism to identify optimal contracts (c.f., [5]).
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