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We investigate the propagation and scattering of polaritons in a planar GaAs microcavity in the linear
regime under resonant excitation. The propagation of the coherent polariton wave across an extended defect
creates phase and intensity patterns with identical qualitative features previously attributed to dark and half-
dark solitons of polaritons. We demonstrate that these features are observed for negligible nonlinearity (i.e.,
polariton-polariton interaction) and are, therefore, not sufficient to identify dark and half-dark solitons.
A linear model based on the Maxwell equations is shown to reproduce the experimental observations.
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Solitons are solitary waves that preserve their shape
while propagating through a dispersive medium [1,2] due
to the compensation of the dispersion-induced broadening
by the nonlinearity of the medium [3]. Over the years,
spatial solitons have been observed by employing a variety
of nonlinearities ranging from Kerr nonlinear media [4] to
photorefractive [5] and quadratic [6] materials. Apart from
their potential application in optical communications [7,8],
solitons are important features of interacting Bose-Einstein
condensates (BECs) and superfluids. The nonlinear proper-
ties of BECs can give rise to the formation of quantized
interacting vortices and solitons, the latter resulting from
the cancellation of the dispersion by interactions, for
example, in atomic condensates. A special class of solitons
is the so-called dark soliton, which feature a density node
accompanied by a π phase jump. Since the first theoretical
prediction in the context of BECs [9], dark solitons were
studied and observed first in the field of nonlinear optics
[10] and, then, in cold-atom BECs [11]. The experimental
observation of BECs [12] and superfluidity [13,14] of
exciton-polaritons, has sparked interest in the quantum-
hydrodynamic properties of polariton fluids. In particular,
the nucleation of solitary waves in the wake of an obstacle
(i.e., defect) has been claimed recently [15–19]. Here, the
source of nonlinearity, essential for the formation of such a
solitary wave, has been identified in the repulsive polariton-
polariton interactions. In these previous works, the obser-
vation of dark notches in the intensity profiles together with
a π shift in the phase have been used as sufficient signatures
for dark solitons in microcavities. In addition, half-dark
solitons have been reported to carry a nonzero degree of
circular polarization in the presence of the TE-TM splitting
of the cavity mode [19].
In this Letter, we demonstrate that these features, used as

dark-soliton fingerprints [15–19], can also be observed
without the presence of nonlinearity, which is the

fundamental ingredient differentiating solitons from linear
wave propagation. Specifically, we investigate the propaga-
tion of polaritons with a small exciton fraction and at low
polariton densities, excluding a relevant influence of non-
linearities. We show that polariton propagation in this linear
regime across an extended defect can create deep notches in
the intensity profile accompanied by a π phase shift. We
model the observation using linear wave propagation,
clarifying that these features are not indicative of a non-
linear interaction between polaritons, but are interference
patterns created by scattering from the defect. Moreover, we
show that the appearance or disappearance of these features
for different in-plane kinetic energies is found also in the
linear regime and, thus, does not provide evidence of an
interacting quantum fluid. Therefore, the previous reports of
the observation of dark solitons [15–18] and half-dark-
solitons [19], which were based on these features, have to
be reconsidered.
The investigated sample is a bulk λ GaAs microcavity

surrounded by 27 (top) and 24 (bottom) distributed GaAs/
AlAs Bragg reflector pairs. The sample is held in a cold-
finger cryostat at a temperature of 15 K and is illuminated
by a narrow linewidth single-mode continuous wave laser,
tuned to the resonance of the cavity at about 1.485 eV. The
measurements were performed in transmission configura-
tion. The phase was measured using a shearing Mach-
Zehnder interferometer (see [20], S1). Our experiments
were performed in the linear regime, facilitated by the large
negative detuning of −29 meV of the cavity photon mode
from the exciton resonance at 1.514 eV, resulting in a small
exciton fraction of the polariton of about 1%. To verify the
linear regime, we studied the excitation density dependence
of our results with both a Gaussian and half-Gaussian
excitation beam (see [20], S2). We find that they are
independent of both the shape of the beam and the
excitation density over a range of 4 orders of magnitude
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and they persist at polariton density as low as
2.3 × 102 cm−2, 7 orders of magnitude lower than the
lasing threshold observed in standard microcavities [21].
The real space intensity and interference of a polariton

wave propagating across a defect are shown in Fig. 1. The
experimental results show the presence of two dark notches
in the intensity pattern along with a π phase shift visible in
Fig. 1(b) as paths of vortices merging in succession with
alternating topological charge �1. Simulations of the
measurements using the realistic experimental parameters
are shown in Figs. 1(c) and 1(d).
Solitons are predicted to appear in polariton micro-

cavities as the result of the nonlinearity due to the polar-
iton-polariton interactions [22]. Since our experiments are
in the linear regime, it is important to understand how the
nature and the size of the defect affects the formation
process of these solitonlike features. In a recent study [23]
of the structural and optical properties of GaAs/AlAs
microcavities grown by molecular beam epitaxy, it was
shown that the most common pointlike defects were
characterized by a circular or elliptical shape [24], due
to Gallium droplets emitted occasionally during the growth

[25,26]. The presence of the defect has the effect of
modifying the effective thickness of the cavity layer, which
typically results in an attractive potential for the cavity
mode inside the defect [24]. Consequently, the wave vector
of the photonic mode in the region of the defect is higher
than in the rest of the cavity.
The polariton scattering by the defect depends on the

wave vector mismatch between the polaritons outside and
inside the defect at the energy of excitation. When the
energy shift of the defect photon mode with respect to
the unperturbed cavity mode is large enough to make the
coupling between them inefficient, the defect behaves like a
hard scatterer and the spatial intensity distribution is similar
to the complementary case of a single-slit diffraction [27]. In
our case, however, there is a finite transmission through the
defect, producing dark and bright traces with a more
complicated phase pattern. As has been shown by Berry
et al. [28,29], wave fronts resulting from interference can
contain dislocation lines. In the case of a scattered beam,
dislocations are composed of phase shifts at positions where
the amplitude of the electromagnetic wave and, thus, the
intensity vanishes, representing nodes of the wave. It is
worth mentioning that nonlinearities are negligible close to
nodes also in the nonlinear regime, and phase dislocations at
zero intensity (i.e., at the dark notches) are features of both
linear [30,31] and nonlinear waves. In our case, the analogy
between linear and nonlinear waves goes beyond the mere
observation of the same features and is effectively more
profound. Indeed, as shown in [20] S4, the intensity, the
phase jumps as well as the relative depth of the dark notches
in the linear regime satisfy the same mathematical expres-
sion as in the quantum fluid case [15–18]. In particular, also
in our linear system, the relative depth of the dark notches
remains constant up to 42 μm (see [20], S4).
Beyond the qualitative discussion above, we performed

simulations of the experiments, based on a numerical
solution of the linear scattering problem using the classical
theory of electromagnetism. The choice of such a model is
justified by the fact that we operate in the linear regime and
with a small exciton fraction of about 1%, such that the
polariton dispersion is dominated by the cavity mode. In
the model, we consider the propagation of quasi-two-
dimensional photons with a parabolic dispersion in a cavity
with a fixed width. The incident wave has been treated as
coming from a linearly polarized pointlike source with
polarization in the plane of the cavity. Defects have been
modeled as disk-shaped perturbations of the cavity thick-
ness resulting in an energy shift of the photon dispersion
(see [20], S5). To model the defect parameters, which are
not experimentally known, we use a disk shape with a
radius of 3 μm and a polariton potential of −2.3 meV
(consistent with Ref. [24]). Maxwell’s equations are then
solved using an expansion of the fields into the planar
cavity eigenmodes in cylindrical coordinates fulfilling the
boundary conditions for tangent components of electric and

(a) (c)

(d)(b)

FIG. 1 (color online). Experimental (a),(b) and simulated
(c),(d) real space intensity and interference patterns showing
the two “soliton fingerprints” generated by the scattering of a
beam with a pointlike defect: a dark notch in the intensity pattern
together with π phase dislocations. In the images, the polaritons
propagating downwards, along the y axis, are injected with a
wave vector of 1.5 μm−1 and are scattered by a defect positioned
25 μm away from the excitation spots.
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magnetic fields on the interface between the cavity and the
defect (see [20], S5). This linear wave dynamics model
reproduces the intensity notch and the phase dislocation
previously used as dark-soliton fingerprints. The results
show a marked dependence on the geometry of the scattering
problem, as shown in S6 [20]. In particular, the phase jump
visible in the interference pattern depends on the direction of
the incoming polariton wave relative to the defect (see [20]
Fig. S7). On the other hand, the size of the defect relative to
the polariton wavelength affects the formation of high-order
phase dislocations (see [20] Fig. S8).
In a nonlinear cavity-polariton system, a polariton fluid

has been predicted to flow almost unperturbed around the
defect (i.e., disappearance of the features) or experience the
nucleation of vortices and/or solitons at the position of
the defect (i.e., appearance of the features), depending on the
excitation density or on the energy of the pump [22]. We
evaluated the possibility of observing these features,
ascribed in the literature to dark solitons resulting from
the interaction within the polariton fluid, in the absence of
non-nonlinearities. Figures 2(a) and 2(b) show the phase and
the intensity of solitonlike fingerprints in real space. Instead
of increasing the excitation power, which has no effect in the
linear regime, we tune the energy of the excitation beam and
observe the appearance and disappearance of solitonlike
features. As discussed above, the appearance of the intensity
minima and phase dislocations is a result of interference

which is sensitive to the intensity and relative phase of
contributing waves. The increase of the energy of the
excitation beam by 2 meV causes an increase of the in-
plane wave vector of the propagating polariton mode that,
in turn, changes the interference condition so that the
straight dark notches [Fig. 2(c)] and the phase dislocations
[Fig. 2(d)] disappear. The wave vector dependence of such
transitions will depend on the defect structure and the related
bound polariton states [24], so that they could also be
observed with decreasing wave vectors for other defects.
Intensity profiles measured at a fixed distance from the
defect [Figs. 2(e) and 2(f)] confirm the observed transition.
Thus, it becomes apparent that the appearance or disappear-
ance of solitonlike features, although independent of the
excitation density, strongly depends on the wave vector of
the propagating mode (see [20], S3). It is worth noting that
an increase of the polariton density corresponds to an energy
blueshift of the polariton dispersion. For polaritons excited
resonantly with a given energy, this results in an increase of
the polariton wave vector with decreasing density along the
polariton propagation. Specifically, in nonresonantly excited
experiments [32], this blueshift is dominated by the exciton
density in the reservoir at high wave vectors. The interaction
with the exciton reservoir is not a polariton-polariton
interaction within the condensate which could provide
the nonlinearity needed for the formation of solitons,
but, instead, represents an external potential sculpting the
polariton energy and gain landscape.
In a different experiment, we address the observation

of half-soliton fingerprints, which requires polarization-
resolved measurements. The intensity images [Figs. 3(a)
and 3(b)] are measured using an excitation linearly polarized
parallel to the y direction. The interferograms [Figs. 3(c) and
3(d)] are obtained by selecting the same polarization for the
excitation and reference beam (see [20], S1 for details). The
signature of an oblique dark half-soliton is a notch in only
one circular polarization component [19,33]. We excite the
sample with a linearly polarized beam and detect the two
circular polarization components (σ−, σþ) separately. The
measurements are performedwith the same excitation energy
(1.485 eV) and negative detuning (−29 meV) as in the
previous case. The measured intensity and the interferogram
for the σ− component are given in Figs. 3(a) and 3(c),
respectively. The images show the presence of a σ− soliton
fingerprint, indicated by the blue arrows, that is absent in the
σþ component [Figs. 3(b) and 3(d)]. The same applies to the
σþ counterpart, where a half-soliton fingerprint is observed
only on the right side of the image.
By calculating the degree of circular polarization, given by

Sc ¼ ðIσþ − Iσ−Þ=ðIσþ þ Iσ−Þ, with Iσþ and Iσ− being the
measured intensities of the two components, we measure the
pseudospin state inside the cavity [Fig. 4]. Here, if we look at
the same position where the soliton features have been
observed [Fig. 3] indicated by the black dotted lines in
Fig. 4(a), we note the presence of a pair of oblique traces with

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2 (color online). Experimental interference (a),(c) and
intensity (b),(d) showing the transition between the regime where
the soliton features are well defined (1.485 eV) to a regime where
they vanish (1.487 eV). The intensity profiles (e),(f) calculated
along the blue dashed line, 20 μm away from the defect, confirm
that the dark notches disappear when the energy of the excitation
beam is increased. The two arrows indicate the positions of
solitonlike fingerprints.
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opposite circular polarization, resembling the predictions
and observations attributed to a polariton superfluid
[19,33]. The high degree of circular polarization that we
observe is due to the polarization splitting of transverse
electric and transverse magnetic optical modes (TE-TM
splitting) [34] (see [20], S7). The latter gives rise to the
optical spin Hall effect [35] that has been observed in both
polaritonic [36] and photonic microcavities [37]. In our

simulations [Fig. 4(b)], a linearly polarized incoming beam
propagates along the y direction and is scattered by a defect
positioned at 25 μm away from the excitation spot, inducing
the formation of two traces propagating in oblique directions.
The detected field is a superposition of the incoming linearly
polarized wave and the scattered wave. The TE-TM splitting
of the optical mode in a photonic cavity is responsible for an
anisotropy in the polarization flux, as previously shownon the
same sample inRef. [37].Here, the samevalues of theTE-TM
splitting have been used to perform the simulations. The
polaritons scatter from the defect with wave vectors of equal
modulus but in different directions both in the real and
momentum space. Because of the birefringence induced by
the TE-TM splitting, polaritons propagating in different
directions experience different polarization rotation and shift.
Polaritons traveling to the right gain a σþ component while
polaritons traveling to the left gain a σ− component. The
anisotropyof the effectmanifests itself in the intensity pattern,
where it is possible to observe the features of an oblique
soliton in one circular component and not in the other.
In conclusion, we have shown that the previously

reported experimental signatures of oblique dark solitons
and half-solitons in polariton condensates can be observed
in the case of polaritons propagating in the linear regime.
In our experiments these features are the result of the
interference of the incoming wave with the waves scattered
by the defect. Their phase jumps, and the relative depth of
the dark notches satisfy the same analytical expression as in
the polariton quantum fluid. In the case of the polarized
counterpart (i.e., half-soliton-like features) the intrinsic
TE-TM splitting of the cavity dispersion gives rise to
oblique straight traces with opposite polarization.
Our results clarify that phase vortex lines in polariton

propagation together with dark notches of constant relative
depth in the intensity patterns, used as fingerprints of
oblique-dark solitons and half-solitons in the literature, are
present in the linear propagation regime. Consequently,

(a)

(c) (d)

(b)

(e)

FIG. 3 (color online). Experimental intensity pattern (a)–(b)
and real space interference (c)–(d) showing two half-soliton
features as indicated by the arrows. The red and blue arrows
indicate, respectively, the position of the σþ and σ− soliton
features: a dark notch with an associated phase jump present in
only one circular component. The green vertical line is a guide for
the eyes to distinguish the two different regions while the dashed
circle in (a) indicates the defect. (e) The intensity profile extracts
from the yellow dotted line displaying the two dark notches
present, respectively, in only one opposite polarization basis, as
indicated by the arrows.

(a) (b)

FIG. 4 (color online). Experimental (a) and simulated (b) cir-
cular Stokes parameter showing half-soliton features. The two
black dotted lines correspond to the position of the dark notches
present in Figs. 3(a) and 3(b).
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these features are necessary, but not sufficient, evidence to
identify solitons. We believe a more reliable criterion for
identifying dark solitons, based on the definition of solitons
(i.e., solitary nonspreading wave), would be the size of the
observed features which should be determined by the
healing length of the condensate (see [20], S4 for details).
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