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During the last millennium, climate in the North Atlantic region has been characterised 13 

by variations, which, despite their small magnitude, had important societal impacts
1
. 14 

The most favoured explanations for this variability invoke external forcing related to 15 

variable solar activity and explosive volcanism, with changes amplified by ocean and 16 

atmosphere feedbacks, mainly involving the Atlantic Meridional Overturning 17 

Circulation and the North Atlantic Oscillation
2
. However, the scarcity of highly resolved 18 

archives has hampered our understanding of the role that ocean-atmosphere 19 

interactions played in these climate oscillations. Here, results from a sub-decadally 20 

resolved marine sediment core show multidecadal to centennial-scale abrupt changes in 21 

the properties of the upper limb of the Atlantic Meridional Overturning Circulation 22 

between 818-1780 years AD. These fluctuations present a strong correlation with solar 23 

irradiance variability.  Model simulations support this finding and reveal that these 24 

hydrographic changes likely resulted from variability in the strength of the Subpolar 25 

Gyre driven by the frequency and persistence of atmospheric blocking events in the 26 

eastern North Atlantic as a response to solar irradiance variability. This coupled ocean-27 

atmosphere response to solar irradiance minima may have contributed towards the 28 

consecutive cold winters documented in Europe during the Little Ice Age (1450-1850 29 

years AD). 30 

 31 
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The import of salt to higher latitudes by the North Atlantic Current (NAC) is essential for 32 

maintaining the high density of surface waters in the Nordic and Labrador Seas3,4, a pre-33 

requisite for deep water formation. Deepwater formation is critical for the Atlantic 34 

Meridional Overturning Circulation (AMOC) and therefore of great importance to the climate 35 

system. Additionally, the heat released from the NAC, aided by the westerly winds, 36 

contributes to ameliorating the climate of Europe5. Because of its large heat capacity, the 37 

ocean is expected to be amongst the most predictable components of the climate system at 38 

multidecadal time-scales. It is therefore of paramount importance to study past variability in 39 

the properties of the NAC beyond the instrumental record to better constrain natural ocean 40 

variability and its potential impacts on regional and global future climate. 41 

 42 

To investigate multidecadal hydrographic variability of the NAC during the last millennium, 43 

we use marine sediment core RAPiD-17-5P (61° 28.90’N, 19° 32.16’W, 2303 m water depth; 44 

Fig. 1) recovered from the Iceland Basin. The upper 600 m of the water column at the 45 

core-site are dominated by the northward flowing NAC3. Temperature and salinity 46 

reconstructions were produced by analysing paired Mg/Ca-δ18O signals in the shells of the 47 

planktonic foraminifera Globorotalia inflata (Supplementary Methods). The concentration of 48 

Mg in calcite foraminiferal tests is an established proxy for temperature6, which combined 49 

with the δ18O composition of the same calcite, allows the isolation of the δ18O of seawater 50 

(δ18Osw) and the estimation of salinity. G. inflata lives close to the base of the seasonal 51 

thermocline7 and, due to the limited seasonal variation at this depth, it principally records 52 

mean annual temperatures8. The chronology for RAPiD-17-5P was obtained using 12 AMS 53 

radiocarbon dates, which yielded a linear sedimentation rate of 0.16 cm/year, providing an 54 

integrated sample resolution of ~6 years between 818-1780 years AD (Supplementary 55 

Methods).  56 
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Our results reveal abrupt multidecadal to centennial shifts in the temperature and salinity of 57 

the NAC waters of ~3.5 ±1.1oC and ~1.2±0.8 psu during the last millennium (Figure 2b,c). 58 

The magnitude of the hydrographic variability is substantial and comparable to that recorded 59 

in a lower resolution record spanning the present interglacial from a nearby site9 which 60 

highlights the similarities in the ocean variability on a diverse range of time-scales. The 61 

timing of the hydrographic shifts show a strong correlation with Total Solar Irradiance (TSI) 62 

variability10 (Figure 2d). Periods of solar minima (maxima) generally correspond to cold and 63 

fresh (warm and salty) conditions in the NAC (Figure 2). A Pearson’s correlation coefficient 64 

of 0.51 (n=77) with 95% confidence interval [0.31; 0.67] was estimated when correlating 65 

temperature and TSI records, following Gaussian-interpolation to a common time-step of 66 

~12-years (the minimum resolution of the temperature record) (Figure S3).  67 

 68 

Wavelet transform analysis of the temperature record shows a clear 200-year cycle with 69 

enhanced power between 1200-1650 years AD (Figure S5). In addition, cross-spectral 70 

analysis shows that temperature and TSI are coherent above the 90% confidence level in the 71 

frequency range 177-227 years (Figure S4). This variance is similar to deVries solar activity 72 

cycles (~210 years) and supports the correlation found between the NAC temperature and 73 

TSI records over the last millennium.  74 

 75 

To investigate the feedback processes linking TSI variability and the recorded abrupt ocean 76 

changes we analysed climate model simulations performed using Community Climate 77 

System Model version 4.0 (CCSM4), forced with TSI variability and volcanic aerosols for 78 

the last millennium (850-1850 years AD)11. The modelling results also present a strong 79 

positive correlation between temperature and salinity south of Iceland and solar irradiance 80 

(Figure 3a,b), although the hydrographic variability in the model is of smaller amplitude than 81 



 
 

4 
 

in the proxy data. The highest correlations are found in the pathway of the NAC and 82 

particularly in the path of its western branch, the Irminger Current. Additional temperature 83 

and salinity proxy reconstructions of the Irminger Current, from a sediment core south of 84 

Greenland (RAPiD-35-25B - Figure 1), show broad similarities with the results from RAPiD-85 

17-5P (Figure S6-S8), which confirm the westward propagation of the anomalies within the 86 

warm Atlantic waters via the Irminger Current found in the model (Figure 3a,b).  87 

 88 

The similar timing of volcanic eruptions and solar minima during the last millennium (Figure 89 

2a-b) makes the separation of their relative climatic influence difficult and has been the 90 

subject of much debate in recent literature. For instance, the injection of aerosols into the 91 

stratosphere by volcanic activity may have additionally contributed towards the cold fresh 92 

events recorded south of Iceland (Figure 2a-c)e.g. 12. In this study, decomposition of the 93 

relative contribution of the solar and volcanic forcing to the ocean changes was explored by 94 

performing a series of sensitivity tests in CCSM4. In these experiments we find that changes 95 

in volcanic forcing yield a qualitatively different dynamic response of the atmosphere-ocean 96 

system in our region of study compared to solar forcing which consistently explain the key 97 

changes described in the transient simulation (Figure S11-S13). We therefore conclude that 98 

solar irradiance was the dominant forcing on the centennial-scale ocean changes. 99 

 100 

The NAC and its north-western branch, the Irminger Current, constitute the main boundary 101 

currents of the Subpolar Gyre (SPG) (Figure 1). Changes in the strength of the SPG therefore 102 

influence the properties, structure and volume transport of the surface circulation in the North 103 

Atlantic13. Previous modelling and palaeodata studies have interpreted changes in the 104 

hydrographic properties of the NAC, and particularly salinity south of Iceland, to be 105 

controlled by frontal mixing resulting from changes in the spatial extent of the SPG as a 106 
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response to changes in its strength9,13. For example, during a weak and contracted SPG 107 

circulation a displacement of the Subpolar Front to the west would increase the contribution 108 

of subtropical versus subpolar waters to the NAC, making it warm and salty. In this study, 109 

however, volume transport analysis of the SPG in CCSM4 over the last millennium indicate 110 

that warmer and saltier conditions found south of Iceland and in the pathway of the Irminger 111 

Current correspond to periods of stronger SPG circulation (Figure 3c). This is in agreement 112 

with recent observations that show advection may play a dominant role in determining the 113 

properties of water masses along the Irminger Current14 (Supplementary Discussion). An 114 

increase in the heat and particularly salt transport by the IC into the Labrador Sea may have 115 

additionally promoted deep convection in this region4, potentially impacting the AMOC. 116 

 117 

Since ocean gyres are largely driven by wind-stress forcing, changes in the SPG strength and 118 

NAC properties found in the proxy and model results are likely linked to shifts in 119 

atmospheric circulation. The North Atlantic Oscillation (NAO) is the dominant mode of 120 

atmospheric variability in the North Atlantic15. During a positive NAO state the increase in 121 

the strength of the westerlies promotes surface heat loss and ultimately leads to deeper 122 

convection in the Labrador Sea, baroclinically driving a stronger SPG. However, an emergent 123 

view derived from both model and observational data is that small-scale atmospheric patterns 124 

in the Northeast Atlantic, such as atmospheric blocking events as part of the East Atlantic 125 

Pattern or polar mesoscale storms, may contribute considerably to driving North Atlantic 126 

surface circulation16–18.  127 

 128 

Atmospheric blocking events are mid-latitude weather systems where a quasi-stationary high 129 

pressure system located in the Northeast Atlantic modifies the flow of the westerly winds by 130 

blocking or diverting their pathway. Blocking events derive from instabilities of the jet 131 
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stream and predominantly develop in winter, typically in association with a negative NAO19. 132 

The impacts of the frequency and magnitude of these small-scale atmospheric systems are not 133 

restricted to the ocean16–18 but also have important effects on European temperatures, as they 134 

block the meridional transport of warm maritime winds (which are replaced by the cold 135 

north-easterlies). For example, Atlantic blocking events are thought to have been responsible 136 

for several recent cold European winters (i.e. 1963, 2009, 2010 and 2013).  137 

 138 

The analysis of Sea Level Pressure (SLP) patterns in our CCSM4 simulation reveals the 139 

presence of an anomalous high-pressure system off West Europe during periods of solar 140 

minima (Figure 4), which correspond to a weaker SPG (Figure 3c) and a colder and fresher 141 

NAC (Figure 2 and 3a,b). This finding is in line with recent studies that suggest a decrease in 142 

SPG strength with more frequent and stronger atmospheric blocking events on decadal time-143 

scales16,18. The results agree with the early concept that the severe winters experienced in 144 

Europe during the Maunder Minimum were caused by periods of increased atmospheric 145 

blocking1 and are also consistent with SLP field reconstructions which show a high pressure 146 

system over North-west Europe towards the end of the Spörer and during the Maunder 147 

Minimum20. Similarly, a number of studies suggest a negative NAO state during the Maunder 148 

Minimum or other periods of low TSI21, in agreement with increased blocking arising from 149 

the weaker westerly winds.  150 

 151 

Growing evidence for the linkage between solar variability and frequency of blocking in the 152 

Northeast Atlantic has also been provided by meteorological studies. Modern observations 153 

show strong solar modulation of the blocking frequency and positioning during the 11-year 154 

solar cycles for the last 50 years, impacting substantially on UK winter temperatures22,23. 155 

Periods of solar minima, such as the Maunder Minimum, have also been shown to correspond 156 
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to cold temperatures in the Central England Temperature record, which is dominated by the 157 

frequency of winter blockings24. The regional atmospheric response to solar forcing has often 158 

been explained through variability in stratospheric temperatures as the response of ozone 159 

formation to changes in ultra violet radiation21,22,25. Changes in stratospheric temperatures 160 

have a top-down effect on tropospheric dynamics and hence induce variability of the jet 161 

stream22,26. Nonetheless, modelling studies with a simplified representation of the upper 162 

atmosphere, like CCSM4, find a similar response to solar forcing suggesting that other 163 

feedbacks such as ocean feedbacks on the atmosphere, internal climate dynamics and Pacific 164 

teleconnections may also be influential21. On decadal time-scales, modelling and 165 

observational studies have previously identified separate relationships between solar 166 

irradiance and Atlantic blocking events22,23,26 and blocking events and SPG strength16,18 167 

individually. Our findings support a direct linkage between these three components of the 168 

Earth’s climate system, which probably shaped the North Atlantic climate over the last 169 

millennium. 170 

 171 

Climate variability on decadal timescales is largely believed to be dominated by internal 172 

processes rather than external forcing, which presents large difficulties for much-needed 173 

climate projections of the coming decades. However, the proxy evidence presented here, 174 

supported by model results, suggest that external forcing by solar variability has a 175 

considerable impact on multidecadal-centennial ocean-atmospheric dynamics, with important 176 

effects on regional climate such as European winters. In this context, predictions of a 177 

forthcoming prolonged period of low solar activity27 imply direct climatic consequences.  178 

 179 

Despite the hemispheric temperature changes expected from solar minima being much 180 

smaller than the warming from future CO2 emissions, regional climate variability associated 181 
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with solar-induced ocean-atmosphere feedbacks could be substantial and should be taken into 182 

consideration when projecting future climate changes. 183 

 184 

Methods Summary 185 

Paired δ18O and Mg/Ca analyses were performed on 6-20 Globorotalia inflata (300-355 µm) 186 

tests. Samples were prepared using the method outlined by ref.28  and analysed using a 187 

Finnigan Element XR high-resolution inductively coupled plasma mass spectrometer (Cardiff 188 

University). Calculation of average shell weights and investigation of the co-variability of 189 

Mg/Ca record to metals such as Fe, Mn and Al shows that no secondary effects such as 190 

partial dissolution or trace metal contamination have altered the primary temperature signal in 191 

the Mg/Ca record. Mg/Ca values were converted to calcification temperatures using Mg/Ca= 192 

0.675 exp(0.1xT) after the core-top calibration by ref.9. Stable isotope measurements were 193 

carried out on a Thermo Finnigan MAT 252 isotope ratio mass spectrometer coupled to a 194 

Kiel II carbonate preparation device at Cardiff University. For more details see 195 

Supplementary Methods. 196 

 197 

Additional information 198 

Correspondence and requests for materials should be addressed to P.M. 199 
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Figure captions 

Figure 1 

 

Figure 1. Sea surface temperature map for January 2008 showing the schematic surface 

circulation of the North Atlantic and the core location of RAPiD-17-5P and RAPiD-35-

25B (Supp. Material). Solid arrows indicate the warm salty waters from the tropics, namely 

the NAC and its main branches such as the Irminger Current (IC). The dashed lines indicate 

the cold polar south-flowing waters such as the East Greenland Current, West Greenland 

Current and Labrador Current which constitute the Western branch of the SPG. Location of 

RAPiD-17-5P (61o 28.90’N, 19o 32.16’W, 2303m water depth) and RAPiD-35-25B (57° 

30.47’N, 48° 43.40’W, 3486 m water depth) are marked with a black circle (adapted from 

UK-Met office OSTIA data29). 

 
Figure 2 

Proxy records from RAPiD-17-5P. (a) Solar irradiance forcing reconstruction based on the 

cosmogenic nuclide 10Be 10 (orange) and global volcanic stratospheric aerosols30 (grey). (b) 

Temperature and (c) salinity/δ18Osw estimates derived from paired Mg/Ca and δ18O 

measurements in G. inflata calcite from RAPiD-17-5P. (d) Three-point smoothed 
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temperature record from RAPiD-17-5P (black) and ΔTSI10 (orange). A 12.42 year lag has 

been imposed on the ΔTSI forcing as indicated from the highest Pearson Correlation 

(Supplementary notes, Figure S2). Shaded areas highlight the well-known periods of solar 

minima. 

 

Figure 3 

Modelling results from CCSM4. Pointwise correlation of TSI with (a) temperature and (b) 

salinity averaged between 150-204 m water depth. (c) Regression of TSI with the depth-

integrated stream function (all time-series were filtered with a 50 year low-pass filter). Black 

contours show the time-average depth-integrated stream function and areas with correlations 

above 95% confidence threshold are dotted. Negative values indicate stronger anti-clockwise 

circulation. The location of RAPiD-17-5P is marked with a black circle.  

 

Figure 4 

Atmospheric changes in CCSM4. Differences in sea level pressure of weak-strong TSI 

composites (±1σ) in CCSM4 reveals an anomalous high pressure system during low TSI over 

the British Isles and the eastern North Atlantic, indicative of increased winter blocking. 

Time-series have been filtered with a 50 year low-pass filter (See Figure S14 for a SLP 

regression plot).  
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Figure 3.  
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Figure 4.  
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