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The investigation of intrinsic interactions in polariton condensates is currently limited by the

photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated

planar GaAs/AlAs0.98P0.02 microcavity with embedded InGaAs quantum wells having a reduced

cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging

under non-resonant optical excitation, we observe polariton condensation and a second threshold

marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime.

Condensation in a structure with suppressed photonic disorder is a necessary step towards the

implementation of periodic lattices of interacting condensates, providing a platform for on chip

quantum simulations. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901814]

Planar exciton-polaritons are bosonic light-matter quasi-

particles formed by the strong coupling between quantum

well (QW) excitons and the photonic mode of a planar semi-

conductor microcavity (MC).1 Increasing the polariton popu-

lation, stimulated scattering leads to a build up of polaritons

in the ground state of the dispersion and gives rise to an

inversion-less amplification of the polariton emission.2 The

resulting macroscopic ground state population is a non-

equilibrium Bose-Einstein condensate (BEC).3 Solid state

polariton condensates have been used to explore fundamen-

tal concepts such as superfluidity and quantum vortices in

polariton fluidics.4,5 The BEC phase transition has been dem-

onstrated in a wide range of materials. Condensation at room

temperature under optical excitation has been reported in

GaN6 and more recently in ZnO7 and organic systems.8,9 In

III-V materials, polariton condensation and lasing have been

reported in MCs with GaAs QWs.10 The implementation of

electrically injected polariton condensates has also been

reported in GaAs11,12 and recently in GaN at room tempera-

ture.13 Among these materials, AlAs/GaAs MCs are cur-

rently the preferred system for the study of polariton fluidics

due to low photonic and QW disorder combined with a

moderate exciton binding energy (�10 meV). Nevertheless,

the presence of cross-hatched dislocations affects the dynam-

ics of polaritons giving rise to localization14 and scatter-

ing15–18 phenomena that limit the propagation of polaritons

within the cavity plane. In our previous work,19 we have

shown that one can reduce the cross-hatched dislocation

density by introducing strain-compensating AlP layers into

the centre of the AlAs layer of the distributed Bragg reflec-

tors (DBRs). Here, we report on polariton condensation in a

planar, strain compensated 2k GaAs microcavity with

embedded InGaAs QWs under non-resonant optical

excitation. Strain compensation was achieved by

AlAs0.98P0.02/GaAs DBR layers instead of the thin AlP

inserts in the AlAs layers used in Ref. 19 as their effective

composition could be better controlled. The bottom DBR

consists of 26 pairs of GaAs and AlAs0.98P0.02, while the top

has 23 of these pairs as shown in Fig. 1(a), resulting in very

high reflectance (>99.9%) in the stop-band region of the

spectrum as shown in Fig. 1(b). Three pairs of 6 nm

In0.08Ga0.92As QWs are embedded in the GaAs cavity at the

anti-nodes of the field as well as two additional QWs at the

first and last nodes to serve as carrier collection wells, as

shown in Fig. 1(c). The large number of QWs was chosen to

increase the Rabi splitting and keep the exciton density

per QW below the Mott density20 also for sufficiently high

polariton densities to achieve polariton condensation. A

wedge in the cavity thickness allows access to a wide range

of exciton-cavity detuning. The average density of hatches

along the [110] direction was estimated from transmission

imaging to be about 6/mm, while no hatches along the ½1�10�
direction were observed, as exemplified in Fig. 1(d).

In the experiments, the sample was held in a cold finger

cryostat at a temperature of T¼ 6 K. The optical excitation,

for all the measurements reported in this work, was at the

first reflectivity minimum above the cavity stop band, as

shown in Fig. 1(b). The photoluminescence from the lower

polariton (LP) was acquired with 640� collection angle, by a

0.65 NA microscope objective and was spectrally resolved

using a 1200 grooves/mm grating in a 300 mm spectrometer

coupled to a cooled charge coupled device. The spectrally

and in-plane wavevector (k) resolved emission intensity at

low excitation fluence and at a detuning of D¼�5 meV is

shown in Fig. 1(e). Extracting the upper polariton (UP) and

LP energy at k� 0 across the thickness gradient of our sam-

ple, we find the detuning dependence shown in Fig. 1(f). To

fit the experimental data, we use a system of two coupled

harmonic oscillators.21 The strong coupling between the

exciton resonance and the cavity mode is observed with a
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vacuum Rabi-splitting of 2�hX � 8 meV. From the transmit-

ted spectra at D¼�5.8 meV shown in Fig. 1(b), at which the

LP has a (resolution corrected) linewidth of 120 6 50 leV

and an exciton fraction of 20.5%, we obtain a LP Q-factor of

�12 000 while the calculated bare cavity Q-factor, neglect-

ing in-plane disorder and residual absorption, is �25 000.22

As the emission energy of the InGaAs QWs is lower than the

absorption of the GaAs substrate, we can study the photolu-

minescence of the sample both in reflection and transmission

geometry. The transmission geometry, which is not available

for GaAs QWs, allows to filter the surface reflection of the

excitation and has been widely utilized to probe the features

of polariton fluids23,24 under resonant excitation of the polar-

itons. We use non-resonant excitation from the epi side and

detect the emission from the substrate side, so that the excita-

tion is filtered by the absorption of the GaAs substrate.

In order to achieve condensation into the LP ground

state at k� 0, we excite with a spot of 35 lm full width half

maximum (FWHM). The optical excitation pulses of 180 fs

duration and 80 MHz repetition rate are provided by a

Ti:sapphire laser. They excite electron-hole pairs in the

InGaAs QWs and GaAs cavity which rapidly relax to popu-

late the LP dispersion and the weakly coupled QW exciton

reservoir. With increasing exciton and polariton density, the

polariton relaxation rate increases, eventually overcoming

the threshold for condensation when the relaxation into the

ground state of the LP supersedes its radiative decay, result-

ing in a macroscopic ground state population.3 Fig. 2(a)

shows the energy and wave-vector resolved emission inten-

sity in the low fluence regime, where renormalization is

insignificant. With increasing excitation fluence P, we

observe a threshold at Pthr¼ 26 lJ/cm2 at which the emission

shrinks in momentum space as shown by the intensity pro-

files in Figs. 2(a)–2(c). Also above threshold, the emission at

high k is following the expected LP dispersion, confirming

the strong coupling regime. The LP spectrum at k� 0 also

displays the expected features for polariton condensation,

namely, a linewidth narrowing in Fig. 2(d), a blueshift of the

polariton mode in Fig. 2(e), and a nonlinear increase in in-

tensity in Fig. 2(f). Increasing the fluence above threshold,

interactions between the polariton condensate and the exci-

ton reservoir increase, resulting in a broadening and blueshift

of the condensate emission.25

To observe the transition from polariton condensation to

photon lasing in the weak coupling regime, we need a

FIG. 1. (a) Sketch of the microcavity structure and condensate emission. (b) Calculated reflectivity of the cavity stop band with the transfer matrix method

(black line), spectra of pulsed excitation (blue), and experimental transmittance spectrum (red) for detuning D¼�5.8 meV. (c) Sketch of the refractive index

(black line) along the growth direction and the corresponding square of the electric field of the cavity mode (red line). (d) Real space transmission intensity

image of the sample surface under white light illumination on a linear gray scale, as indicated. (e) Polariton dispersion at low excitation fluence on a logarith-

mic color scale as given. The white dashed lines depict the bare exciton (X) and cavity (C) modes and the blue and red solid lines are the calculated UP and LP

dispersions. (f) UP and LP energy at normal incidence for different detuning conditions. The error bars correspond to the FWHM of a Gaussian fit to the spec-

tra, the blue (purple) line show the calculated UP (LP), and the dashed green (red) line shows the bare cavity (exciton) mode.

FIG. 2. Energy and wavevector resolved emission intensity on a linear color

scale as indicated, (a) below, (b) at, and (c) above threshold. The red lines

show the calculated LP and UP dispersions, and the dotted and dashed white

lines show the uncoupled low-density cavity (C) and exciton (X) dispersion,

respectively. In (a), the UP energy range is also shown, scaled as indicated.

The data have been scaled in (b) for jkj> 2.5 lm�1 and in (c) for

jkj> 1.8 lm�1 as indicated. Profiles of the LP emission along k are also

shown as white lines. (d) LP linewidth, (e) energy shift in units of the Rabi

Splitting 2�hX, and (f) intensity, at k� 0 versus excitation fluence.
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significantly higher excitation fluence, for which we reduce

the excitation size to 9.2 lm FWHM. The smaller excitation

spot leads to polariton condensation at jkj> 0 due to a

steeper potential profile induced by the repulsive exciton-

exciton interactions in the reservoir. To record the evolution

of the emission intensity with increasing excitation fluence

between the two regimes, we integrate the emission over the

entire LP, from 1.441 eV to 1.458 eV and jkj< 3.4 lm�1. As

shown in Fig. 3(a), we now find two thresholds, with the sec-

ond one at about 20 times higher fluence than the first, show-

ing an abrupt increase in intensity and decrease in linewidth.

We note that directionally integrating the emission broadens

the resulting linewidth compared to Fig. 2 and reduces the

intensity difference between the linear and nonlinear plateau.

Fig. 3(b) shows the energy shift of the emission color-coded

with the average hjkji of the emission over the intensity

distribution along the measured direction. As expected for a

small excitation spot, the LP population build up occurs at

jkj> 0, increasing with the excitation fluence. However,

upon crossing the second threshold, the emission shifts

towards the energy of the uncoupled cavity mode and k¼ 0.

This second threshold is thus attributed to the transition to

photon lasing.26 To show the coherence build up above

threshold, we carried out interference measurements using

an actively stabilized Michelson interferometer in a mirror-

retroreflector configuration3 measuring the coherence of the

emission at r relative to –r, with r¼ 0 set to the emission

peak as indicated in Figs. 3(c) and 3(e). The extracted fringe

visibility in the polariton condensate and photon lasing

regime is shown in Figs. 3(d) and 3(f). The measured visibil-

ity V of both the photon lasing and polariton condensate

regime is extended and reaches up to about 80%, consistent

with the expected coherence of the emission. In conclusion,

we have presented evidence of non-resonantly excited polar-

iton condensation in a strain compensated GaAs-based cavity

with InGaAs QWs. The observed nonlinear increase of inten-

sity, along with a linewidth narrowing, and the observation

of a second threshold to photon lasing identify this phase

transition as polariton condensation in the strong coupling

regime. As this type of strain compensated microcavity has

been shown to suppress cross-hatched defects,19 it promises

to be a suited system for studying the nature of quantum fluid

phenomena.4,5,27
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