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DIAGONALLY AND ANTIDIAGONALLY SYMMETRIC

ALTERNATING SIGN MATRICES OF ODD ORDER

ROGER E. BEHREND, ILSE FISCHER, AND MATJAŽ KONVALINKA

Abstract. We study the enumeration of diagonally and antidiagonally symmetric alternating

sign matrices (DASASMs) of fixed odd order by introducing a case of the six-vertex model whose

configurations are in bijection with such matrices. The model involves a grid graph on a triangle,

with bulk and boundary weights which satisfy the Yang–Baxter and reflection equations. We

obtain a general expression for the partition function of this model as a sum of two determinantal

terms, and show that at a certain point each of these terms reduces to a Schur function. We

are then able to prove a conjecture of Robbins from the mid 1980’s that the total number of

(2n+1)×(2n+1)DASASMs is∏
n

i=0
(3i)!
(n+i)!

, and a conjecture of Stroganov from 2008 that the ratio

between the numbers of (2n + 1) × (2n + 1) DASASMs with central entry −1 and 1 is n/(n + 1).

Among the several product formulae for the enumeration of symmetric alternating sign matrices

which were conjectured in the 1980’s, that for odd-order DASASMs is the last to have been

proved.

1. Preliminaries

1.1. Introduction. An alternating sign matrix (ASM) is a square matrix in which each entry

is 0, 1 or −1, and along each row and column the nonzero entries alternate in sign and have a sum

of 1. These matrices were introduced by Mills, Robbins and Rumsey in the early 1980s, accom-

panied by various conjectures concerning their enumeration [33, Conjs. 1 & 2], [34, Conjs. 1–7].

Shortly after this, as discussed by Robbins [42, p. 18], [43, p. 2], Richard Stanley made the

important suggestion of systematically studying the enumeration of ASMs invariant under the

action of subgroups of the symmetry group of a square. This suggestion led to numerous conjec-

tures for the straight and weighted enumeration of such symmetric ASMs, with these conjectures

being summarized by Robbins in a preprint written in the mid 1980s, and placed on the arXiv

in 2000 [43]. Much of the content of this preprint also appeared in review papers in 1986 and 1991

by Stanley [46] and Robbins [42], and in 1999 in a book by Bressoud [13, pp. 201–202]. In the

preprint, simple product formulae (or, more specifically, recursion relations which lead to such

formulae) were conjectured for the straight enumeration of several symmetry classes of ASMs,

and it was suggested that no such product formulae exist for the other nonempty classes. All

except one of these conjectured product formulae had been proved by 2006. (See Section 1.2 for

further details.) The single remaining case was that the number of (2n+1)×(2n+1) diagonally
and antidiagonally symmetric ASMs (DASASMs) is ∏n

i=0
(3i)!
(n+i)! , and a primary purpose of this

paper is to provide the first proof of this formula. In so doing, a further open conjecture of

Stroganov [50, Conj. 2], that the ratio between the numbers of (2n + 1) × (2n + 1) DASASMs

with central entry −1 and 1 is n/(n + 1), will also be proved.
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2 R. E. BEHREND, I. FISCHER, AND M. KONVALINKA

These results will be proved using a method involving the statistical mechanical six-vertex

model. The structure of the proofs can be summarized as follows. First, a new case of the six-

vertex model is introduced in Sections 1.6–1.7. The configurations of this case of the model are

in bijection with DASASMs of fixed odd order, and consist of certain orientations of the edges

of a grid graph on a triangle, (10). The associated partition function (17) consists of a sum,

over all such configurations, of products of certain parameterized bulk and boundary weights, as

given in Table 2, with these weights satisfying the Yang–Baxter and reflection equations, (47)

and (48). Straight sums over all configurations, or over all configurations which correspond to

DASASMs with a fixed central entry, are obtained for certain specializations, (21), (22) and (24),

of the parameters in the partition function. By identifying particular properties which uniquely

characterize the partition function (including symmetry with respect to certain parameters, and

reduction to a lower order partition function at certain values of some of the parameters), it is

shown in Section 3.5 that the partition function can be expressed as a sum of two determinantal

terms, as given in Theorem 1. It is also shown, using a general determinantal identity (57), that at

a certain point, each of these terms reduces, up to simple factors, to a Schur function, as given in

Theorem 3. Finally, the main results for the enumeration of odd-order DASASMs, Corollaries 5

and 9, are obtained by appropriately specializing the variables in the Schur functions, and using

standard results for these functions and for numbers of semistandard Young tableaux.

The proofs given in this paper of enumeration results for odd-order DASASMs share several

features with known proofs of enumeration formulae for other symmetry classes of ASMs, such

as those of Kuperberg [31, 32], Okada [37], and Razumov and Stroganov [39, 40]. However, the

proofs of this paper also contain various new and distinguishing characteristics, which will be

outlined in Section 1.3.

1.2. Symmetry classes of ASMs. Several enumerative aspects of standard symmetry classes,

and some related classes, of ASMs will now be discussed in more detail.

The symmetry group of a square is the dihedral group D4 = {I ,V,H,D,A,Rπ/2,Rπ,R−π/2},
where I is the identity, V, H, D and A are reflections in vertical, horizontal, diagonal and

antidiagonal axes, respectively, andRθ is counterclockwise rotation by θ. The group has a natural

action on the set ASM(n) of n × n ASMs, in which (IA)ij = Aij , (VA)ij = Ai,n+1−j, (HA)ij =
An+1−i,j, (DA)ij = Aji, (AA)ij = An+1−j,n+1−i, (Rπ/2A)ij = Aj,n+1−i, (Rπ A)ij = An+1−i,n+1−j and

(R−π/2A)ij = An+1−j,i, for each A ∈ ASM(n). The group has ten subgroups: {I}, {I ,V} ≈ {I ,H},
{I ,V,H,Rπ}, {I ,D} ≈ {I ,A}, {I ,D,A,Rπ}, {I ,Rπ}, {I ,Rπ/2,Rπ,R−π/2} and D4, where ≈
denotes conjugacy. In studying the enumeration of symmetric ASMs, the primary task is to

obtain formulae for the cardinalities of each set ASM(n,H) of n × n ASMs invariant under the

action of subgroup H . Since this cardinality is the same for conjugate subgroups, there are eight

inequivalent classes. The standard choices and names for these classes, together with information

about empty subclasses, conjectures and proofs of straight enumeration formulae, and numerical

data are as follows.

● ASM(n) = ASM(n,{I}). Unrestricted ASMs. The formula ∣ASM(n)∣ = ∏n−1
i=0

(3i+1)!
(n+i)! was con-

jectured by Mills, Robbins and Rumsey [33, Conj. 1], and first proved by Zeilberger [53,

p. 5], with further proofs, involving different methods, subsequently being obtained by Ku-

perberg [31] and Fischer [25].

● ASM(n,{I ,V}). Vertically symmetric ASMs (VSASMs). For n even, the set is empty. For n

odd, a formula was conjectured by Robbins [43, Sec. 4.2], and proved by Kuperberg [32,

Thm. 2].
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● ASM(n,{I ,V,H,Rπ}). Vertically and horizontally symmetric ASMs (VHSASMs). For n

even, the set is empty. For n odd, formulae were conjectured by Mills [43, Sec. 4.2], and

proved by Okada [37, Thm. 1.2 (A5) & (A6)].

● ASM(n,{I ,Rπ}). Half-turn symmetric ASMs (HTSASMs). Formulae were conjectured by

Mills, Robbins and Rumsey [35, p. 285], and proved for n even by Kuperberg [32, Thm. 2],

and n odd by Razumov and Stroganov [40, p. 1197].

● ASM(n,{I ,Rπ/2,Rπ,R−π/2}). Quarter-turn symmetric ASMs (QTSASMs). For n ≡ 2 mod 4,

the set is empty. For n /≡ 2 mod 4, formulae were conjectured by Robbins [43, Sec. 4.2], and

proved for n ≡ 0 mod 4 by Kuperberg [32, Thm. 2], and n odd by Razumov and Stroganov [39,

p. 1649].

● ASM(n,{I ,D}). Diagonally symmetric ASMs (DSASMs). No formula is currently known or

conjectured. Data for n ≤ 20 is given by Bousquet-Mélou and Habsieger [12, Tab. 1].

● ASM(n,{I ,D,A,Rπ}). Diagonally and antidiagonally symmetric ASMs (DASASMs). For n

even, no formula is currently known or conjectured. Data for n ≤ 24 is given by Bousquet-

Mélou and Habsieger [12, Tab. 1]. For n odd, a formula was conjectured by Robbins [43,

Sec. 4.2], and is proved in this paper.

● ASM(n,D4). Totally symmetric ASMs (TSASMs). For n even, the set is empty. For n odd,

no formula is currently known or conjectured. Data for n ≤ 27 is given by Bousquet-Mélou

and Habsieger [12, Tab. 1].

Alternative approaches to certain parts of some of the proofs cited in this list are also known.

For example, such alternatives have been obtained for unrestricted ASMs by Colomo and

Pronko [19, Sec. 5.3], [20, Sec. 4.2], Okada [37, Thm. 2.4(1)], Razumov and Stroganov [38,

Sec. 2], [41, Sec. 2], and Stroganov [49, Sec. 4]; VSASMs by Okada [37, Thm. 2.4(3)], and Razu-

mov and Stroganov [38, Sec. 3]; even-order HTSASMs by Okada [37, Thm. 2.4(2)], Razumov

and Stroganov [40, Eq. (31)], and Stroganov [48, Eq. (11)]; and QTSASMs of order 0 mod 4 by

Okada [37, Thm 2.5(1)].

In addition to the eight standard symmetry classes of ASMs, various closely related classes

have also been studied. A few examples are as follows.

● Quasi quarter-turn symmetric ASMs (qQTSASMs). These are (4n+2)×(4n+2) ASMs A for

which the four central entries A2n+1,2n+1, A2n+1,2n+2, A2n+2,2n+1 and A2n+2,2n+2 are either 1, 0, 0

and 1 respectively, or 0, −1, −1 and 0 respectively, while the remaining entries satisfy invari-

ance under quarter-turn rotation, i.e., Aij = Aj,4n+3−i for all other i, j. They were introduced,

and a product formula for their enumeration was obtained, by Aval and Duchon [1, 2].

● Off-diagonally symmetric ASMs (OSASMs). These are 2n × 2n DSASMs in which each

entry on the diagonal is 0. They were introduced, and a product formula for their straight

enumeration (which is identical to that for (2n + 1) × (2n + 1) VSASMs) was obtained, by

Kuperberg [32, Thm. 5].

● Off-diagonally and off-antidiagonally symmetric ASMs (OOSASMs). These are 4n × 4n

DASASMs in which each entry on the diagonal and antidiagonal is 0. They were intro-

duced, and certain results were obtained, by Kuperberg [32], although no simple formula for

their straight enumeration is currently known or conjectured.

In addition to results for the straight enumeration of all elements of standard or related

symmetry classes of ASMs, various other enumeration results and conjectures are known for

certain classes, some examples being as follows.
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● Certain results and conjectures are known for the refined or weighted enumeration of classes

of ASMs with respect to statistics from among the following: the positions of 1’s in or near the

outer rows or columns of an ASM; the number of −1’s in an ASM or part of an ASM; and the

number of so-called inversions in an ASM. For the case of unrestricted ASMs see, for example,

Ayyer and Romik [5], Behrend [7], and references therein. For cases involving certain other

classes of ASMs see, for example, Cantini [14], de Gier, Pyatov and Zinn-Justin [22], Fischer

and Riegler [26], Hagendorf and Morin-Duchesne [28], Kuperberg [32], Okada [37], Razumov

and Stroganov [38, 40], Robbins [43], and Stroganov [48].

● In addition to the formula (43) proved in this paper for the ratio between the numbers of

odd-order DASASMs with central entry −1 and 1, analogous formulae have been proved

for HTSASMs by Razumov and Stroganov [40, Sec. 5.2] and for qQTSASMs by Aval and

Duchon [2, Sec. 5], and have been conjectured for odd-order QTSASMs by Stroganov [50,

Conjs. 1a & 1b].

● Various results and conjectures are known for the refined enumeration of several classes of

ASMs with respect to so-called link patterns of associated fully packed loop configurations.

For further information, see for example Cantini and Sportiello [15, 16], and de Gier [21].

● Various connections between the straight or refined enumeration of classes of ASMs and

classes of certain plane partitions have been proved or conjectured. For further information

see, for example, Behrend [7, Secs. 3.12, 3.13 & 3.15] and references therein.

● Relationships between the partition functions of cases of the six-vertex model associated with

classes of ASMs and certain refined Cauchy and Littlewood identities have been obtained

by Betea and Wheeler [10], Betea, Wheeler and Zinn-Justin [11], and Wheeler and Zinn-

Justin [52].

1.3. Proofs of enumeration results for symmetry classes of ASMs. Most of the proofs

mentioned in Section 1.2 use a method which directly involves the statistical mechanical six-

vertex model. (A few exceptions are proofs of Cantini and Sportiello [15, 16], Fischer [25], and

Zeilberger [53].)

Although there are several variations on this method, the general features are often as follows.

First, a case of the six-vertex model on a particular graph with certain boundary conditions is

introduced, for which the configurations are in bijection with the ASMs under consideration.

The associated partition function is then a sum, over all such configurations, of products of

parameterized bulk weights, and possibly also boundary weights. By using certain local relations

satisfied by these weights, such as the Yang–Baxter and reflection equations, properties which

uniquely determine the partition function are identified. These properties are then used to

show that the partition function can be expressed in terms of one or more determinants or

Pfaffians. Finally, enumeration formulae are obtained by suitably specializing the parameters

in the partition function, and applying certain results for the transformation or evaluation of

determinants or Pfaffians.

This general method was introduced in the proofs of Kuperberg [31, 32], with certain steps in

the unrestricted ASM and VSASM cases being based on previously-known results. For example,

a bijection between ASM(n) and configurations of the six-vertex model on an n × n square grid

with domain-wall boundary conditions had been observed by Elkies, Kuperberg, Larsen and

Propp [24, Sec. 7], and (using different terminology) by Robbins and Rumsey [44, pp. 179–180],

properties which uniquely determine the partition function for ASM(n) had been identified

by Korepin [30], a determinantal expression for the partition function for ASM(n) had been
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obtained by Izergin [29, Eq. (5)], and a determinantal expression closely related to the partition

function for odd-order VSASMs had been obtained by Tsuchiya [51].

Following the pioneering proofs of Kuperberg [31, 32], a further important development was

the observation, made by Okada [37], Razumov and Stroganov [38, 40] and Stroganov [48,

49], that for certain combinatorially-relevant values of a particular parameter, the partition

function can often be written in terms of determinants which are associated with characters of

irreducible representations of classical groups. Expressing the partition function in this way,

and using known product formulae for the dimensions of such representations, can then lead to

simplifications in the proofs of enumeration results.

The approach used in this paper to prove enumeration formulae for odd-order DASASMs has

already been summarized in Section 1.1, and largely follows the general method outlined in the

current section. However, some specific comparisons between odd-order DASASMs and other

ASM classes which have been studied using this method, are as follows.

● As will be discussed in Section 1.7, six-vertex model boundary weights depend on four possible

local configurations at a degree-2 boundary vertex. Boundary weights were previously used by

Kuperberg [32, Fig. 15] for classes including VSASMs, VHSASMs, OSASMs and OOSASMs,

and in each of these cases, the boundary weights were identically zero for two of the four

local configurations. However, the boundary weights used for odd-order DASASMs differ

from those used previously for other ASM classes, and are not identically zero for any of the

four local configurations. As will be discussed in Section 3.2, the boundary weights used by

Kuperberg [32, Fig. 15] and those used in this paper constitute various special cases of the

most general boundary weights which satisfy the reflection equation for the six-vertex model.

● The natural decomposition of the partition function into a sum of two terms has previously

only been observed for one case, that of odd-order HTSASMs, for which a decomposition

in which each term involves a product of two determinants, of matrices whose sizes differ

by 1, was obtained by Razumov and Stroganov [40, Thm. 1]. Odd-order DASASMs now

provide a further example in which the partition function is expressed, in Theorem 1, as a

sum of two terms, but in this case each term involves only a single determinant. A further

difference is that the matrices for odd-order HTSASMs have a uniform structure in all rows

and columns, whereas the matrices for odd-order DASASMs have a special structure in the

last row, and a uniform structure elsewhere. For odd-order HTSASMs, the decomposition

of the partition function into two terms is closely related to the behavior of parameters

associated with the central row and column of the HTSASMs, and similarly, for odd-order

DASASMs, it is related to the behavior of a parameter associated with the central column of

the DASASMs. However, when this parameter is set to 1, the odd-order DASASM partition

function reduces to a single determinantal term, as given in Corollary 2.

● The previously-studied ASM classes can be broadly divided into the following types: (i)

those (including unrestricted ASMs, VSASMs, VHSASMs and HTSASMs) in which one set

of parameters is associated with the horizontal edges of a grid graph, and another set of pa-

rameters is associated with the vertical edges; (ii) those (including QTSASMs, qQTSASMs,

OSASMs and OOSASMs) in which a single set of parameters is associated with both hori-

zontal and vertical edges of a grid graph. For the classes of type (i), the partition function

is naturally expressed in terms of determinants of matrices whose rows are associated with

the horizontal parameters, and columns are associated with the vertical parameters. For the

classes of type (ii), the partition function is naturally expressed in terms of Pfaffians. For
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odd-order DASASMs, there is a single set of parameters associated with both horizontal and

vertical edges of a grid graph, and hence this class can be regarded as belonging to type (ii).

However, in contrast to the previously-studied classes of this type, the partition function is

naturally expressed in terms of determinants.

1.4. DASASMs. The set ASM(n,{I ,D,A,Rπ}) of all n × n DASASMs will be denoted in the

rest of this paper as DASASM(n). Hence,
DASASM(n) = {A ∈ ASM(n) ∣ Aij = Aji = An+1−j,n+1−i, for all 1 ≤ i, j ≤ n}. (1)

Note that each A ∈ DASASM(n) also satisfies Aij = An+1−i,n+1−j for all 1 ≤ i, j ≤ n, i.e., A is

half-turn symmetric.

For example,

DASASM(3) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎠ ,
⎛⎜⎝
0 1 0
1 −1 1
0 1 0

⎞⎟⎠ ,
⎛⎜⎝
0 0 1
0 1 0
1 0 0

⎞⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (2)

and an element of DASASM(7) is
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 1 −1 0 1 0 0
1 −1 0 1 −1 1 0
0 0 1 −1 1 0 0
0 1 −1 1 0 −1 1
0 0 1 0 −1 1 0
0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Consider any A ∈ DASASM(2n + 1). The central column (or row) of A is invariant under

reversal of the order of its entries, and its nonzero entries alternate in sign and have a sum of 1.

Therefore, the central entry An+1,n+1 is nonzero (since either An+1,n+1 = 1 and all other entries of

the central column are 0, or else the two nearest nonzero entries to An+1,n+1 in the central column

are identical), and it is 1 or −1 according to whether the number of nonzero entries among the

first n entries of the central column is even or odd, respectively (since the first nonzero entry in

the central column is a 1).

These observations can be summarized as

An+1,n+1 = (−1)n+N(A), for each A ∈ DASASM(2n + 1), (4)

where N(A) is the number of 0’s among the first n entries of the central column of A.

The sets of all (2n+1)× (2n+1) DASASMs with fixed central entry 1 and −1 will be denoted

as DASASM+(2n + 1) and DASASM−(2n + 1), respectively, i.e.,
DASASM±(2n + 1) = {A ∈ DASASM(2n + 1) ∣ An+1,n+1 = ±1}. (5)

The rest of this paper will be primarily focused on obtaining results which lead to formulae

(given in Corollaries 5 and 9) for ∣DASASM(2n + 1)∣ and ∣DASASM±(2n + 1)∣. For reference,

these cardinalities for n = 0, . . . ,7 are given in Table 1.
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n 0 1 2 3 4 5 6 7

∣DASASM(2n + 1)∣ 1 3 15 126 1782 42471 1706562 115640460

∣DASASM+(2n + 1)∣ 1 2 9 72 990 23166 918918 61674912

∣DASASM−(2n + 1)∣ 0 1 6 54 792 19305 787644 53965548

Table 1. Numbers of odd-order DASASMs.

1.5. Odd DASASM triangles. Let an odd DASASM triangle A of order n be a triangular

array

A11 A12 A13 . . . A1,n+1 . . . A1,2n−1 A1,2n A1,2n+1

A22 A23 . . . A2,n+1 . . . A2,2n−1 A2,2n⋱ ⋮ ⋰
Ann An,n+1 An,n+2

An+1,n+1,

(6)

such that each entry is 0, 1 or −1 and, for each i = 1, . . . , n + 1, the nonzero entries along the

sequence

A1i A1,2n+2−i

A2i A2,2n+2−i⋮ ⋮
Ai−1,i Ai−1,2n+2−i

Aii Ai,i+1 . . . Ai,2n+1−i Ai,2n+2−i

(7)

alternate in sign and have a sum of 1, where the sequence is read downward from A1i to Aii,

then rightward to Ai,2n+2−i, and then upward to A1,2n+2−i (and for i = n+1, the sequence is taken
to be A1,n+1, . . . ,An,n+1,An+1,n+1,An,n+1, . . . ,A1,n+1).

It can be seen that there is a bijection from DASASM(2n + 1) to the set of odd DASASM

triangles of order n, in which the entries Aij of A ∈ DASASM(2n + 1) are simply restricted to

i = 1, . . . , n + 1 and j = i, . . . ,2n + 2 − i.
As examples, the set of odd DASASM triangles of order 1 is

{1 0 0
1

,
0 1 0
−1 ,

0 0 1
1
} (8)

(where the elements correspond, in order, to the DASASMs in (2)), and the odd DASASM

triangle which corresponds to the DASASM in (3) is

0 0 1 0 0 0 0
1 −1 0 1 0

0 1 −1
−1

. (9)
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1.6. Six-vertex model configurations. Define a grid graph on a triangle as

Tn =

(0,1) (0,2) (0,n+1) (0,2n) (0,2n+1)

(1,1) (1,2n+1)

(2,2) (2,2n)

(n,n) (n,n+2)

(n+1,n+1)

.

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

(10)

Note that Tn can be regarded as an odd-order analog of the graph introduced by Kuperberg [32,

Fig. 13] for OOSASMs.

The vertices of Tn consist of top vertices (0, j), j = 0, . . . ,2n + 1, of degree 1, left boundary

vertices (i, i), i = 1, . . . , n, of degree 2, bulk vertices (i, j), i = 1, . . . , n, j = i + 1, . . . ,2n + 1 − i, of
degree 4, right boundary vertices (i,2n + 2 − i), i = 1, . . . , n, of degree 2, and a bottom vertex

(n + 1, n + 1) of degree 1. The edges incident with the top vertices will be referred to as top

edges.

Now define a configuration of the six-vertex model on Tn to be an orientation of the edges

of Tn, such that each top edge is directed upwards, and among the four edges incident to each

bulk vertex, two are directed into and two are directed out of the vertex, i.e., the so-called

six-vertex rule is satisfied.

For such a configuration C, and a vertex (i, j) of Tn, define the local configuration Cij at (i, j)
to be the orientation of the edges incident to (i, j). Hence, the possible local configurations are ●u
at a top vertex, ●

u

u , ●

u

u , ●
u

u or ●

u

u at a left boundary vertex, ●
u

u

uu , ●

u

u

uu , ●
u

u

uu , ●

u

u

uu , ●
u

u

u u or

●

u

u

u u at a bulk vertex, ●
u

u , ●

u

u , ●
u

u or ●

u

u at a right boundary vertex, and ●
u
or ●

u

at the bottom

vertex.

There is a natural bijection from the set of configurations of the six-vertex model on Tn to

the set of odd DASASM triangles of order n, in which a configuration C is mapped to an odd

DASASM triangle A given by

Aij =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, Cij = ●
u

u

u u , ●
u

u , ●
u

u or ●
u
,

−1, Cij = ●

u

u

u u , ●

u

u , ●

u

u or ●

u

,

0, Cij = ●
u

u

uu , ●

u

u

uu , ●
u

u

uu , ●

u

u

uu , ●
u

u , ●

u

u , ●
u

u or ●

u

u ,

(11)

for i = 1, . . . , n + 1 and j = i, . . . ,2n + 2 − i. Note that the (fixed) local configurations at the top

vertices are not associated with entries of A. Note also that the cases of (11) can be summarized

as follows: Aij = 1 if Cij is ●
u

u

u u or a restriction of that (to the upper and right, upper and left, or

upper edges), Aij = −1 if Cij is ●

u

u

u u or a restriction of that (again to the upper and right, upper

and left, or upper edges), and Aij = 0 otherwise.

As examples, the set of configurations of the six-vertex model on T1 is

⎧⎪⎪⎪⎨⎪⎪⎪⎩

● ● ●

● ● ●

●

u u u

u u

u
,

● ● ●

● ● ●

●

u u u

u u

u

,

● ● ●

● ● ●

●

u u u

u u

u

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(12)
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(where the elements correspond, in order, to the odd DASASM triangles in (8)), and the con-

figuration which corresponds to the odd DASASM triangle in (9) is

.

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

u u u u u u u

u u u u u

u u u

u

u u u u u u

u uu u

u u

(13)

The fact that (11) is a well-defined bijection can be verified by considering the standard

bijection between ASM(2n + 1) and the set of configurations of the six-vertex model on a (2n +
1) × (2n + 1) square grid Sn with domain-wall boundary conditions, and then restricting from

ASM(2n + 1) to DASASM(2n + 1). Some of the details of this bijection and the restriction are

as follows. The grid Sn, which contains the grid Tn as a subgraph, consists of bulk vertices

(i, j), of degree 4, together with top vertices (0, j), right vertices (i,2n + 2), bottom vertices

(2n + 2, j) and left vertices (i,0), all of degree 1, for i, j = 1, . . . ,2n + 1, where (i, j) appears
in row i and column j. The configurations are orientations of the edges of Sn, such that each

edge incident to a top, right, bottom or left vertex is directed upwards, leftwards, downwards

or rightwards, respectively, and the six-vertex rule is satisfied at each bulk vertex. The ASM A

which corresponds to a configuration C is given by Aij = 1 or Aij = −1 if the local configuration

of C at (i, j) is ●
u

u

u u or ●

u

u

u u , respectively, and Aij = 0, otherwise. If A is a DASASM, then the

symmetry conditions for A imply that C is uniquely determined by its restriction to the edges

of Tn. Note also that in this case, within Sn, only ●
u

u

uu , ●

u

u

uu , ●
u

u

u u and ●

u

u

u u can occur at a

vertex (i, i) on the diagonal, only ●
u

u

uu , ●
u

u

uu , ●
u

u

u u and ●
u

u

u u can occur at a vertex (i,2n+ 2− i)
on the antidiagonal, and hence only ●

u

u

u u or ●

u

u

u u can occur at the central vertex (n + 1, n + 1).
1.7. Weights and the partition function. Throughout the rest of this paper, the notation

x̄ = x−1 and σ(x) = x − x̄ (14)

will be used.

For each possible local configuration c at a bulk or boundary vertex, and for parameters q

and u, assign a weight W (c, u), as given in Table 2 (where each boundary weight W (c, u) appears
in the same row as bulk weights whose local configurations restrict to c).

Bulk weights Left boundary weights Right boundary weights

W ( ●uuu u , u) =W ( ●uuu u , u) = 1 W (●u u , u) =W (●u u , u) = 1 W ( ●uu , u) =W ( ●uu , u) = 1
W ( ●uu uu , u) =W ( ●uu uu , u) = σ(q2u)

σ(q4) W (●u u , u) =W (●u u , u) = σ(q u)
σ(q)

W ( ●uu uu , u) =W ( ●uu uu , u) = σ(q2ū)
σ(q4) W ( ●uu , u) =W ( ●uu , u) = σ(q ū)

σ(q)

Table 2. Bulk and boundary weights.

It will be convenient for the dependence on q not to be indicated explicitly by the notation

W (c, u), or by the notation for further q-dependent quantities in this paper. Note also that the
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corresponding parameter which is used for such weights in the literature is often the square of

the q used in this paper.

It can be seen that the weights of Table 2 satisfy

W (c,1)∣
q=eiπ/6

= 1, for each local configuration c at a bulk vertex,

and W (c,1) = 1, for each local configuration c at a boundary vertex. (15)

For a configuration C of the six-vertex model on Tn, and parameters q and u1, . . . , un+1,

define the weight of left boundary vertex (i, i) to be W (Cii, ui), the weight of bulk vertex (i, j)
to be W (Cij, ui umin(j,2n+2−j)), and the weight of right boundary vertex (i,2n + 2 − i) to be

W (Ci,2n+2−i, ui), where, as before, Cij is the local configuration of C at (i, j). Note that q is an

overall constant, which is the same in all of these weights.

The assignment of u1, . . . , un+1 in these weights can be illustrated, for n = 3, as

.

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

u1 u1u2 u1u3 u1u4 u1u3 u1u2 u1

u2 u2u3 u2u4 u2u3 u2

u3 u3u4 u3

(16)

The color coding in (16) indicates that for i = 1, . . . , n+1, ui can be naturally associated with the

edges in column i, row i and column 2n+2− i of Tn, such that the parameter for the weight of a

boundary vertex is the single parameter associated with the incident edges, and the parameter

for the weight of a bulk vertex is the product of the two different parameters associated with

the incident edges.

Now define the odd-order DASASM partition function Z(u1, . . . , un+1) to be the sum of prod-

ucts of bulk and boundary vertex weights, over all configurations C of the six-vertex model

on Tn, i.e.,

Z(u1, . . . , un+1) =∑
C

n

∏
i=1

W (Cii, ui)⎛⎝
2n+1−i

∏
j=i+1

W (Cij, ui umin(j,2n+2−j))⎞⎠W (Ci,2n+2−i, ui). (17)

Note that the top vertices and bottom vertex can be regarded as each having weight 1.

For example,

Z(u1, u2) = σ(q2ū1ū2)σ(qū1)
σ(q4)σ(q) + σ(qu1)σ(qū1)

σ(q)2 + σ(qu1)σ(q2u1u2)
σ(q)σ(q4) (18)

(where the terms are written in an order which corresponds to that used in (12)), and the term

of Z(u1, . . . , u4) which corresponds to the configuration in (13) is

σ(qu1)σ(q2u1u2)σ(q2ū1ū4)σ(q2ū1ū3)σ(q2ū1ū2)σ(qū1)σ(q2u2u4)σ(qū2)σ(qu3)
σ(q)4 σ(q4)5 . (19)

Similarly, define the odd-order DASASM+ and DASASM− partition functions Z+(u1, . . . , un+1)
and Z−(u1, . . . , un+1) to be the sum of products of bulk and boundary vertex weights, over all

configurations C of the six-vertex model on Tn in which the edge incident to the bottom vertex

is directed upwards or downwards, respectively. Hence,

Z(u1, . . . , un+1) = Z+(u1, . . . , un+1) +Z−(u1, . . . , un+1). (20)
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It follows from (15), and the bijections among the set of configurations of the six-vertex model

on Tn, the set of odd DASASM triangles of order n and DASASM(2n + 1), that
∣DASASM(2n + 1)∣ = Z(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

n+1

)∣
q=eiπ/6

(21)

and

∣DASASM±(2n + 1)∣ = Z±(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n+1

)∣
q=eiπ/6

. (22)

Now consider the replacement of un+1 with −un+1 in the sum of (17). Then the bulk weights

W ( ●uu uu , uiun+1), W ( ●uu uu , uiun+1), W ( ●uu uu , uiun+1) and W ( ●uu uu , uiun+1), whose local configurations

are associated with the 0’s in the first n rows of the central column of the corresponding

DASASMs, change signs under this replacement, while all other bulk weights and all bound-

ary weights are unchanged.

It follows, using (4), that

(−1)nZ(u1, . . . , un,−un+1) = Z+(u1, . . . , un+1) −Z−(u1, . . . , un+1), (23)

and so, using (20), that

Z±(u1, . . . , un+1) = 1
2
(Z(u1, . . . , un, un+1) ± (−1)nZ(u1, . . . , un,−un+1)). (24)

1.8. Schur functions and semistandard Young tableaux. The notation and results re-

garding Schur functions and semistandard Young tableaux which will be used in this paper are

as follows. (For further information, see for example Stanley [47, Ch. 7].)

For a partition λ of length ℓ(λ) ≤ k, and variables x1, . . . , xk, let sλ(x1, . . . , xk) be the Schur

function (or Schur polynomial) indexed by λ, and let SSYTλ(k) be the set of semistandard

Young tableaux of shape λ with entries from {1, . . . , k}.
A determinantal formula for Schur functions is

sλ(x1, . . . , xk) =
det

1≤i,j≤k
(xλj+k−j

i )
∏1≤i<j≤k(xi − xj) , (25)

a formula for Schur functions involving a sum over semistandard Young tableaux is

sλ(x1, . . . , xk) = ∑
T ∈SSYTλ(k)

x
#(1,T )
1 . . . x

#(k,T )
k , (26)

and a product formula for the number of semistandard Young tableaux is

∣SSYTλ(k)∣ = ∏1≤i<j≤k(λi − λj − i + j)
∏k−1

i=1 i!
, (27)

where λi = 0 for i = ℓ(λ) + 1, . . . , k, and #(i, T ) denotes the number of occurrences of i in T .

It follows immediately from (25) that sλ(x1, . . . , xk) is symmetric in x1, . . . , xk, and immedi-

ately from (26) that

sλ(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k

) = ∣SSYTλ(k)∣. (28)

A further identity is
d
dx
sλ(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

k−1

, x)∣
x=1
= ∣λ∣

k
∣SSYTλ(k)∣, (29)
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which can be proved by using symmetry and (26) to give

k sλ(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k−1

, x) = sλ(x,1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k−1

) + ⋯ + sλ(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k−1

, x) = ∑
T ∈SSYTλ(k)

(x#(1,T ) + ⋯ + x#(k,T )),
and hence

k d
dx
sλ(1, . . . ,1´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

k−1

, x)∣
x=1
= ∑

T ∈SSYTλ(k)

(#(1, T ) + ⋯ +#(k,T )) = ∑
T ∈SSYTλ(k)

∣λ∣ = ∣SSYTλ(k)∣ ∣λ∣.

2. Main results

In this section, the main results of the paper are presented, with the cases of odd-order

DASASMs whose central entry is arbitrary or fixed being considered in separate subsections.

The proofs of Theorems 1 and 3 will be given in Section 3. All of the other results are corollaries

of these theorems, and their proofs from the theorems are given in this section. The notation

of (14) is used in all of the results.

2.1. Results for odd-order DASASMs with arbitrary central entry. The main results

of this paper involving odd-order DASASMs whose central entry is arbitrary are as follows.

Theorem 1. The odd-order DASASM partition function is given by

Z(u1, . . . , un+1) =
σ(q2)n

σ(q)2n σ(q4)n2

n

∏
i=1

σ(ui)σ(qui)σ(qūi)σ(q2uiun+1)σ(q2ūiūn+1)
σ(uiūn+1) ∏

1≤i<j≤n

(σ(q2uiuj)σ(q2ūiūj)
σ(uiūj) )

2

× ⎛⎜⎝ det
1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+u2

i +ū
2

j

σ(q2uiuj)σ(q2ūiūj)
, i ≤ n

un+1−1
u2

j
−1

, i = n + 1
⎞⎟⎠ + det

1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+ū2

i +u
2

j

σ(q2uiuj)σ(q2ūiūj)
, i ≤ n

ūn+1−1
ū2

j
−1

, i = n + 1
⎞⎟⎠
⎞⎟⎠ . (30)

This result will be proved in Section 3.5, and an alternative proof will be sketched in Sec-

tion 3.6.

Note that the two determinants on the RHS of (30) are related to each other by replacement

of u1, . . . , un+1 by ū1, . . . , ūn+1, and that the prefactor is unchanged under this transformation.

Corollary 2. The odd-order DASASM partition function at un+1 = 1 is given by

Z(u1, . . . , un,1) =
σ(q2)n

σ(q)2n σ(q4)n2

n

∏
i=1

σ(qui)σ(qūi)σ(q2ui)σ(q2ūi) ∏
1≤i<j≤n

(σ(q2uiuj)σ(q2ūiūj)
σ(uiūj) )

2

× det
1≤i,j≤n

( q2 + q̄2 + u2
i + ū2

j

σ(q2uiuj)σ(q2ūiūj)). (31)

Proof. Taking un+1 → 1 in (30), the last row of each matrix becomes (0, . . . ,0, 12), and the result

then follows. �

An alternative proof of Corollary 2, which does not use Theorem 1, will be outlined in Sec-

tion 3.6.

Note that, due to the factor ∏n
i=1 σ(q2ui)σ(q2ūi) on the RHS of (31) (which, unlike other parts

of the prefactor, does not cancel with terms from the determinant), Z(u1, . . . , un,1) is zero at

ui = q±2 and ui = −q±2, for each i = 1, . . . , n. This property will be explained further by the proof

of Proposition 16.
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Theorem 3. The odd-order DASASM partition function at q = eiπ/6 is given by

Z(u1, . . . , un+1)∣q=eiπ/6 = 3−n(n−1)/2 ( un
n+1

un+1+1
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, ū

2
n+1)

+ ūn
n+1

ūn+1+1
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, u

2
n+1)). (32)

This result will be proved in Section 3.7, using Theorem 1.

Note that, by using the standard formula for taking the reciprocals of all variables in a Schur

function (e.g., Stanley [47, Ex. 7.41]), the Schur functions in (32) could be written instead as

s(n,n−1,n−1,...,2,2,1,1)(u2
1, ū

2
1, . . . , u

2
n, ū

2
n, u

∓2
n+1) = u∓2nn+1 s(n,n,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, u

±2
n+1).

Corollary 4. The odd-order DASASM partition function at un+1 = 1 and q = eiπ/6 is given by

Z(u1, . . . , un,1)∣q=eiπ/6 = 3−n(n−1)/2 s(n,n−1,n−1,...,2,2,1,1)(u2
1, ū

2
1, . . . , u

2
n, ū

2
n,1). (33)

Proof. Set un+1 = 1 in (32). �

A factorization of the Schur function in (33), involving odd orthogonal and symplectic char-

acters, will be given in (63).

Note also that the factor ∏n
i=1 σ(q2ui)σ(q2ūi) on the RHS of (31) leads, at q = eiπ/6, to a factor

∏n
i=1(u2

i + 1+ ū2
i ) in s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n,1) on the RHS of (33). This will appear

explicitly in the factorization in (63).

Corollary 5. The number of (2n + 1) × (2n + 1) DASASMs is given by

∣DASASM(2n + 1)∣ = 3−n(n−1)/2 ∣SSYT(n,n−1,n−1,...,2,2,1,1)(2n + 1)∣
= n

∏
i=0

(3i)!
(n + i)! . (34)

Proof. The first equality follows immediately by setting u1 = . . . = un = 1 in (33), and using (21)

and (28). The second equality (which was previously obtained by Okada [37, Conj. 5.1(2)]) then

follows by applying (27), and simplifying the resulting expression. �

As indicated in Sections 1.1–1.2, a recursion relation for ∣DASASM(2n + 1)∣ which gives the

product formula in (34) was conjectured by Robbins [43, Sec. 4.2].

Note also that, due to the comment after Theorem 3, the partition (n,n−1, n−1, . . . ,2,2,1,1)
in (33) and (34) could be replaced by (n,n, . . . ,2,2,1,1).
2.2. Results for odd-order DASASMs with fixed central entry. The results of the pre-

vious section have certain corollaries for odd-order DASASMs whose central entry is fixed, as

follows.

Corollary 6. The odd-order DASASM± partition functions are given by

Z+(u1, . . . , un+1) =
σ(q2)n

σ(q)2n σ(q4)n2

n

∏
i=1

σ(ui)σ(qui)σ(qūi)σ(q2uiun+1)σ(q2ūiūn+1)
σ(uiūn+1) ∏

1≤i<j≤n

(σ(q2uiuj)σ(q2ūiūj)
σ(uiūj) )

2

× ⎛⎜⎝ det
1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+u2

i+ū
2

j

σ(q2uiuj)σ(q2 ūiūj)
, i ≤ n

1
1−u2

j

, i = n + 1
⎞⎟⎠ + det

1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+ū2

i+u
2

j

σ(q2uiuj)σ(q2 ūiūj)
, i ≤ n

1
1−ū2

j

, i = n + 1
⎞⎟⎠
⎞⎟⎠ (35)
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and

Z−(u1, . . . , un+1) =
σ(q2)n

σ(q)2n σ(q4)n2

n

∏
i=1

σ(ui)σ(qui)σ(qūi)σ(q2uiun+1)σ(q2ūiūn+1)
σ(uiūn+1) ∏

1≤i<j≤n

(σ(q2uiuj)σ(q2ūiūj)
σ(uiūj) )

2

× ⎛⎜⎝ det
1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+u2

i +ū
2

j

σ(q2uiuj)σ(q2ūiūj)
, i ≤ n

un+1

u2

j
−1
, i = n + 1

⎞⎟⎠ + det
1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+ū2

i +u
2

j

σ(q2uiuj)σ(q2ūiūj)
, i ≤ n

ūn+1

ū2

j
−1
, i = n + 1

⎞⎟⎠
⎞⎟⎠ . (36)

Proof. Apply (24) to (30). �

Note that, in contrast to the determinants in (30), each of the determinants in (35) and (36)

is singular at un+1 → 1 (due to the form of the bottom right entry of each of the matrices).

Corollary 7. The odd-order DASASM± partition functions at q = eiπ/6 are given by

Z+(u1, . . . , un+1)∣q=eiπ/6 = 3−n(n−1)/2 ( un
n+1

1−u2

n+1
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, ū

2
n+1)

+ ūn
n+1

1−ū2

n+1
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, u

2
n+1)) (37)

and

Z−(u1, . . . , un+1)∣q=eiπ/6 = 3−n(n−1)/2 ( un+1
n+1

u2

n+1−1
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, ū

2
n+1)

+ ūn+1
n+1

ū2

n+1−1
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, u

2
n+1)). (38)

Proof. Apply (24) to (32). �

Corollary 8. The odd-order DASASM± partition functions at un+1 = 1 and q = eiπ/6 are given

by

Z+(u1, . . . , un,1)∣q=eiπ/6 = 3−n(n−1)/2 (2 d
dx
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, x)∣x=1

− (n − 1)s(n,n−1,n−1,...,2,2,1,1)(u2
1, ū

2
1, . . . , u

2
n, ū

2
n,1)) (39)

and

Z−(u1, . . . , un,1)∣q=eiπ/6 = 3−n(n−1)/2 (ns(n,n−1,n−1,...,2,2,1,1)(u2
1, ū

2
1, . . . , u

2
n, ū

2
n,1)

− 2 d
dx
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, x)∣x=1). (40)

Proof. Take un+1 → 1 in (37) and (38), and apply L’Hôpital’s rule. �

Corollary 9. The numbers of (2n + 1) × (2n + 1) DASASMs with fixed central entry 1 and −1
are given by

∣DASASM+(2n + 1)∣ = n + 1
2n + 1

n

∏
i=0

(3i)!
(n + i)! (41)

and

∣DASASM−(2n + 1)∣ = n

2n + 1
n

∏
i=0

(3i)!
(n + i)! , (42)

and hence satisfy ∣DASASM−(2n + 1)∣∣DASASM+(2n + 1)∣ =
n

n + 1 . (43)
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Proof. Set u1 = . . . = un = 1 in (39) and (40), and apply (22), (28), (29) and the second equality

of (34). �

As indicated in Section 1.1, the relation (43) was conjectured by Stroganov [50, Conj. 2].

3. Proofs

In this section, full proofs of Theorems 1 and 3, and sketches of alternative proofs of Theorem 1

and Corollary 2, are given. Preliminary results are stated or obtained in Sections 3.1–3.4, while

the main steps of the proofs appear in Sections 3.5–3.7.

3.1. Simple properties of bulk and boundary weights. The bulk and boundary weights,

as given in Table 2, can immediately be seen to satisfy certain simple properties. Some examples

are as follows, where the notation will be explained at the end of the list.

● Invariance under diagonal reflection or arrow reversal,

W ( ●a

b

c

d

, u) =W ( ●d
c

b

a

, u) =W ( ●b
a

d

c

, u) =W ( ●ã

b̃

c̃

d̃

, u) ,
W (●a b , u) =W (●b a, u) =W (●ã b̃

, u), W ( ●a

b
, u) =W ( ●b

a
, u) =W ( ●ã

b̃
, u). (44)

● Invariance under simultaneous vertical reflection and replacement of u with ū,

W ( ●a

b

c

d

, u) =W ( ●c

b

a

d

, ū) , W (●a b , u) =W ( ●b

a
, ū). (45)

● Reduction of the bulk weights at q±2 or boundary weights at q±1,

W ( ●a

b

c

d

, q2) =W ( ●c

b

a

d

, q̄2) = δad̃ δbc̃, W (●a b , q̄) =W ( ●b

a
, q) = δab̃. (46)

These equations are satisfied for all edge orientations a, b, c and d such that the six-vertex

rule is satisfied at degree 4 vertices, with an orientation being taken as in or out, with respect

to the indicated endpoint of the edge. Also, ã denotes the reversal of edge orientation a, and δ

is the Kronecker delta.

As examples, the a = b = in and c = d =out cases of (45) and (46) are W ( ●uu uu , u) = W ( ●uu uu , ū),
W (●u u , u) =W ( ●uu , ū), W ( ●uu uu , q2) =W ( ●uu uu , q̄2) = 1 and W (●u u , q̄) =W ( ●uu , q) = 0.

3.2. Local relations for bulk and boundary weights. The bulk and boundary weights, as

given in Table 2, also satisfy certain local relations. The relations relevant to this paper are as

follows, where the notation will again be explained at the end of the list.
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● Vertical and horizontal forms of the Yang–Baxter equation (VYBE and HYBE),

● ●

●

q2uv̄

vw uw

a1 a2

b1b2

a3 b3

=
● ●

●

q2uv̄

uw vw

a1 a2

b1b2

a3 b3

and

●

●

●q2uv̄

vw

uw

a1

a2

a3

b1

b2

b3

=
●

●

●q2uv̄

uw

vw

a1

a2

a3

b1

b2

b3

. (47)

● Left and right forms of the reflection (or boundary Yang–Baxter) equation (LRE and RRE),

●

● ●

●

q2uv̄

uvv

u

a1 a2

b1

b2 = ●

●

●

●q2uv̄

uvu

v

a1 a2

b1

b2

and

●

●

●

●

q2uv̄

uv

u

va1

a2

b1 b2

=

●

●●

●

q2uv̄

uv

v

ua1

a2

b1 b2

. (48)

● Left and right forms of the boundary unitarity equation (LBUE and RBUE),

●

●

q̄u

q̄ū

a

b

= σ(qu)σ(qū)
σ(q)2 δab̃ and

●

●

qu

qū

a

b

= σ(qu)σ(qū)
σ(q)2 δab̃. (49)

In these equations, each graph contains external edges, for which only one of the endpoints

is indicated, and internal edges, for which both endpoints are indicated. Each equation holds

for all orientations, a1, b1, . . . , of the external edges, with (as in Section 3.1) an orientation

being taken as in or out, with respect to the indicated endpoint, and ã denoting the reversal of

orientation a. For a particular orientation of the external edges, each graph denotes a sum, over

all orientations of the internal edges which satisfy the six-vertex rule at each degree 4 vertex,

of products of weights for each degree 2 and degree 4 vertex shown. If the edges incident to a

degree 4 vertex appear horizontally and vertically, with an associated parameter u to the left of

and below the vertex, then the weight of the vertex is W ( ●a

b

c

d

, u), for orientations a, b, c and d
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of the edges incident left, below, right and above the vertex, respectively. If the edges incident

to a degree 4 vertex appear diagonally, then these edges and the associated parameter should

be rotated so that the parameter appears to the left of and below the vertex, with the weight

then being determined as previously. For degree 2 vertices, the incident edges always appear

in the same configurations as used in the notation for the boundary weights, with the weights

being determined accordingly. The color coding indicates that the parameters u, v and w can

be naturally associated with certain edges.

As an example, the a1 = a2 = b1 = in and b2 = out case of the right form of the reflection

equation (48) is

W ( ●uu uu , q2uv̄)W ( ●uu , u)W ( ●uu uu , uv)W ( ●uu , v) =W ( ●uu , v)W ( ●uu uu , uv)W ( ●uu , u)W ( ●uu uu , q2uv̄)+
W ( ●uu , v)W ( ●uu uu , uv)W ( ●uu , u)W ( ●uuu u , q2uv̄) +W ( ●uu , v)W ( ●uuu u , uv)W ( ●uu , u)W ( ●uu uu , q2uv̄).

The local relations (47)–(49) can be proved by directly verifying that each equation, for

each orientation of external edges, is either trivial or reduces to a simple identity satisfied by

the rational functions of Table 2. Due to the symmetry properties of the weights identified

in Section 3.1, many of the different cases in this verification are equivalent. For example,

invariance under arrow reversal (44) implies that cases of an equation which are related by

reversal of all external edge orientations are equivalent, invariance under diagonal reflection (44)

implies that the vertical and horizontal forms of the Yang–Baxter equation (47) are equivalent,

and the properties of vertical reflection (45) imply that the left and right forms of the reflection

equation (48) are equivalent.

There is an extensive literature regarding the local relations (47)–(49). For some general

information regarding the Yang–Baxter equation, as applied to the six-vertex model, see, for

example, Baxter [6, pp. 187–190]. The reflection equation was introduced (and applied to six-

vertex model bulk weights) by Cherednik [17, Eq. (10)], with important further results being

obtained by Sklyanin [45]. The most general boundary weights which satisfy the reflection equa-

tion for standard six-vertex model bulk weights were obtained, independently, by de Vega and

González-Ruiz [23, Eq. (15)], and Ghoshal and Zamolodchikov [27, Eq. (5.12)]. The boundary

weights used in this paper are a special case of these general weights, which were chosen for their

property of all having value 1 at u = 1, as in (15), thereby enabling the straight enumeration of

odd-order DASASMs, as in (21) and (22). It can be shown that, up to unimportant normaliza-

tion, these are the only case of the general boundary weights which have this property. Finally,

note that two other special cases of the general six-vertex model boundary weights were used

by Kuperberg [32, Fig. 15], to study classes of ASMs including VSASMs, VHSASMs, OSASMs

and OOSASMs.

3.3. Properties of the odd-order DASASM partition function. Some important proper-

ties of the odd-order DASASM partition function Z(u1, . . . , un+1) will now be identified.

Proposition 10. The odd-order DASASM partition function satisfies

Z(ū1, . . . , ūn+1) = Z(u1, . . . , un+1). (50)

Proof. First observe that an involution on the set of configurations of the six-vertex model on Tn
is provided by reflection of each configuration in the central vertical line of Tn. Applying this

involution to each configuration in the sum (17) for Z(u1, . . . , un+1), and using the properties (45)

of the bulk and boundary weights under vertical reflection, leads to the required result. �
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Proposition 11. The odd-order DASASM partition function Z(u1, . . . , un+1) is an even Laurent

polynomial in ui of lower degree at least −2n and upper degree at most 2n, for each i = 1, . . . , n,
and a Laurent polynomial in un+1 of lower degree at least −n and upper degree at most n.

Note that the definitions of degrees being used in this paper are that a Laurent polynomial

∑n
i=m aixi in x, with m ≤ n and am, an ≠ 0, has lower and upper degrees m and n, respectively.

Proof. Consider a configuration C of the six-vertex model on Tn, and i ∈ {1, . . . , n}. The C-

dependent term in the sum (17) for Z(u1, . . . , un+1) consists of a product of n(n + 2) weights,
among which there are 2n − 1 bulk weights, one left boundary weight and one right boundary

weight that depend on ui. Under the bijection (11) from C to an odd DASASM triangle, the

local configurations which determine these 2n+1 ui-dependent weights correspond to the entries

of the triangle in the sequence (7). Also, it follows from the bijection (11), the explicit weights

in Table 2, and the form of the C-dependent term in (17), that each nonzero entry in (7) is

associated with a weight of 1, and each zero entry in (7) is associated with a weight which is

an odd Laurent polynomial in ui of lower degree −1 and upper degree 1. The properties of

the sequence (7) imply that its number of zero entries is even and at most 2n. Therefore, the

C-dependent term in (17) is an even Laurent polynomial in ui of lower degree at least −2n and

upper degree at most 2n, from which the required result for ui follows.

The result for un+1 can be proved similarly. �

Proposition 12. The odd-order DASASM partition function Z(u1, . . . , un+1) is symmetric in

u1, . . . , un.

Proof. The proof is analogous to that used by Kuperberg [32, Lem. 11 & Fig. 13] to show that

the partition function for 4n × 4n OOSASMs is symmetric in all of its parameters.

First note that it is sufficient to show that Z(u1, . . . , un+1) is symmetric in ui and ui+1, for

i = 1, . . . , n−1. The proof of this will be outlined briefly for arbitrary n and i, and then illustrated

in more detail for the case n = 3 and i = 2.
Let T ′n be a modification of the graph Tn, in which an additional degree 4 vertex x has been

introduced, and the two edges incident with (0, i) and (0, i + 1) are replaced by four edges

connecting x to (0, i), (0, i + 1), (1, i) and (1, i + 1). It follows, using (17) and the conditions

on the configurations C in (17), that W ( ●uu uu , q2ūiui+1)Z(u1, . . . , un+1) can be expressed as a sum

of products of bulk and boundary weights over all orientations of the edges of T ′n , such that

each edge incident with a top vertex (0, j) is directed into that vertex and the six-vertex rule

is satisfied at each degree 4 vertex, where the vertex x (whose incident edges necessarily have

fixed orientations) is assigned a weight W ( ●uu uu , q2ūiui+1) and the assignment of weights to other

vertices is the same as for Tn.

It can now be seen that it is possible to apply toW ( ●uu uu , q2ūiui+1)Z(u1, . . . , un+1), in succession,

the vertical form of the Yang–Baxter equation (47) i−1 times, the left form of the reflection equa-

tion (48) once, the horizontal form of the Yang–Baxter equation (47) 2(n− i)−1 times, the right

form of the reflection equation (48) once, and the vertical form of the Yang–Baxter equation (47)

i−1 times, where each of these equations involves a bulk weight with parameter q2ūiui+1. The re-

sult of applying this sequence of relations isW ( ●uu uu , q2ūiui+1)Z(u1, . . . ui−1, ui+1, ui, ui+2, . . . , un+1),
as required.
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For the case n = 3 and i = 2, the proof can be illustrated as follows, where the notation will

be explained at the end:

W ( ●uu uu , q2ū2u3)Z(u1, u2, u3, u4) =

u u

u u u uu

● ●

●

●

● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

v

[with v = q2ū2u3]

VYBE=

u u u u u u u

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

v LRE=

u u u u u u u

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

v

HYBE=

u u u u u u u

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

v

RRE=

u u u u u u u

●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

v

VYBE=

u u

u u u u u

● ●

●

●● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

v

= W ( ●uu uu , q2ū2u3)Z(u1, u3, u2, u4).

In these diagrams, each graph denotes a sum, over all orientations of the unlabeled edges which

satisfy the six-vertex rule at each degree 4 vertex, of products of weights for each degree 2 and

degree 4 vertex. The vertex weights are obtained using the same conventions as in Section 3.2,

with the assignment of parameters for vertices whose incident edges appear horizontally and

vertically being determined by the colors of the incident vertices as in the example in (16). The

abbreviations above the = signs are those given in Section 3.2, and indicate the local relations

which give the associated equalities. �

It can easily be checked that Propositions 10–12 are also satisfied if the odd-order DASASM

partition function Z(u1, . . . , un+1) is replaced by one of the odd-order DASASM± partition func-

tions Z±(u1, . . . , un+1), and that the latter are even or odd in un+1, with Z±(u1, . . . , un,−un+1) =
±(−1)nZ±(u1, . . . , un, un+1). However, these additional results will not be needed.



20 R. E. BEHREND, I. FISCHER, AND M. KONVALINKA

3.4. Specializations of the odd-order DASASM partition function. It will now be

shown, in Propositions 13–15, that for certain specializations of the parameters, the DASASM

partition function of order 2n + 1 reduces, up to a factor, to a DASASM partition function of

order 2n − 1 or 2n − 3.
Only the specialization in Proposition 15 will be used in the proof of Theorem 1 in Section 3.5,

while the specializations in Propositions 13, 14 and 15 will be used in the alternative proof of

Theorem 1 in Section 3.6.

A further specialization, for which the DASASM partition function is zero, will be given in

Proposition 16. This, together with Propositions 13 and 14, will be used in the alternative proof

of Corollary 2 in Section 3.6.

Proposition 13. If u1 = q, then the odd-order DASASM partition function satisfies

Z(q, u2, . . . , un+1) = (q + q̄)∏n
i=2 σ(q3ui)2 σ(q3un+1)
σ(q4)2n−1 Z(u2, . . . , un+1). (51)

Note that Proposition 13 can be combined with Propositions 10–12 to obtain specializations of

Z(u1, . . . , un+1) at ui = q±1 and ui = −q±1, for i = 1, . . . , n. These specializations will be discussed

in Section 3.6.

Proof. Let u1 = q, consider Z(u1, . . . , un+1), and apply the formula in (46) for the reduction of

right boundary weights at q to W (C1,2n+1, u1) in (17). It then follows, using the six-vertex rule

and the upward orientation of the top edges in each configuration, that the contribution from

configuration C in (17) is zero unless the local configurations in the first row of Tn are fixed,

with C11 = ●u u and C12 = . . . = C1,2n = ●
u

u

uu . This now leads to the RHS of (51). �

Proposition 14. If u1u2 = q2, then the odd-order DASASM partition function satisfies

Z(u1, u2, . . . , un+1) =
σ(u1)σ(qu1)σ(u2)σ(qu2)∏n

i=3(σ(q2u1ui)σ(q2u2ui))2 σ(q2u1un+1)σ(q2u2un+1)
σ(q)4 σ(q4)2(2n−3)

×Z(u3, . . . , un+1). (52)

Note that Proposition 14 can be combined with Propositions 10–12 to obtain specializations of

Z(u1, . . . , un+1) at uiuj = q±2 and uiuj = −q±2, for distinct i, j ∈ {1, . . . , n}. These specializations

will be discussed in Section 3.6.

Proof. The proof will be outlined for arbitrary n, and then illustrated in more detail for the

case n = 3. Let u1u2 = q2, consider Z(u1, . . . , un+1), and apply the formula in (46) for the

reduction of bulk weights at q2 to W (C12, u1u2) and W (C1,2n, u1u2) in (17). This leads to a

fixing of local configurations in the first row of Tn, specifically C11 = ●u u and C13 = . . . = C1,2n−1 =
●
u

u

uu for each configuration C in (17) with a nonzero contribution, thereby giving a factor

W (●u u , u1)∏n
i=3W ( ●uu uu , u1ui)2W ( ●uu uu , u1un+1).

Now apply the right boundary unitarity equation (49) to the boundary weights W (C1,2n+1, u1)
and W (C2,2n, u2) in (17). This gives a factor σ(u1)σ(u2)/σ(q)2, and leads to a fixing of local

configurations in the second row of Tn, specifically C22 = ●u u and C23 = . . . = C2,2n−1 = ●
u

u

uu

for each configuration C in (17) with a nonzero contribution, thereby giving a further factor

W (●u u , u2)∏n
i=3W ( ●uu uu , u2ui)2W ( ●uu uu , u2un+1), and yielding the RHS of (52).
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For n = 3, the proof can be illustrated as follows:

Z(u1, u2, u3, u4)∣u1u2=q2

=

u u u u u u u
● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

(46)= σ(qu1)
σ(q)

u u u u

u

● ● ●

● ●

●

● ● ●

● ● ● ● ●

● ● ●

●

= σ(qu1)σ(q2u1u3)2 σ(q2u1u4)
σ(q)σ(q4)3

u u u u

u

●

●

● ● ● ●

● ● ● ● ●

● ● ●

●

RBUE= σ(u1)σ(qu1)σ(u2)σ(q2u1u3)2 σ(q2u1u4)
σ(q)3 σ(q4)3

u u u u

u

● ● ● ●

● ● ● ● ●

● ● ●

●

= σ(u1)σ(qu1)σ(u2)σ(qu2) (σ(q2u1u3)σ(q2u2u3))2 σ(q2u1u4)σ(q2u2u4)
σ(q)4 σ(q4)6 Z(u3, u4),

where the notation is the same as in the example in the proof of Proposition 12. Note that, in

the second and third graphs above, the curved lines connecting certain pairs of vertices denote

single edges (which accordingly have a single orientation), but their color changes midway so

that the parameters associated with their endpoints are given correctly. �

Proposition 15. If u1un+1 = q2, then the odd-order DASASM partition function satisfies

Z(u1, . . . , un+1) = σ(qu1) (σ(qū1) + σ(q))∏n
i=2 σ(q2u1ui)σ(q2uiun+1)

σ(q)2 σ(q4)2n−2 Z(u2, . . . , un, u1). (53)

Note that Proposition 15 can be combined with Propositions 10–12 to obtain specializations

of Z(u1, . . . , un+1) at uiun+1 = q±2 and uiun+1 = −q±2, for i = 1, . . . , n. These specializations will

be discussed in Section 3.5.

Proof. The proof will be outlined briefly for arbitrary n, and then illustrated in more detail for

the case n = 3.



22 R. E. BEHREND, I. FISCHER, AND M. KONVALINKA

Let u1un+1 = q2, consider Z(u1, . . . , un+1), and apply the formula in (46) for the reduction

of bulk weights at q2 to the weight W (C1,n+1, u1un+1) in (17). This leads to a fixing of local

configurations in the left half of the first row of Tn, specifically C11 = ●u u and C12 = . . . = C1n =
●
u

u

uu for each configuration C in (17) with a nonzero contribution, thereby giving a factor

W (●u u , u1)∏n
i=2W ( ●uu uu , u1ui).

Now, for i = 2, . . . , n, apply, in succession, the horizontal form of the Yang–Baxter equation (47)

n − i times, the right form of the reflection equation (48) once, and the vertical form of the

Yang–Baxter equation (47) i−2 times, where each of these equations involves a bulk weight with

parameter uiun+1 = q2ū1ui. This leads to a further fixing of n−1 local configurations, which gives

a factor ∏n
i=2W ( ●uu uu , uiun+1). The overall result is then

σ(qu1)∏n
i=2 σ(q2u1ui)σ(q2uiun+1)
σ(q)σ(q4)2n−2 ((W ( ●uu , u1) +W ( ●uu , u1))Z−(u2, . . . , un, u1)

+ (W ( ●uu , u1) +W ( ●uu , u1))Z+(u2, . . . , un, u1)),
from which the RHS of (53) follows.

For n = 3, the proof can be illustrated as follows:

Z(u1, u2, u3, u4)∣u1u4=q2

=

u u u u u u u
● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ●

● ● ●

●

(46)=

u u u u u u

u

● ● ●

● ● ● ●

● ● ●

● ● ●

● ● ● ● ●

● ● ●

●

= σ(qu1)σ(q2u1u2)σ(q2u1u3)
σ(q)σ(q4)2

u u

u u u
● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ●

●

= σ(qu1)σ(q2u1u2)σ(q2u1u3)
σ(q)σ(q4)2 v

w

u u u u u
● ● ● ● ●

● ● ● ● ●

● ● ●

●

●

● ●

[with v = u2u4 = q2ū1u2,

w = u3u4 = q2ū1u3]
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HYBE,RRE= σ(qu1)σ(q2u1u2)σ(q2u1u3)
σ(q)σ(q4)2

v

w

u u u

u u
● ●

● ● ●

●

● ● ● ● ●

● ● ●

● ●

●

RRE,VYBE= σ(qu1)σ(q2u1u2)σ(q2u1u3)
σ(q)σ(q4)2

w

vu u

u

u u
● ●

●
● ●

●

●

● ● ● ● ●

● ● ●

● ●

= σ(qu1)σ(q2u1u2)σ(q2u2u4)σ(q2u1u3)σ(q2u3u4)
σ(q)σ(q4)4

u u u u u
● ● ● ● ●

● ● ● ● ●

● ● ●

● ●

= σ(qu1)σ(q2u1u2)σ(q2u2u4)σ(q2u1u3)σ(q2u3u4)
σ(q)σ(q4)4 (σ(qū1)

σ(q) + 1)
× (Z−(u2, u3, u1) +Z+(u2, u3, u1))

= σ(qu1) (σ(qū1) + σ(q))σ(q2u1u2)σ(q2u2u4)σ(q2u1u3)σ(q2u3u4)
σ(q)2 σ(q4)4 Z(u2, u3, u1),

where the notation is the same as in the examples in the proofs of Propositions 12 and 14.

Note that in proceeding from the fourth to the fifth lines above, the only change is that the

graph is redrawn and partly recolored (where the recoloring is justified by the existence of a

relation between u1 and u4). This is done so that the applications of the horizontal form of the

Yang–Baxter equation (47) in the next step can be visualized more easily. �

Proposition 16. The odd-order DASASM partition function satisfies

Z(u1, . . . , un−1, q
2,1) = 0. (54)

Note that Proposition 16 can be combined with Propositions 10–12 to give Z(u1, . . . , un,1) = 0
at ui = q±2 and ui = −q±2, for i = 1, . . . , n.
Proof. This result can be obtained by using Proposition 15 (to give Z(q2, u2, . . . , un,1) = 0), and
Proposition 12 (to interchange u1 and un in Z(u1, . . . , un,1)).
Alternatively, it can be obtained directly, so this approach will also be given here. Let v

denote the second-last vertex in the central column of the graph Tn, i.e., v = (n,n + 1). Now

observe that the set of configurations of the six-vertex model on Tn (for n ≥ 1) can be partitioned

into subsets of size three (which, incidentally, implies that ∣DASASM(2n + 1)∣ is divisible by 3,

for n ≥ 1), such that the configurations within each subset have the same orientations on all

edges, except for those incident with v from the left, below and the right. In particular, if the

edge incident with v from above has orientation a, then the orientations l, b and r of the edges
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incident with v from the left, below and the right, respectively, are (l, b, r) = (a, ã, ã), (ã, ã, a) or
(ã, a, ã) (where orientations are taken as in or out, with respect to v, and ã is the reversal of a).

It can now be seen, using (17) and applying (46) to the bulk weight of v, that the contribution

to Z(u1, . . . , un−1, q2,1) of the case (a, ã, ã) is zero, while the contributions of the cases (ã, ã, a)
and (ã, a, ã) cancel, since the only vertex at which their weights differ is (n,n+2), with the right

boundary weights for that vertex being 1 and σ(q q̄2)/σ(q) = −1. The result (54) now follows

immediately. �

3.5. Proof of Theorem 1. Theorem 1 will now be proved, using results from Sections 3.3

and 3.4.

Consider a family of functions X(u1, . . . , un+1) which satisfy the following properties.

(i) X(u1) = 1.
(ii) X(u1, . . . , un+1) is a Laurent polynomial in un+1 of lower degree at least −n and upper

degree at most n.

(iii) If u1un+1 = q2, then
X(u1, . . . , un+1) = σ(qu1) (σ(qū1) + σ(q))∏n

i=2 σ(q2u1ui)σ(q2uiun+1)
σ(q)2 σ(q4)2n−2 X(u2, . . . , un, u1).

(iv) X(ū1, . . . , ūn+1) =X(u1, . . . , un+1).
(v) X(u1, . . . , un+1) is even in ui, for each i = 1, . . . , n.
(vi) X(u1, . . . , un+1) is symmetric in u1, . . . , un.

It will first be shown that X(u1, . . . , un+1) is uniquely determined by these properties.

By (ii), X(u1, . . . , un+1) is uniquely determined if it is known at 2n + 1 values of un+1. It can

be seen that combining (iii) with (iv)–(vi) leads to expressions for X(u1, . . . , un+1) at 4n values

of un+1, i.e., at un+1 = q±2ūi and un+1 = −q±2ūi, for each i = 1, . . . , n. In particular, (iii) con-

sists of an expression for X(u1, . . . , un, q
2ū1) in terms of X(u2, . . . , un, u1). Replacing u1, . . . , un

by ū1, . . . , ūn, and applying (iv), then gives an expression for X(u1, . . . , un, q̄2ū1) in terms of

X(u2, . . . , un, u1). Replacing u1 by −u1 in the previous two cases, and applying (v), then gives

expressions for X(u1, . . . , un,−q±2ū1) in terms of X(u2, . . . , un,−u1). Finally, interchanging u1

and ui for any i ∈ {2, . . . , n} in the previous four cases, and applying (vi), gives expressions for

X(u1, . . . , un, q
±2ūi) in terms of X(u1, . . . , ui−1, ui+1, . . . , un, ui), and for X(u1, . . . , un,−q±2ūi) in

terms of X(u1, . . . , ui−1, ui+1, . . . , un,−ui).
Since X(u1) is fully known by (i), it follows by induction on n that X(u1, . . . , un+1) is known

at 2n + 1 (or, in fact, 4n) values of un+1. Therefore, X(u1, . . . , un+1) is uniquely determined by

properties (i)–(vi).

The validity of (30) in Theorem 1 will now be verified by showing that both sides satisfy

properties (i)–(vi).

If X(u1, . . . , un+1) is taken to be the odd-order DASASM partition function Z(u1, . . . , un+1),
i.e., the LHS of (30), then the required properties are satisfied, since (i) follows from (17) with

n = 0, while (ii)–(vi) follow from Propositions 10, 11, 12 and 15.

For the remainder of this section, let X(u1, . . . , un+1) be the RHS of (30), and define

F (u1, . . . , un+1) = σ(q2)n
σ(q)2n σ(q4)n2

n

∏
i=1

σ(ui)σ(qui)σ(qūi)σ(q2uiun+1)σ(q2ūiūn+1)
σ(uiūn+1)

× ∏
1≤i<j≤n

(σ(q2uiuj)σ(q2ūiūj)
σ(uiūj) )

2

,
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D(u1, . . . , un+1) = det
1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+u2

i+ū
2

j

σ(q2uiuj)σ(q2ūiūj)
, i ≤ n

1
u2

j
−1
, i = n + 1

⎞⎟⎠ ,
Y (u1, . . . , un+1) = (un+1 − 1)F (u1, . . . , un+1)D(u1, . . . , un+1),
Ŷ (u1, . . . , un+1) = (u2

n+1 − 1)F (u1, . . . , un+1)D(u1, . . . , un+1), (55)

so that

X(u1, . . . , un+1) = Y (u1, . . . , un+1) + Y (ū1, . . . , ūn+1)
= Ŷ (u1, . . . , un+1)

un+1 + 1 + Ŷ (ū1, . . . , ūn+1)
ūn+1 + 1 . (56)

Then F (u1) = 1, D(u1) = 1
u2

1
−1

and Y (u1) = 1
u1+1

, from which it follows that (i) is satisfied.

Proceeding to (ii), it can be seen that (u2
n+1−1)∏n

i=1 σ(q2uiun+1)σ(q2ūiūn+1)D(u1, . . . , un+1) is
an (even) Laurent polynomial in un+1 of lower degree at least −2n and upper degree at most 2n.

Also, D(u1, . . . , un,±ui) = 0 for each i = 1, . . . , n, since columns i and n + 1 of the matrix are

then equal. It follows that (u2
n+1−1)∏n

i=1 σ(q2uiun+1)σ(q2ūiūn+1)/σ(uiūn+1)D(u1, . . . , un+1), and
hence also Ŷ (u1, . . . , un+1), is a Laurent polynomial in un+1 of lower degree at least −n and upper

degree at most n. Now note that if a function f(x) is a Laurent polynomial of lower degree at

least −n and upper degree at most n, then so is the function g(x) = f(x)/(x + 1)+ f(x̄)/(x̄ + 1),
since g(x) = (f(x)+xf(x̄))/(x+1), where f(x)+xf(x̄) is a Laurent polynomial of lower degree

at least −n and upper degree at most n + 1 which vanishes at x = −1. Therefore, it follows from
the previous observations and the last expression of (56) that (ii) is satisfied.

Proceeding to (iii), consider Y (u±11 , . . . , u±1n+1), and multiply the first row of the matrix in

D(u±11 , . . . , u±1n+1) by the factor σ(q2ū1ūn+1) from F (u1, . . . , un+1) (= F (ū1, . . . , ūn+1)). Now set

u1un+1 = q2, which leads to the first row becoming (0, . . . ,0, (q2 + q̄2 + u±21 + q∓4u±21 )/σ(q4)). It

then follows, after rearranging and canceling certain products and signs, that for u1un+1 = q2,
Y (u±11 , . . . , u±1n+1) = σ(qu1) (σ(qū1) + σ(q))∏n

i=2 σ(q2u1ui)σ(q2uiun+1)
σ(q)2 σ(q4)2n−2 Y (u±12 , . . . , u±1n , u±11 ).

Therefore, (iii) is satisfied, due to the first equation of (56).

Proceeding to the remaining properties, (iv) is satisfied due to (56), (v) is satisfied since

F (u1, . . . , un+1) and all entries of the matrix inD(u1, . . . , un+1) are even in ui, for each i = 1, . . . , n,
and (vi) is satisfied since if ui and uj are interchanged, then F (u1, . . . , un+1) is unchanged, while
rows i and j, and columns i and j, are interchanged in the matrix in D(u1, . . . , un+1), for all

distinct i, j ∈ {1, . . . , n}.
3.6. Alternative proofs of Theorem 1 and Corollary 2. Alternative proofs of Theo-

rem 1 and Corollary 2 will now be sketched. Essentially, these involve regarding the odd-order

DASASM partition function Z(u1, . . . , un+1) as a Laurent polynomial in u1, rather than a Laurent

polynomial in un+1, as done in Section 3.5.

Consider a family of functions X(u1, . . . , un+1) which satisfy properties (i) and (iii)–(vi) of

Section 3.5, together with the following properties.

(vii) X(u1, u2) is given by the RHS of (18).

(viii) X(u1, . . . , un+1) is a Laurent polynomial in u1 of lower degree at least −2n and upper

degree at most 2n.

(ix) X(q, u2, . . . , un+1) = (q + q̄)∏n
i=2 σ(q3ui)2 σ(q3un+1)
σ(q4)2n−1 X(u2, . . . , un+1).
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(x) If u1u2 = q2, then
X(u1, u2, . . . , un+1) =

σ(u1)σ(qu1)σ(u2)σ(qu2)∏n
i=3(σ(q2u1ui)σ(q2u2ui))2 σ(q2u1un+1)σ(q2u2un+1)
σ(q)4 σ(q4)2(2n−3)

×X(u3, . . . , un+1).
It follows, using an argument similar to that in the first part of Section 3.5, thatX(u1, . . . , un+1)

is uniquely determined by these properties. In particular, by (v) (with i = 1) and (viii),

X(u1, . . . , un+1) is uniquely determined if it is known at 2n+1 values of u2
1. Combining (iii), (ix)

and (x) with (iv) and (vi) gives expressions for X(u1, . . . , un+1) at 2n + 2 values of u2
1, i.e., at

u2
1 = q±2 and u2

1 = q±4ū2
i , for i = 2, . . . , n+1. Using these expressions, and applying induction on n

with (i) and (vii), it follows that X(u1, . . . , un+1) is known at 2n + 1 (or, in fact, 2n + 2) values
of u2

1, as required.

If X(u1, . . . , un+1) is taken to be the odd-order DASASM partition function Z(u1, . . . , un+1),
then as already found in Section 3.5, (i) and (iii)–(vi) are satisfied. Furthermore, (vii)–(x) are

satisfied, since (vii) is given by (18), while (viii)–(x) follow from Propositions 11, 13 and 14.

If X(u1, . . . , un+1) is now taken to be the RHS of (30), then as already found in Section 3.5, (i)

and (iii)–(vi) are satisfied. It can also be shown, using arguments similar to those of Section 3.5,

that (vii)–(x) are satisfied, from which the required equality in Theorem 1 then follows.

Note that when showing that (viii) is satisfied by the RHS of (30), it can be verified straight-

forwardly that the function

P (u1, . . . , un+1) =
σ(u1)σ(qu1)σ(qū1)σ(q2u1un+1)σ(q2ū1ūn+1)∏n

i=2(σ(q2u1ui)σ(q2ū1ūi))2D(u1, . . . , un+1)
σ(u1ūn+1)

is a Laurent polynomial in u1. However, it then needs to be shown that P (u1, . . . , un+1)/
∏n

i=2 σ(u1ūi)2 is also a Laurent polynomial in u1. This can be done by introducing

P ′(v1, . . . , vn;u1, . . . , un+1) =
σ(u1)σ(q2v1u1)σ(q2v̄1ū1)∏n+1

i=2 σ(q2v1ui)σ(q2v̄1ūi)∏n
i=2 σ(q2viu1)σ(q2v̄iū1)

σ(u1ūn+1)
× det

1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

q2+q̄2+v2i +ū
2

j

σ(q2viuj)σ(q2 v̄iūj)
, i ≤ n

1
u2

j
−1
, i = n + 1

⎞⎟⎠ .
It can then be checked that P ′(v1, . . . , vn;u1, . . . , un+1) is a Laurent polynomial in u1 and v1,

which vanishes at u1 = ±ui and v1 = ±vi for each i = 2, . . . , n, so that P ′(v1, . . . , vn;u1, . . . , un+1)/
∏n

i=2 σ(u1ūi)σ(v1v̄i) is also a Laurent polynomial in u1 and v1. Furthermore, it can be checked

that P (u1, . . . , un+1) = P ′(u1, . . . , un;u1, . . . , un+1)/((qu1+q̄ū1)(qū1+q̄u1)) and that P ′(u1, . . . , un;

u1, . . . , un+1) vanishes at u2
1 = −q±2, from which the required result follows.

Proceeding to the alternative proof of Corollary 2, let X(u1, . . . , un,1) satisfy properties (i)

and (iv)-(vi) of Section 3.5, and properties (vii)–(x) of this section, with un+1 set to 1 in each

case, together with a modification of property (iii) of Section 3.5 given by

(iii′) X(u1, . . . , un−1, q
2,1) = 0.

Then, using the same argument as used for the alternative proof of Theorem 1, X(u1, . . . , un,1)
is uniquely determined. In particular, combining (iii′), (ix) and (x) with (iv) and (vi) gives
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expressions for X(u1, . . . , un,1) at 2n + 2 values of u2
1, i.e., at u

2
1 = q±2, u2

1 = q±4 and u2
1 = q±4ū2

i ,

for i = 2, . . . , n.
If X(u1, . . . , un,1) is taken to be either the LHS or RHS of (31), then, as found previously for

the case of arbitrary un+1, (i) and (iv)–(x) are satisfied. Furthermore, (iii′) is satisfied by the

LHS due to Proposition 16, and by the RHS due to the presence of the term σ(q2ūn) on the

RHS. The required equality in Corollary 2 now follows.

Note that this can be regarded as a shorter proof of Corollary 2 than that of Sections 2 and 3.5

since, with regards to the LHS of (31), Proposition 15 has been replaced by Propositions 13, 14

and 16, each of which has a simpler proof than Proposition 15, and with regards to the RHS

of (31), computations involving the more complicated RHS of (30) have now been avoided.

3.7. Proof of Theorem 3. Theorem 3 will now be proved, using Theorem 1.

In particular, the following determinant identity of Okada [36, Thm. 4.2] will be applied to (30)

at q = eiπ/6. For all a1, x1, b1, y1, . . . , ak, xk, bk, yk,

det
1≤i,j≤k

(ai − bj
xi − yj ) =

(−1)k(k+1)/2
∏k

i,j=1(xi − yj) det
⎛⎜⎜⎜⎜⎜⎝

1 a1 x1 a1x1 . . . xk−1
1 a1x

k−1
1

1 b1 y1 b1y1 . . . yk−11 b1y
k−1
1⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

1 ak xk akxk . . . xk−1
k

akx
k−1
k

1 bk yk bkyk . . . yk−1
k

bky
k−1
k

⎞⎟⎟⎟⎟⎟⎠
. (57)

Let Y (u1, . . . , un+1) be defined as in (55), so that

Z(u1, . . . , un+1) = Y (u1, . . . , un+1) + Y (ū1, . . . , ūn+1). (58)

Setting q = eiπ/6 gives

Y (u1, . . . , un+1)∣q=eiπ/6 = (un+1 − 1)un
n+1

3n(n−1)/2

n

∏
i=1

(u2
i − 1)(u2

i − 1 + ū2
i )(u2

iu
2
n+1 + 1 + ū2

i ū
2
n+1)

u2
i − u2

n+1

× ∏
1≤i<j≤n

(u2
iu

2
j + 1 + ū2

i ū
2
j)2(u2

i − u2
j)(ū2

i − ū2
j) det

1≤i,j≤n+1

⎛⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u2

i+1+ū
2

j

u2

i
u2

j
+1+ū2

i
ū2

j

, i ≤ n
1

u2

j
−1
, i = n + 1

⎞⎟⎠ . (59)

Now observe that

u2
i + 1 + ū2

j

u2
iu

2
j + 1 + ū2

i ū
2
j

= u2
i ū

2
j

u2
i + u4

i − (ū2
j + ū4

j)
u6
i − ū6

j

,
1

u2
j − 1 = −ū

2
j

−1 − (ū2
j + ū4

j)
1 − ū6

j

,

and apply (57) to (59) with

ai =
⎧⎪⎪⎨⎪⎪⎩
u2
i + u4

i , i ≤ n,
−1, i = n + 1, xi =

⎧⎪⎪⎨⎪⎪⎩
u6
i , i ≤ n,

1, i = n + 1, bj = ū2
j + ū4

j , yj = ū6
j , k = n + 1,
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to give

Y (u1, . . . , un+1)∣q=eiπ/6 = (−1)n(n−1)/2
u2
n+1 ∏n

i=1∏n+1
j=1 (u6

i − ū6
j) ∏n+1

i=1 (1 − ū6
i )

× (un+1 − 1)un
n+1

3n(n−1)/2

n

∏
i=1

(u2
i − 1)(u2

i − 1 + ū2
i )(u2

iu
2
n+1 + 1 + ū2

i ū
2
n+1)

u2
i − u2

n+1

∏
1≤i<j≤n

(u2
iu

2
j + 1 + ū2

i ū
2
j)2(u2

i − u2
j)(ū2

i − ū2
j)

× det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 u2
1 + u4

1 u6
1 u8

1 + u10
1 . . . u6n

1 u6n+2
1 + u6n+4

1

1 ū2
1 + ū4

1 ū6
1 ū8

1 + ū10
1 . . . ū6n

1 ū6n+2
1 + ū6n+4

1⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 u2

n + u4
n u6

n u8
n + u10

n . . . u6n
n u6n+2

n + u6n+4
n

1 ū2
n + ū4

n ū6
n ū8

n + ū10
n . . . ū6n

n ū6n+2
n + ū6n+4

n

1 −1 1 −1 . . . 1 −1
1 ū2

n+1 + ū4
n+1 ū6

n+1 ū8
n+1 + ū10

n+1 . . . ū6n
n+1 ū6n+2

n+1 + ū6n+4
n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (60)

The determinant in (60) is equal to

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 + u2
1 + u4

1 u2
1 + u4

1 + u6
1 u6

1 + u8
1 + u10

1 . . . u6n
1 + u6n+2

1 + u6n+4
1

1 1 + ū2
1 + ū4

1 ū2
1 + ū4

1 + ū6
1 ū6

1 + ū8
1 + ū10

1 . . . ū6n
1 + ū6n+2

1 + ū6n+4
1⋮ ⋮ ⋮ ⋮ ⋱ ⋮

1 1 + u2
n + u4

n u2
n + u4

n + u6
n u6

n + u8
n + u10

n . . . u6n
n + u6n+2

n + u6n+4
n

1 1 + ū2
n + ū4

n ū2
n + ū4

n + ū6
n ū6

n + ū8
n + ū10

n . . . ū6n
n + ū6n+2

n + ū6n+4
n

1 0 0 0 . . . 0
1 1 + ū2

n+1 + ū4
n+1 ū2

n+1 + ū4
n+1 + ū6

n+1 ū6
n+1 + ū8

n+1 + ū10
n+1 . . . ū6n

n+1 + ū6n+2
n+1 + ū6n+4

n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= n

∏
i=1

(1 + u2
i + u4

i ) n+1

∏
i=1

(1 + ū2
i + ū4

i ) det
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 u2
1 u6

1 u8
1 . . . u6n−4

1 u6n
1

1 ū2
1 ū6

1 ū8
1 . . . ū6n−4

1 ū6n
1⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

1 u2
n u6

n u8
n . . . u6n−4

n u6n
n

1 ū2
n ū6

n ū8
n . . . ū6n−4

n ū6n
n

1 ū2
n+1 ū6

n+1 ū8
n+1 . . . ū6n−4

n+1 ū6n
n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (−1)n n

∏
i=1

(1 + u2
i + u4

i )(u2
i − ū2

n+1)(ū2
i − ū2

n+1)(u2
i − ū2

i ) n+1

∏
i=1

(1 + ū2
i + ū4

i )
× ∏

1≤i<j≤n

(u2
i − u2

j)(u2
i − ū2

j)(ū2
i − u2

j)(ū2
i − ū2

j) s(n,n−1,n−1,...,2,2,1,1)(u2
1, ū

2
1, . . . , u

2
n, ū

2
n, ū

2
n+1), (61)

where the first expression is obtained by adding column i−1 to column i in the matrix in (60), for

each i = 2, . . . ,2n + 2, and the final expression is obtained by reversing the order of the columns

of the matrix and applying (25).

Replacing the determinant in (60) by the final expression in (61), and canceling certain prod-

ucts and signs, now gives

Y (u1, . . . , un+1)∣q=eiπ/6 = 3−n(n−1)/2 un
n+1

un+1+1
s(n,n−1,n−1,...,2,2,1,1)(u2

1, ū
2
1, . . . , u

2
n, ū

2
n, ū

2
n+1), (62)

from which (32) follows using (58).

Finally, note that an alternative proof of Theorem 3 would be to take X(u1, . . . , un+1) as the
RHS of (32), and show that properties (i)–(vi) of Section 3.5, or properties (i) and (iii)–(vi) of

Section 3.5 and (vii)-(x) of Section 3.6, with q = eiπ/6 in (iii), (ix) and (x), are then satisfied.

4. Discussion

In this final section, some further matters related to the main results of this paper are dis-

cussed.
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4.1. Factorization of the Schur Function in Corollary 4. As shown in Corollary 4, the

odd-order DASASM partition function at un+1 = 1 and q = eiπ/6 is, up to a simple factor, given

by the Schur function s(n,n−1,n−1,...,2,2,1,1)(u2
1, ū

2
1, . . . , u

2
n, ū

2
n,1).

In [3], it will be shown that this function is a member of a collection of Schur functions which

can be factorized in terms of characters of irreducible representations of orthogonal and symplec-

tic groups. This collection also includes certain Schur functions indexed by rectangular shapes,

for which the factorizations were obtained by Ciucu and Krattenthaler [18, Thms. 3.1 & 3.2].

Using the same notation for odd orthogonal and symplectic characters as that of Ciucu and

Krattenthaler [18, Eqs. (3.7) & (3.9)], the factorization of the Schur function in (33) is explicitly

s(2n,2n−1,2n−1,...,2,2,1,1)(u1, ū1, . . . , u2n, ū2n,1) =
∏2n

i=1(ui + 1 + ūi) sp(n−1,n−1,...,2,2,1,1)(u1, . . . , u2n) so(n,n−1,n−1,...,2,2,1,1)(u1, . . . , u2n),
s(2n+1,2n,2n,...,2,2,1,1)(u1, ū1, . . . , u2n+1, ū2n+1,1) =
∏2n+1

i=1 (ui + 1 + ūi) sp(n,n−1,n−1,...,2,2,1,1)(u1, . . . , u2n+1) so(n,n,...,2,2,1,1)(u1, . . . , u2n+1). (63)

It can now be seen, which was not explicitly apparent in (33), that ∏n
i=1(u2

i + 1 + ū2
i ) is a factor

of Z(u1, . . . , un,1)∣q=eiπ/6.
4.2. The odd-order DASASM partition function at special values of q. As shown by,

for example, Kuperberg [32] and Okada [37], the partition functions of cases of the six-vertex

model associated with symmetry classes of ASMs often simplify if a particular parameter, which

corresponds to the parameter q in this paper, is assigned to certain roots of unity.

For odd-order DASASMs, one such assignment is q = eiπ/6, which has been considered in detail

in Sections 2 and 3.7, and which is associated with straight enumeration.

Another such assignment is q = eiπ/4, for which
((−i σ(q4))n2

Z(u1, . . . , un+1))∣q→eiπ/4
= n

∏
i=1

(ui + ūi)(uiun+1 + ūiūn+1) ∏
1≤i<j≤n

(uiuj + ūiūj)2. (64)

This result can be proved directly, as follows. First, observe that multiplying Z(u1, . . . , un+1) by(−i σ(q4))n2

is equivalent to renormalizing each of the n2 bulk weights in each term of (17) by

a factor of −i σ(q4). Setting q → eiπ/4, these renormalized weights are (−i σ(q4)W (c, u))∣q→eiπ/4 =
u + ū, for c = ●

u

u

uu , ●

u

u

uu , ●
u

u

uu , ●

u

u

uu , and (−i σ(q4)W (c, u))∣q→eiπ/4 = 0, for c = ●
u

u

u u , ●

u

u

u u . It now follows

from the bijection (11), and the properties of odd DASASM triangles, that the C-dependent term

of (17) associated with ((−i σ(q4))n2

Z(u1, . . . , un+1))∣q→eiπ/4
is zero unless the odd DASASM tri-

angle which corresponds to C consists of all 0’s, except for a single 1 at either the start or end of

each row. Observing that a 0 at the start or end of row i, for i = 1, . . . , n, is associated with weight

σ(qui)/σ(q) or σ(qūi)/σ(q), respectively, and that 1’s are associated with weight 1, it can then

be seen that the relevant sum over 2n configurations is ∏n
i=1(σ(qui)/σ(q)+σ(qūi)/σ(q))(uiun+1+

ūiūn+1) ∏1≤i<j≤n(uiuj + ūiūj)2, which gives (64). Note that, since the central entry of the rele-

vant DASASMs in this case is always 1, it also follows that (σ(q4)n2

Z+(u1, . . . , un+1))∣q→eiπ/4
=

(σ(q4)n2

Z(u1, . . . , un+1))∣q→eiπ/4
and (σ(q4)n2

Z−(u1, . . . , un+1))∣q→eiπ/4
= 0.

We have also obtained some results and conjectures for the odd-order DASASM partition

function at q = eiπ/3. In this case, W (c,1)∣q=eiπ/3 = −1, for c = ●
u

u

uu , ●

u

u

uu , ●
u

u

uu , ●

u

u

uu , andW (c,1)∣q=eiπ/3 =
1, for c = ●

u

u

u u , ●

u

u

u u . Hence, due to (11) and the second equation of (15), Z(1, . . . ,1)∣
q=eiπ/3

or

Z±(1, . . . ,1)∣q=eiπ/3 correspond to enumerations in which A ∈ DASASM(2n + 1) is weighted by

(−1)M(A), where M(A) is the number of 0’s among the entries Aij for i = 1, . . . , n, j = i +
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1, . . . ,2n+1− i, i.e., the number of 0’s in the odd DASASM triangle associated with A which are

not at the start or end of a row. We conjecture that these weighted enumerations are given by

∑
A∈DASASM(2n+1)

(−1)M(A) = (−1)n(n−1)/2 Vn,

∑
A∈DASASM±(2n+1)

(−1)M(A) = 1
2(−1)n(n−1)/2 ((−1)n ∓ 3)Vn, (65)

where Vn = (2n)! ⌊(3n−1)/2⌋!

3⌊(n−1)/2⌋ (3n)! ⌊(n−1)/2⌋! ∏n
i=0

(3i)!
(n+i)! . As shown by Okada [37, Thm. 1.2 (A5) & (A6)], Vn

is the number of (2n + 1) × (2n + 1) VHSASMs.

4.3. HTSASMs and DASASMs. Using the same argument as used for odd-order DASASMs

in Section 1.4, it can be seen that the central entry of an odd-order HTSASM must again

be ±1. Denoting the sets of all (2n + 1) × (2n + 1) HTSASMs with fixed central entry −1
and 1 as HTSASM−(2n+ 1) and HTSASM+(2n+ 1) respectively, it was shown by Razumov and

Stroganov [40, p. 1197] that ∣HTSASM−(2n + 1)∣∣HTSASM+(2n + 1)∣ =
n

n + 1 . (66)

Therefore, combining (43) and (66) gives

∣HTSASM−(2n + 1)∣∣HTSASM+(2n + 1)∣ =
∣DASASM−(2n + 1)∣∣DASASM+(2n + 1)∣ . (67)

Since DASASM(2n + 1)± is a subset of HTSASM±(2n + 1), (67) states that the ratio between

the numbers of (2n + 1) × (2n + 1) HTSASMs with central entry −1 and 1 remains unchanged

if the matrices are restricted to those which are also diagonally and antidiagonally symmetric.

It would be interesting to obtain a direct proof of this result, without necessarily showing that

either of the ratios is n/(n + 1).
4.4. Further work. Some directions in which we are undertaking further work closely related

to that of this paper are as follows.

First, as discussed in Section 3.2, the boundary weights used for odd-order DASASMs are

a special case of the most general boundary weights which satisfy the reflection equation for

the six-vertex model. By using other boundary weights in the odd-order DASASM partition

function, properties analogous to those of Sections 3.3 and 3.4 are again satisfied, and it is

possible to obtain results, including enumeration formulae, for certain subclasses of odd-order

DASASMs. Work on this has been reported in [4].

Second, it is straightforward to define cases of the six-vertex model which are similar to

the case considered in this paper, and whose configurations are in bijection with DSASMs or

even-order DASASMs. The underlying graphs for these cases have already been introduced by

Kuperberg [32, Figs. 12 & 13], in order to study OSASMs and OOSASMs. (More precisely, these

are graphs for 2n×2n DSASMs and 4n×4n DASASMs, but the generalizations to DSASMs of any

order and DASASMs of any even order are trivial.) Replacing the boundary weights which were

used for OSASMs and OOSASMs by those used in Table 2 for odd-order DASASMs, leads to

partition functions which give the numbers of DSASMs or even-order DASASMs, when q = eiπ/6
and the other parameters are all 1. Alternatively, using yet further boundary weights leads to

partition functions associated with subclasses of DSASMs and even-order DASASMs other than

OSASMs and OOSASMs. All of these partition functions satisfy properties analogous to those

identified for the odd-order DASASM partition function in Sections 3.3 and 3.4, which enables

various results to be obtained for these cases. Work on this will be reported in [8, 9].
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