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Abstract 

High-resolution, male-inherited Y-chromosomal markers are a useful tool for population 

genetic analyses of wildlife species, but to date have only been applied in this context to 

relatively few species besides humans. Using nine Y-chromosomal STR and three Y-

chromosomal single nucleotide polymorphism markers (Y-SNPs), we studied whether male 

gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern 

Europe, where the species declined dramatically in numbers and geographic distribution 

during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant 

brown bears from Sweden, Norway, Finland and Northwestern Russia. In 14 individuals from 

southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the 
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extant population as well as four Y chromosome haplotypes not present among the modern 

samples. Our results suggested major differences in genetic connectivity, diversity, and 

structure between the eastern and the western populations in Northern Europe. In the west, 

our results indicated that the recovered population originated from only four male lineages, 

displaying pronounced spatial structuring suggestive of large-scale population size increase 

under limited male gene flow within the western subpopulation. In the east, we found a 

contrasting pattern, with high haplotype diversity and admixture.  This first population 

genetic analysis of male brown bears shows conclusively that male gene flow was not the 

main force of population recovery.  

 

Introduction 

The genetic structure and diversity of a population are greatly influenced by gene flow. A 

large number of studies have shown that lack of immigration, and thus lack of gene flow 

from outside the population, can lead to a significant reduction of population viability (e.g. 

Dunn et al. 2011; Hedrick et al. 2014). The concept of "genetic rescue" is based on the 

prevention or reversal of this situation and an increase in gene flow has been shown to lead to 

higher fitness and demographic growth (La Haye et al. 2012; Heber et al. 2013). Most 

mammals display male-biased dispersal, i.e. males disperse farther and more frequently from 

the natal home range than females. Therefore males may display higher levels of gene flow 

among regions than females (Greenwood 1980), resulting in males generally exhibiting a 

weaker spatial genetic structure and a stronger contribution to both genetic diversity within 

and genetic connectivity among populations than the females (Ishibashi et al. 2013; 

Quaglietta et al. 2013). Thus, it can be hypothesized that in species with male-biased 

dispersal, males are responsible for counteracting the effects of genetic drift and population 

fragmentation, and therefore may play an important role in population recovery and 
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demographic growth. However, this hypothesis has not been sufficiently evaluated, partly 

because the male contribution to population genetic connectivity, diversity, and structure is 

poorly understood in most wildlife species. 

 

Previous studies have mostly assessed male gene flow either indirectly, by contrasting 

data on autosomal microsatellites (Short-Tandem-Repeats, STRs) and mtDNA (e.g. Baker et 

al. 2013; Hua et al. 2013; Ishibashi et al. 2013) or by comparing male versus female genetic 

spatial autocorrelation (Banks & Peakall 2012). However, due to differences in marker 

systems (in the case of comparisons between mtDNA and autosomal markers) and 

recombination of bi-parental markers, these approaches only give an imprecise measure of 

the occurrence and influence of male migration and gene flow. In contrast, the analysis of 

male-inherited, Y-chromosomal variation enables the direct assessment of male gene flow 

independently of mtDNA and autosomal DNA variation (Hurles & Jobling 2001; Kayser et 

al. 2005; Roewer et al. 2005). In addition, being similar to autosomal STRs in terms of 

diversity, mutation rates, and methodological unambiguity of allele designation (Hurles & 

Jobling 2001; Kayser et al. 2005; Roewer et al. 2005), Y-STRs can be applied to answer 

similar questions regarding population structure and connectivity at the same temporal and 

spatial resolution as autosomal STRs. Y-STRs have therefore been increasingly used to 

investigate population genetic processes both in humans (e.g. Rubicz et al. 2010; Salazar-

Flores et al. 2010; Zupan et al. 2013; Tateno et al. 2014; Karmin et al. 2015) and other 

primates (Langergraber et al. 2007; Schubert et al. 2011; Nietlisbach et al. 2012; Inoue et al. 

2013). Y-STRs are often combined with Y-chromosomal single nucleotide polymorphism 

markers (Y-SNPs), especially in human studies (Larmuseau et al. 2014, Roewer et al. 2013, 

Karafet et al. 2008). Y-SNPs have a slower mutation rate than Y-STRs and thus can form the 

phylogenetic backbone onto which the Y-STR haplotypes can be arranged (Jobling 2012). As 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

such, they can give insight into phylogenetic events that date back in time much longer than 

Y-STRs (Weiwei et al. 2013, Geppert et al. 2011, Karafet et al. 2008) and represent a higher 

level of order than Y-STRs, whose phylogenetic relationship with each other can be 

obscured, due to allele size homoplasy (Hailer & Leonard 2008). 

 

In wildlife species, population genetic studies using Y-STRs are still rare, although a 

growing number of phylogeographic and phylogenetic studies exist, such as for brown hares 

(Lepus europaeus) in Europe and Anatolia (Mamuris et al. 2010), sheep (Ovis ssp.) 

(Meadows et al. 2006), colobine monkeys (Colobinae) (Roos et al. 2011), or snow voles 

(genus: Chionomys) (Yannic et al. 2012b). Here, we apply high-resolution Y-chromosomal 

markers to assess the importance of male gene flow during the recovery of a large terrestrial 

carnivore from near extinction across its distribution range in Northern Europe. All four large 

terrestrial carnivores, lynx (Lynx lynx), wolves (Canis lupus), wolverines (Gulo gulo), and 

brown bears,  declined dramatically in abundance and geographic distribution during the last 

centuries, but are recovering now and expanding into areas of previous extirpation across 

Europe (Chapron et al. 2014). This “carnivore comeback” provides an opportunity to 

determine the role of genetic connectivity as population recovery proceeds (Hagen et al. 

2015). For the study species, we used the brown bear (Ursus arctos) in Northern Europe, 

owing to the pronounced male-biased dispersal and female philopatry that has been 

documented in the species (McLellan & Hovey 2001; Støen et al. 2005; Støen et al. 2006; 

Zedrosser et al. 2007a), which suggests that connectivity among populations occurs primarily 

via male dispersal (Manel et al. 2004). Recently, using autosomal STRs, Kopatz et al. (2014) 

documented that the demographic recovery, i.e., the increase of population size after the 

bottleneck, of the brown bears in Finland was supported by immigration from Russia, 

whereas in Sweden and Norway, brown bear numbers increased from near extinction without 
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significant immigration of eastern bears. In addition, genetic connectivity between the eastern 

(Finland, Russia) and western (Norway, Sweden) subpopulations (Figure 1) of the Northern 

European brown bear has been found to be low (Schregel et al. 2012; Kopatz et al. 2014). 

These differential recovery histories and the low connectivity between the eastern and 

western parts of the species’ range offer an opportunity for applying Y-chromosomal markers 

to study the impact of male gene flow in the recovering brown bear populations in Northern 

Europe.  

 

Our expectation was that the different recovery histories, i.e. high vs. low immigration 

during the recovery process, might explain differences in the Y chromosome haplotype 

diversity of the post-bottleneck brown bears between the eastern and western subpopulations 

in Northern Europe. Specifically, we expected that high versus low immigration during the 

recovery process was associated with high versus low Y chromosome haplotype diversity in 

the post-bottleneck subpopulations, respectively.  Given the evidence that the connectivity 

among the brown bear subpopulations in Northern Europe occurs primarily by male dispersal 

(Manel et al. 2004; Støen et al. 2005; Støen et al. 2006; Zedrosser et al. 2007a), we also 

expected that male gene flow may be a potentially important driver of the range-wide 

demographic recovery process by increasing the gene flow among regions and thus 

counteracting negative effects of fragmentation. A significant impact of male gene flow 

similar to a "genetic rescue effect" that would be relevant to explain the range-wide recovery 

would assume a high degree of Y chromosome haplotype admixture within the two 

subpopulations, independent of recovery history. This would then be consistent with the 

global pattern of male-biased gene flow across continents and in phylogeographic time 

scales, as recently reported based on nine of the twelve Y-chromosomal markers we have 

used here (Bidon et al. 2014). In contrast, a pronounced spatial structuring of Y chromosome 
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haplotypes within the two subpopulations would indicate that large-scale demographic 

population recovery has occurred relatively independently of male gene flow. We also 

included historical samples from southern Norway between ~1750 and ~1950, i.e. in an area 

where brown bears became functionally extinct around the 1920s (Swenson et al. 1995). This 

was done to assess any temporal changes in the genetic composition of the post-bottleneck 

population. Our prediction was that recovery from near extinction without supporting 

immigration would be associated with a long-lasting reduction in Y-haplotype diversity. 

 

Thus, we tested whether or not male dispersal was a key driver of large-scale genetic 

connectivity and the recent population recovery among Northern European brown bear 

subpopulations. In addition, by comparing historic and modern haplotypes and haplotype 

diversity, we could obtain empirical data about the genetic consequences of the historic 

population bottleneck for Y-haplotypic diversity. 

 

Material and methods 

Demographic history of the brown bears in Northern Europe 

Once abundant in Northern Europe, brown bears were persecuted to near extinction during 

recent centuries (Servheen et al. 1999). In Norway, in the west of Northern Europe, the 

brown bear became functionally extinct (i.e. bears did not inhabit Norway permanently any 

longer), around the 1920-30s, whereas in Sweden, east of Norway, ~130 individuals survived 

in three refugee areas (Swenson et al. 1995). In Finland, in central Northern Europe, ~150 

individuals survived in the northern and eastern parts of the country (Ermala 2003). To the 

east of Finland, in Northwestern Russia, a similar population decline occurred during the 

1930-1940s in the southwestern part of Russian Karelia, as well as on the Karelian Isthmus of 

the Leningrad region (Danilov 2005). After protective measures had been initiated during the 
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1960s and 1970s, simultaneously in all four countries, these populations have gradually 

recovered demographically (Swenson et al. 1995; Danilov 2005; Kojola et al. 2006; 

Kindberg et al. 2011). The most current estimates for each country are: ~2800 individuals in 

Sweden in 2013 (Naturvårdsverket 2014), a minimum of 136 in Norway in 2014 (Aarnes et 

al. 2015), and 1,150-1,950 in Finland in 2009 (Wikman 2010). The most recent estimates in 

western Russia are from 1990, stating that there are ~500 individuals in Murmansk Oblast to 

the north and ~3 500 in Russian Karelia to the south (Chestin 1992; Danilov 1994). 

 

Sampling 

Extant individuals from 2006-2012 

We used DNA samples of verified male individuals, analyzed and stored in the course of 

regional and national monitoring programs conducted in Sweden and Norway, as well as 

during previous studies conducted in Finland (Schregel et al. 2012, Kopatz et al. 2012, 2014, 

Hagen et al. 2015). We only used DNA samples that had been identified positively with no 

less than six autosomal STRs plus one sex identification marker. The laboratory protocols of 

DNA extraction and analysis are accredited according to the EN ISO/IEC 17025 standard 

(Norwegian accreditation: test 139). According to these protocols, to verify an identification, 

the genotyping must have been performed independently three times if a sample was 

homozygous for the respective marker and twice if heterozygous. Samples that did not meet 

these requirements were not given a positive identification and hence were not used for this 

study. Further details of the DNA extraction, PCR amplification, and genotyping protocols 

are described in Andreassen et al. (2012). Following the criteria outlined above, we selected a 

total of 491 DNA samples of male brown bears, which had been collected in Norway, 

Sweden, Finland, and northwest Russia during 2006-2012, with the study area spanning from 

60°-69°N and 12°-59°E. Of these samples, 236 were extracted from fecal and 93 from hair 
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samples, obtained noninvasively during monitoring programs (see also Schregel et al. 2012). 

In addition, 162 were extracted from muscle tissue samples obtained from legally shot bears. 

The distribution of samples is illustrated in Figures 1, 2, 4 and S1. Sampling procedures have 

been previously described elsewhere (Eiken et al. 2009; Andreassen et al. 2012; Kopatz et al. 

2012; Schregel et al. 2012; Kopatz et al. 2014).  

  

Historical samples from Norway 1750-1956 

We sampled a total of 130 historical specimens from museums and private collections in 

southern Norway. These samples originated from approximately 1750 to 1956 and 

represented bears that existed in southern Norway before the extinction of the majority of the 

resident brown bear population. Although the last bear to be legally killed in southern 

Norway was shot in 1956, functional extinction was reached already by the 1920-30s, with 

1931 being the last of at least three consecutive years during which brown bears were killed 

in southern Norway (Swenson et al. 1995). Whenever possible, multiple samples, including 

various tissues (muscle, brain, nose, and mouth palate), skin, hairs, and tooth powder, were 

obtained from each specimen. We collected each sample separately to minimize the danger of 

contamination with other historical bear samples, wrapped the sample in aluminum foil, 

placed it in a self-sealing plastic bag, and stored it at room temperature.  

We removed the tooth powder samples with a drill after scraping the tooth surface 

with a scalpel and discarding the powder from the beginning of drilling at a speed of around 

60 rpm to avoid overheating. We drilled in a clean room and cleaned the tools, as well as 

surfaces, after each sample, first with 10% chlorine solution, followed by a rinse with water, 

and then dried with sterile tissue to minimize cross-contamination. The powder was 

immediately placed in a tube containing 300 µl of extraction buffer from the Qiagen 

Investigator© kit (Qiagen) and stored at -20°C until DNA extraction.  
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Genetic analysis 

Analysis of Y-chromosomal STRs  

We genotyped all samples with 9 Y-STR markers developed specifically for bears (Bidon et 

al. 2014) (Table S1) and validated for brown bears (Aarnes et al. 2015). The repeat unit of 

marker UarY318.1 is a tetra-nucleotiode, the remaining 8 markers all have a di-nucleotide 

repeat motive. Prior to amplification, we divided the STRs into two multiplex sets, which 

were optimized so that the fragments did not overlap in length and had even peak sizes 

(Aarnes et al. 2015). The PCR reaction was set up in a 10 µl reaction volume containing 5 µl 

2x Multiplex PCR MasterMix (Qiagen), 1xBSA (NEB), and 1 μl template DNA (~1 ng). The 

primer concentrations we used are listed in Table S1. We used a touchdown PCR program 

with an initial heating of 95°C for 10 min, followed by 10 cycles of 30 s at 94°C, 30 s of 

69°C (reduced by 1°C for each consecutive cycle), and 1 min at 72°C, followed by 20 cycles 

of 30 s at 94°C, 30 s at 59°C, and 1 min. at 72°C, and then an elongation step of 45 min at 

72°C. For the historical DNA samples, the second cycling step was extended from 20 cycles 

to 30 cycles. The first and the last four samples on every 96-well plate were positive controls, 

consisting of three reference males and one reference female. The female sample was 

included to control for primer contamination, as well as male specificity of the markers. 

Negative controls (without template DNA) were included for every seventh sample. 

 

We analyzed PCR products on an ABI 3730 genetic analyzer and scored the PCR 

fragments with GeneMapper 4.0 (Applied Biosystems). Fragment lengths of the positive 

control samples were determined independently prior to the analysis of the sample material to 

serve as size calling control in the main analyses. Fragment length was identified 

automatically, but each result was also examined manually. We accepted size calling when 

the peak height of a fragment was higher than a threshold value of 600 relative fluorescent 
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units (RFU). All samples were typed and confirmed at least two times. Haplotype names 

were assigned according to the order in which they were registered during STR genotyping; 

all registered Y-STR profiles are shown in Table S3. A new haplotype definition was 

accepted only if it was found more than once or if the discerning allele/s were typed and 

confirmed at least twice. Samples that failed to amplify at one or more markers were only 

assigned a haplotype if the PCR amplification results of the remaining markers allowed this 

to be done unambiguously.  

 

Analysis of Y-chromosomal SNPs  

We chose three different bear-specific Y-linked SNPs (UAY579.1B545, UAY318.2C713, 

UAY318.2C839, see also table S2) for haplogroup analysis, based on the previously 

confirmed sequence variation among Northern European brown bears for only these 3 SNPs 

(see Bidon et al. 2014). The SNP primers were designed using the Custom TaqMan® Assay 

Design Tool (Applied Biosystems) and labeled with FAM and VIC dye (Table S2). PCRs 

were set up in a 9 µl reaction volume, containing 5 µl TaqMan Genotyping MasterMix (2X), 

0.25 µl TaqMan assay mix (40X), 0.045 µl BSA(100X) and 1 µl DNA (~1ug), and then 

amplified on the ABI 7300 Real-Time PCR System (Applied Biosystems) with a protocol of 

2 min at 60°C, 10 min at 95°C, followed by 40 cycles of 15 s at 95°C, and 1 min at 60°C. To 

control for amplification success and between-run variability, four positive controls (three 

males and one female) were included in the first and last row of each plate. To control for 

contamination, a blank was included for every seventh sample. Before the main analysis, we 

performed two types of test runs; i) to assess within-run variation, we analyzed one sample 14 

times with each of the respective markers and evaluated the consistency of the results 

manually, ii) to assess amplification success with different template types, we analyzed 2 

samples extracted from hair, 4 samples extracted from fecal material, and 4 from muscle 
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tissue twice with each marker and evaluated results manually. Test run results showed no 

classification variation according to template type and high within- and between-run 

consistency (see appendix S3 for examples of the scatterplots of the respective test runs). 

This, in combination with the haplotypic nature of the Y chromosome, implicates that 

misclassification of Y-SNP alleles is an unlikely source of error and therefore, for the Y-SNP 

analysis, the samples were generally amplified only once per marker. Haplogroup names 

were assigned according to the numbering of Y-SNP genotypes in Table S3. 

 

Genetic analysis of historical brown bear samples 

To avoid contamination with DNA from the extant brown bears, the historical samples were 

stored and handled, i.e. DNA extraction and PCR setup, in a separate laboratory building, in 

which brown bear samples had never been handled or stored. We extracted DNA using the 

Qiagen Investigator kit following the manufacturer's instructions for tissue and tooth/bone 

powder, respectively. To control for contamination during extraction, a blank sample was 

included for every 11th sample.  Extracted DNA was eluted in 40 µl elution buffer and stored 

at -20°C.  

 

First, all samples were PCR amplified with three sex-specific markers, as previously 

described, two located on the Y and one on the X chromosome (Bidon et al. 2013). Based on 

the analysis results, only samples that showed all three peaks, with the two Y-specific 

markers displaying a peak height of ~1500 RFU, were selected for further analysis. Historical 

samples displaying a lower peak height had been shown to fail or show only partial 

amplification of the nine Y-STRs in earlier test runs (results not shown). In case more than 

one sample per individual displayed eligible amplification results, we selected the one with 

the highest peak heights for the subsequent analyses. We then amplified the selected samples 
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independently three times with the nine Y-STR multiplex set-up, using the same touchdown 

PCR program as for extant samples, but with a total of 40 PCR cycles (see above). No 

positive controls were included in the PCR to avoid contamination, but a negative control 

was included for every fifth sample. To control for between-run variation during the analysis 

with the genetic analyzer, we included four independently amplified positive controls with 

known allele sizes. Allele size calling was confirmed at least twice; haplotype assignment and 

definition followed the same criteria as for the extant samples, outlined in the respective 

section. The Y-SNP analysis for the historical DNA samples followed the same procedures as 

for the modern DNA samples and was performed only for the samples which were assigned a 

Y-STR haplotype.  

 

Statistical analysis 

To assess the degree of haplotype admixture and diversity across the study area, we 

calculated haplotype frequencies, haplotype diversity, and mean number of pairwise 

difference (MPD, which describes the mean number of pairwise differences between all pairs 

of haplotypes in the sample, taking into account the number of mutational steps, the number 

of haplotypes, and the frequency and number of individuals) for each of the 18 sampling 

locations, using the program Arlequin 3.5.1.2 (Excoffier & Lischer 2010).  To illustrate 

similarity of haplotypes and possible correlation between geographic proximity and 

haplotype groups, we used the unweighted combination of number of STR repeats for each 

allele and locus and the Y SNP sequence substitute data for the respective Y chromosome 

haplotypes to construct a median-joining network using the software Network v.4.6.1.2. 

(http://www.fluxus-engineering.com/sharenet.htm).  
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Next, we assessed and compared the population genetic structure of male lineages 

within and between the two known subpopulations in the west (i.e., the Scandinavian 

Peninsula), and the east (i.e., northeastern Norway, Finland and western Russia) (Figure 1). 

In the following, we use the term subpopulation to refer to the two portions (east and west) of 

the Northern European brown bear population, the term sampling location describes the 

respective counties where the samples were collected, and the term group refers to a grouped 

set of sampling locations.  The haplotypic, nonrecombinant nature of Y-STR data renders 

most frequently used approaches to identify genetic clusters or groups in a continuous 

population inapplicable. A common way to group samples is therefore to use the sampling 

location as the group-defining variable. This works well for large-scaled studies, where the 

sampling area stretches across several continents (e.g. Meadows et al. 2006; Bidon et al. 

2014) and for studies in group-living species (e.g. Langergraber et al. 2007; Schubert et al. 

2011). This approach is sometimes followed by hierarchical analysis of population 

differentiation, i.e. subsequent pooling or grouping sampling locations which display 

nonsignificant FST values among each other (e.g. Kayser et al. 2005). Like many other 

species, however, the brown bear is distributed more-or-less continuously across the study 

area, with no easily discernable delineations. Therefore, we devised a different strategy to 

find a reasonable grouping of sampling locations in Y-STR data from continuous 

populations. This approach consisted of applying a cluster analysis based on haplotype 

frequencies from all of the sampling locations using the function ‘hclust’ in the program R (R 

coreteam 2013). We used the results of this analysis to initially group the data for the 

subsequent AMOVA analysis, performed with Arlequin (Excoffier & Lischer 2010). To 

validate the results of the clustering analysis, we performed several runs with different 

groupings. Our aim with this was to find the grouping that would minimize within-group 

variation and maximize among-group variation, while taking into account geographic 
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location of the sampling area. To investigate whether there was a difference in the magnitude 

of population structure in the two independently recovering Northern European brown bear 

subpopulations, we also performed an AMOVA for the Scandinavian and Finland/-Russian 

sampling areas separately. As another means to test our grouping, we used the number of 

different alleles between haplotypes to estimate genetic distance among sampling locations, 

which is similar to a weighted FST (Excoffier & Lischer 2011), with the software Arlequin 

(Excoffier & Lischer 2010). To view the result of the pairwise FST estimation, we performed 

an analysis of principal coordinates (PCoA) using the program GenAlEx 6.5.01 (Peakall & 

Smouse 2006, 2012). To estimate the genetic differentiation among the groups, we then 

pooled the data based on the results of the AMOVA analyses and the estimated pairwise FST 

among sampling locations, and estimated pairwise FST among these groups, again using 

number of different alleles as a measure of distance. To view the result, we again performed a 

PCoA. 

 

Results 

Contemporary Y chromosomal diversity and distribution 

Y chromosome haplotypes (i.e. a combination of a 9-locus Y-STR haplotype and 3-locus Y-

SNP haplogroup) were determined for 443 male brown bears sampled during 2006 to 2012. 

None of the samples showed different allele sizes (i.e. false alleles) in the respective runs. 

The remaining 49 samples could not be assigned to any specific Y chromosome haplotype, 

due to failed PCR amplification at one or several loci, and were discarded from the study. Y-

SNPs analysis showed that two Y-SNPs (UAY579.1B545 and UAY318.2C713) were 

variable among the 443 male bears. For Y-SNP UAY318.2C713 only 146 samples out of 443 

could be determined. However, the detected SNP variation confirmed the 

haplogroup/haplotype combinations shown in Table S3. Although the third Y-SNP in this 
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study (UAY318.2C839) had previously been found to be variable among bears in populations 

further east in Europe (Bidon et al. 2014), it was monomorphic in our samples. Accordingly, 

we found only three different Y-SNP haplogroups (Figure 1, Table S3), containing five, 20, 

and 11 Y-STR haplotypes, respectively. The resulting 36 different Y chromosome haplotypes 

and their total and local frequencies are shown in Table 1. An overview of Y chromosome 

haplotype distribution in Norway, Sweden, Finland and northwest Russia is shown in Figure 

2, with close-up maps in the supplementary files (Figures S2, S3 and S4).  

 

We detected an east-west division according to recovery history both in the number 

and diversity of Y chromosome haplotypes. All Y chromosome haplotypes in Y chromosome 

haplogroup 1 were found exclusively in the eastern subpopulation, i.e. in northeast Norway, 

Finland and northwest Russia, but were absent from the west, i.e. Sweden and the western 

and southern parts of Norway. Consequently, we found only four Y chromosome haplotypes 

in the west (among 192 males), compared with 7 to 13 Y chromosome haplotypes at the 

various sampling locations in the east (Table 2). Accordingly, Y chromosome haplotype 

diversity (hd) per sampling location ranged from 0.439 to 0.971 (mean = 0.727), with higher 

values to the east (Table 2). Specifically, the diversity decreased relatively modestly from 

AOKM in Russia to PA in northeastern Norway, before it showed an abrupt decline from 

FLL and AN towards NB, TR and further south, indicating the geographic delineation, 

between the two independently recovering subpopulations. A similar geographic pattern was 

observed for the mean number of pairwise differences (MPD) per sampling location, which 

ranged from 0.909 to 4.200 (mean = 3.061) (Table 2).  
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Only two Y chromosome haplotypes, 2.02 and 3.09, were distributed across the entire 

study area (Figure 2, Table 1), with 2.02 previously found to be present also in the Ural 

region (Bidon et al. 2014), consistent with an old origin of these Y chromosome haplotypes 

(e.g. Morral et al. 1994). In contrast, more than half of the haplotypes (19 of 36) were found 

in only one sampling location (Table 1). However, eight of these were found in Northern 

Russia, which, despite its low number of samples, displayed the highest haplotype diversity 

(Table 2). Hence, more extensive sampling efforts are needed in Russia to investigate the full 

haplotype diversity there. A detailed presentation of location-specific Y chromosome 

haplotype distribution can be found in the Figures S2-S4 in appendix S1. The constructed 

median-joining network is shown in Figure 3. Qualitative assessment showed that genetically 

close haplotypes, were not restricted to locations that were geographically close to each other.  

 

Contemporary population genetic structure of male lineages  

The cluster analysis used to group sampling locations according to haplotype frequencies 

recovered six Y chromosome haplotype clusters separated into two main groups (Figure 4). 

The first main branch contained the southern Swedish and southern Norwegian sampling 

locations, which clustered in an east-west direction across the Swedish-Norwegian border, 

with a southern and a northern group (groups 1 and 2, light red and dark red colors, 

respectively; Figure 4a and b). The second main branch, which contained all of the other 

sampling locations, split again into two subbranches. The first subbranch contained the 

sampling locations of TR, NB, and FLL (group 3, yellow color; Figure 4a and b). The second 

subbranch formed three clusters along a north-south direction; the first being AN, PA, and 

KA in the North (group 4, green color; Figure 4a and b), the second being the southern 

sampling locations FSK, FNK and RNK (group 5, light blue color; Figure 4a and b), and the 

third being the southern and eastern RSK and AOKM (group 6, dark blue color; Figure 4a 
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and b). The few samples constituting the latter cluster were distributed across a large area. 

Haplotype frequencies indicated that groups 1, 2, and 3 were different from the other groups 

(Figure 5).  

Overall, the AMOVA showed that among-group genetic variation was high (20.4 %) 

compared to within-group genetic variation (1.1 %). This was expected, as groupings were 

chosen to maximize the former and minimize the latter. However, the magnitude of among-

group variation differed geographically according to recovery history. The AMOVA run for 

the western groups 1-3 only (i.e. Sweden and Norway without AN and PA) showed a similar 

high among-group variation (18 %) as for the analysis for the total dataset, whereas AMOVA 

on the eastern groups 4-6 only (i.e. AN, PA with the Finnish and Russian groups) displayed 

an among-group variation of only 5.7 % (Table 3). Also the within-group variation indicated 

a stronger spatial genetic structuring in the western subpopulation than in the rest of Northern 

Europe: when all groups in the western subpopulations were combined, within-group 

variation increased by 6.4 %, whereas the same treatment of all eastern groups resulted in an 

increase of only 2.5% (alternative grouping resulted generally in an increase of within-group 

variation as shown in appendix S2). Additionally, pairwise FST values among sampling 

locations, which ranged from -0.057 (NT-ST) to 0.517 (RNK - NO), largely supported the 

grouping based on allele frequencies, with both lower absolute values and a lower degree of 

clustering in PCoA among hclust/AMOVA-group members than among nonmembers (Figure 

S5, Table S5). Exceptions were AN, which was displayed at an equal distance between group 

3 and group 4, and FSK, which clustered closely with KA and PA, as opposed to the 

clustering analysis (Figure S5). Our analysis strategy of using clustering analysis based on 

haplotype frequencies offered a simple alternative to hierarchical pooling of predetermined 

groups based on population differentiation estimates, as our results showed a reasonable 

concordance between the two approaches.  
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The subsequent second estimation of genetic differentiation, using the results of the 

clustering analysis, the AMOVA, and the pairwise FST values to pool sampling locations, 

resulted in pairwise FST values among these groups ranging from 0.039 to 0.354, with all of 

the values being significant (Table 4). Again, the PCoA analysis of pairwise FST-values 

displayed a divide in terms of genetic differentiation between the western groups 1-3 and 

eastern groups 4-6 (Figure 6 and S5), indicating less gene flow and/or a higher impact of 

genetic drift within Scandinavia than in the east and thus increasing the robustness of our 

findings.   

 

 

Pre-bottleneck Y chromosome haplotype diversity of brown bears samples from Norway 

(1750-1950)  

We also investigated the genetic impact of the demographic bottleneck by assessing temporal 

changes to the genetic composition of the post-bottleneck population. We collected 215 

historic (1750-1950) samples from 130 individuals from the extinct brown bear population in 

southern Norway. We were able to amplify 62 bears successfully, 20 females and 42 males, 

with the gender test (see Methods). Of these 42 male historical samples, we obtained a nearly 

complete Y chromosome haplogroup and Y chromosome haplotype profile (i.e. one to two 

Y-SNPs and seven to nine Y-STRs) for 14 samples. An overview of the locations of the 

individuals in Norway and their Y chromosome haplotypes are shown in Figure 7 and the 

year of origin and Y chromosome haplotype and -group profile are given in Table S3. We 

detected four haplotypes, each in only one individual, that were not present among the 443 

bears sampled during 2006-2012, nor were they present in the data on brown bears from 

across the global distribution zone (Bidon et al. 2014). Furthermore, seven individuals were 

assigned to Y chromosome haplotype 2.05, which is currently most frequent in Northern 
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Scandinavia. The remaining three individuals were assigned to Y chromosome haplotype 

2.08, which occurs at a relatively high frequency across most of Scandinavia today.   

 

Discussion 

Most large terrestrial carnivores experienced extensive bottlenecks during the last 

centuries (Woodruff 2001). Gene flow may be important for the successful recovery of these 

previously extirpated or isolated populations (Vilà et al. 2003; Fredrickson et al. 2007; 

Hedrick et al. 2014; Whiteley et al. 2015). Using Y-chromosomal markers identified using 

genomic sequences of the brown and the polar bear (Bidon et al. 2014), we have documented 

a clear pattern of Y chromosome haplotypes across the reexpanding post-bottleneck 

populations of brown bears in northern Europe. Specifically, we show that a lack of range-

wide male gene flow during the recovery process has left a dramatically reduced Y 

chromosome haplotype diversity in the post-bottleneck brown bear subpopulation in central 

and southern Scandinavia. In this area, we also find a low degree of Y-haplotyp admixture, 

providing no evidence of male-driven genetic rescue, which in turn suggests that male gene 

flow probably had little or no impact on the demographic recovery process in Scandinavia.  

 

Regional differences in Y chromosome haplotype diversity  

Our previous data on autosomal STRs showed extensive gene flow between Finnish and 

Russian brown bears (Kopatz et al. 2012, 2014), but low gene flow farther westwards 

(Schregel et al. 2012; Kopatz et al. 2014). These different gene flow histories, i.e. low versus 

high immigration, between the western and eastern populations (Kopatz et al. 2014) may 

have led to a permanent difference in their Y chromosome haplotype diversity following the 

demographic bottleneck. In the populations in the northern and eastern parts of Northern 

Europe, connected by a substantial amount of gene flow (Kopatz et al. 2012, 2014), we found 
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35 different Y chromosome haplotypes among 207 males. Eastern European Russia has been 

identified as the main source population for the postglacial brown bear colonization of 

Northern Europe using mtDNA analyses (Taberlet & Bouvet 1994; Korsten et al. 2009; Keis 

et al. 2013) and as a source of more recent immigration with autosomal STRs (Kopatz et al. 

2014; Hagen et al. 2015). Thus, a decrease in haplotype diversity from east to west can be 

expected (Excoffier et al. 2009; DeGiorgio et al. 2011).  This is consistent with the gradual 

decrease in Y chromosome haplotype diversity from Russia towards Finland and northern 

Norway observed in our study. In contrast to this, we found exceptionally low diversity of 

male lineages in central and southern Scandinavia, with only four Y chromosome haplotypes 

among 192 extant males. We sampled all areas that have a substantial number of brown bears 

today, except Jämtland in Sweden, and assume that we have discovered most or all common 

haplotypes in the area. The demographic bottleneck in Finland was similar in extent to that in 

Sweden and Norway (Swenson et al. 1995; Ermala 2003; Danilov 2005), yet Y chromosome 

haplotype diversity observed in Finland was comparable to that of Northwest Russia. Thus, 

although the demographic bottleneck seems to have had a severe and, in the absence of 

sufficient immigration, long-lasting effect on Y chromosome haplotype diversity in Sweden 

and Norway, it seems that extensive immigration from Russia has had an alleviating effect on 

Y chromosome haplotype diversity in Finland. 

 

Male gene flow as a driver in the population recovery process? 

Given the pronounced male-biased dispersal behavior in brown bears (Støen et al. 2006; 

Zedrosser et al. 2007a), we hypothesized that male gene flow would play an important role in 

the ongoing range-wide demographic recovery process. Instead, we found that the different 

immigration histories in the eastern and western brown bear populations in Northern Europe 

were associated with different degrees of spatial genetic structuring of the post-bottleneck 
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populations. Whereas the eastern brown bears displayed a high degree of Y chromosome 

haplotype admixture, the western brown bears displayed regionally distinct Y chromosome 

haplotype frequencies, suggesting the existence of barriers to male gene flow. The 

Scandinavian brown bear population in the west has increased from ~130 to over 3000 

individuals between the 1970s and 2010 (Kindberg et al. 2011). Further east, in Finland, a 

demographic increase of a similar magnitude has been documented (Ermala 2003; Kojola & 

Heikkinen 2006). In spite of this substantial population growth in both areas, the PCoA of 

pairwise FST-values displayed a clear difference in Y chromosome haplotype structure 

between the east and west. The AMOVA showed that the overall among-group genetic 

variation of ~20% was mostly due to the local substructure in the west. Thus, our results 

suggested a large variability in the degree of male gene flow across the study area, rather than 

homogeneous gene flow and admixture. Hence, we believe that other mechanisms than male 

gene flow underlie the large-scale demographic recovery of the Northern European brown 

bear population. In humans, sex-biased genetic structure decreases with geographical 

distance, suggesting that long-distance gene flow is relatively independent of sex (Wilder et 

al. 2004a,b, Heyer et al. 2012). Even though the male bias in dispersal behavior is distinct, 

also female brown bears have been shown to disperse more frequently and across farther 

distances in Sweden than previously assumed (Støen et al. 2006). Thus, both males and 

females may contribute to large-scale genetic connectivity, which should be investigated 

further.  

 

History as a determinant of genetic structuring in Scandinavia 

It has been proposed that the spatial genetic structure of the post-bottleneck brown bear 

population in Scandinavia reflects the recovery from refuge areas (Waits et al. 2000; Manel 

et al. 2004), combined with the impact of postglacial colonization history (Bray et al. 2013), 
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resulting in three genetic clusters in the contemporary subpopulation (Manel et al. 2004). 

These three clusters correspond roughly to the AMOVA groups 1 to 3 in our study. In the 

absence of Y-linked data, it was assumed that the observed clusters were connected via male 

gene flow (Manel et al. 2004). In contrast, our data suggested that contemporary restrictions 

to male gene flow prevented or slowed a dissolving of population structure and therefor that 

the genetic structure observed today is not merely an echo of the fragmentation caused by the 

human persecution. A similar structuring of the pre- and post-bottleneck populations, 

suggesting historic, ecological causes for the observed spatial genetic structure rather than 

anthropogenic ones was also recently proposed by Xenikoudakis et al. (2015). Y 

chromosome haplotypes are nonrecombinant and directly inherited from father to son, so that 

the reproductive success of an immigrant male and its descents should be reflected by the 

spread of a nonlocal haplotype into a new area. The generation time of brown bears in 

Scandinavia has been estimated to be ca. 10 years (Tallmon et al. 2004), so at least three to 

four generations have passed since brown bears received protection (Swenson et al. 1995).  

Male brown bears produce between 0.42 and 1.02 offspring per year, with the age of 

successfully reproducing males ranging from 3 to 27 years (Zedrosser et al. 2007b). It seems 

reasonable to expect a relatively high degree of Y haplotype admixture in the population, if 

dispersing males able to produce viable, male offspring. Based on this, the clear difference in 

Y chromosome haplotype distribution (and hence limited male gene flow) we observed 

between Västerbotten and Norrbotten was not expected. These two adjacent Swedish counties 

have no obvious geographical barriers between them, which suggests that other mechanisms 

are behind the presumed lack of Y chromosome haplotype exchange. Støen et al. (2006) 

showed inversely density-dependent natal (offspring) dispersal and that indicated both 

potential social restraints on dispersal and a stronger-than-previously-assumed territoriality in 

brown bears. Our noninvasive genetic capture-recapture monitoring records of brown bears 
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regularly identify migrants among the different areas in Sweden (22 females vs. 81 males; 

unpublished data). Although at least two females and 11 males have dispersed from 

Västerbotten into Norrbotten (unpublished data), such dispersal has apparently not reduced 

genetic dissimilarities, at least in regard to Y-STRs. This may support the conclusions of 

Støen et al. (2006) regarding an impact of social mechanisms and higher-than-previously-

assumed territoriality on population genetic structuring in brown bears, making it difficult for 

male immigrants to establish their own territory and/or mate successfully with a resident 

female. However, if a similar behavioral pattern can be assumed for brown bears in the 

eastern subpopulation, it is unclear why it does not result in a similar effect on the population 

structure there. One possible difference may be the occurrence of illegal hunting, which 

seems to be generally more accepted and occurring at a higher rate in northern Sweden 

compared to southern Scandinavia (Gangaas et al. 2013; Rauset 2013). It has been shown that 

this has a strong influence on the mortality rates of large carnivore populations (Andrén et al. 

2006; Persson et al. 2009; Liberg et al. 2011). If disproportionately more dispersing males are 

killed, this would limit male gene flow among regions considerably and might contribute to 

the occurrence of the observed spatial patterns. However, we are not aware of any data 

available for the rate of occurrence and/or acceptance of illegal hunting in the area of the 

eastern subpopulation, so that a targeted study should be conducted to test this hypothesis.  

 

The effect of the bottleneck on Y chromosome haplotype diversity and population genetic 

structure 

The observed low diversity in the western subpopulation could be expected, because of the 

very low estimated number of bottleneck survivors (Swenson et al. 1995). Our results suggest 

that the impact of the bottleneck on male diversity and number may have been more 

devastating than assumed, with apparently only four male lineages surviving the bottleneck. 
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This was corroborated by the data obtained from the historical samples. Among 14 genotyped 

historical samples from southern Norway (1780-1920), we found two haplotypes also present 

in today's population, but also four haplotypes not present among the modern samples. The 

high coverage of sampling of extant males in Scandinavia strongly suggests that these four Y 

chromosome haplotypes were not present in the post-bottleneck population, and thus that the 

diversity of male lines and haplotypes in Scandinavia (i.e. Norway and Sweden) was higher 

historically than it is today in the recovered population. This is supported by a recent study 

comparing historic and modern Scandinavian brown bears, which showed both a strong 

reduction of mtDNA diversity and a significant loss of autosomal allelic richness in the same 

area (Xenikoudakis et al. 2015). In contrast, Waits et al. (2000) who tested statistically for a 

genetic bottleneck using only modern samples, found weak evidence for this in Sweden and 

only in the southern parts of the country using autosomal STRs. Similarly, using autosomal 

STRs and modern samples from Norway, Sweden, Finland and Western Russia, also Kopatz 

et al. (2014) found only weak signs of a genetic bottleneck in Sweden and Norway. 

Moreover, several studies have found that autosomal STR diversity is relatively high and 

similar across the Northern European distribution zone (Waits et al. 2000, Tammenleht et al. 

2010; Schregel et al. 2012, Kopatz et al. 2014), despite of the dramatic demographic decline 

(Swenson et al. 1995). Our results, using Y-chromosomal diversity, differ from these studies, 

probably because the Y chromosome has an effective population size (Ne) equivalent to only 

1/4 of that of autosomes. Consequently, Y-linked genetic diversity is more sensitive to 

demographic bottlenecks than autosomal genetic diversity (Greminger et al. 2010). 

 

The Y chromosome haplotypes 2.08 and 2.05 were found in three and seven historic 

bears, respectively, indicating that they may have been as frequent before the bottleneck as 

they are in the present population. However, although 2.08 currently occurs at relatively high 
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frequency across most of Scandinavia, 2.05 is more common in the northern parts of 

Scandinavia, being the dominant haplotype in Norrbotten. The other abundant haplotype in 

the extant Scandinavian population, 3.09, was not found among the historical samples. This 

may suggest a shift in Y chromosome haplotype distribution and diversity following the 

demographic bottleneck and subsequent demographic changes, although the low number and 

limited geographical distribution of our historical samples may not give an accurate 

representation of the pre-bottleneck population. Thus, if possible, both the area of sampling 

and the number of samples should be extended to investigate this issue further. MtDNA 

studies indicate that the Scandinavian Peninsula was colonized from two directions in the 

postglacial period, from the northeast into northern Scandinavia and from the south (Taberlet 

& Bouvet 1994; Bray et al. 2013). A contact zone between the southern and northern mtDNA 

clades may have been located in the area of Sør- and Nord-Trøndelag in Norway and 

Jämtland and Gävleborg in Sweden (Bray et al. 2013). All of our historical samples were 

obtained from the area of the southern mtDNA clade. The four haplotypes we found only in 

the historical samples may thus be "southern" haplotypes, which may have reached 

Scandinavia in the postglacial recolonization from the south. This may also be the case for 

the haplotypes 2.08 and 2.05. Due to the bottleneck in the 19th and 20th centuries, haplotype 

distribution apparently shifted and several male lineages were eradicated, resulting in a 

population with a possibly very different genetic composition than the original population, 

thus indicating a founder effect (Hundertmark & Van Daele 2010; Andersen et al. 2014).  

 

Perspectives on conservation 

Demographic population recovery from only a very small number of surviving individuals 

has been shown to occur in many populations with very low autosomal genetic variability, 

providing exceptions to the widely-held assumption that high genetic diversity is vital for 
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population viability and recovery (e.g. Visscher et al. 2001; Hoelzel et al. 2002; Reed 2010; 

Chan et al. 2011; Baldursdottir et al. 2012; Taft & Roff 2012). However, rather than shifting 

the paradigm of the importance of genetic variability for long-term survival, these examples 

highlight that the viability of a population does not depend on genetic diversity alone, but is 

influenced by a complicated relationship between genetic, environmental and life history 

factors (Reed 2010). Despite examples to the contrary, a large number of studies show that a 

significant reduction in genetic variability is generally correlated with reduced viability, 

mostly due to increased levels of inbreeding depression (e.g. Liberg et al. 2005; Hogg et al. 

2006; O'Grady et al. 2006; Heber et al. 2013; Hostetler et al. 2013). We are unaware of a 

study investigating whether sex-chromosomal marker variability has a similar significance 

for population viability, so it is not possible to evaluate the relevance of the drastic reduction 

of Y chromosome haplotype diversity during the demographic bottleneck in Sweden and 

Norway for the long-term survival of the brown bears. The functionality of the Y 

chromosome is still poorly understood (Sayres et al. 2014), but recent research has suggested 

that the Y chromosome is more than just a determinate of the sex of its bearer, and is 

essential for male survival (Bellott et al. 2014). Regulatory functions on the chromosome 

may influence gene expression across the entire genome and hence biological functions 

throughout the lifetime (Bellott et al. 2014; Clark 2014; Cortez et al. 2014). Based on 

previous studies, estimates of genetic bottlenecks and diversity in autosomal markers 

suggested widespread genetic recovery, i.e., the recovery of genetic variability to a viable 

level, across the entire Northern European brown bear population (Waits et al. 2000, Schregel 

et al. 2012, Kopatz et al. 2014). However, our results showed that this process is incomplete 

among Swedish and most Norwegian bears and management actions that are aimed at 

increasing gene flow among regions may be needed to ensure long-term viability of this 

population. 
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Table 1: Y-chromosomal haplotype frequencies of extant male brown bears by sampling 
location in Northern Europe, Scandinavian locations listed from South to North: 
HO=Hedmark/Oppland, DV=Dalarna/Värmland, GA=Gävleborg, ST=Sør-Trøndelag, 
NT=Nord-Trøndelag, NO=Nordland, VB=Västerbotten, TR=Troms, NB=Norrbotten; 
Finnmark/Lappland and Finland/Russia listed from West to East: AN=Anarjohka, 
FLL=Lappland, PA=Pasvik , KA=Kainuu, RNK=Russian Northern Karelia, FNK=Finnish 
Northern Karelia, FSK=Finnish Southern Karelia, RSK=Russian Southern Karelia, 
AOKM=Arkhangelsk/Komi. hpt = Haplotype names: the first digit of the respective haplotype 
names indicates the haplogroup (Y-SNP alleles); the last two digits were assigned according to 
the order in which the haplotypes were registered during STR genotyping.  
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Table 2: Y-STR diversity of extant male brown bears per sampling location in 
Northern Europe calculated with Arlequin 3.5.1.2; n=sample size. no. hpt.= number of 
haplotypes found, MPD = Mean number of pairwise differences, hd = haplotype 
diversity, both listed with their respective standard deviation (± s.d.). 

Region Sampling location Country n no. hpt. MPD ± s.d.  hd ± s.d.

W
es

te
rn

 s
u

b
p

o
p

u
la

ti
o

n
 Southern 

Scandinavia 

HO Hedmark. Oppland Norway 58 4 3.180 1.668 0.627 0.034
DV Dalarna. Värmland Sweden 16 3 3.100 1.698 0.575 0.080
GA Gävleborg Sweden 14 4 3.396 1.848 0.670 0.082

Central 
Scandinavia 

ST South Trøndelag Norway 12 4 2.515 1.455 0.652 0.133
NT North Trøndelag Norway 40 4 2.421 1.341 0.618 0.067
NO Nordland Norway 12 3 0.909 0.676 0.439 0.158
VB Västerbotten Sweden 40 4 2.249 1.264 0.600 0.062

Troms TR Troms Norway 18 4 2.092 1.225 0.673 0.069

Norbotten NB Norrbotten Sweden 26 3 1.975 1.154 0.446 0.105

Lappland FLL Lappland Finland 14 7 2.945 1.640 0.758 0.116

E
as

te
rn

 s
u

bp
o

p
u

la
ti

on
 Anarjohka AN Anarjohka/Lemmenjoki Norway/Finland 15 7 3.600 1.934 0.857 0.065

Pasvik PA Pasvik/Inari/Pechenga Norway/Finland 
/Russia 

54 13 3.708 1.903 
 

0.832 0.038

Karelia 

KA Kainuu Finland 30 11 4.200 2.146 0.876 0.036
RNK Russian Northern Karelia Russia 13 7 3.603 1.953  0.872 0.067
FNK Finnish Northern Karelia Finland 26 10 3.317 1.760 0.843 0.053
FSK Finnish Southern Karelia Finland 26 8 3.649 1.909 0.849 0.037
RSK Russian Southern Karelia Russia 14 8 4.044 2.147  0.923 0.044

Northern 
Russia AOKM Arkhangelsk/Komi Oblast Russia 15 12 4.190 2.204  0.971 0.033

 
 

 

Table 3: Results of the AMOVA based on Y-STR data, performed 
on male brown bears in Northern Europe; the percentages of 
variation displayed where calculated for the entire dataset 
(AMOVA groups 1-6), and separately for the western (AMOVA 
groups 1-3) and eastern part of the population (AMOVA groups 4-
6). See Figure 4 for the sampling locations per group.  
 

Percentage of variation 

AMOVA groups  
1 - 6 

AMOVA groups  
1 - 3 

AMOVA groups  
4 - 6 

among groups 20.40** 17.95** 5.68* 

within groups among 
sampling locations 1.14ns -0.21ns 2.82* 

within populations 78.45** 82.26** 91.50** 

* p<0.05; ** p<0.001; ns=non significant 
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Table 4: Pairwise FST values among groups of sampling locations of 
male brown bears in Northern Europe, based on Y-STR data, using 
number of different alleles as measure of genetic distance. The groups 
are as follows: group 1=HO, DV, GA; group 2=ST, NT, NO, VB; 
group 3=TR, NB, FLL; group 4=AN, PA, KA; group 5=RNK, FNK, 
FSK; group 6=RSK, AOKM. 
 

 
Group 1 Group 2 Group 3 Group 4 Group 5 

Group 2 0.148**  
Group 3 0.242** 0.158** 

Group 4 0.175** 0.315** 0.250** 

Group 5 0.139** 0.354** 0.290** 0.071** 

Group 6 0.087* 0.293** 0.270** 0.080** 0.039* 

* p < 0.05; ** p < 0.001 

 

 

Figures 

 

Figure 1: Y chromosome haplogroup distribution of extant male brown bears in Northern 
Europe. Historical samples are shown separately in Figure 7. Symbols correspond to the 
major (SNP-based) Y chromosome haplogroups: red circles = haplogroup 1, black cross = 
haplogroup 2, blue squares = haplogroup 3. The location of sampling areas are indicated as 
follows: HO=Hedmark/Oppland, DV=Dalarna/Värmland, GA=Gävleborg, ST=Sør-
Trøndelag, NT=Nord-Trøndelag, NO=Nordland, VB=Västerbotten, TR=Troms, 
NB=Norrbotten; AN=Anarjohka, FLL=Finnish Lappland, PA=Pasvik Valley, KA=Kainuu, 
RNK=Russian Northern Karelia, RSK=Russian Southern Karelia, FNK=Finnish northern 
Karelia, FSK=Finnish southern Karelia, AOKM=Arkhangelsk/Komi. The geographical 
location of the proposed division between the western and eastern subpopulations is shaded 
red. 
 

Figure 2: Geographical distribution of the detected Y chromosome haplotypes among extant 
male brown bears in Northern Europe. Each sample is depicted with the symbol used for the 
haplotype to which it was assigned. Brackets in the legend: total frequency of each haplotype. 
Haplotypes occurring in Sweden and the southern and centrals parts of Norway (HO, ST, NT 
and NO) are depicted with a circle and indicated with bold characters in the legend. The 
location of sampling areas are indicated as follows: HO=Hedmark/Oppland, 
DV=Dalarna/Värmland, GA=Gävleborg, ST=Sør-Trøndelag, NT=Nord-Trøndelag, 
NO=Nordland, VB=Västerbotten, TR=Troms, NB=Norrbotten; AN=Anarjohka, 
FLL=Finnish Lappland, PA=Pasvik Valley, KA=Kainuu, RNK=Russian Northern Karelia, 
RSK=Russian Southern Karelia, FNK=Finnish Northern Karelia, FSK=Finnish Southern 
Karelia, AOKM=Arkhangelsk/Komi. The geographical location of the proposed division 
between the western and eastern subpopulations is shaded red. 
 

Figure 3: Phylogenetic relationship among Y chromosome haplotypes of extant male brown 
bears in Northern Europe, constructed with the help of the program Network v4.6.1.2. 
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(Fluxus Technology) by using the RM-MJ method, based on the unweighted Y-STR and Y-
SNP data. Only Y chromosome haplotypes with an occurrence of >1 were used for the 
construction. The area of each pie chart reflects the frequency of the respective haplotype in 
the extant study population, colors correspond to the sampling location of the haplotypes. The 
names of the haplotypes are written in black; the number of mutations between each node of 
the tree, i.e. difference in repeat number and/or difference in Y-SNP sequence, is given in red 
for each branch (if >1). Haplotypes of haplogroups 1 and 3 are indicated by boxes, all 
remaining haplotypes belong to haplogroup 2. 
 

 

Figure 4: Geographic distribution of the AMOVA groups. a) Overview of the geographic 
location of the different haplotype groups of male brown bears in Northern Europe formed 
from the hclust analysis and the subsequent AMOVA. The color of each circle represents the 
group to which the individuals were assigned. The colors correspond to those given in inset 
b). The location of sampling areas are indicated as follows: HO=Hedmark/Oppland, 
DV=Dalarna/Värmland, GA=Gävleborg, ST=Sør-Trøndelag, NT=Nord-Trøndelag, 
NO=Nordland, VB=Västerbotten, TR=Troms, NB=Norrbotten; AN=Anarjohka, 
FLL=Finnish Lappland, PA=Pasvik Valley, KA=Kainuu, RNK=Russian Northern Karelia, 
RSK=Russian Southern Karelia, FNK=Finnish Northern Karelia, FSK=Finnish Southern 
Karelia, AOKM=Arkhangelsk/Komi. b) Result of the clustering analysis performed with the 
function hclust in R.; the colors correspond to those used in the map. Groupings for the 
subsequent AMOVA are indicated by the colored rectangles, the number in each rectangle 
indicates the name of the respective AMOVA group. 
 

 

Figure 5: Y chromosome haplotype frequencies of extant male brown bears in Northern 
Europe calculated for each AMOVA group, the colors correspond to the ones used in Figure 
4. All x-axes are identical, each bar representing the respective haplotype frequencies in each 
AMOVA group. Haplotypes are listed in consecutive order, beginning with haplotypes of 
haplogroup 1. The black vertical lines in each plot separate the haplogroups from each other. 
 

Figure 6: PCA ordination graph of the genetic differentiation based on matrices of 
pairwise FST between AMOVA groups. The circles are colored corresponding to Figure 
4. The percentage values on the axes indicate how much variation is explained by the 
respective axis.  
 

Figure 7: Location and assigned haplotype of 14 historical male brown bear samples in 
Norway (1780-1920). Circles symbolize the haplotypes that also were found in the extant 
brown bear population and squares indicate the four haplotypes exclusive for the historical 
samples. 
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