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Abstract

In dynamic regression models the least-squares coet cient estimators are
biased in " nite samples, and so are the usual estimators for the disturbance
variance and for the variance of the coet cient estimators. By deriving the ex-
pectation of the initial terms in an expansion of the usual expression for the
asymptotic coet cient variance estimator and by comparing these with an ap-
proximationtothetruevariancewe™ nd an approximation tothebiasin variance
estimation from which a bias corrected estimator for the variance readily fol-
lows. This is also achieved for a bias corrected coet cient estimator and allows
to compare analytically the second-order approximation to the mean squared
error of the least-squares estimator and its counterpart for the ~rst-order bias
corrected coet cient estimator. Two rather strong results on et ciency gains
through bias correction for AR(1) models follow. lllustrative simulation results
on the magnitude of biasin coet cient and variance estimation and on the scope
for eBective bias correction and et ciency improvement are presented for some
relevant particular cases of the ARX (1) class of models.

1. Introduction

In arecent paper, Kiviet and Phillips (1998a), we (henceforth referred to by KP) have
obtained a higher-order approximation to the biasin the least-squares estimator of the
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coet cients of normal stable ARX (1) models. In another recent paper, KP (1998b),
we obtained a higher-order approximation to the bias in estimators of the disturbance
variance based on the sum of squared least-squares residuals divided by alternative
measures for the degrees of freedom. A natural extension tothiswork isto examinethe
biasin estimatorsfor the variance of the coet cients. In thispaper we have a closer ook
at the second moment of the least-squares estimator for the full vector of coet cients.
In addition, we also examine the variance and mean squared error of a bias corrected
estimator. From the results various conclusions can be drawn on the e®ectiveness
of bias correction and on appropriate variance estimation of (bias corrected) least-
squares estimators in the ~rst-order stable dynamic regression moded. In this class of
models the dependent variableis explained linearly by an arbitrary number of strongly
exogenous regressor variables and by the one period lagged dependent variable, and
it depends on additive normally distributed (i.i.d.) disturbances.

In the stable model the coet cient of the lagged dependent variable is smaller than
one in absolute value (we have analyzed the ™ nite sample characteristics of the ~rst
two moments of the least-squares coet cient estimatorsin dynamic models with a unit
root in KP 1999). We obtain our approximations to ~nite sample moments by ex-
tending the approach followed by Nagar (1959) in such a way that the approximation
errors of the results are of order T ' or T 2 or even smaller, where T is the sample
size. Thisrequiresthedevelopment of a Taylor-type expansion and then the analytical
evaluation of the expectation of expressions which involve terms consisting of products
of up to four quadratic forms in standard normal vectors. The approximation of the
moments of statistical estimatorsin stable autoregressive models by use of asymptotic
expansions has been undertaken for about half a century. Most early work is particu-
larly concerned with the estimator of the serial correlation coet cient in a “rst order
autoregressive Gaussian process, see Bartlett (1946), Hurwicz (1950), Kendall (1954),
Marriott and Pope (1954) and White (1961). In the latter study, which focuses on the
AR(1) mode with no (or a known) intercept, an analysis is also given of the bias in
the variance estimator of the coet cients, but generally speaking very little work has
been done to “nd out how well the usual standard deviation estimator estimates the
true standard errors in dynamic econometric models.

Our results concern a more general model than the AR(1), because we allow for
any number of arbitrary exogenous regressors in the autoregressive modd and any
form of pre-sample initial condition of the dependent variable of this dynamic system.
As in KP (1998a, 1998b), for related work see also KP (1993, 1994) and Kiviet et
al. (1995), the focus of attention is here the bias of ordinary least-squares (OLS)
estimation (i.e. Maximum Likelihood conditional on yo and X) of all the regression
coet cientsin the “rst-order normal linear dynamic regression model

y=.Y,1+ X +U; (1.1)

wherey = (yy;:5yr)%isa T £ 1 vector of observations on a dependent variable,
y; 1 is the y vector lagged one period, i.e. y, 1 = (Yo;:yr; 1)% and X is a full

2



column-rank T £ k matrix of observations on k ~ xed or strongly exogenous regressors
(such as a constant, a linear trend, step/ impulse/ seasonal dummy variables or any
other covariates not a®ected by feedbacks from the dependent variable). The scalar
coet cient , (withj,j < 1) and k£ 1 coet cient vector ~ areunknown, anduisaTg 1
vector of independent Gaussian disturbances with zero mean and constant variance
3%. Below we shall give further attention to the precise assumptions made on the
initial conditions, i.e. concerning yp.

We " rst focus on an examination of the ™ nite sample bias of the usual estimator
of the (asymptotic) variance of the OLS estimator ® of the full coet cient vector
® = (,;” 9% and we shall develop a bias corrected variance estimator. We shall
also consider a bias corrected estimator ® of ® and examine its relative et ciency
analytically and also experimentally in simulations. Rewriting (1.1) as

y=2®+ u; (1.2
where Z = [y, 1:X]; the OLS estimator of the (k + 1) £ 1 vector ®is
®= (2%2)1'zY; (1.3

and, based on regularity conditions and some asymptotic and ™ nite sample arguments,
itsvariance V(®) = E[®; E(®][®; E(®]°isusually estimated by

V(® =s(2%)"; (1.4)
where ( 70y Z®
Yi Yi .

2 = T (1.5)

Occasionally the degrees of freedom correction is omitted and 3% is estimated by the

ML estimator
_yi Z29%Yi 29,
- a :

The coet cient variance estimator 3(Z%)i ' disregards any ~ nite sample considera-
tions.

Note that the derivation of moments such as E (®); V (®) and E[V (®)] is non-
trivial, because Z is stochastic and depends linearly on u; whereas ® depends nonlin-
early on Z; so these are moments of expressions which are all highly nonlinear in u.
Below in Section 2 we “rst rewrite Z in such a way that its dependence on u becomes
fully explicit, and next we produce for the various moments of interest expansions con-
sisting of individual terms whose expectations can be obtained analytically upon using
some basic results which are collected in Appendix A. From these we obtain approx-
imations to the MSE (mean squared error) and the true variance of ® in the general
ARX (1) model, and also to the expectation of estimators of this variance. Even
though we do not have a representation for the true variance (but only an asymptotic

% (1.6)



approximation), these results can be used to develop a bias correction to the standard
asymptotic variance estimator. In Section 3 we examinethe " rst and second moments
of an implementation of a bias corrected estimator, which is unbiased to order Ti ':
In Section 4 we specialize the general results and examine their implications for the
speci” ¢ case of a simple AR(1) model with an unknown intercept. Some remarkably
simple analytic results on the scope for et ciency gains are obtained. In Section 5
we verify the numerical magnitude of the bias of alternative variance estimators by
Monte Carlo ssimulation. Finally, in Section 6, we summarize our main conclusions.
Proofs of our ~ ndings can be found in a series of Appendices.

2. Bias of variance estimators in ARX (1) models
The starting point for our analysis is summarized as follows.

Assumpt ion 2.1: In the “rst-order dynamic regression model y = |y, 1 + X~ + U,
where the scalar , and the k £ 1 vector = are unknown coet cients, we have: (i)
stability, i.e. j,j < 1; (ii) stationarity, i.e. the matrix Z = [y, 1 : X] is such that
Z% = Oy(T); (iii) the T £ (k + 1) matrix Z has rank(Z) = k + 1 with probability
one; (iv) the regressors in X are strongly exogenous; (v) the disturbances follow u »
N (0;3#11), with 0 < 3% < 1 ; (vi) the start-up value has yo » N (¥o;! 234), with
0 ! <1 ; (vii) yo and u are mutually independent.

Note that | = O represents the “xed start-up case. For any ! > 0 the start-
up is random, and if 12 = (1| .2)I" then fy,g is a covariance stationary process
(but possibly with a non-constant mean). Also note that (ii) excludes a linear trend
or any | (1) regressors. However, the presence of such variables will not change our
approximation formulas as such, asis shown in KP (1998a), but will only render them
more accurate, because it reduces their order of magnitude and also the order of the
remainder terms.

In order to distinguish the ™ xed and stochastic elements of the regressor matrix Z,
we decompose Z = Z + Z, where Z is de ned as the mathematical expectation of Z
conditional on X and yy , i.e.

2 = E(Z) = [E(y; )X] = [ £X] (2.1)

and
Z=2Zi2=1y1i %X X]= [y +0] = y ¢€; (2.2)
where e = (1;0;:::;0)%is a unit vector of k + 1 dlements. It follows directly from



model (1.1) that

2 30 1
1 0 ¢¢¢O Yo
. 1e¢e ¢ X§”
2 1 ¢ ¢ XO'
1. = 5 K} 2
Vit ¢ ¢ ¢C¢ ¢ ¢ £ (23)
¢ ¢ ¢ O ¢
e ee, 1 xg
where X 9= [x;} ¢¢¢'x7], and hence we “nd that Z is determined by: X; ¥o, - and ..
Also de ning v = (Up; uq; =3 ut)®such that
v » N[0;3%I1, 1] with yo = Yo + ! Ug; (2.4)
and de" ningthe T £ (T + 1) matrix G such that
0 1 2 3
1 ¢ ¢ ¢ ¢O
. 1 0 ¢
) ) 2 10 ¢
— ' : . = > . — > 2-
G=[! F:C]; with F ¢ ; C ¢ ¢ ¢ ¢ ¢ (2.5)
¢ ¢ ¢ ¢ ¢ ¢
3T|1 3T52 ¢ ¢ s 1 0
one can easily verify that
¥ 1= Gvand Z = Gve®: (2.6)

Note, that in the ~ xed start-up case (! = 0), we simply have Z = Cue?. However, in
the derivations to follow we shall stick to the more general case where the value of !
is arbitrary.

We " nd

E(Z2%)

E(Z + Gve))4Z + Gved) (2.7)
29 + %tr(GG)e

and we shall denote the inverse of E(Z%) by Q, whereas ¢ denotes the “rst column
of Q, and qg;; the “rst element of g, hence:

Q=[E(Z2)]"; a = Qer; a1 = €)Qey: (2.8)
Using the same notation the following result has been proved in KP (1998a).

Theorem 2.1: Under Assumption 2.1 the bias of the least-squares estimator (1.3)
can be approximated to " rst order as

E®; ® = | ¥#[tr(Q2C2)q + Q22 + 2%8qu4tr (GGT) qy] + o(T! 1):
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In fact, KP (1998a) presents a more accurate and complicated approximation to the
bias of ®; which gives the bias to second order. However, for our present purposes
the O(T! ') bias approximation of Theorem 2.1 su* ces. In order to obtain such an
approximation one hasto “nd an expansion (in this particular case of the estimation
error) in such a form that successive terms are of decreasing order so that the order
of the remainder term is known, whereas the individual terms in the expansion have
an expectation which can be derived analytically. Irrespective of whether one wants
to approximate (the bias in) the “rst or the second moment of estimators for the
coet cients (or for the disturbance variance), the typical expansion will involve terms
in which particular types of expressions occur frequently. For some of these typical
expressions Appendix A provides their expectation.

We shall present results now that are relevant in order to obtain further insight
into matters of interest regarding (the estimation of) the second moment of the full
vector of least-squares coet cient estimators. In Appendix B we derive:

Theorem 2.2: Under Assumption 2.1 we " nd for the variance of the estimator ® the
approximation:

V(® = Ef[®; E@®]®; E@®]y=
%Q
+ ¥ [tr(QZGG2) | 2r(Q2ZCC2) + tr(QZTZ2QZT2) o
+Q29YGG°% cCi 2| CTYZaq
+fZYGG% CcCi 2¢Ci cHZQ
+QZC2qf2C2Q+ QZCZqfZCZQ+ QZLZqfZTZQ
+qf2C2QZ9C + CY2Q+ QZ2YC + CYZ2QZ2CZaq
+qf2%C + CY2QZ2°CcZQ+ QZCZQZYC + CHZ
+tr(Q2C2)[qf2C2Q+ QZTCZ ] + (FZ2C2Z)QZYC + CHZQ
+q[tr(QZ%C2)QZ9C + CYZ2Q+ QZYGG%; cci ccHZQ
+Q2C2Q2cZQ+ QZCc2?QZcZ Qg
+ 38 12tr (GGC) (2 CZ 1) o
+qi1[2tr (GGGG) | 8tr(GIGCC) | 4tr(GLCG)
+4tr (GGC)tr(QZX2) oo
+qi1tr (GGC)[4QZCZ i + 41 fZ2C2 Q)
+6QZCZ qof + 60;FZCZQ)]
+2¢5,tr (GGC)QZYC + CYZ Qg
+ 20986, [tr (GGL) Poyof
+0o(T3):



Next we shall examine how closely the above rather complex approximation to the
actual variance of the coet cient estimator correspondsto the expectation of the usual
estimator for this actual variance. In Appendix C we prove:

Theorem 2.3: Under Assumption 2.1 we " nd for the expectation of the usual esti-
mator of V(®) given in (1.4) the approximation

EV@®] = E[s%(Z2%Z) "=
%Q

+ % [tr(QZGG2) | %tr(COC)]qq?

+Q2GGZ P + 1 f2GGZQ + 01QZGGZ Qg
+ 28 q1tr (GGGB) oy + o(T' 2):

Note that the approximation to order Ti' ' (the leading term) of both V(®) and
E[V (®)]issimply 32Q + o(Ti '): However, the second-order approximations of V (®)
and E[\’7(®)] di®er a lot with respect to contributions of order Ti 2. Note that The-
orem 2.3 implies that the ~rst-order approximation to E[3%(Z%)i ']; the estimator
which omits a degrees of freedom correction, is given by 3£#Q + o(T! ') too; so, the
degrees of freedom correction does not the leading term. Since the second-order
approximation to E[3(Z%)i '] equals the expression given in Theorem 2.3 plus the
term | ¥:132Q we ~nd that this di®ers from both the expressions given in Theorems
2.2 and 2.3. Whether or not these di®rences have an actual magnitude that is worth
bothering about has to be found out by numerical evaluation of these expressions
for given values of X; yo; ® and 3% at relevant sample sizes T; and by comparing
these approximative expressions with estimates of the true variance. The latter can
be obtained from Monte Carlo experiments.

If these di®erences can be substantial it would seem interesting to develop a cor-
rected estimator of V(®); say V(®); which adds particular terms to the standard
estimator V¥ (®); such that E[V (®)] is equivalent to second order to V(®): We return
to the issue of bias reduction of variance (and coet cient) estimators later.

A more focussed comparison of the above analytical results on variance matrices
is possible if we limit ourselves to the simpler scalar results for the single lagged
dependent variable coet cient ,. From Theorem 2.1 one easily obtains:

Corollary 2.1: Under Assumption 2.1 the bias of the least-squares estimator ”* can
be approximated as:

EC P )= i Blatr(Q2C2) + f2C2q + 298 tr (GGC)] + ofTH):



From Theorem 2.2 we obtain after pre- and postmultiplication by e:

Corollary 2.2: Under Assumption 2.1 we ~nd for the variance of the estimator "
the approximation:

V(§)=EL i EQ)P=
%Qﬂ
+ %1 5(f2°C2 )2
+q[6(FP2C2QZC2 ) + 42 C2Q2ZC2 )
+(fZ293GG% 6CC | 4CTIZq) + 4tr(QZC2)(f2C2 )]
+ 5 [tr(QZGG2) | 2tr(Q2%CC2) + tr(Q2C2QZ2C2)]g
+ 381 36¢E,tr (GGL) (FZCZ )]
+f,[2tr (G'GGG) | 8tr(GIGCC) | 4tr(GLCLTG)
+4tr (GGC)tr (QZ%C2)]g
+ 2098, [tr (GGC) ]2
+0o(Ti?):

From Theorem 2.3 we obtain:

Corollary 2.3: Under Assumption 2.1 we " nd for the expectation of the usual
estimator of the variance of the estimator A the approximation:

EV()] = E[SNZZ) "e]=
Y& 1
+ %41 3011 (F2GGZ 1) + F4[tr (QZGG2) | %tr(COC)]g
+29808,tr (G'GGG) + o(T' ?):

Again we note that the two approximations given in Corollaries 2.2 and 2.3 di®er
substantially with respect to their order Ti 2 terms, which may be an indication that

A A
> >

there is some scope for developing a second-order unbiased estimator V() for V().

3. The et ciency of bias corrected coet cient estimators

The approach layed out in the foregoing section consists of three stages: (i) assess
the second moment of a coet cient estimator to second order and next (ii) obtain to
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second order the expectation of a variance estimator of that coet cient estimator, in
order (iii) to exploit these results to correct the variance estimator such that it will
become unbiased to second order. This can also be applied to a bias corrected least-
squares estimator in which the result of Theorem 2.1 has been exploited such that the
corrected estimator is unbiased to order Ti ': For the expression

®+ ¥[tr(QZC2)qy + QZCZ oy + 24aptr (GGC) o]

it isobviousthat thishasexpectation ®+ o(Ti 2); but it isnot an operational estimator,
because 3%; C; G and Q are, or depend on, unknown parameters. However, consider
the operational corrected least-squares (COLS) estimator

®= ®+ s’tr(P2¥2)p, + s2P2%2p; + 25*py1tr (CEC)py; (3.1)

where ® and s? are the usual least-squares estimators, P = (Z%)i '; which has ~rst

column p; with “rst dlement pi1; Z = [Fyo+ CX "X ] and € equals C (also F equals
F) with the unknown , replaced by ". In Appendix D we prove:

Theorem 3.1: Under Assumption 2.1 the COLS estimator ® given in (3.1) is unbi-
asedtoorder Ti ';i.e
E(® = ®+ o(Ti ):

For this bias corrected estimator we obtain in Appendix E:

Theorem 3.2: Under Assumption 2.1 we ~nd for the variance of the bias corrected
estimator ® given in (3.1) the approximation:

V(® = Ef[® E@]@®; E(®]y=
%Q
+ % [tr (QZGG2) + tr(Q2ZC2Q2C2) o df
+Q2GG2 i + ¢ fZGGZ2Q + QZC2qf2C?Q
+qf2CZ2QZC2Q+ Q2CZQZTZ g + 01QZGGZ Qg
+ 298f [2tr (GGC) (F2CZ o) + apitr (GGGG)[opof)
+antr (GGR)[QZTCZ g + 1 of2C2Q)]g
+ 4% [tr (GGC)FPandf
+0o(Ti 2):

It isnoteworthy that the expression for the second order contribution to the variance of
the corrected estimator isin fact much simpler than for the uncorrected least-squares
estimator.



From Theorems 2.3 and 3.2 we " nd (proof in Appendix F):

Theorem 3.3: Under Assumption 2.1 the estimator V(®) of the variance of the bias
ocorrected estimator ® given in (3.1) has E[V(®) j V(®]= o(T! ?) if we de” ne:

Ve ~ V(@®
+s*[tr(PZCZP2%2) + %tr(éoé)]pm?
+P2C2pip2C%2P + pp2C2P2C2P + P2C2P2%¢2piplg

+25%r (CCX) 22 CZp1)pip} + plPZCZpip} + pipIZCZP)]g
+4s°p8[tr (CCC) Ppr pt:

Specializing the above results to the variance of the “rst element of ® yields:

Corollary 3.2: Under Assumption 2.1 we " nd

V(,) = ELi E()F
= o+
+ % (FZC2 )% + q[2€2C2Q2ZC2q) + 3(F2GGZ )]
+ Q5 [tr(QZGG2) + tr(QZCZ2QZT2)g
+ 4381 2c¢,tr (GGL) (P22 ) + o tr (GGBGG)g
+ 438 [tr (GGC) P + o(T' 2):

and
Corollary 3.3: Under Assumption 2.1 V(,) is unbiased to second order for V(f)
when de ™ ning:
Vi) o YD)+
+s* (002C2p1)2 + 2011 (P32C2P 2% Zpy)
Bt (C) + tr (P2YCCP) + tr(PLE2P2C2)]g
+8s%p2,tr (CCC) (pI2€ 2 )
+4s%pt, [tr (CCX) 1

In deriving Theorem 3.2 and its Corollary 3.2 we have also obtained an approxi-
mation for the MSE of the corrected estimator, because these are equivalent up to the
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order of the approximation. Comparison of these with the MSE of the uncorrected
estimator, which is of course di®rent from its variance in the O(Ti ?) terms due to
the O(T! ') coet cient bias, yields information on any et ciency gains or losses by
coet cient bias correction.

4. Results for the AR(1) model with intercept

Here we focus on the variance of the OLS and COLS estimators for the lagged depen-
dent variable coet cient , in the model of Assumption 2.1 with an intercept as the
only exogenous regressor. Hence, we have here:

Vo= LYy1+  + U (4.1)

For this model Corollary 2.1 reduces to the well-known Kendall (1954) approximation
restated here as:

Corollary 4.1: Under Assumption 2.1 the bias of the least-squares estimator " for
the special case of model (4.1) can be approximated as:

ECT L) =i 1 (1+8)+ 0T );

Hence, this approximation proves to be valid irrespective of the nature of the start-up
value yo: De ning for mode (4.1) the standardized start-up value
1 A o
Vo= g, Yoi 7— (4.2

)

we " nd the following approximative expression for the true variance, see Appendix G:

Corollary 4.2: Under Assumption 2.1 the variance of the least-squares estimator
f for the special case of model (4.1) can be approximated as:

V() ENi EQ)P
19 .2 174,142 1) 2° | ’ |
— |T¢ | I ¢T|2 5 i |-|-2$ y02+ !2 + O(T' 2):

Here the leading term ll?—z is simply the asymptotic variance of " Notice that in the
mean-stationary case, where o = s the approximation does not involve 3£ nor ™ :
Also note that the variance decreases with the variance of the initial value yq:
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For the expectation of the standard variance estimator we ™ nd:

Corollary 4.3: Under Assumption 2.1 the expectation of the estimator for the
variance of the least-squares estimator A for the special case of model (4.1) can be
approximated as:

EV ()]

E[s°€7(Z22)" 'e]
1' .52 2+23+5.s2 1' 3231!12

2 i 2y.
Tt T2 + 1% +0o(TH*):

It is obvious that this estimator is unbiased to order Ti '; but biased to order Ti?;

since one of its second order terms di®ers from the corresponding one of Corollary 4.2.

So, even though we do not know V(f) precisely, we ~nd from its approximation that
the standard estimator is biased, viz.

3;i 2, 9°2

EN () V= =

If we can modify ¥ () to have the same mean to order Ti 2 as V ("), then an approx-

imately unbiased estimator of V() will result. Thus, for the case Z = ly, 1 : ] where

= (1;:::;1)% the statistic

+ o(Ti 2): (4.3)

| 3, 21902
SZZ) e |

is unbiased to O(T' 2) for V(f) but in practice this estimator is not operational since
it depends on _ : However, since E("j )= O(TI ') we "nd:

Theorem 4.1: Under Assumption 2.1 the corrected estimator for the variance of the
least-squares estimator A for the special case of model (4.1) given by

3;j 2% 972
T
is unbiased to order T1 2;i.e. E[V(") | V(1] = o(Ti 2):

TN

For the simple model (4.1) our implementation of COLS leads to

, A 1 A T+ 3/\ 1 .
. °+T(1+3’)_ Tt T (4.4)
Exploiting now the analytic results of Section 3 on the COLS estimator for the special
case of the AR(1) model with intercept we obtain:

Theorem 4.2: Under Assumption 2.1 the COLS estimator
(4.1) has

in the simple model

6 6,2

V)= V() + ==+ oT?)

12



and
5i 6, 15,2

MSE(,) = MSE(") + =3

+0o(T'?);
so that, omitting terms of order o(T' 2); we “nd

MSE(,) < MSE(") for | 1<, < i 0:811and for 0:411< , < 1:

)

The " rst result of this theorem shows that, to the order of the approximation, bias
correction will invariably lead to an increase in variance. However, the M SE result
indicates that, in the AR(1) mode with intercept, bias correction is not bene cial
as far as et ciency is concerned when j 0:811 < | < 0:411: In a similar way, it can
be derived that in the AR(1) modéd with no intercept bias correction yields no MSE
reduction when j,j < 0:707: We conjecture that the greater the number of smooth
regressors that are included in an ARX (1) model, the more scope there is to improve
et ciency through bias correction.

When bias correction has been employed an adequate estimator for the resulting
varianceis still provided by \7(:‘), but an operational estimator which is even unbiased
to order T' 2; isthen given by:

\/7(/\) 3+ 2¢+3¢2_

V)0 s T

K]

(4.5)

Bias correction of AR(1) models has been entertained in the literature in many
studies, see Copas (1966), Orcutt and Winokur (1969), Rudebusch (1992) and MacK -
innon and Smith (1998). All these studies based their bias correction on the Kendall
(1954) approximation to the bias given in Corollary 4.1, although, instead of using
(4.4), in all the studies just referred to a bias corrected estimator — has been used
which is obtained by solving

A 1

yielding
, T AL 1
T3 T3
For the bias of this corrected estimator we " nd

. N B 1
A 3 A 1
= l 3 1 i2
= IT(1+3°)+Ti 3°+Ti 3+O(T )
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3 3 1 1

— I S e i2
T - T, 3 T+T53'T+O(T)
= 9 3 i2

= Ty T g o)

= O(T'?);

hence, both bias corrected estimators remove the O(T! ') bias. In fact, however, _is
a hybrid bias correction estimator, because the correction also involves a non-random
term of order O(T! 2); since ﬁ =1+ 2%+ 0T 2): Wealso " nd:

Theorem 4.3: In the simple model (4.1) the corrected estimators , and — are both
unbiased to order O(T!'); but, omitting terms of order o(T'i?2); , is uniformly (for
any j,j < 1) more et cient than _; because

_“T+31]2 LT 12

V(,) V() and V(D= =—— V()

° T

The superiority of our implementation of bias correction follows from 2| 5 =
. 9 .
Ty < O

5. Numerical results

We shall examine the estimators * and |, their e+ ciency, the qualities of their respec-
tive (bias corrected) variance estimators and the accuracy of the various asymptotic
approximations for model (4.1) and also for the AR(1) mode with intercept and lin-
ear trend. For that purpose we perform various numerical evaluations and execute
some series of Monte Carlo experiments. In what follows we write V[] for what in
fact is the Monte Carlo estimate of V(). Because we generate many replications the
Monte Carlo estimates will be very close to the actual population moments. In the
model with intercept only, we write AV;[] for the (leading term) asymptotic variance
of "; which is (1] ,2)=T, and AV,["] for the second-order asymptotic approxima-
tion to V("); which is given by Corollary 4.2. For the mean over the Monte Carlo
replications of V(") we simply write E[V["]]; and similarly for V["] of Theorem 4.1
and for V[, ] of Corollary 3.3. In the tables we present results for various values of
j.j < 1and T; focussing on positivevaluesof , and 10 T 50 and thecase™ = 0;
Vo= "=(1j ,)=0;! = 0; %= 1;i.e. the model with a " xed start-up and mean-
stationarity (note from the asymptotic approximationsthat these values often seem to
mitigate the magnitude of the second order terms). All results presented in the tables
are invariant with respect to ™ ; and most are with respect to 3% Often the results are
given asratios. Then values of unity in the tables may indicate unbiasedness and val-
ues smaller (greater) than one negative (positive) bias. In order to compare the eBect
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of bias correction on e+ ciency we also present theratioof M SE[, ] and M SE[f]; here
values smaller than one indicate an et ciency gain due to bias correction.

Table 5.1:
Estimation in the AR(1) model with intercept; T = 10; 250,000 replications
E[M ELIi. "] AVi[’]  AVp[1 EN['I EIVIID EIVLI  MSEL]
> A BTy > V(] V(] V] V('] VL1 M SE[]]

0.0 -0.111 0.401 0.095 1.058 0952 1374 1.135 1.026 1.513
0.1 -0.139 0363 0.096 1.026 0979 1358 1130 1.024 1.431
0.2 -0.167 0.343 0.098 0980 1.016 133 1126 1.022 1.341
0.3 -0.197 0333 0.099 0918 1.065 1305 1123 1.019 1.247
0.4 -0.227 0332 0.100 0841 1125 1269 1120 1.015 1.152
0.5 -0.260 0338 0.100 0748 1.197 1227 1117 1.012 1.056
0.6 -0.294 0.348 0.100 0640 1284 1179 1.114 1.008  0.962
0.7 -0.331 0363 0.099 0515 1390 1124 1110 1.004 0.872
0.8 -0.368 0377 0.097 0370 1516 1.056 1.099 0997 0.789
0.9 -0.401 0377 0.096 0.198 1.650 0.954 1.069 0.976 0.721
099 -0.413 0338 0.097 0021 1.742 0815 1.024 0932 0.686

Table 5.2:
Estimation in the AR(1) model with intercept; T = 20; 250,000 replications
A ELL . A AVZ[l]  AVe[']  EN[M) EVI  EIVLI MSEL]
? ELTi . ELCDi . VL] vIZ] vIZ] VIl VI VL] M SE[]

0.0 -0.053 0200 0.048 1.043 0991 1.169 1.031 1.009 1.252
0.1 -0.067 0.183 0.048 1.021 0997 1157 1.029  1.007 1.213
0.2 -0.082 0.176 0.049 0989 1.007 1.141 1.028  1.006 1.165
0.3 -0.097 0175 0.048 0945 1.021 1120 1.027 1.004 1.110
0.4 -0.113 0.180 0.047 0.888 1.038 1.092 1.026  1.001 1.047
0.5 -0.130 0.190 0.046 0814 1.058 1.058 1.024 0997 0.976
0.6 -0.148 0.207 0.044 0720 1.082 1.015 1.022 0.992  0.898
0.7 -0.169 0232 0.042 0601 1111 0.961 1.019 0985 0813
0.8 -0.193 0268 0.040 0451 1.149 0.898 1.016 0979 0.720
0.9 -0.221 0313 0.037 0259 1210 0819 1.013 0974 0.623
099 -0.236 0307 0.034 0030 1274 0682 0975 0938 0557

We focus on the AR(1) modd with intercept “rst. Table 5.1 contains results for
T = 10: We see from the second column that at such a small sample size the least-
squares estimator is badly and negatively biased (often -50%), especially for larger
values of | : The next column indicates that a " rst-order correction of this estimator
reduces the bias by about 60%. Only for small values of , is the asymptotic vari-
ance of the least-squares estimator found to be a reasonable indicator of the actual
variance. Especially for , values close to one, the asymptotic variance is much too
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Table 5.3:
Estimation in the AR(1) model with intercept; T = 50; 250,000 replications

Ay ELLL. AvAVIT] AVL[] EN[ EIVE EIVLY  MSEL]
ELT . gy~ VLT Ty v VI V] VL] MSE[]

0.0  -0.021 0.103 0.020 1.020 0999 1.063 1.005 1.002  1.099
0.1 -0.027 0.092 0.020 1.009 1.000 1.058 1.004 1.001 1.084
0.2 -0.033 0.087 0.019 0.994 1.001 1.050 1.004  1.001 1.064
0.3  -0.039 0.086 0.019 0972 1.003 1.039 1.003 1.000  1.040
0.4  -0.045 0.088 0.018 0.941 1.005 1.025 1.002 0.998  1.009
0.5 -0.052 0.094 0.017 0.900 1.008 1.005 1.001 0.996  0.969
0.6  -0.059 0.104 0.015 0.841 1.010 0977 0999 0.993 0.919
0.7  -0.066 0121 0.013 0.756 1.013 0936 0.9% 0.988  0.853
0.8 -0.075 0.152 0.012 0.624 1.011 0876 0990 0979 0.763
09  -0.088 0216 0.009 0405 0999 0.780 0978 0.964  0.639
099 -0.103 0.291 0.007 0.056 1.003 0.620 0.956 0.942  0.498

small. A second-order asymptotic approximation to the variance proves to be more
accurate. Wherethe ™ rst-order approximation is much too small, the second-order ap-
proximation overshoots, and does so quite seriously for largevalues of | : The standard
estimator V(") of the variance of , however, is relatively good, although it can have
a bias of § 30% or beyond. Also the corrected variance estimator V(f) shows some
remaining bias, but generally thisbiasis mitigated and always the corrected estimator
produces a conservative estimator of the actual variance (it never has a negative bias).
Hence, we ™ nd that our analytical higher-order asymptotic results on second moments
can be used successfully already at a sample size as small as T = 10; which seems
quite remarkable. Assessing the variance of the bias corrected coet cient estimator
reasonably accurately is shown to be possible, according to the " ndingsin the last but
one column. The ™ nal column shows the magnitude in et ciency loss (or gain) dueto
coet cient bias correction. From theresults we seethat at this sample size the critical
point is actually not , = 0:411; as our earlier analysis suggested, but slightly larger.
Apparently e®ects of third-order are sizeable at such a small sample size.

In Table 5.2 we present similar results for T = 20: The coet cient bias is smaller
now, but still substantial (often -25%). Correcting for bias is more successful, because
it yields a reduction to 20 or 30% of the original bias. The accuracy of the asymptotic
variance is still appalling, but the second-order approximation seems acceptable now
aslong as, isnot toocloseto unity. The standard variance estimator may show a bias
of some 20%, but the corrected estimator is really quite an accurate one. From the
“nal column we see that, upon comparing with Table 5.1, the increased sample size
o®ersin fact more scope for relative et ciency gains through coet cient bias correction
(all “guresin the " nal column are smaller). The et ciency of the corrected estimator
can be estimated very precisely, asis shown by thelast but one column, and the value
for , where correction starts to pay o®is just above 0:4 now, as was to be expected
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from the result in Theorem 4.2.

Increasing the sample size further to T = 50 yields results presented in Table 5.3
which show more or less the same pattern, apart from the following. We " nd that the
potential et ciency gains from bias correction are much more substantial now than
the possible losses that occur in cases where , is non-negative but small. Especially
for largevaluesof | ; say , = 0:9 wherethebiasis only about -10%, et ciency gains of
about 40% can be achieved (and for , > 0 et ciency losses never exceed 10%), whereas
a very accurate estimator of thisimproved et ciency is available, as can be seen from
the last but one column. Note that a MSE reduction of 40% implies a reduction
of some 25% in terms of root mean squared errors (or standard errors). This seems
quite attractive against the risk of a possible increase by only 5%. Hence, these three
tables show that it is not necessarily the case that bias correction is called for only
when biases are huge. A better on et ciency is obtained when we correct for
bias in cases where the bias is moderate, so that the bias approximation is reasonably
accurate and therefore more e®ective.

Table 5.4:
Estimation in the AR(1) model with intercept; 250,000 replications
T=10 T=20 T=150
Eldi . E[VIJ] MSE[] Eldi . E[VIJ] MSE[J Eldi . E[V[J] MSE[
ELTi VI M SE[.] ELTi . Vi MSE[.] ELTi Vi MSE[.]
0.0 0.145  0.857 1.807 0.059  0.965 1.309 0.045  0.99 1.107
0.1 0.090 0.858 1.7038 0.039  0.964 1.266 0.034 0.9%4 1.092
0.2 0.061 0.858 1.589 0.030  0.963 1.215 0.029  0.9%4 1.072
0.3 0.048  0.859 1.469 0.030  0.961 1.156 0.028  0.993 1.047
0.4 0.046  0.859 1.346 0.035  0.959 1.088 0.030  0.991 1.015
0.5 0.054 0.860 1.221 0.048  0.957 1.012 0.036  0.989 0.975
0.6 0.069  0.861 1.096 0.067 0.953  0.927 0.046 0.986  0.924
0.7 0.090 0.862 0.973 0.097 0948 0.832 0.065  0.982 0.856
0.8 0.110 0.862  0.860 0.139 0943 0.726 0.098  0.973 0.764
0.9 0.110 0.850 0.771 0.191 0.940 0.614 0.166  0.958  0.635
0.99 0.055  0.821 0.742 0.185 0.908  0.543 0.246  0.937  0.487

In Table 5.4 we present results for the alternative bias corrected estimator —for all
three sample sizes examined. Surprisingly we ™ nd that the less et cient estimator —is
much less biased than | : It seemsto be an artifact that the e®ect that the correction
in —has on the order O(Ti2) term of the bias happens to be such that it mitigates
the magnitude of thisterm. It is easy to show that the estimator

3+ 2_+ 32
T2
isunbiased to order O(Ti 2) for V() : From the simulations we ~ nd, however, that this
estimator is less accurate than V(, ) isfor V(,); especially so for the smaller sample

Vi YO+ (5.1)

17



sizes. For T = 10 the better ex ciency of | is apparent, but the smaller ™ nite sample
bias of _leadsto satisfactory M SE results close to the unit circle.

Now we present a few results for the AR(1) model with intercept and trend. We
just examine the case where ™ = 0 (both intercept and trend are redundant), yo = 0
and ! = 0 (" xed, mean-stationary start-up), which imply that many characteristics
are invariant with respect to % We have set %= 0:1.

Table 5.5:
Estimation in the AR(1) model with intercept and trend; T = 20; 1,000 replications
Aq. ELIi A EV[ EV[ E[V M SE
. ECNL g VO SR VLD SR SEY e
0.0 -0.112 0251 0.045 1.320 0.069 0.848 1.029 1.226
0.1 -0.134 0227 0.046 1294 0.071 0.839 1.030 1.124
0.2 -0.155 0.216 0.047 1263 0.072 0.824 1.025 1.026
0.3 -0.178 0215 0.047 1225 0.072 0.806 1.019 0.929
0.4 -0.202 0222 0.048 1.182 0.072 0.784 1.010 0.836
0.5 -0.227 0238 0.048 1.133 0.071 0759 1.001 0.748
0.6 -0.254 0.267 0.047 1.078 0.069 0.738 1.006 0.660
0.7 -0.284 0.311 0.047 1.016 0066 0723 1.036 0.578
0.8 -0.318 0.378 0.046 0.946 0.060 0.721 1.118 0.509
0.9 -0.361 0.467 0.046 0865 0.054 0.732 1.213 0.469
099 -0.422 0558 0.048 0.781 0.053 0.715 1.083 0.478
Table 5.6:
Estimation in the AR(1) model with intercept and trend; T = 50; 1,000 replications
N ELTi . A ENVL ENIN  EIVLI MSEL]
* ELTi . ELL . VL] VIl VL] VL] VI 1 M SE[]]
0.0 -0.045 0.149 0.020 1.079 0.023 0.916 0.990 1.073
0.1 -00534 0.135 0.020 1.060 0.024 0.900 0.980 1.036
0.2 -0.061 0.126 0.020 1.042 0.024 0.886 0.972 0.994
0.3 -0.070 0.121 0.020 1.025 0.023 0.871  0.965 0.946
0.4 -0.078 0121 0.019 1.006 0.022 0.856 0.960 0.892
0.5 -0.087 0.127 0.018 0982 0.021 0.837 0.952 0.829
0.6 -0.097 0.141 0.017 0949 0.020 0.809 0.939 0.759
0.7 -0.108 0.170 0.015 0.902 0.018 0.772 0.921 0.675
0.8 -0.123 0229 0.014 0842 0016 0738 0.918 0.571
0.9 -0.143 0.348 0.011 0.784 0.012 0.756 1.004 0.449
099 -0.182 0526 0.011 0.685 0.009 0.771 1.140 0.424

Table 5.5 containsresultsfor T = 20 and 5.6 for T = 50: Noticethat the coet cient
bias is more serious here, and that the reduction by correction is substantial, except
for , closeto the unit circle, where more than 50% of the bias remains. The standard
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degrees of freedom corrected estimator for the least-squares variance is overstating
the true variance when | is small, and this is more serious the closer , isto zero
and the sample size smaller. For large values of , the standard expression grossly
understates the true variance. Bias correction of the coet cient estimate makes its
variance larger. However, only for , very closeto zero it has a detrimental on
the et ciency. For moderate values of , an improvement of et ciency can be obtained
by bias correction of the coet cient estimator, and the larger , isthe higher the gains
will be. The standard expression for the least squares variance, although unbiased
to “rst-order, is not an appropriate estimator of the variance of the bias corrected
coet cient estimator, becauseit istoo optimistic (understates). However, the specially
designed variance estimator which is second-order unbiased, proves to be reasonably
accurate, and hencetheresults are rather positive about the potentialsof , and V{(,)
toimproveon standard " rst-order asymptoticinference. Notethat it might bepossible
to achieve still better results by slightly adapting the implementations of our versions
of , and V(,): For instance, , and V(,) could be made even less biased possibly, by
not taking € in the respective formulas, but by iterating at least once and using C
(the same for 2): Also % could be estimated on the basis of residuals obtained by
employing , ; etc. We plan to examine the e®ects of these factors in simulations yet
to be executed.

The above examination should be extended to more general models including some
other exogenous explanatory variables. This will be undertaken in a next version of
the paper.

6. Conclusions

By adapting and extending techniques we employed in some recent papers to approx-
imate to an accuracy of order O(T' 2) the bias of the least-squares estimators for all
the parameters (both coet cients and disturbance variance) in linear regression models
with a lagged dependent explanatory variable, we ~ nd here an approximation to the
same order for the mean squared error and for the true variance of the least-squares
coet cient estimator. For the latter approximation we “nd that its algebraic expres-
sion di®ers substantially from an approximation to the same order of accuracy for the
expectation of the expression that is usually employed to estimate the variance on the
basis of standard asymptotic reasoning. Thismeansthat theusual estimator, although
asymptotically valid, has a bias in ™ nite samples that can be assessed by estimating
the expression derived in this paper. Its substraction from the standard expression
will yield a less biased variance estimator. In that way the analytic results presented
in this paper can be of use for producing new methods to improve the accuracy of
inference in ~ nite samples of dynamic regression models. Numerical analysis can be
undertaken to produce insight into the seriousness of the ~nite sample inaccuracies
of " rst-order asymptotic expressions for second moments and also into the ability of
the higher-order asymptotic analytical approximations to assess and to correct such
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discrepancies.

In smple AR(1) modelswe ™ nd that there seems certainly scope for such improved
procedures, because the standard coet cient variance estimator may understate the
true variance of the least-squares estimator by some 30 or 40%, whereas the bias
corrected variance estimator is almost unbiased.

The same techniques are also used to approximate the variance of bias corrected
coet cient estimators and to develop accurate estimators for the variance of such cor-
rected estimators. Because the bias correction does not the leading term of the
asymptotic variance of the (corrected) coet cient estimator, the standard formula can
still be used, because it is asymptotically valid. However, the higher-order asymptotic
approximations derived here enable the assessment of more accurate (bias corrected)
variance estimators, and also produce analytical insight into the potential et ciency
gains or losses due to bias correction. We " nd a strong result for AR(1) models re-
garding the scope for et ciency improvement. That scope seems to increase with the
number of exogenous regressors in the model. The relative magnitude of et ciency
gains is shown to be non-monotonic in the sample size. Hence, bias correction may
be more eBective from an et ciency point of view when the sample size is moderate
than in smaller samples, where the coet cient bias is usually larger, simply because
a moderate coet cient bias can be assessed more accurately than a huge bias. We
also obtain a strong result for the on et ciency of di®erent implementations of
coet cient bias correction, and ~ nd that an approach adopted earlier by a good many
researchers is sub-optimal from a theoretical point of view.
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A. Some auxiliary results

To prove the results of this paper, we have to obtain the expectation of numerous
expressions of various forms, which involve products of up to four quadratic forms
in normal variables. In this appendix we state some basic results which are used
repeatedly in the subsequent analysis.

Let A beasymmetricT £ T matrix and By and B, arbitrary T £ T matrices. Let

the T £ 1 random vector " be such that " » N(0;3#1+), then the following results
hold:

E("B1")("By") = 34[tr(By)tr(B2) + tr(B4B2) + tr(B4BI)]; (A1)

E("A" | %trA)("B+") = 24tr (AB); (A-2)

("% = E("B4")"""= %[tr(By)lt + By + BY; (A-3)

E(uOAu)OZ ("(Bj ")= (A4)

38[tr (A)tr (B1)tr(Bo) + tr(A)tr(BiBy) + tr(A)tr(B;BY)
+2tr(B1)tr(AB5) + 2tr(Bo)tr(AB4) + 2tr (AB,B;)
+2tr (ABBy) + 2tr(AB;B,) + 2tr (AB;BY)];

21



E("A" | 9trA) 2 ("B;") =
298[tr (B+)tr (AB5) + tr(Ba)tr (AB4) + tr (AB,B1)
+tr(AB3By) + tr(AB+By) + tr(AB4B))];

E("A" | 3&trA)(""B""9 = (A.6)
298[tr (AB1)I1 + tr(B1)A + ABy + B1A + ABY + BYA];

E("A" | 3ZtrA)2("B4") = 38[2tr (B1)tr(AA) + 8tr(AAB)]; (A.7)
E("A" | 3£trA)2""0= 3£[2tr (AA) + BAA]; (A.8)

E("B""B,""9 = (A-9)
981 [tr (B1)tr (B2) + tr(B:By) + tr(BsBY)]I+

+1r(B1)By + tr(B1)B+ tr(By)B + tr(By)B®

+B1B2+ B{B2+ BB+ B{BJ

+B,B1 + BB + B,B? + BIBJg;

E("A")%("B1")? = (A.10)
Yt [tr (A)P[tr (B1B4) + tr(B4BJ)]

+[tr (B1)P[tr (A)tr(A) + 2tr (AA)]

+4tr (A)[2tr (AB1B4) + tr(AB{BY) + tr(ABIB)]

+8tr(Bq)[tr(A)tr(AB4) + 2tr (AAB)]

+2tr (AA)[tr(B1B4) + tr(BIB+)] + 8[tr(AB4)J?

+16tr (AAB1B) + 8tr (AABYB;) + 8tr(AABBY)

+8tr (AB1AB;) + 8tr(AB1ABY)g;

E("A" | 3£trA)2("B,")2 = (A.11)
2981 8tr (B+)tr (AAB;)

+tr(AA)[tr (B1)tr(By) + tr(B1B1) + tr(B%B1)]

+4ltr (AB)J2 + 8tr(AAB4B4) + 4tr (AAB?B;)

+4tr (AABBY) + 4tr (AB;AB;) + 4tr (AB,ABY)g:

Most of these results are also given in KP (1998a, 1998b). Result (A.1) is obtained
upon substituting "B," = "{3(B2+ B)]" = "%A,"; where A is symmetric, in (A.1) of
KP (1998a). This substitution also enables one to prove (A.4) from KP (1998a, A.5),
and (A.9) from KP (1998a, A.8) and (A.10) from KP (1998a, A.11). Result (A.2)
follows from (A.1) and from E("B") = tr(B4). The proof of (A.3) is given in KP
(1998a). Result (A.5) follows easily from (A.4). Results (A.6), (A.7) and (A.8) can
be found in KP (1998a). Finally (A.11) follows easily from (A.10).
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B. An approximation to V(®)
For the variance V (®) of the least-squares estimator ® we have

V(® E@®; E@]®; E@) (B.1)

E® ® E@® ®]®; ® E® ®)
E@®; @I®; @° [E(® | GE® i &

We want to approximate this to the order of O(T' 2): We shall make use of

ZU = 2%+ Z% (B.2)
2901+ ]v + eviGY0i 1 ]v
2901 1]v + (VHV)er = Oy(T™2);

where H is the non-symmetric matrix

H = GI0iI1]. (B.3)

For H we " nd the useful results

tr(H) = tr([0:17]%G) = tr(G[0:11]) = tr(C) = O (B.4a)
tr(HH) = 0 (B.4b)
tr(HH) = tr(GQ) (B.4c)
G(H + H9[0II1]° = GG°+ CC: (B.4d)
The "rst term of (B.1) isM SE(®): For this we ™ nd
E@®; ®@®; ®°= E(Z%Z) 'Z2ZU%Z(z%) (B.5)

We “rst develop an expansion of (Z%2)i ': Referring to (2.7) and (2.8) we have
E(ZZ)=Q '=2% + E(ZZ), and 0

27 = 2+2)92+72) (B.6)
= E(ZOZ)i E(ZZ)+ 22+ Z% + Z% i
= l1+ 22+ Z2)Q+[ZZ EZ7)Q Q
Hence, h i
(Z%2) "= Q liu1+ 22+ Z2)Q+ [27 E(Z?)Q ' ; (B.7)

where the stochastic terms (Z2%Z + Z%)Q and [ZZ | E(Z%Z)]Q are both Oy (T! =2).
Theinverse matrix of the form [I, + Al 1, with A = O(T! ') an n £ n matrix, may
be expanded in [I,j A+ A% A%+ ::], whereby successive terms are of decreasing
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order in probability. The expansion retains terms up to a certain order and in this
way an expansion is obtained which includes terms up to any desired order. For an
expansion of (Z%)i ' to order Ti 2 we require

(z%) ' = QfQ'y 2%+ z2%9) (B.8)
i 27 E(Z?))+ 22+ Z22)Q2%Z + Z22)
+(2Z + Z)QIZZ i E(Z?)]+ [ZZ E(ZZ)Q(2Z + Z92)
+[Z7 | E(Z2)1Q[ZzZ i E(Z7)]10Q + Op(T' 2):
whereas the expansion to order Ti 32 amounts to
(Z2)i'= Qi Q2%+ Z%2)Q; QZZ; E(ZZ)]Q+ o,(Ti *?); (B.9)
and to order Ti ' we simply have
(Z2%Z) '=Q+ Op(T' h: (B.10)
The expansion (B.8) for (Z%Z)! ' can be written as
(Z%2) "= Qlks1] Wij Wa+ WiWq+ WiWo + WoWy + WoWo] + 0o(T1 2) (B.11)
where we introduced some further shorthand notation, viz.
W, = (2Z+22)Q (B.12)
= 2%Gvd + eviGZQ = Oy(Ti ™)
and
W, [Z°Z i E(ZZ)]Q (B.13)
VGGV | %tr(GG)leid = Op(T! 9):

Note that after premultiplication by Q we have seven terms in (B.11). Of these the
“rst is O(Ti"); the second and the third are Op(Ti 3); and the remaining four are
all Op(T12): Thisyields the following expansion:

®; ®)(®; ®° (2%2) 'z%Uu%Z(2%2) (B.14)
= QZW%ZQ
i QW1+ Wa i (Wy+ W2)2ZWuZQ
i QZUu%Z W2+ W2 (WP+ wH?Q
+Q(Wy + W2)ZUuZ (WP + WHQ + 0,(Ti 3)
= QZW%ZQ; QW;ZuuZQ; QW.ZuuZQ
+Q(W; + W2)2Z%Uu%ZQ QZzUuZzwXQ
i QZUuZWXQ + QZUuZ (W + WH2Q
+QW:ZUuZWR + QW;zUuZzwia
+ QWLZUuZWQ + QW.ZUuZWIQ + 0,(T' 2):
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Note that
Z%u%z

f2901+]v + (VHV)egf vi0iI1]Z + (vHV)elg (B.15)
29011 w90 112 + 290 1 ]v(VH v) el
+(VHV)eVI0i 1112 + (VVHv)%eel:

We now derive the expectation of the eleven terms of (B.14). For the “rst one we
obtain

E(QZWZQ) = EQZI0I+wI0i1]Z2Q+ EQ(VOHV) elQ
= Q27 Q+ %tr(GG)QeQ
= 3%Q:
For the expectation of the second term of (B.14) we ™" nd:
E (QW;ZWuZQ) (B.16)

= EQZGvZ01+v(VH V)L + EQZGv(vH v)evI0iI 112 Q
+EqviGZ QZ 901+ Iv(VH V)P + EqviGZ Q(VH V)evi0i1+1Z2Q
= QZGE(WHWI[OI]1Z vl + 1QZGE (wWHWI[0i11]1Z2Q
+E(VGZQZ 901+ v) (VH V) o of + o2 GE (WHWI[0: ]2 Q
= %#QZG(H + HY[OI1]Z2 o) + % QZG(H + HOY[0I1]1Z2Q
+ ¥ d2G(H + HI[0:11]2Q + %tr (G2 QZ290: t]H + HY)ahof
= %Q2%GG%+ CC)Zad) + ¥#q1Q2°(GG’+ CC) 2Q
+ ¥ d2%(GG%+ CC) Z2Q + #tr(QZCC2)qdf + ¥#tr (QZGGZ )i cf
The expectation of the third term of (B.14) is:
E (QW.ZUuZQ) (B.17)
= ENGGv %tr(GG ]qq?Z({O'IT]vv‘)[O'IT]OZO
+ENVGGY | 3#tr(GG) g (vH v)%e2Q

= 2%4q2901+]1GG[01:]1Z2Q
+ 2981 [2tr (GIGHH) + tr (GGH™H) + tr (GGHH Y P
= ZqdZcZQ
+ 2381 [2tr (G'GCC) + tr (GCCG) + tr (GGGG) s
For the fourth term of (B.14) we have:
E[Q(W; + W,)2Z%u%Z Q] = (B.18)
E (QW;W;ZUu%ZQ) + E (QW;W>Z%UuZQ)
+E (QW.W,ZUuZQ) + E (QWW.ZUuZQ)
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We examine these four terms separately. First we have

E (QW1W1ZOUUOZQ)
= E[QZ%Gvd + evViGZQ)(Z2Gvd + eviGZ Q) ZUuZ Q]

= EfQZGwWGZ g2 90!+ 1vwwi0i1 ]2 Qg + o1 E[QZ Gv(VH v)2VGYZ oy of]
+a1E[QZ GwWGZ Q2 901 1 ]wJ0iI 112 Q] + a11E[QZ Gv(vH v)AVGZ oy of]
+ E (VG2 QZ GvePZ 90:1 + vI0: 112 Q) + a1 E [orviGZ Q2 Gv(VH v)2f]

+ E [0 €2 GwGZ Q2 90:1 + vI0: 112 Q) + E[onofZ Gv(vH v)2VGZ o1 of]
= W(R2C2q)QZTZ2Q + U#QZGGCZ 22 Q + #QZTCZqf2C2Q

+ 2% qy1tr (G'G) Q2 GGZ v

+4%81Q2 GGCCZ o of + 4%811Q2GCGCZ o f

+ 4% 01Q2 GGGGZ o + 4%811Q2ZCCGGZ o of

+¥%qtr(Q2°C2)QZ2cZQ

+%#q1Q2GGZQZ72Q + ¥#q:Q2C2QZ2Cc2Q

+¥%tr (QZGG2) 22 Q + 24 qf2C2QZ2CcZ2Q

+Boptr (Q2ZGG2)tr (GB) o) + 4% a1tr (Q2°CCGGZ ) oy

+28q11tr (Q2ZGCGCZ) o) + 28 a1tr (Q2 GGGGY ) g of

+¥%tr(QZC2)qf2CcZ2Q

+ %2 GGZ Q22 Q + #qdf2’C2Q2C2Q

+ % (PZGGZ qn)tr (GG) g + 48 (ZCCGGZ o) ahof

+ 298 (2 GCGCZ 1) + 298 (fZ GGGGY ) o of:

Various terms are o(Ti 2) here. If we remove them, and also use ZZQ = | |
%tr (GG)e o we obtain

E (QW;W;ZUuZQ) (B.19)
= ¥(f2C2q)Q2ZTZ2Q + #Q2GCZ i + ¥QZCZqf2CZ2Q

+%atr(Q2C2)Q2ZC2Q + ¥#q1QZGGZ2Q + ¥%#q:QZC2QZcZQ

+¥%tr (Q2GGZ) g + ¥tr (Q2C2)qf2C2Q + H# a2 GGZQ

+ 24 qf2C2Q2C2Q+ #qdfZCZQZ2ZCZ2Q + ofT! ?):

For the second term of (B.18) we " nd (we immediately remove terms of small order):
E (QW;W,ZUuZ Q) (B.20)
= EfQZ%Gvd) + evViGZQ)[VGGY | 3£tr(GG)]erd?Z J0: +v(vH v) g
+EfQZGvd) + evViGZ Q) VGGV | 3t (GG)]erd(vH v)ev]0i 112 Qg
= gEfQZGNGGY | %tr (GG)(VHV)WI0+]1Z o cfg

26



+Ef P2 GGGy | 3£tr (GG)](vH V)W 112 g g
+HEfQZGVIGGY | #tr (GG)](vH v)wi0i+]1Z Qg

+qEf o2 GIVIGGY | 3£tr (GG)](vH v)wJ0i 112 Qg
= 2%801tr(GGC)QZTCZ o + 234tr (GGC) (2T 2 o) op
+ 28, tr (GGC)QZCZQ + 238g1tr (GGT)fZCZQ + oTi ?)

Next we examine the third term of (B.18). We "nd
E (QW,W;Z%UuZQ) (B.21)
= EfVGGv %tr(GG)]adf(Z%Gvd) + eviGZ Q)20+ Iv(vH v) g
+EfVIGGY | %tr(GG)1af(ZGve) + eviGZ Q) (vH v)evi0il+1%Z Qg
= EfvGGv| %tr(GG)]oZ G2 90: 1 Iv(vH v)ofg
+Ef VGGV | %tr (GG)]aqPeviGZ QZ 90 1 v(vVH v)fg
+Ef VGGV | %£tr(GG)]a P2 G (vH v)evi0i1 112 Qg
+EfViGGY | %tr(GG)]q e viGZ Q(vH v)evI0i 112 Qg
= EfqZGNVGGy | 3%4tr(GG)](VHVv)WI0i +]1Z g fg
+ g Ef VGGV | 3tr (GG)VGZ QZ 0+ Iv(vH v)a g
+ 2001 Ef y o2 GIVGGv | 3£tr (GG)](vH v)wi0i 112 Qg
= 28tr (GGT)(PZCZ )l + 28q1tr (GGC)tr(QZT2) g of
+4%8aq1tr (GGT) 1 fZCZ2Q + o(T' 2):
For the fourth term of (B.18) we ™ nd
E (QW,W,ZUuZQ) (B.22)
= anuEfqdZ901+]vG%y | %tr(GG)Pwi0i 112 Qg
+&E VGGV 3#tr(GG)P(VHV)? g
= 2801tr(GGGR) 22 Q + 84 a1 {2 CHBGLCZQ
+ 2980, tr (GIG)tr (GGGG) g1 + 8%, tr (GGLC)tr (GG + o(T' ?)
= 2801tr(GGGR) 22 Q + 298, tr (GGQ)tr (GGGG) o of
+ 88, tr (GGL)tr (GGC) gy of + o(T' ?)
= 2%8q;tr (GGGG) g + 8%, tr (GGC)tr (GGC)ahcf) + o(T' 2):

Collecting the four terms we “nd for (B.18), which is the expectation of the fourth
term of (B.14):

E[Q(W; + W,)2ZUuZ Q] (B.23)
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= W(P2C2q)Q2C2Q+ #Q2GGEZ g + #QZTZqfZCZQ
+%agtr(Q2C2)Q2ZTCZ2Q + ¥#q1Q2ZGGZ2Q + ¥%#q:QZC2ZQZcZQ
+%tr (QZGG2) g of + %tr(QZ2C2)qfZC2Q
+ 2% PZC2Q2C2Q + UaqfZGG2Q + #aqf2C2Q2C2Q
+2%8q1tr (GG)QZCZ o) + 43%8tr (GGT)(RZ2CZ o) o)
+ 298Ftr (GGC)QZC2ZQ + 6¥q1tr (GGC)xf2C2Q
+28q1tr (GGL)tr (QZC2) o) + 238 01tr (GGGG) gy of
+ 88 tr (GGL)tr (GG )y + o(T! 3):

For the expectation of the ~fth term of (B.14) we ™ nd:
E (QZUuZWQ) = E (QW;ZUuZQ)°; (B.24)

which is just the transpose of the result for the second term (B.16). For the sixth
term of (B.14) we " nd:

E (QZUuZWQ) = E (QW-ZUuZQ)°; (B.25)

which follows easily from (B.17). Likewise for the expectation of the seventh term of
(B.14) we have

h i h i
E QZUWZ(W+ WH2Q = E QW + W»)2ZWuZQ *: (B.26)
The expectation of the eighth term of (B.14) is

E (QW;ZUuZWaQ)

= EQZ%Gvd + eviGZ Q)290: 1 ]vI0i ]2 (viG2 + Q2 %Gved)Q
+EQ(ZGv + eviGZQ)(VH V)% (vG%Z + QZGved)Q

= EQZGvgPZ 90!+ w0 112 o viGZ Q
+ EQZGvofZ90:1 + ]vwq0i1 112 Q2 G
+ EqviGZ Q2 90:1 + w0 1 ]2 viGZ Q

+ EqviGZ QZ §0:1 1 Jv0:1 112 QZ G
+BEQZGV(VHV)ZVGZ Q + o11EQZ Gv(VH v)2fZ Gy
+EqviGZ o (VHV)AVGZ Q + EqivIGZ (vVH V)21 2 G

= EQZGwWI0i11]Z g0 90: 1 ]vwwGZ Q
+ EQZ2GwI0'11]2 QZ GwI0: I +1Z o
+ E a2 90: 1 ]wGZ2 Q2 90: 1 ]wGZ Q
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+ EVIGZ Q2 90:1 1 ]vwwJ0:1 112 QZ Gy of
+FEQZGv(VHV)AVGZQ + g1EQZ Gv(vVH vV)AVGZ g of
+ g Eq o2 Gv(vVHV)AVGZ Q + EqiofZ Gv(vVH V)2V G2 g of
= W(P2Z23)QZGGE2Q+ 24QZTC2q P22 Q
+%tr(Q22)Q2ZTC 2 + 34Q2C2QZTC2qf + AQ2GGZ2QZ P o
+%tr(Q2C2)aq2C2Q + #aqf2°C2Q2C2Q
+ %22 Q2GG2Q + %tr(Q2C2)tr(Q2ZC2) oo
+¥%tr (QZZ2 Q2GG2 )i + %tr(QZCZ2QZC2) g
+¥8f,tr (GG)QZGGZQ + Hantr (GG)QZ GGZ o f
+ %o tr (GG) P2 GGZ Q + ¥t (GG) (2 GGZ ar) oy + o(T! 2):
Substituting QZ%Z = | | %tr(GG)oye® and 2% = 1| YBcf,tr (GG) this yields
E (QW;ZUuZWQ) (B.27)
= %q1Q2GGZQ+ 24Q2C2qf2°C2Q
+%1tr(Q22)QZC2Z g + #Q2C2QZC2a ) + #QZGCZ o f
+%tr(QZC2)aqf2C2Q + #aqf2CcZ2Q2C2Q
+ %2 GG2Q + %tr(Q2ZC2)tr(QZC2 )i df
+¥%tr (QZGG2) o + %#tr(QZCZQZT2) o + oTi ?):
For the expectation of the ninth term of (B.14) we "nd
E (QW;ZUuZWXQ) (B.28)
= EQZGvY + eviGZQ)Z90: 1 v(VH V) [VGGY | 34tr (GG) ool
+EQZGvd + eviGZ Q) (vVH V) eV 112 [VGGY | 3£tr (GG)Iadf
= gEQZGvALZI0!+ V(VH V) VGGV | %tr (GG)]of
+ 1 EVGZ2 QZ 901+ v(VH V) VGGV | 34tr (GG) ool
+1EQZGv(VHV)IVI0I 112 VGGV | 34tr (GG) ool
+EqviGZ o (VHV)IVI0: 112 VGG | %tr (GG)laief
= 201EQZGWIAVHV)[VIGGY | 34tr (GG)][0:11]1Z or )
+ 1 EVGZ QZ 101+ v(vVH V) VGGV | 34tr (GG) ool
+ EqrofZ GWIAVH V) VGGV | 34tr (GG)][0:1 12 o
= 4%8qtr (GGC)QZCZ o + 28q1tr (QZC2)tr (GGC)qhof
+ 28tr (GGC) (22 ar) o + oT' 2):
We obtain for the expectation of the tenth term of (B.14)
E (QW,ZUuZWQ) = E (QW;ZUuZWX)°’; (B.29)
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which is just the transpose of the former term. The expectation of the eleventh and
“nal term of (B.14) is

E (QW-ZUuZWXQ) (B.30)

= EqZ901:vviGGv | 3£tr (GG)AVI0 12 o)
+HEVGGY | 34tr (GG)P(VH V)2

= 298tr (GGG (FPZZ o)l + 298, tr (GGGG)tr (GG) o of
+8¥8c¢tr (GGLC)tr (GGC) oy + o(T' ?)

= 28q1tr (GGGG) oo + 88 tr (GGX)tr (GGL) P + o(T' ?);

wherewe used 2%y = o | 2R, tr (GG):
We may now assemble the various contributions to the mean squared error, and
obtain after some simpli~ cation:

MSE(®) = E@®; ®(®; ®° (B.31)
= 3Q+

+%QZ2°%GG% cCj 2ci cCYZaqd

+%qfZ%(GG°% CcCi 2ct; cTYZQ

+%#q1Q2°%GG% cCcj cYz2Q

+%tr (QZGG2) o of) + Htr(QZ2C2)tr(QZC2) o

+%tr(Q2°C2Q2C2)qdf | 24tr(Q2CC2)qf

+%qtr(Q2°C2)Q29C + CYZQ + % (€2°C2q)QZ29C + CYZQ

+#QZ2C2qfZC2Q + 24QZC2ZfZCZ2Q + HQZTCZxf2C2Q

+%#q1Q2C2Q2C2Q + #q1Q2ZC2QZT2ZQ

+3%tr(Q2ZC2)q29C + CY2Q + %tr(Q2°C2)Q29C + CIZqidf

+ 24 2C2Q2C2Q + ¥qfZcZaztza

+24Q2C2Q2C2aqf + #Q2C2Q2CZ o

+¥#QZ2C2Q2C2qd + #adZ2CZQZzTc?ZQ

+6%q1tr (GGL)QZIC + CIZ i f + 6%8q1tr (GGL)xPZ9C + CIYZQ

+ 298¢, tr (GGT)QZIC + C92Q

+1298(2C 2 ) tr (GG qhof + 84 qy1tr (GGL)tr (QZCZ )y

+ 3o [2tr (GGGRK) | 8tr (GIGCC) | 4tr (GCTG) gl

+ 2438 tr (GGXC)tr (GGC) gy + oT! ?):

From Theorem 2.1 we easily " nd for the squared bias, the second term of (B.1):

[E@® GIE@®; & (B.32)
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= H[tr(Q2C2)q + QZCZq + BEqtr (GGT) q] £
[tr(QZC2)qy + QZCZq + 2% ay1tr (GGC) 4]+ o(Ti ?)
= U[tr(QZC2)Pad + QZCZaqf2Cc2Q
+tr(Q2€2)[Q2C2 o) + qf2C2ZQlg
+38f dgy4tr (GGL) tr(QZC2)ahf
+201tr (GG) [QZCZ P + 1 fZ2CZ Qg
+ 381 4, [tr (GGC)Payfg + oT' ?):

This result has to be subtracted from the MSE approximation (B.31) to "nd the
required approximation to V (®):

C. An approximation to E[s?(Z%Z)i ']

We require an expansion for s?: For the numerator of this estimator, given in (1.5),
we have, upon using (B.10),

vi Z®%yi Z2® ubi; uZ(z%2) 'z% (C.1)

ubi w42 + 2)Q2Z + 2)U + 0,(1):

First we shall examine an approximation to the expectation of the coet cient variance
estimator 2(Z%)i ': Note that (C.1) yields for (1.6) the approximation

3% = %[UOU i uZQZ%; uZQz%; uZQZU; uZQZU + o)(Ti"):  (C.2)

This can be exploited to obtain an order T' 2 approximation to

E[P%(2%) 1= E[(3%; 3%)(2%2) "1+ ¥EE[(22)' "] (C.3)
by employing (C.2) and an appropriate expansion for (Z%2)i '; see (B.9), and next
substituting Z = Gved; ZZ | E(Z%Z) = [VIGGv | 3£tr(GG)]eie? while making use

of u= [Oilt]vand v » N [0;3%]1,4]:
Note that the contribution of the “rst right-hand term of (C.3) stems from not
knowing %2 when estimating V (®): It amounts to:

E[(%% | %)(Z2°%Z) "] (C.4)
- Ellquli %)(Z%2) ]

i %E[(UOZQZOU+ uZQZ% + uZQZ% + uZQZ%U)(Z%2Z)! "1+ o(T! 3)
= iE(%u%i ¥)Q[ZZ | E(Z)]Q] %E(UOZOZOU+UOZQZOU)Q+0(T‘2)
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= E(%uoui ¥#)QIVGGY | #tr(GG)leelQ

i lE(uOZquJ + quve?OeNOG(h)Q + O(Ti 2)

= ;(%uoui %) (VIGGV) o %E(UOZQZOU+ a1uGWGBL)Q + ofTi 2)

= $S/ftr(C°C)q1q?i %?/z?tr(QZOZ)Qi q11%3/ftr(G(G)Q+o(T‘2)

- i 2o (CTIad 2k + 11 Katr(GEIQ %t (GB)Q+ ofT )
= %%‘tr(COC)qq?i k.T_1%O+o(T‘2):

An approximation for the second right-hand term of (C.3) can be obtained from
(B.8). Notethat of thetermsin curly bracketsthe second and thethird term have zero
mean, while the " fth and sixth term involve factors with zero mean and products of
an odd number of zero-mean normal random variables. Hence, when expected values
are taken these terms may be ignored. We then have

E[(Z%Z)' "] = Q+ E[QZ%Z + Z2)Q(ZZ + Z7)Q] (C.5)
+EfQ[ZZ i E(Z2)QIZZ | E(Z%Z)]Qg+ oy(T' ?):

The second term of (C.5) is

E[QZ%Z + Z2)Q(2Z + Z%)Q] (C.6)
= E[QZ%Gve} + eviG2)Q(ZGve + eviGYZ)Q]
= E[QZ%Gve!QZGvelQ] + E[QZ GvelQeviGZ Q]
+E[QeviGZ QZGve’Q + E[QeviGZ QeviGZ Q]
= E[QZGwWGY Qe ?Q] + gi1E[QZGwWGZ Q]
+E[vGZ QZGvdf] + E[r?QZ GwIG2 Q]
= H[QZBCEZ g + 1QZ2GG2ZQ
+tr(Q2GG2) o + 1fZ2GGZ Q]
= % [Q2GGYZ + tr(QZGGYZ) |, 1]ond + [a11Q + o f12GGZ Qg:

Thethird term of (C.5) is

EfQZZ | E(ZZ)QZZ; E(ZZ)Qg (C.7)
= EfQVGGv| %#tr(GG)]eelQviGGy | 3%tr(G%G)leelQg
= gENVGGv ¥tr(GG)Pad
= g[E(VGIGWIGGY) | 24tr(GG)E (VIGGY) + %#tr (GG)tr (GG) Jarof)
= 2%qtr (GGGG)q -
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Gathering terms yields the result

SRE[(Z%Z)' '] = 3%%Q (C.8)
+ % tr (QZ°GGZ) o
+Q2GG2 o + 1 fZGGZQ + 11QZ2GGZ Qg
+ 28 01tr (GGG g1 + 0,(T! 3):

Adding up theterms (C.4) and (C.8) we obtain the approximation
T kj 1

T
+ % [tr(Q2GG2) %tr(COC)]qq?

+Q2GGZ i + 1 fZGGZQ + 11Q2GGZ Qg
+298q1tr (GIGGG) o f

%Q

for E[32(Z°2)1 ']: From this the result of Theorem 2.3 follows upon multiplying the
above by T=(T j ki 1): This aBects the leading term, but not the remaining terms
to the order of Ti 2:

D. The bias of the COLS estimator

Yet to betyped, and so are the appendices E, F, G.
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