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ABSTRACT
This paper proposes a method for automatically inferring
semantic type information for a street network from its cor-
responding geometrical representation. Specifically, a street
network is modelled as a probabilistic graphical model and
semantic type information is inferred by performing learning
and inference with respect to this model. Learning is per-
formed using a maximum-margin approach while inference
is performed using a fusion moves approach. The proposed
model captures features relating to individual streets, such
as linearity, as well as features relating to the relationships
between streets such as the co-occurrence of semantic types.
On a large street network containing 32,412 street segments,
the proposed model achieves precision and recall values of
68% and 65% respectively. One application of this work is
the automation of street network mapping.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Models—Statistical

General Terms
Theory
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1. INTRODUCTION
Spatial information is a fundamental component of many

applications such as assisted navigation [7] and information
retrieval [31]. However, in order for such applications to
be practical the spatial information in question must be of
sufficient quality [9]. Spatial information quality lies along
multiple dimensions; however the relevant dimensions ulti-
mately depend on the nature of the data and the intended
application. Longley et al. [23] suggested five general di-
mensions of attribute accuracy, positional accuracy, logical
consistency, completeness and lineage. Temporal and se-
mantic dimensions are also considered important [12].

Toward understanding the factors influencing spatial in-
formation quality, we consider the two predominant pro-
cesses by which such information is created. The first pro-
cess is through the use of traditional mapping practices and
is employed by trained professionals working for proprietary
data vendors and national mapping agencies. The second
is through crowd-sourcing and is employed by projects such
as OpenStreetMap (OSM) [25, 16]. The concept of crowd-
sourcing spatial information was branded Volunteered Geo-
graphic Information (VGI) by Goodchild [10] and this has
become an accepted term in the Geographical Information
Science community. Depending on which of these processes
is employed, a number of different factors may influence
the corresponding spatial information quality. For exam-
ple, contributors to crowd-sourcing projects generally do
not have any formal training with respect to good mapping
practices and this can negatively affect logical consistency.
On the other hand, individuals working for proprietary data
vendors and national mapping agencies generally will not
have in-depth geographical knowledge of the areas they map
and this can negatively affect semantic accuracy. For the
purpose of this paper, we define semantics to be the type
information associated to geographical features. However,
irrespective of the process employed, one factor which influ-
ences quality with respect to multiple dimensions is that cre-
ating spatial information is labour demanding. In fact, em-
pirical analysis of OSM has demonstrated that there exists
a positive correlation between the number of contributors in



Figure 1: A subset of the OSM street network repre-
sentation for the city of Boston Massachusetts. Each
street segment is represented by a colour indicating
its semantic type and this mapping is given in the
contained legend.

an area and the corresponding data quality [13, 28]. There-
fore, if the above mapping processes could be automated to
a greater degree this would reduce labour requirements and
in turn positively impact information quality.

Toward this goal, a number of approaches to automating
the process of creating spatial information have been con-
sidered. One class of approaches is based on the hypothesis
that much of a map’s semantic type information is implic-
itly represented in the corresponding geometry of the map
and therefore may be automatically inferred [36]. To date
such works have mainly focused on inferring semantic infor-
mation relating to buildings [32, 19]. Determining whether
such an approach can be applied in the context of street net-
works has yet to be considered and is the focus of this paper.
Toward motivating this work consider Figure 1 which dis-
plays a subset of the OSM street network representation for
the city of Boston Massachusetts where the colour of each
street segment indicates its semantic type. In this context
semantic type equals the corresponding OSM highway tag
value where a description of the different tag values can be
found on the OSM wiki 1. An examination of Figure 1 re-
veals that primary streets generally exhibit characteristics of
being quite long, linear and having dual-lanes. On the other
hand, secondary streets also exhibit characteristics of gen-
erally being quite long and linear but generally do not have
dual-lanes. Residential streets generally exhibit the charac-
teristic of being shorter than primary or secondary streets
and exhibit a grid like structure. Pedestrian streets gener-
ally exhibit characteristics of being quite short, non-linear
and unstructured.

The above discussion implies that, through the application
of a machine learning paradigm, it may be possible to learn a
model relating the geometry and semantic type information
of a street network. Such a model can then in turn be used to
infer semantic type information from geometry. Toward this

1http://wiki.openstreetmap.org/wiki/Key:highway

goal we propose to model a street network as a probabilistic
graphical model where semantic type information may be
inferred by performing learning and inference with respect
to this model. The proposed model captures the geometri-
cal characteristics of individual streets (e.g. length) through
node potentials and relations between streets (e.g. relative
orientation) through pairwise potentials. It also allows effi-
cient inference [22] and is trained using a maximum-margin
approach [18].

The layout of this paper is as follows. In section 2 we
review related works on the topic of inferring semantic in-
formation of geographical objects using a machine learning
paradigm. Section 3 describes the proposed probabilistic
graphical model along with corresponding learning and in-
ference methods employed. Section 4 presents a set of ex-
periments which evaluate the proposed model. Finally in
section 5 we draw conclusions from the work presented and
discuss possible future research directions.

2. RELATED WORKS
Lüscher et al. [24] proposed a method to infer semantic

type information corresponding to buildings. The authors
use a Bayesian network or directed graphical model where
the structure of the model is taken from a previously defined
ontology. Learning is performed in a nonparametric manner
using kernel density estimation while inference is performed
using belief propagation. This model uses a number of ge-
ometrical and topological features which are defined by the
ontology. Huang et al. [15] proposed a Markov random
field model for inferring semantic type information corre-
sponding to buildings. Inference is performed using Gibbs
sampling. No learning is performed and instead the model
parameters are manually set. The proposed model uses a
number of features which model the shape of building foot-
prints. Using similar shape features, Fan et al. [8] proposed
a rule based approach to infer semantic type information
corresponding to buildings. Sester [32] proposed a decision
tree model for discriminating between houses, streets and
land parcels. The model was trained using the ID3 algo-
rithm and uses geometrical and topological features. Keyes
et al. [19, 20] performed supervised and unsupervised clas-
sification of buildings using the shape features of Fourier
descriptors, moment invariants and scalar descriptors. Wal-
ter and Luo [34] proposed a neural network model for dis-
criminating between different types of geographical objects
including streets and buildings. The model uses a number
of geometrical features relating to the size and shape of ob-
jects. Results achieved are very positive but correspond to a
very small dataset. Henn et al. [14] used a Support Vector
Machine model to infer semantic type information corre-
sponding to buildings in three dimensional city models. A
large number of geometrical (e.g. area and width) and se-
mantic (e.g. distance to nearest hospital) were used by the
model. Werder et al. [35] proposed a method for classifying
buildings and city blocks in an unsupervised manner using
a mixture of Gaussians model and performed inference us-
ing the EM algorithm. The model uses two sets of features
which characterize individual buildings and city blocks.

3. METHODOLOGY
This section is structured as follows. Section 3.1 presents

the street network representation used within this work.



Figure 2: A example of the street network represen-
tation Gs = (V s, Es) is illustrated. Elements of the
sets V s and Es are represented by red circles and
black lines respectively.

Section 3.2 describes how this representation is in turn mod-
elled using probabilistic graphical model. Section 3.3 de-
scribes the features captured by this model. Finally sections
3.4 and 3.5 describe the methods employed for performing
learning and inference with respect to this model respec-
tively.

3.1 Street Network Representation
We represent a given street network using a graph Gs =

(V s, Es) where the set of vertices V s correspond to street
intersections and deadends, while the set of edges Es corre-
spond to street segments connecting these vertices. An ex-
ample of this representation is illustrated in Figure 2. This
is a commonly used street network representation and is
known as a primary representation [29, 6]. A UTM coordi-
nate system, where distances measured are in meters, was
used to represent the spatial locations of all vertices and
edges in Gs.

3.2 Model formulation
We model a given street network as a Markov random

field with log-linear node and pairwise edge potentials [27].
Let x = (x1, . . . , xN ) be a set of random variables corre-
sponding to the set of N street segments described in the
previous section and let y = (y1, . . . , yN ) be a labelling of
these segments with respect to semantic type. Each element
yi is a vector of length K, yi = (y1i , . . . , y

K
i ), where K is

the number of possible street labels and each yki ∈ {0, 1}
indicates if segment i is assigned label k. For a given i, only
a single yki can be assigned a value of 1.

For a given x, the prediction ŷ as defined by Equation 1
is the arg max of the discriminant function fw : X ×Y 7→ R
which is parametrized by a vector of weights w.

ŷ = arg max
y∈Y

fw(x, y) (1)

The discriminant function fw(x, y) captures the depen-
dencies between street segments and labels as follows. Let
Gc = (V c, Ec) be a graph where a bijection exists between
the set of vertices V c and the set x. An edge is constructed

Table 1: Vertex and edge features
Vertex features
Degree
Length
Linearity
Parallelism

Edge features
Relative labels
Turning angle

between two vertices in Gc if the corresponding street seg-
ments are adjacent (share an end point). A Markov property
with respect to Gc is assumed which states that each vertex
in Gc is independent of all other vertices given its neigh-
bouring vertices. Given this assumption, we factor fw(x, y)
as defined in Equation 2 where the yv denotes the element
of y corresponding to v and ∼ denotes adjacency between
vertices.

fw(x, y) =
∑
v∈V c

K∑
i=1

yivw
i
nφn(v)

+
∑

(u,v∈V c;u∼v)

K∑
i=1

K∑
j=1

yivy
j
uw

ij
t φt(u, v) (2)

The terms φn(v) and φt(u, v) in Equation 2 correspond
to vertex and edge feature vectors respectively. The vertex
feature vector φn(v) describes the street segment in ques-
tion. Elements of this vector include the geometrical shape
of the segment. The edge feature vector φt(u, v) describes
the relationship between the street segments in question. El-
ements of this vector include the relative orientation of the
segments. The terms win and wijt correspond to weight vec-
tors. The term win models the dependencies between label i
and the vertex feature vector. The term wijt models the de-
pendencies between labels i, j and the edge feature vector.
The vector w in fw(x, y) of Equations 1 and 2 corresponds
to an appropriate stacking of the vectors win and wijt .

3.3 Features
The properties of street segments and the relations be-

tween these segments are captured by our model with the
aid of computed features. As discussed in section 3.2 our
model contains both a vertex feature vector φn(v) and an
edge feature vector φt(u, v). The elements of these vectors
are listed in Table 1 and described in the following subsec-
tions.

3.3.1 Degree & Length
The degree of a street segment is the number of other

segments it is directly connected to. This features captures
an aspect of the local complexity of the network. The length
feature corresponds to the length of the street segment in
question measured in meters.

3.3.2 Linearity
This feature captures the degree to which the street seg-

ment in question belongs to a linear street and is computed
as follows. Let S be a sequence of street segments which ini-
tially only contains the segment for which we wish to com-



Figure 3: A simple street network is illustrated
where each street segment is represented by a line
segment and assigned a unique label. In the case
of computing the linear feature for the street seg-
ment a, the sequence S initially contains a single
element of a; that is S = {a}. In the first iteration of
the procedure for computing the linear feature the
street segment b is added to the start of S; that is
S = {b, a}. In the second iteration the street segment
c is added to the end of S; that is S = {b, a, c}.

pute its linearity. S is iteratively expanded such that at each
iteration that segment adjacent to the first or last segments
in S which results in the most linear sequence of segments is
added to start or end of S respectively. Using a simple street
network, two iterations of this procedure are illustrated in
Figure 3. The search is terminated when the length of the
sequence of segments in S exceeds a threshold t. Setting the
threshold t to a particular value has the effect of encourag-
ing the extraction of linear streets of a length greater than
or equal to that value. The linearity of a sequence of seg-
ments S, denoted L(S), is computing as follows. First the
distance d in terms of shape between S and a line segment is
computed using the metric of [2]. Next the linearity of S is
computed by scaling d to the range [1, 0) using the function
in Equation 3. In this work we computed linear features of
multiple scales for each street segment using t values of 500,
1000, 2000, and 4000.

L (S) =
1

1 + d
(3)

To illustrate this feature consider the sample street net-
work represented in Figure 4 which is part of a much larger
street network corresponding to the cities of Boston and
Cambridge in Massachusetts. The linear feature of each
street segment in this network, where the value of t is 2000,
is represented in Figure 5. From this figure it is evident that
long linear streets exhibit the feature in question.

3.3.3 Parallelism
This feature captures the degree to which there exists one

or more streets which are parallel to the street segment in
question. We now describe how this feature is computed for
a single street segment a. Let N be the set of street segments
which lie within the spatial neighbourhood of, but are not
adjacent to, the segment a. This set is illustrated in Figure
6. In our implementation a street segment is determined
to lie within the neighbourhood of another segment if the
distance between any pair of points, where a single point
belongs to each segment, is less than 350 meters. Neigh-
bourhood queries are performed with the aid of a KD-tree

Figure 4: Part of a much larger street network cor-
responding to the cities of Boston and Cambridge in
Massachusetts is displayed.

Figure 5: The linearity feature of each street seg-
ment in Figure 4 is represented by a grayscale map
where black corresponds to a value of one while
colours approaching white correspond to a value of
zero.



Figure 6: A simple street network is illustrated
where each street segment is represented by a line
segment and assigned a unique label. In the case
of computing the parallelism feature for the street
segment a, the set N is equal to {d, e, f}.

Figure 7: The parallelism feature of each street seg-
ment in Figure 4 is represented by a grayscale map
where black corresponds to a value of one while
colours approaching white correspond to a value of
zero.

data structure. Next, let P be the set of points obtained
by sampling a point every 10 meters along the segment a.
The shortest distance from each point in P to the street seg-
ments contained in N is computed. Finally the percentage of
these distances less than 35 meters is used as the parallelism
feature.

To illustrate this feature again consider the sample street
network representation in Figure 4. The parallelism feature
of each street segment in this network is represented in Fig-
ure 7. From this figure it is evident that multi-lane streets
exhibit the feature in question.

3.3.4 Relative labels
In a street network, some pairs of adjacent street segment

labels are more likely than others. For example, it is un-
likely that the pair of street segment labels residential and
motorway will be adjacent. On the other hand, it is very
likely that the pair of street segment labels residential and
residential will be adjacent. In order to capture this char-
acteristic we use a feature which has a constant value of
one. The corresponding weights wijt in Equation 2 when
learnt will represent a bias towards pairs of adjacent street
segment labels which are more likely to occur.

3.3.5 Turning angle
The turning angle between adjacent street segments cor-

Figure 8: Two line segments v and w, and the turn-
ing angle tv,w between these segments is illustrated.

responds to the relative difference in orientation of the line
segments formed by joining the first and last points of each
segment. This concept is illustrated in Figure 8. The use
of this feature is motivated by the fact that different pairs
of adjacent street segment labels are likely to have differ-
ent turning angles. For example, it is unlikely that a pair
of adjacent street segments both with the label motorway
will have a corresponding large turning angle. On the other
hand, it is quite likely that a pair of adjacent street segments
both with the label residential could have a corresponding
turning angle which is large or small.

3.4 Learning
Learning corresponds to determining the weight vector w

from training examples (x1, y1), . . . , (xn, yn). To simplify
notation we rewrite Equation 2 as Equation 4 using an ap-
propriate stacking of the vectors win and wijt into w and the
vectors φn(v) and φt(u, v) into Ψ(x, y).

fw(x, y) = wTΨ(x, y) (4)

The weight vector w is learned using a maximum-margin
approach through the minimization of the constrained quadratic
optimization problem of Equation 5 [33, 17].

min
w,ξ≥0

1

2
wTw + Cξ

s.t. ∀(ȳ1, . . . , ȳn) ∈ Yn : (5)

1

n
wT

n∑
i=1

[Ψ(xi, yi)−Ψ(xi, ȳi)] ≥ ∆(yi, ȳi)− ξ

The term ξ is a slack variable while wTw represents the
size of the margin dividing the training examples. The term
C balances these two terms in the objective. The term
∆(yi, ȳi) is a function which measures the loss associated
with a labelling ȳi if the true labelling is yi. In this work
the Hamming loss as defined in Equation 6 is used. Intu-
itively, the above optimization problem models the fact that
we wish to minimize the number of incorrect classifications
while maximizing the margin.

∆(yi, ȳi) =

N∑
i=1

K∑
k=1

∣∣∣yki − ȳki ∣∣∣ (6)

The number of constraints in Equation 5 is exponential
in the dimensionality of y. Despite this fact, Joachims et
al. [17] proved that an ε-accurate solution may be found in
polynomial time via a cutting plane algorithm. This algo-
rithm constructs a working subset of the constraints that is



built incrementally by adding the most violated constraint
for each training example [18]. The search for the most vi-
olated constraint with respect to the ith training example
can be formulated as the optimization problem of Equation
7. This represents a quadratic program (QP) which can be
solved in polynomial time [4]. Specifically we use the QP
solver of [11].

ŷi = arg max
y∈Y

(
wTΨ(xi, y) + ∆(yi, y)

)
(7)

3.5 Inference
The task of inference consists of labelling each segment

in a given street network with the most appropriate label.
That is, compute the solution to Equation 1. However this
problem is NP-hard and therefore an optimal solution can-
not be found efficiently. In this work we use an approxi-
mation to the solution using an iterative technique known
as α-expansion [5]. At each iteration, a single label value
α is considered, and for every street segment, its current
label value is either retained, or changed to α. The name
α-expansion derives from the fact that the set of street seg-
ments with label value α expands at each iteration. The pro-
cess is iterated until no choice of α value causes any change.
Each expansion iteration is guaranteed to lower the overall
objective function; however the final result is not guaranteed
to be the optimal solution.

Determining the optimal α-expansion at each iteration
corresponds to solving the following fusion moves problem
[22]. Let x1 = (x11, . . . , x

1
N ) be the current labelling of the

street segments and x2 = (x21, . . . , x
2
N ) a labelling where each

street segment is assigned the label α. Let s = (s1, . . . , sN )
be a set of binary variables where a bijection exists between
y and the set of street segments. Determine the optimal α-
expansion reduces to determining the optimal fusion move
xc(s), as defined by Equation 8, which is a function of s.

xc(s) = (1− sT )x1 + (sT )x2 (8)

This is achieved by solving a particular linear program-
ming (LP) relaxation where the binary values are replaced
by values in the range [0, 1]. This relaxation is then solved
using quadratic pseudo-boolean optimization (QPBO) [21,
30, 22, 26]. Specifically, we use the QPBOI implementation
of Rother et al. [30].

4. EXPERIMENTS
The structure of this section is as follows. Section 4.1

describes the data used for evaluation. Section 4.2 describes
the performance metrics considered. Finally in section 4.3
we present results.

4.1 Data
Two street network representations obtained from Open-

StreetMap(OSM) were used in our experiments. These cor-
respond to non-intersecting sections of the street network
representation for the cities of Boston and Cambridge in
Massachusetts. The street network representation used for
evaluation is visualized in Figure 9. This network has a cor-
responding primal representation containing 22, 458 vertices
and 32, 412 edges. As such, it represents an extremely large
dataset. The other street network representation was used
for model learning, and contains 16, 368 vertices and 25, 215

Figure 9: The OpenStreetMap street network rep-
resentation for the cities of Boston and Cambridge
is displayed.

edges in its primal representation. This dataset corresponds
to a geographical area located north of that represented in
Figure 9.

The OSM street network for the whole of the US has re-
ceived high quality bulk data imports in the form of Tiger
data from the US Census Bureau [37]. As such, the OSM
street network for the chosen study area can be considered
to be of high geometric and semantic quality. Although the
proposed model for determining semantic type information
is a function of only geometrical features, a high seman-
tic quality is necessary for learning and to act as ground
truth data within our evaluation. In OSM there exists no
restriction on the semantic type a contributor can assign to
a street. However, toward maintaining consistency, OSM
defines a large set of semantic types which contributors are
encouraged to use. The OSM street network used within this
evaluation contains streets of 27 different semantic types.
However most of these types only represent a small percent-
age of the overall street network. For example, the OSM
street network used for evaluation contains only 4 street
segments of the semantic type ‘platform’. Therefore we only
considered the following eight semantic types which are sig-
nificantly represented in the corresponding street network:
‘Primary’, ‘Tertiary’, ‘Service’, ‘Residential’, ‘Secondary’,
‘Motorway’, ’Trunk’ and ‘Footway’. A description of the
meaning of each of these types can be found on the OSM
wiki 2. This set of types constitutes 30,650 of the 32,412
(95 %) street segments contained in the network used for
evaluation. The remaining 1761 (5 %) street segments cor-
respond to 18 different street types which include pedestrian
and steps.

2http://wiki.openstreetmap.org/wiki/Key:highway



Primary Tertiary Service Residential Secondary Motorway Trunk Footway
Primary 510 0 0 33 541 0 49 64
Tertiary 23 512 0 1012 886 3 9 37
Service 39 1 234 2498 71 0 12 1241
Residential 84 17 47 12288 906 0 32 499
Secondary 125 24 10 855 3581 0 96 225
Motorway 0 0 0 0 0 77 0 3
Trunk 19 0 0 30 216 0 397 60
Footway 56 5 27 647 114 3 31 2401

Table 2: Confusion Matrix for the proposed model.

(a) (b)

Figure 10: Street segment classes determined by the proposed model and correspond ground truth classes
for a subset of the street network used for evaluation are displayed in (a) and (b) respectively. See figure 1
for the corresponding legend.



4.2 Performance metrics
In order to quantify the performance of the proposed model

we employed both confusion matrices and the statistics of
precision and recall. These statistics are defined as follows.
Let predi(k) denote that the street indexed by i was de-
termined to be of class k and gti(k) denote that the street
indexed by i has ground truth label k. The precision and
recall corresponding to class k are defined in Equations 9
and 10 respectively.

precision(k) =
|{i : predi(k) ∧ gti(k)}|
|{i : predi(k)}| (9)

recall(k) =
|{i : predi(k) ∧ gti(k)}|

|{i : gti(k)}| (10)

In order to generate summary statistics of all the indi-
vidual precision and recall values, we employed weighted
precision and recall. These statistics are defined in Equa-
tion 11 and 12 respectively and perform a weighing by class
support.

weighted percision =

∑K
k percision(k)× |{i : gti(k)}|∑K

k |{i : gti(k)}|
(11)

weighted recall =

∑K
k recall(k)× |{i : gti(k)}|∑K

k |{i : gti(k)}|
(12)

4.3 Results
Tables 2 and 3 display the confusion matrix and preci-

sion/recall values corresponding to the proposed model re-
spectively. Weighted precision and recall values of 68% and
65% respectively are achieved. This result is very positive
and supports the hypothesis set forth in this paper that
much of a street networks semantic information may be au-
tomatically inferred from the geometrical representation of
the network. A closer examination of the result reveals some
important attributes regarding the proposed model. It is
evident that the proposed model performs extremely well
with respect to the semantic types of Residential and Mo-
torway. In both cases the high precision and recall values
are achieved. On the other hand, performance was poor-
est with respect to the semantic types of Primary, Tertiary
and Service. Examining the confusion matrix reveals that
this can be attributed to the fact that the proposed model
cannot distinguish effectively between these classes.

Figures 10(a) and 10(b) display the class determined by
the proposed model and corresponding ground truth respec-
tively for a subset of the street network used for evaluation.
Many of the properties exhibited by the confusion matrix of
Table 2 are reflected in these results. For example, the model
performed very well with respect to Residential streets. Also
a significant percentage of the Tertiary streets are classified
as Secondary streets.

In order to determine the importance of the edge features
(see Table 1), which consider context information such as
relative label values, we performed learning and inference
using only vertex features. In this case the proposed model
reduces to a multi-class Support Vector Machine (SVM) [17].
The precision and recall values corresponding to this reduced

Precision Recall Support
Primary 0.60 0.43 1197
Tertiary 0.92 0.21 2482
Service 0.74 0.06 4096
Residential 0.71 0.89 13873
Secondary 0.57 0.73 4916
Motorway 0.93 0.99 80
Trunk 0.63 0.55 722
Footway 0.53 0.73 3284

Weighted 0.68 0.65 30650

Table 3: Precision and recall values for the proposed
model. Support indicates the number of street seg-
ments of the class in question.

Precision Recall Support
Primary 0.86 0.22 1197
Tertiary 0.32 0.01 2482
Service 0.36 0.15 4096
Residential 0.61 0.90 13873
Secondary 0.46 0.38 4916
Motorway 0.75 0.45 80
Trunk 0.46 0.06 722
Footway 0.48 0.56 3284

Weighted 0.52 0.56 30650

Table 4: Precision and recall values for the reduced
model. Support indicates the number of street seg-
ments of the class in question.

model are listed in Table 4. We observe from these results
that the reduced model performed significantly poorer than
the original model. This in turn indicates the importance of
the edge features.

5. CONCLUSIONS
We live in an era where the need for accurate and cur-

rent spatial data has never been greater. We argue that one
strategy toward fulfilling this need is to automate the map-
ping process as much as possible. The work presented in
this paper represents a step toward that goal. Specifically a
method for inferring semantic type information for a street
network from the corresponding geometrical representation
of the network is proposed. This is achieved by modelling
the network as a probabilistic graphical model and perform-
ing learning and inference with respect to this model. On
average results obtained were very positive with the pro-
posed model achieving weighed precision and recall values
of 68% and 65% respectively on a large evaluation street
network.

Despite these positive results there exists much potential
to improve and build upon the research presented here. To-
ward improving the performance of the proposed model, im-
plementing the following two strategies could prove worth-
while. Firstly extracting a greater array of features might
allow a greater ability to discriminate between the different
semantic types. One avenue to implementing this strategy
would be to draw from feature extraction techniques in the
domain of computer vision. For example, shape context [3]
has been shown to accurately model the shapes of objects



and could prove to be an accurate model of the shape of
street segments and their neighbourhoods. A second strat-
egy toward improving performance would be to reduce the
number of semantic types the model attempts to discrimi-
nate between by merging those types which the model strug-
gles to discriminate between. This strategy has previously
been employed in related works such as that of [35].

The model proposed in this paper could also provide a
platform for related research enterprises. For example, there
exists a large number of works on the topic of map construc-
tion which attempt to infer the geometry of a street network
from GPS trajectories [1]. We hypothesise that it may po-
tentially be possible to integrate work in this domain with
that presented in this paper toward the development of a
methodology capable of inferring both the geometry and se-
mantic of a street network from GPS trajectories.
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