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Abstract 

The extracellular calcium-sensing receptor, CaSR, is expressed in blood vessels where its role 

is not completely understood. In this study, we tested the hypothesis that the CaSR expressed 

in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure 

and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle 

cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which 

Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed 

on Cre-negative (wild-type, WT) and Cre-positive 
SM22α

CaSR
∆flox/∆flox

 (knock-out, KO) mice 

showed and endothelium-independent reduction in aorta and mesenteric artery contractility of 

KO compared to WT mice in response to KCl and to phenylephrine. Increasing extracellular 

calcium ion (Ca
2+

) concentrations (1-5 mM) evoked contraction in WT, but only relaxation in 

KO aortae. Accordingly, diastolic and mean arterial blood pressures of KO animals were 

significantly reduced compared to WT, as measured by both tail cuff and radiotelemetry. This 

hypotension was mostly pronounced during the animals’ active phase and was not rescued by 

either NO-synthase inhibition with L-NAME or by a high salt-supplemented diet. KO animals 

also exhibited cardiac remodeling, bradycardia and reduced spontaneous activity in isolated 

hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the 

cardiovascular system and suggest that physiologically relevant changes in extracellular Ca
2+

 

concentrations could contribute to setting blood vessel tone levels and heart rate by directly 

acting on the cardiovascular CaSR.  
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Introduction 

The extracellular calcium-sensing receptor, CaSR, was the first G protein-coupled receptor 

identified that has an ion, Ca
2+

, as its primary physiological agonist. The CaSR was initially 

found in the parathyroid glands, where it acts as a controller of free ionized extracellular-Ca
2+ 

(Ca
2+

o) concentration in the blood via the regulation of parathyroid hormone (PTH) secretion 

(6). Systemic administration of pharmacological modulators of the CaSR have been shown to 

affect blood pressure in various animal models (50). However it is unknown whether these 

effects are due to systemic or local actions of the CaSR. Indeed, the CaSR expression is found 

in the vasculature (7, 54, 59), but a definitive role for this receptor in blood pressure 

regulation has never been firmly established. In the vascular endothelium, CaSR activation is 

thought to stimulate nitric oxide (NO) production (34, 59) and/or endothelium-derived 

hyperpolarization (EDH) (54). In rat subcutaneous small arteries, Ca
2+

o evokes a biphasic 

response with contraction followed by dilatation in a concentration-dependent manner (40). 

Furthermore, activation of the endothelial CaSR in mouse aortic segments induces 

endothelium-dependent and -independent relaxations (34). Alteration in CaSR expression or 

function in vascular smooth muscle cells (VSMC) has been linked to pathological conditions 

such as microvascular complications during diabetes (34), vascular calcification (1) and 

idiopathic pulmonary arterial hypertension (55). Allosteric CaSR activators, termed 

calcimimetics, have been on the market since 2004 for the treatment of hyperparathyroidism 

secondary to kidney failure (3). In patients with chronic kidney disease (60), and in a rat 

model of surgically-induced chronic kidney disease (39), calcimimetic treatment is associated 

with antihypertensive effects. However, because calcimimetics are phenylalkylamine 

derivatives, their ability to reduce blood pressure has been ascribed to potential off-target 

effects on L-type Ca
2+

 channels (37, 52). Given the importance of the CaSR in many 

physiological processes (43), the aim of this study was to determine whether the CaSR in 
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VSMC contributes directly to blood pressure regulation. For this purpose, we generated 

animals with targeted CaSR ablation from smooth muscle cells by breeding mice with LoxP 

sites flanking exon seven of the CaSR (13) with mice in which Cre recombinase expression is 

transcriptionally regulated by the SM22α promoter (30). This approach allowed us to study 

animals with targeted deletion of the CaSR from VSMC throughout the vascular system, 

visceral smooth muscle and cardiac cells, but not skeletal muscle cells (30, 56). 
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Materials and Methods 

Animals 

Commercially available SM22α-Cre
+
 mice (Jackson Immunoresearch Laboratories, Bar 

Harbor, ME, USA) were crossed with exon7-LoxP CaSR sites (13). The CaSR-LoxP strain 

was generated from C57BL/6 x SVJ129 backcrossed with C57BL/6 for 8 generations. CaSR-

LoxP x SM22α-Cre mice were inbred for at least 3 generations before being used for 

experiments. Genotyping for CaSR-LoxP sites and Cre was performed as described elsewhere 

(13, 25, 56). All animal work was conducted according to UK legislation (Home Office 

project license 30/3007) and conformed to the guidelines from directive 2010/63/EU of the 

European Parliament on the protection of animals used for scientific purposes. Euthanasia for 

tissue collection was performed by cervical dislocation according to UK legislation (A(SP)A 

1986, Schedule 1). 

 

Genotyping 

DNA from ear biopsies was extracted using DirectPCR® Ear DNA Extraction system 

(Viagen, Los Angeles, CA, USA) with proteinase K (Bioline, London, UK) according to the 

manufacturer’s instructions. Genotype was determined using the SM22α promoter and Cre 

coding region primers from (25) and the LoxP primers already described (13). Primer 

sequences: SM22-Pro (CAGACACCGAAGCTACTCTCCTTCC), SM22-Cre 

(CGCATAACCAGTGAAACAGCATTGC), CaSR fl up (GTGACGGAAAACATA CTGC), 

CaSR fl low (CGAGTACAGGCTTTGATGC). BioTaq Taq-polymerase (Bioline) was used 

for polymerase chain reaction (PCR). Final concentrations per reaction: 100 nM per primer, 1 

mM dNTPs (Bioline), 4 mM MgCl2, 2 U polymerase, 1.6 % ear lysate. PCR conditions: 5 

minutes initial denaturation at 95 °C, 40 cycles of 30 seconds 95 °C, 60 seconds 50 °C (Cre) 
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or 47 °C (LoxP), 120 seconds 72 °C, and a final elongation of 10 minutes at 4 °C. 

Amplification products for Cre were visualized using agarose gel electrophoresis with an 

expected amplicon size of 500 bp in case of at least one Cre-positive allele. Amplification 

products for LoxP were visualized using polyacrylamide gel-electrophoresis with an expected 

amplicon size of 167 bp for floxed alleles and 133 bp for non-floxed alleles. 

 

Chemicals and reagents 

All chemicals and reagents were obtained from Sigma-Aldrich (Poole, Dorset, UK) and Life 

Technologies (Paisley, Strathclyde, UK) unless otherwise stated. 

 

Real time reverse transcription PCR (RT-qPCR) 

RT-qPCR was performed on endothelium-denuded aortae as described previously (22). Gene 

expression was calculated based on the 2
-∆∆Ct

 method (33), normalized to the expression of the 

housekeeping gene β-actin. Samples with Ct values ≥ 31 for pecam-1 were considered to be 

devoid of endothelial contamination. Primers: Calcium-sensing receptor exon 6-7 (CaSR6-7) 

Fwd: GTGGTGAGACAGATGCGAGT; Rev: GCCAGGAACTCAATCTCCTT. β-actin 

(Fwd: TCCTAGCACCATGAAGATCA; Rev: CCACCGATCCACACAGAGTA), Pecam-1 

(Fwd: AGACATGGAATACCAGTGCAGAG; Rev: 

ACAGGATGGAAATCACAACTTCAT). 

 

Western Blot 

CaSR immunoblot of microsomal membrane fractions from endothelium-denuded aortae or 

lysate from HEK-293 cells stably expressing the human CaSR (positive control) was 
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performed as described previously (53) using an antibody directed against the amino terminus 

of the CaSR (Anaspec, Freemont, CA, USA). Expression of α-smooth muscle actin was 

detected using a mouse monoclonal antibody.  

 

Intracellular calcium imaging 

The thoracic aorta was dissected and cleaned in cold DMEM-F12 supplemented with 1% 

penicillin/streptomycin (Life Technologies, Paisley, U.K.), cut-open for endothelium removal 

and cut into 1-2mm segments, subsequently incubated for 30 minutes at 37 ºC in 5% CO2 in 

an enzymatic digestion solution containing DMEM-F12 supplemented with 1 mg/ml papain, 

1mg/ml collagenase from Clostridium histolyticum, 1 mg/ml fatty acid free BSA, 1 mg/ml 

DTT and 0.5 mg/ml soybean trypsin inhibitor. The cell suspension was seeded onto glass 

coverslips coated with poly-D-lysine and allowed to settle for 30 minutes at 37 ºC in 5% CO2, 

after which cells were incubated for 30 minutes with extracellular solution (135 mM NaCl, 10 

mM glucose, 5 mM KCl, 5 mM HEPES, 1.2 mM MgCl2, 1 mM CaCl2, pH 7.4) containing 1.4 

µM fura-2 AM, dissolved in DMSO (Life Technologies). Ca
2+

i recordings were performed as 

described previously (46). 

 

Wire myography  

Wire myography on mouse aortae and MA was performed as described elsewhere (5, 17, 19). 

In brief, thoracic aortae and second order MA of 4-6 month old mice were carefully dissected 

in cold buffer (118 mmol/l NaCl, 3.4 mmol/l KCl, 1.2 mmol/l KH2PO4, 1.2 mmol/l MgSO4, 

25 mmol/l NaHCO3, 11 mmol/l glucose, 1 mmol/l CaCl2, bubbled with 95% O2/5% CO2) and 

cut into 2 mm segments. For the study of vascular responses to the calcimimetic NPS-R-568, 

the extracellular solution contained 1.5 mM CaCl2. The vessel rings were then carefully 
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mounted in a wire myograph (Danish MyoTechnology, Aarhus, Denmark) using two gold-

plated tungsten wires (d = 25 μm) for MAs, or stainless steel wires (d = 40 μm) for aortas. 

The vessels were let to equilibrate for 20 min at 37
o
C, and then gradually stretched (up to 2 

mN for mesenteric arteries and 5 mM for aorta). The plateau values after each stretch were 

used to calculate the lumen diameter that would give a target transmural pressure, which for 

MAs was set as 70 mmHg, and for aortas - 100 mmHg. After normalization, vessels were left 

to equilibrate for another 30 min, and tested for viability using phenylephrine (PE) and 

acetylcholine (ACh). Where stated, the endothelium was removed by gentle rubbing of the 

vessel lumen with a clean human hair, or an air bubble was pushed through the lumen of the 

vessel. Lack of relaxation in response to 10 µM ACh was used to confirm the successful 

endothelial denudation. High KCl (40 mM) was used as an alternative, depolarizing, 

vasoconstrictor (11, 41, 51). When required, the vessels were pre-treated with Nitro-L-

arginine methyl ester (L-NAME) for at least 20 min prior to the experiment, and 

concentration-response curves were obtained by cumulative addition of rising concentrations 

of the agonists (PE, ACh, CaCl2 and SNAP) directly to the bath. Solutions were changed 

every 20 minutes to avoid alterations of osmolarity. In order to calculate the percentage 

change in contractility of KO vessels in comparison to WT, each contraction data point was 

normalized to the average of individual maximal contraction values of WT vessels. For the 

dilatation experiments, vessels were first pre-contracted with PE, and then vasodilators were 

added to the bath. 0% relaxation is the level of tension before the vasorelaxant agonist was 

added, and 100% relaxation reflects the return of the tension to the basal level.  

 

Tail cuff and radiotelemetry measurements 

Blood pressure of male, age-matched animals (4-9 months) were measured by tail cuff on 

awake, conscious animals during day-time using a 2-channel CODA system (Kent Scientific, 
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Torrington, CT, USA), following the manufacturer’s instructions and using 20 acclimatization 

and 10 measurement cycles. 

Radiotelemetry was performed on 3 month old mice using implantable probes with HD-X11 

transmitters (4). Mice were anesthetized by subcutaneous injections with a combination of 

fluanisone (10 mg/kg body weight), fentanyl (0.3 mg/kg body weight) and midazolam (1 

mg/kg body weight) and placed in dorsal recumbence on a thermostatically controlled heating 

platform for maintaining body temperature at 37.5°C. The body hair was liberally removed 

from the skin on the neck and the skin was disinfected by isopropyl alcohol. A 1‒1.5 cm long 

midline incision through the skin on the neck was made and the mandibular glands were 

carefully separated. The carotid artery along the left side of the trachea was carefully isolated 

with fine‒tipped forceps from the surrounding tissues. The distal side of the carotid artery 

(just before the bifurcation) was occluded permanently with 6-0 non-absorbable suture and 

another suture was placed proximately for temporal occlusion of blood flow to allow for 

placement of the catheter. Additional suture was placed in the middle to hold the catheter in 

place after the cannulation of the artery. The artery was pierced using the 25-gauge bent 

needle just proximately the permanent ligation suture and the catheter was inserted into the 

vessel using Vessel Cannulation Forceps (Data Sciences International, USA). The catheter 

was advanced into the artery until it reaches the occlusion suture, the loose middle suture was 

tightened and occlusion suture released. The catheter was then advanced further until the 

sensing region was positioned in the aortic arch. The occlusion suture was tightened and a 

subcutaneous pocket was made by inserting small surgical scissors. A HD-X11 radiotelemetry 

transmitter (Data Sciences International, USA) was then placed in the pocket. The terminal 

end of the positive lead was positioned with a small hemostat subcutaneously from the neck 

incision to the left caudal rib region (approximately 1 cm to the left of the xyphoid process). 

The negative lead terminal end was positioned with a small hemostat subcutaneously from the 

neck incision to the right pectoral muscle. The skin incision was closed using 6-0 non-
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absorbable suture. Painkiller (0.2 ml/kg; Temgesic, Schering-Plough Europe, Belgium) was 

injected subcutaneously at the end of operation. Mice were allowed to recover for 2 days 

before housing them in metabolic cages where they were kept on control diet for 4 days. The 

standard (control) diet was then changed to a high salt diet (containing 4% NaCl) for a period 

of 5 days. For reasons of animal welfare, mice were then transferred back in normal housing 

cages and kept on standard diet for a washout period of 3 days, after which drinking water of 

the mice was supplemented with 0.5 g / L L-nitro-arginine-methyl-ester (L-NAME).  

Telemetry signals from the probes were recorded for the whole duration of the experiment in 

intervals of 5 minutes in quintuplicates resulting in 60 measurements per hour. Registration 

was performed with Dataquest A.R.T™ software 4.3. Analyses were performed with 

Ponemah analyses software 5.00 (all Data Sciences International, USA) and Microsoft Excel 

2010. Raw values were concentrated to hourly datapoints. For statistical analysis, three hour 

intervals of the raw data were averaged for night-time (active phase, 20:00-23:00) and day-

time (resting phase, 8:00-11:00). The standard diet vs. high salt diet and standard diet vs. 0.5 g 

/ L L-NAME diet phases were treated as two separate experiments because of the different 

housing conditions. For graphical representation only, traces were calculated as rolling 

average over 4 hours. 

 

Cardiac cine-MRI 

Cardiac cine-MRI (magnetic resonance imaging) scans of aged (14 month old) mice were 

acquired using a Bruker Biospec 94/20 9.4 Tesla small bore (20 cm) MRI spectrometer 

equipped with S116 high performance gradient insert and Avance II electronics (Bruker, 

Ettlingen Germany). Scans were acquired using a 72 mm transmit/receive quadrature 

polarized birdcage coil. Mice were kept under general anesthesia using 1-5 % isoflurane in a 

40% O2 / air at 1.2 L / min during scanning. Animals were ECG, respiration and temperature 
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monitored using a Model 1025 monitoring and gating system (SAIInc, Stony Brook, New 

York, USA). The temperature of the animals was kept at 37 °C using temperature controlled 

bath feeding into the restraining scaffold. T2 weighted, respiratory and cardiac gated, fast-

imaging with steady-state precession pro-cine scans were performed with a field of view of 32 

× 32 mm, an echo time of 1.228 ms, a repetition time of 5 ms, a band width of 125 kHz and 

slice thickness of 1-1.5 mm were collected from apex to the aortic arch using Paravision 5.0 

(Bruker). Gating was performed using using the Small Animal Monitor software and 

monitoring equipment according to the manufacturer’s instructions (SA Instruments, Stony 

Brook, NY, USA). Scans performed for each mouse included Tri-axial pilot orientation scan, 

central long-axis cine-scan, short axis cine-scans coving sub-apical to supra-basal image 

plane. Scans were analyzed using the academic version of Segment 1.9 R2626 

(http://segment.heiberg.se) (21) by one person blinded to the genotype of the animals. 

Functional parameters were assessed from multi-slice short-axes cine MR images by manual 

markup of left-ventricular endocardium and epicardium in the first timeframe of the slice 

showing the papillary muscles. The markup was then propagated in time and adjusted to fit 

the new timeframe. After the markup of the slice was completed, the markup for the whole 

cine-cycle was propagated apically and basally and contours were again adjusted to fit the 

respective scans. End-diastole and -systole were defined as the timeframe showing highest 

and lowest ventricular volume using the auto-detection feature of the Segment software. For 

wall thickness measurements, the thicknesses of the second and third apical slice in end-

systole and -diastole, measured with the respective tool in the Segment software, were 

averaged. Based on the long axis scans, hearts of KO animals showing full apical end-systolic 

closure were selected as remodeled sub-group.  
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Histomorphology and fibrosis staining 

Sections from paraffin-embedded hearts and aortae were stained with haematoxylin and eosin 

(H&E). To detect fibrosis in heart sections of aged mice, collagen deposition was visualized 

in 8 µm cryosections of paraformaldehyde-fixed hearts stained with picrosirius-red mixture. 8 

µm cryosections of paraformaldehyde-fixed (4% in phosphate buffer saline (PBS) for 4 hours) 

hearts of adult mice were thawed in PBS-T (0.1% Tween-20) for 20 minutes and washed in 

distilled water for 2 minutes. Sections were then pre-stained with 0.1% fast green for 15 

minutes, washed twice in 1 % acetic acid for 15 seconds, washed in distilled water for 2 

minutes. Final staining was achieved by incubation in a solution of 0.1 % fast green, 0.1% 

direct red and 1.3 % picric acid for 1 hour. Sections were then washed three times in 1 % 

acetic acid for 15 seconds and distilled water for 2 minutes and finally dehydrated in rising 

concentrations of ethanol, cleared in xylene and mounted in DPX:Xylene 4:1, resulting in 

green staining for all tissues and red staining for fibrotic tissue. Fibrotic area was quantified 

using CellProfiler 2.1.1 (28) by one person blinded to the genotype of the animals. All 

epicardial and endocardial positive (red) staining was manually removed along with other 

image artefacts (e.g. tissue folding). An image analysis pipeline was run to separate different 

shades of red pixels (fibrosis positive) from background tissue (green). Cardiac fibrosis 

percentage was calculated by dividing the number of detected red pixels per 100 positively 

stained pixels (red + green). 

 

Ex vivo measurement of baseline heart rate 

Rapidly dissected hearts were retrogradely perfused in Langendorff fashion. Baseline heart 

rates were measured using longitudinal force tonometry (31). 6 month old male mice were 

killed by cervical dislocation. The thorax was rapidly opened and the heart, lungs and thoracic 

aorta removed to ice cold Krebs buffer (118 mmol / L NaCl, 3.4 mmol / L KCl, 1.2 mmol / L 
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KH2PO4, 1.2 mmol / L MgSO4, 25 mmol / L NaHCO3, 11 mmol / L glucose, 1 mmol / L 

CaCl2). The aorta was cannulated with a gauge 20 hypodermic needle filled with Krebs buffer 

and the tip of the needle was advanced to the aortic valve. The needle was attached to the 

perfusion apparatus and the heart perfused in Langendorff mode (31) at a constant flow rate of 

3 ml/min (Gilson Minipuls 3 peristaltic pump, Gilson, Luton, UK) with warmed (37.5
°
C) 

Krebs buffer pregassed with O2/CO2 (95%/5%). Coronary perfusion pressure was measured 

by means of a pressure transducer (MLT 844, ADInstruments, Chalgrove, UK) located 

immediately before the warming coil, where a Condon mercury manometer was also located 

to accommodate perfusion fluid during pressure changes. A clip was attached to the apex of 

the heart and linked via a thread and pulley to an isometric tension transducer (50g sensitivity 

range) (ADInstruments) for measuring contractile tension. A resting diastolic tension of 2g 

was applied at the start of the experiment and readjusted periodically. The heart was 

surrounded by a heated jacket (37.5
 
°C). Isometric cardiac contractions were recorded by 

means of a Powerlab 8/30, Chart 5, data acquisition system (ADInstruments) and heart rate 

was derived from the cardiac contractions signals. 

 

Spontaneous activity of PVC in lung slices 

Murine lung slices were prepared as described previously (44). In brief, 4-6 month old mice 

were killed by cervical dislocation and, after opening of the chest cavity, the trachea was 

cannulated and lungs were inflated by injecting ~ 1.2 ml of low melting point agarose (37 °C, 

1.8 % in sHBSS; Life Technologies, Paisley UK). The agarose was stiffened by applying cold 

sHBSS supplemented with 20 mM HEPES, pH 7.3) over the lungs. The stiffened lungs were 

cut into ~ 180 µm thick slices using a Vf-300 microtome (Precisionary Instruments, 

Greenville, NC, USA). Slices were kept in a humidified cell culture incubator with 5 % CO2 

in DMEM:F12 (Life Technologies), supplemented with 10 % FBS. Slices were loaded in the 
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dark with 20 µM Oregon-Green BAPTA-1 AM (Life Technologies) in the presence of 0.1 % 

Pluronic F127 (Life Technologies) and 200 µM sulfobromophtalein in sHBSS at room 

temperature for one hour, followed by de-esterification for at least 30 minutes in the dark in 

sHBSS with 200 µM sulfobromophtalein. Slices were then mounted in a custom-built 

imaging chamber and imaged on a Nikon Eclipse Ti microscope, using a Nikon S Fluor 40x 

oil immersion objective, with an excitation of 470 ± 15 nm. Emission was measured at 525± 

25 nm. Images were acquired with a frame rate of 25 frames per second using OptoFluor 

software (Cairn Research, Faversham, U.K.). Image acquisition was performed for ~ 20 s 

periods to record the frequency of the spontaneous activity. Image analysis was performed 

using ImageJ software (47). 

 

Statistical analyses 

Statistical analyses were performed using GraphPad Prism 6.04 (GraphPad Software, La 

Jolla, CA, USA). Statistical tests employed are stated with the respective results or in the 

figure legends. Where two curves were compared, asterisks (*) above individual data points 

indicate point-by-point comparison by Holm-Sidak post-test of two-way ANOVA; plus-signs 

(+) indicate difference of the fitted curves by extra sum-of-squares F test and two-way 

ANOVA. N states the number of individual biological repeats (number of animals, cell 

batches, etc.). 

 

Results  

Generation of 
SM22α

CaSR
∆flox/∆flox

 mice  

Breeding of SM22α-Cre
+
 mice with mice in which LoxP sites flanked exon 7 of the CaSR 

gene (LoxP-CaSR
+/+

) (13) yielded 
SM22α

CaSR
∆flox/∆flox

 mice (which were termed “knockout”, 
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“KO”). Age- and sex-matched mice expressing only floxed CaSR alleles but no Cre-

recombinase (SM22α-Cre
-/-

-LoxP-CaSR
+/+

) were used as controls for all experiments (termed 

wild-type, “WT”). The resulting truncated Δexon7 product was shown to be non-functional 

(13) and these animals are viable and fertile (56). Representative genotyping is shown in 

Figure 1A. Aortae of KO animals appeared histomorphologically normal and 

indistinguishable from those of WT mice of comparable ages (Figure 1B), suggesting that 

CaSR deletion does not affect the histomorphology of blood vessels.  

Molecular and functional CaSR expression in the vasculature was found to be significantly 

reduced in KO compared to WT animals. Bona fide, CaSR-like immunoreactivity, 

corresponding to the molecular mass of the fully mature dimeric form of the receptor, (53) 

was reduced in membrane fractions from endothelium-denuded KO aortae compared to that 

seen in WT, as shown by western blot using a polyclonal antibody that preferentially detects 

the dimeric form of the CaSR. CaSR deletion from VSMC did not affect the expression levels 

of α-smooth muscle actin (Figure 1C). RT-qPCR carried out in endothelium- and adventitia 

denuded aortae from WT and KO animals showed that expression of the CaSR (exon 6-7) was 

significantly reduced in KO vessels compared to WT (Figure 1D). Classically, CaSR 

activation is linked to phosphoinositide turnover and an increase in intracellular Ca
2+

 

concentration ([Ca
2+

]i) (6). In fura-2 loaded VSMC isolated from WT and KO mouse aortae, 

increasing [Ca
2+

]o from 0.1 to 5 mmol / L evoked a concentration-dependent increase in 

[Ca
2+

]i in WT VSMC, which was significantly smaller in KO VSMC (Figure 1E). 

 

Ex vivo blood vessel contractility is impaired in
 SM22α

CaSR
∆flox/∆flox

 mice  

Previous studies have suggested a role for the CaSR in vascular tone regulation (50). To test 

this hypothesis directly, we performed ex vivo tension measurements on isolated aortae and 

mesenteric arteries (MA) from WT and KO mice. Rings of aortae and MA of KO animals 
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showed a significantly smaller contraction in response to a depolarizing stimulus (i.e. high 

K
+
) compared to aortic rings from WT (Figure 2A and 2B). A comparable level of reduction 

in KO aortae and MA contractility was observed when phenylephrine (PE, 1 nmol / L – 30 

µmol / L), an agonist of the Gq/11 protein-coupled α1-adrenoceptor, was employed (Figure 2C 

and 2D). Except for the responses to PE, where potency was slightly but significantly reduced 

in KO aortae and MA compared to WT control, EC50 values in all other experiments remained 

unchanged (Table 1). In contrast, endothelium-dependent relaxation of PE-precontracted 

blood vessels in response to acetylcholine (ACh) was modestly, but significantly enhanced in 

KO aortae (Figure 2E), and reduced in KO MA (Figure 2F). 

In line with this reduction in contractility in response to contractile stimuli, we observed a 

reduction in Ca
2+

i signaling in VSMC isolated from KO mice compared to WT cells in the 

presence of depolarizing concentrations of K
+
 (60 mmol / L KCl, KO vs WT: 3.81 ± 0.62 vs. 

1.90 ± 0.53 fold vs. baseline, N = 5, p < 0.05, Student’s t-test).  

To investigate the effects of the physiological CaSR agonist, Ca
2+

o, on the vascular tone, we 

precontracted aortae and MA from WT and KO animals with PE to approximately 60% of 

maximal tone, and then cumulatively added rising concentrations of Ca
2+

o (from 1 to 5 mmol / 

L). Aortae of WT animals displayed significantly different response to Ca
2+

o than aortae from 

KO animals, showing a moderate contraction to Ca
2+

o that reached 19.9 ± 7.8 % at 2.5 mmol / 

L Ca
2+

o: (p < 0.05, one sample t test vs baseline), whilst aortae from KO animals showed only 

relaxation that reached 33.4 ± 11.8 % in the presence of 4 mmol / L Ca2+
o (p < 0.05, one 

sample t test vs baseline; Figure 2G). In contrast, MA displayed only relaxation to rising 

[Ca
2+

]o
 
that was of comparable magnitude in vessels from WT and KO animals (Figure 2H). 

In order to determine CaSR specificity of the responses observed in the aortae, aortic rings 

were preconstricted with PE to ~ 60% of maximal tone, and then treated with increasing 

concentrations of the calcimimetic NPS R-568 (10 nM-10 µM). NPS R-568 evoked 
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contraction followed by relaxation in WT aortae while KO aortae were insensitive to low 

concentrations of calcimimetic (10 nM – 300 nM) and only responded with vasodilation at 

concentrations higher than 1 µM NPS R-568 (Figure 3A). After removal of the endothelium, 

aortae from WT mice still showed a contractile response to rising concentrations of NPS R-

568 but did not show any relaxation even at very high levels of the calcimimetic. Endothelium 

denuded aortae from KO animals were completely insensitive to NPS R-568 (Figure 3B).  

Inhibition of nitric oxide synthase (NOS) with NG-nitro-L-arginine methyl ester (L-NAME) 

(100 µmol / L) (Figure 4A and B) or endothelial denudation (Figure 4C and D) did not 

abolish the reduction in contractility in KO aortae and MA compared to WT. These results 

indicate that the impaired vascular contractility observed in KO animals was not due to an 

increase in endothelium-mediated relaxation. Abrogation of NO signaling with L-NAME led 

to ACh-induced contraction (16, 27, 42) in both WT and KO aortae which again was 

significantly smaller in aortae from KO animals compared to WT (Figure 4E, negative 

relaxation = contraction). In MA, L-NAME abrogated the differences in the relaxation 

response to ACh between KO and WT (Figure 4F). Endothelium-independent relaxation 

following treatment with the NO donor S-Nitroso-N-acetylpenicillamine (SNAP; 1 nmol / L – 

30 µmol / L) showed no difference in ACh sensitivity between WT and KO endothelium-

denuded aortae and MA (Figure 4G and H). EC50 values of all agonists in these series of 

experiments were unchanged between WT and KO animals (Table 1). 

 

SM22α
CaSR

∆flox/∆flox
 mice are hypotensive 

The impaired vascular contractility of KO mice suggested an effect of VSMC-CaSR deletion 

on blood pressure in vivo; and indeed, tail cuff measurements in adult male mice showed that 

KO animals exhibited a reduction in blood pressure (approximately 5% systolic, 9% diastolic 

and 7% mean arterial pressure, MAP) compared to the WT (Figure 5A-C). Longitudinal 
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radiotelemetry experiments confirmed this reduction in systolic and diastolic blood pressure 

and MAP. Notably, this reduction was only apparent during night-time, when the animals 

were active, but not during day-time when the animals were resting. Short-term L-NAME 

treatment (38) increased blood pressure in animals of both genotypes but did not abolish the 

hypotension of KO relative to WT mice (Figure 5D-F and Table 2). Pulse height was 

increased in KO animals compared to WT mice (Figure 5G), particularly following L-NAME 

treatment, owing to the bigger difference in diastolic than systolic pressures between the 

genotypes. Short-term dietary NaCl supplementation yielded no changes in systolic or 

diastolic blood pressure in either WT or KO animals (Table 2).  

 

SM22α
CaSR

∆flox/∆flox
 mice are bradycardic 

In addition to the impaired vascular reactivity that is associated with hypotension in the 

SM22α
CaSR

∆flox/∆flox
 mice, radiotelemetry experiments also revealed that heart rates of these 

animals were about 5 % (day-time) to 17% (night-time) below those of WT mice (Figure 6A 

and Table 2). Furthermore, during night-time, the positive first derivative of the blood 

pressure curve (dp/dt), an indirect measure of inotropy (36), was significantly higher in the 

KO compared to WT mice. Short-term L-NAME treatment, while decreasing heart rate in 

mice of both genotypes, did not affect the difference in heart rates between WT and KO 

animals nor did it influence dp/dt in these animals (Figure 6B and Table 2). A high salt diet 

led to a small reduction in heart rate of WT and KO animals during day-time and did not 

affect dp/dt (Table 2).  

 

SM22α
CaSR

∆flox/∆flox
 mice exhibit cardiac remodeling 

The observed bradycardia presented by the KO mice could be accounted for, at least in part, 

by direct CaSR ablation from cardiomyocytes as the SM22α promotor has been shown to 
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direct Cre expression transiently to the heart (30). This consideration, together with recent 

evidence suggesting that the CaSR plays a role in electromechanical coupling of 

cardiomyocytes (48), led us to investigate more thoroughly the cardiac phenotype of 

SM22α
CaSR

∆flox/∆flox
 mice. While there were no differences between hearts from WT and KO 

animals by superficial observation or any histomorphological changes seen by H&E staining 

(Figure 7A), KO animals showed a reduction in fibrosis when compared to age-matched WT 

controls (Figure 7B) (0.93 ± 0.08 vs. 2.09 ± 0.43 % fibrotic area, N = 9 (KO), 10 (WT), p < 

0.05, Student’s t-test with Welch’s correction). 

Cardiac cine-MRI showed that the long axes of WT and KO hearts of aged animals were 

comparable between genotypes in end-diastole but presented with a visible difference in end-

systole in hearts from 5 out of 11 investigated KO animals. In these hearts, complete closure 

of the apical left ventricular cavity (2
nd

 apical short-axis MRI slice) was seen, while it was 

still visible at the end-systole of the hearts of WT mice (Figure 7C, Video S1). These 

functional differences can be easily observed in morphological 3D reconstructions of the left 

ventricle endocardium (Figure 7D). These 5 hearts were thus termed “remodeled” and 

analyzed as a separate group. MRI analysis showed that left ventricular mass (Figure 7E), left 

ventricular end-diastolic volume (Figure 7F) and end end-diastolic volume (Figure 7G) and 

stroke volume (Figure 7H) were unaltered between WT and remodeled KO hearts. An 

observed decrease in end-systolic volume did not reach statistical significance. Ejection 

fraction (Figure 7I), end-diastolic remodeling index (Figure 7J, size of the ventricle vs. the 

end-diastolic volume) and wall thickening (Figure 7K) were increased in remodeled hearts 

from KO mice compared to WT hearts.  

To test more directly the hypothesis that direct CaSR ablation from cardiomyocytes was 

responsible for the observed bradycardia in the 
SM22α

CaSR
∆flox/∆flox

 mouse, we also 

investigated the base frequency of non-paced hearts from WT and KO mice ex vivo in the 
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absence of autonomic regulation in a retrogradely perfused Langendorff preparation (31). 

Isolated hearts from KO animals showed a significantly reduced basal heart rate compared to 

that measured in the hearts of WT animals (Figure 7L), suggesting that CaSR deletion from 

the heart has a direct impact on chronotropy. Pacemaker activity also occurs in the pulmonary 

veins, which contain cardiomyocyte-like pulmonary vein sleeve cells (PVCs). PVCs employ 

the same electrochemical coupling machinery as atrial cardiomyocytes (14), can act as 

pacemaker cells (12, 26, 57) and can be easily studied in ex vivo lung slice preparations as 

they are present in the murine lung. In PVCs from KO animals, there was a reduced rate of 

spontaneous activity, measured as changes in Ca
2+

i compared to WT mice (KO vs WT: 0.58 ± 

0.10 vs 1.00 ± 0.09 fold, N = 6, p < 0.05, Student’s t-test), suggesting that the bradycardia is 

an intrinsic feature of the KO animals. 



21 

 

Discussion 

Vascular phenotype 

SM22α
CaSR

∆flox/∆flox
 mice show changes in their cardiovascular system: the main findings of 

this study are that 
SM22α

CaSR
∆flox/∆flox

 mice exhibit impaired vasoconstriction, systemic 

hypotension and bradycardia. 

Ex vivo tension measurements of aortae and mesenteric arteries from WT and KO mice 

demonstrated impaired contractile responses to high K
+
, (a depolarising stimulus) and 

impaired maximum contractility in response to PE (GPCR-mediated). In addition, the potency 

of PE to contract KO blood vessels was also impaired. These findings indicate that the CaSR 

sensitizes the response of blood vessels to contractile stimuli. Importantly, no histological 

difference was found between blood vessels from WT and KO mice, indicating that changes 

in vessel morphology were not responsible for the observed changes in blood vessel 

contractility. Furthermore, the reduction in maximum contractility was independent of 

inhibition of NOS or endothelial denudation while vascular relaxation in response to an 

exogenous NO donor remained unchanged. In addition, inhibition of NOS signaling can 

unmask the effects of endothelium-derived contracting factors released from the endothelium 

upon stimulation that in the absence of NO can cause pronounced vasoconstriction  (16, 27, 

42). This contractile effect of ACh in the presence of L-NAME was reduced in KO compared 

to WT aortae, providing yet another indication that the impaired contractility of blood vessels 

lacking the VSMC CaSR is independent of the contractile stimulus. 

Despite the fact that the sensitivity to an NO donor was comparable in WT and KO vessels, 

the endothelium-dependent relaxation was differentially affected in MA and aortae. ACh 

evoked enhanced relaxation in KO aortae which may be explained by the aforementioned 

reduced contractile component of the ACh response. KO MAs, in contrast, exhibited a small 
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but significant suppression of the ACh-mediated relaxation that was absent when L-NAME 

was added. These findings suggest a reduced endothelium-derived NO signalling in MA, as 

induced by endothelial stimulation (e.g. ACh), while the sensitivity of VSMC to NO itself 

was unaffected in KO animals.  

In line with our results of genetic ablation, Loot and colleagues have recently found that 

pharmacological inhibition of the CaSR attenuated vascular contraction in response to PE and 

high K
+
 (34). The congruence of these results of pharmacological CaSR inhibition in wild 

type mice and CaSR ablation in genetically altered mice provides another line of evidence 

that the VSMC-CaSR is indeed directly responsible for the modulation of vascular tone, 

rather than possible off-target effects of calcilytic drugs (35) or unexpected side-effects of the 

genetic ablation. This contractility-enhancing effect of the CaSR is not limited to VSMC, 

since, using the same animal model as the one we have used for the current studies, we have 

recently reported that airways of KO mice showed a reduction in contractility in response to 

the muscarinic ACh receptor agonist methacholine when compared to WT mice (56), 

similarly to the observed reduction in blood vessel contractility in response to PE in this 

study. Finally, the observed effects in
 SM22α

CaSR
∆flox/∆flox

 mice were unlikely to be due to 

impaired SM22α function, as constitutive ablation of SM22α was shown to lead to increased 

MA vasoconstriction in response to an α1-adrenoceptor agonist (58). In the current study, the 

CaSR agonist, Ca
2+

o, induced vasorelaxation in WT and KO MA and KO aortae, likely due to 

stimulation of the endothelial CaSR (34, 54, 59). However, in WT aortae, we observed Ca
2+

o 

concentration-dependent vasoconstriction. These effects of increasing Ca
2+

o concentrations 

inducing vasoconstriction in WT aortae are consistent with previous findings by Ohanian and 

colleagues (40), who reported vasoconstriction in response to physiological Ca
2+

o 

concentrations in rat subcutaneous small arteries. These authors suggested that the contractile 

effect was not CaSR-mediated. Similary, Loot and colleagues have reported vascular 

contraction in response to rising concentrations of Ca
2+

o in endothelium denuded or L-NAME 
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treated mouse aortic rings (34) Here, we have demonstrated that the contracting component of 

th.e Ca
2+

o response was lost in KO aortae. Similarly, airways of WT mice have been shown to 

react with robust contraction to rising concentrations of the CaSR agonists, Ca
2+

o and 

spermine, and this contractile response was completely lost in airways from animals lacking 

the CaSR in smooth muscle cells (56). Moreover, results obtained by treating PE-

preconstricted aortae with the calcimimetic NPS-R-568 mimicked the results observed by 

using Ca
2+

o to modulate vascular tone. The calcimimetic-mediated contraction in WT aortae 

was endothelium independent, further corroborating a role for the VSMC CaSR in vessel 

contractility. Together, these results clearly support the idea that the CaSR mediates Ca
2+

o-

induced contractions in smooth muscle cells. Cultured VSMC of KO animals reacted with 

impaired Ca
2+

i mobilization to stimulation with both Ca
2+

o and K
+
, indicating Ca

2+
i-signalling 

as one mechanism of action by which the CaSR affects blood vessel tone. Together, these 

results demonstrate that the observed impaired vascular contractility in blood vessels of 

SM22α
CaSR

∆flox/∆flox
 mice, as shown by reduced responses to primary contractile stimuli, is an 

effect, which is independent of the endothelium and dependent on VSMC CaSR.  

Tail cuff and radiotelemetry measurements confirmed the hypotensive phenotype of 

SM22α
CaSR

∆flox/∆flox
 animals which was predicted from the ex vivo vessel tone studies. In both 

circumstances, we observed a significant reduction in diastolic blood pressure and MAP. This 

reduction was more apparent during the animals’ active than resting phase, suggesting that the 

modulating effect of the CaSR on blood pressure is dependent on sympathetic activity, again 

supporting the idea that the effects of the CaSR on blood vessel tone and blood pressure are 

dependent on the presence of other contractile, or activating, stimuli. A contribution of the 

cardiac phenotype of the animals, i.e. the reduction in heart rate, to the observed hypotension 

in 
SM22α

CaSR
∆flox/∆flox

 animals is likely, although the stronger reduction in diastolic than 

systolic blood pressure points to peripheral resistance being the principal cause of the 

hypotension in KO animals. 
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Acute L-NAME treatment did not abolish this difference in WT and KO mice’ diastolic blood 

pressure, mirroring the aforementioned ex vivo results on isolated blood vessels, where NOS-

inhibition or endothelial denudation did not abolish the impaired vascular contractility either. 

This rules out the possibility that, at least in the short-term, the difference in blood pressure 

between WT and KO mice might be NO-driven. Short-term exposure to a high salt-

supplemented diet has been shown to rescue the loss of angiotensin converting enzyme-

induced hypotension in mice of a similar background (9). However, the lack of any change in 

blood pressure in KO animals kept on a high salt diet here suggests that the kidney is not 

likely to be involved in causing the observed hypotension in our strain. 

Pulse height was increased in KO animals following L-NAME treatment. While elevated 

pulse height is recognized as being a feature of increased arterial stiffening, reduced blood 

vessel compliance is also accompanied by isolated systolic hypertension in humans and 

animals (15, 18), which clearly is not the case in KO animals. Indeed, the increased pulse 

height can be attributed solely to the greater reduction in diastolic than systolic blood pressure 

in KO animals. In KO animals, L-NAME treatment induced a larger increase in systolic blood 

pressure (and, therefore, pulse height) than diastolic blood pressure. It is known that the 

importance of endothelium-dependent NO signaling declines with the reduction of arterial 

size and plays a major role in aorta and other big arteries, while endothelium-dependent 

hyperpolarization plays a major role in smaller resistance arteries (49). Therefore, the 

observed increase in systolic blood pressure in KO mice could be ascribed to NO synthase 

inhibition having a greater effect in the large conduit arteries, than in resistance arteries (45). 

Furthermore, L-NAME administration in the drinking water led to a reduction in heart rate of 

KO animals which was comparable to that observed in WT animals. These results suggest the 

existence of an intact baroreflex response to the increase in peripheral resistance, or at least 

that the response of the cardiovascular system to systemic NO synthesis inhibition is not 

dependent on the VSMC-CaSR.  
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Collectively, the observations described herein support the hypothesis that the loss of the 

CaSR from VSMC leads to a reduction of vascular tone, manifesting in vivo as a reduction in 

diastolic blood pressure, which is dependent on the physical activity of the mice. The 

presence of both a cardiac as well as vascular phenotype in these animals suggests that the 

observed hypotensive phenotype is likely to be accounted for by a combination of CaSR 

ablation from both cardiac and vascular systems and further studies are required to dissect 

these effects in greater detail using cell-specific gene ablation studies in which Cre 

recombinase is driven by alternative promoters. 

It has long been established that the CaSR can translate even minute changes in [Ca
2+

]o into 

intracellular responses (6). These changes in extracellular [Ca
2+

]o can also be elicited by 

extrusion of [Ca
2+

]i – indeed, excitation and subsequent extrusion of [Ca
2+

]i into the 

intracellular space has been conclusively demonstrated to activate the CaSR on neighboring 

cells and elicit intracellular responses in a paracrine fashion, acting in a way as a “third 

messenger” (10, 23, 24, 29). On the basis of our observations in this study and the 

aforementioned considerations, we therefore propose a hypothesis of how the VSMC-CaSR 

and endothelial-CaSR could directly contribute to the maintenance of blood vessel tone 

(Figure 8). A contractile stimulus, e.g. via depolarization or α1-adrenoceptor agonists, leads 

to an increase in Ca
2+

i concentration in VSMC. Restoration of normal resting Ca
2+

i levels is 

achieved in part via extrusion of Ca
2+

i into the interstitium, where it is feasible that such 

localized increase in Ca
2+

o would activate the VSMC-CaSR in an auto-/paracrine fashion, thus 

causing potentiation of contraction. Loss of such a mechanism in the 
SM22α

CaSR
∆flox/∆flox

 mice 

could account for the observed reduction in VSMC contractility, thus leading to the observed 

in vivo hypotension. This role of the CaSR as modulator of VSMC contractility is further 

supported by the fact that, conversely, increased expression of the CaSR and an associated 

increase in [Ca
2+

]i have been reported in pulmonary arterial smooth muscle cells from patients 
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with pulmonary arterial hypertension and surrogate animal models (55) which is alleviated by  

pharmacological CaSR inhibition (20),  

 

Cardiac phenotype 

CaSR ablation from SM22α-positive tissues also leads to its deletion from the developing 

heart (30), which could account for the aforementioned bradycardia in KO mice. Therefore, 

direct loss of the CaSR from the heart could impact negatively on pacemaker frequency or 

intracellular coupling. Previously it has been demonstrated in ventricular cardiomyocytes that 

CaSR activation leads to increased Ca
2+

i signaling and increased cell shortening culminating 

in a positive inotropic effect and modification of their electromechanical coupling (48). 

Isolated ex vivo hearts recapitulated the reduction in heart rate observed by radiotelemetry in 

vivo. Indeed, isolated PVC from KO mice, which show similar electrophysiological hallmarks 

of cardiac pacemaker cells (12, 14, 26, 57), also exhibited reduced lower spontaneous activity 

than cells isolated from WT miceresults suggesting that the observed bradycardia in KO mice 

could be ascribed to decreased pacemaker activity. The observed cardiac remodelling, i.e. 

stronger mode of contraction, together with the increase in dp/dt, could thus be interpreted as 

compensatory response to the bradycardic and hypotensive phenotype. The reduction in 

fibrosis suggests that KO animals might be protected against the development of age-related 

cardiac fibrosis (2), maybe via a beneficial effect of their reduced heart rate (8) but could also 

be a direct consequence of CaSR deletion from the heart, as recently indicated in a rat model 

of cardiac hypertrophy (32). Further studies will be necessary to completely elucidate the role 

of the cardiac CaSR. 
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Conclusions 

Taken together, our studies highlight a physiological role for the CaSR in the cardiovascular 

system. In VSMC, CaSR-mediated regulation of contraction contributes to vessel 

contractility. Loss of this mechanism, likely together with direct cardiac effects, could account 

for the observed hypotension in 
SM22Α

CaSR
∆flox/∆flox

 mice. The net balance between the effects 

of the CaSR in smooth muscle (pro-contractile) and the endothelium (pro-relaxing) 

determines the influence of the vascular CaSR on vascular tone regulation. Furthermore, KO 

mice exhibit both in vivo and ex vivo bradycardia, linking the CaSR to direct modulation of 

cardiac function. The results of our present study thus implicate the CaSR directly in the local 

regulation of the cardiovascular system. 
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Table and figure legends 

Table 1. EC50 values from wire myography experiments detailed in figures 2 and 3 (see there 

for experimental conditions) which were fitted with sigmoidal concentration-response curves, 

with exception of [Ca
2+

]o CRC for WT aortas that could not be fitted with the sigmoidal 

concentration-response curve. Values presented as log(EC50) in mol / L ± SEM. * p < 0.05, 

extra sum-of-squares F-test. 

 

Table 2. Physiological parameters from longitudinal radiotelemetry recordings (c.f. Figures 4 

and 5) from WT and KO mice kept on control drinking water vs. drinking water supplemented 

with L-NAME (0.5 g / L) and on control diet vs. a high salt diet (4 % NaCl-supplemented). 

Mean ± SEM, N = 5, * / + / # p < 0.05, ** / ++ / ## p < 0.01, *** / +++ / ### p < 0.001, two-

way ANOVA with Holm-Sidak post-test, * WT vs. KO (post-test); + WT vs. KO (ANOVA); 

# control vs. L-NAME / high salt (ANOVA). 

 

Figure 1. Characterization of the 
SM22α

CaSR
∆flox/∆flox

 mouse. (A) Typical genotyping of WT 

and KO mice. (B) Representative histological sections of aortae from WT and KO animals 

(N=4), scale bars = 100 µm. (C) Western blot analysis of CaSR expression with Ponceau 

staining as loading control (top and middle panel) and α-smooth muscle actin (α-SM actin; 

bottom panel) expression in endothelium denuded and adventitia-removed, pooled aortae N = 

18 (WT), 17 (KO) mice (D) Relative mRNA expression of the full-length CaSR (exon 6-7 vs. 

WT) in endothelium-denuded, adventitia-removed aortae of WT and KO animals, mean (line) 

± 1SD (box), N = 4, ** p < 0.01, Student’s t-test (performed on ΔΔCt values vs. WT). (E) 

Ca
2+

i concentration ([Ca
2+

]i) in freshly isolated WT and KO VSMC exposed to increasing 

[Ca
2+

]o (0.1-5 mmol / L), reported as fold-changes from baseline values. Curves were fitted as 
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hyperbolic. Mean ± SEM, N = 3 (WT), 4-5 (KO), ** p < 0.01, *** p < 0.001, two-way 

ANOVA with Holm-Sidak post-test and, +++ p < 0.001, extra sum-of-squares F-test for 

curve comparison. 

 

Figure 2. Blood vessel contractility of 
SM22α

CaSR
∆flox/∆flox

 mice is impaired. Aorta (WT, 

N=33; KO, N=30) and mesenteric artery (MA) responses to (A, B) high K
+
 (KCl, 40 mmol / 

L; WT, N=33; KO, N=34), (C, D) phenylephrine (PE, 1 nmol / L – 30 µmol / L), (E, F) 

acetylcholine (ACh, 1 nmol / L – 30 µmol / L, PE-preconstricted to ~ 60% max) and (G, H) 

Ca
2+

o (1-5 mmol / L, PE-preconstricted to ~ 60% max). Results were normalized to the 

averaged maximum control response in WT. Curves were fitted as sigmoidal concentration-

response (for PE and ACh) or third-order polynomial (for Ca
2+

). Mean ± SEM, * p < 0.05, ** 

p < 0.01, *** p < 0.001, Student’s t-test, or two-way ANOVA with Holm-Sidak post-test, 

and ++ p < 0.01, +++ p < 0.001, extra sum-of-squares F-test for curve comparison. 

 

Figure 4. Role of NO in endothelium-dependent relaxation in WT and KO blood vessels. 

Aorta and mesenteric artery (MA) responses to phenylephrine (PE, 1 nmol / L – 30 µmol / L) 

(A, B) in the presence of the NOS inhibitor L-NAME (100 µmol / L) or (C, D) endothelium 

denuded (-E). (E, F) Aorta and MA responses to ACh (1 nmol / L - 30 µmol / L) in the 

presence of L-NAME (100 µmol / L). (G, H) Relaxation of endothelium-denuded (-E) aortae 

and MA from WT and KO mice to increasing concentrations of the NO donor, SNAP. Curves 

were fitted as sigmoidal concentration-response. Mean ± SEM, * p < 0.05, ** p < 0.01, *** p 

< 0.001, two-way ANOVA with Holm-Sidak post-test, and +++ p < 0.001, extra sum-of-

squares F-test for curve comparison. 
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Figure 3. Pharmacological activation of the CaSR in WT and KO blood vessels. Responses to 

NPS R-568 (10 nmol / L – 10 µmol / L) in intact (A) or endothelium denuded (B) aortae. 

Curves were fitted as sigmoidal concentration-response. Mean ± SEM, +++ p < 0.001, two-

way ANOVA. 

 

Figure 5. Tail cuff and radiotelemetry blood pressure measurements of WT and KO animals. 

(A-C): tail cuff measurements of (A) systolic, (B) diastolic and (C) mean arterial pressures 

(MAP) of WT and KO mice. Mean ± SEM, N = 20 (WT), 35 (KO), * p < 0.05, Student’s t-

test. (D-G): Longitudinal radiotelemetry measurements of (D) systolic and (E) diastolic blood 

pressure, (F) MAP and (G) pulse height (PH) of WT and KO mice in the presence or absence 

of L-NAME treatment. Mean ± SEM, N = 5 (WT and KO). 

 

Figure 6. Longitudinal radiotelemetry measurements of (A) heart rate and (B) the positive 

first derivative of the blood pressure curve (dp/dt) of WT and KO mice in the presence or 

absence of L-NAME treatment. Mean ± SEM, N = 5 (WT and KO). 

 

Figure 7. Cardiac phenotype of WT and KO animals. (A) Haematoxylin and eosin staining 

and (B) Picrosirius red staining (right panels) of heart sections showing reduced occurrence of 

fibrosis in KO hearts compared to WT. (C) Representative long-axis MRI scans and (D) 3D 

reconstructions of left ventricles of WT and remodeled KO mice (5 out of 11 investigated) in 

end-diastole and end-systole (lower panels). (E) Left ventricular mass (LVM), (F) left 

ventricular end diastolic (EDV), (G) end systolic (ESV), (H) and stroke volume (SV), (I) 

ejection fraction (EF), (J) diastolic remodeling index (DRI) and (K) wall-thickening (end 

systolic minus end diastolic wall thickness) of remodeled hearts. N = 5, ** p < 0.01, * p < 

0.05, mean ± SEM, Student’s t-test. (L) Base intrinsic heart rate (beats per min, bpm) of ex 
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vivo retrograde perfused hearts. N = 9 (WT), 10 (KO), * p < 0.05, mean ± SEM, Student’s t-

test.  

 

Figure 8. Hypothetical mechanism for the CaSR mediated auto-/paracrine amplification of 

contraction in vascular smooth muscle cells (VSMC). In VSMC, adrenoceptor (AR) agonists 

(e.g. PE) increase Ca
2+

i concentration, causing blood vessel constriction. Ca
2+

i is then 

extruded from the cell into the interstitium. Locally accumulating Ca
2+

o activates the CaSR on 

the same and neighboring VSMC, thus amplifying and synchronizing VSMC contractility. 

Ca
2+

i is also extruded into the myo-endothelial space (MES) where it can activate the CaSR 

on endothelial cell (EC) projections (EP), which penetrate the internal elastic lamina (EL). 

Activation of the endothelial CaSR leads to VSMC relaxation via a mechanism likely 

involving NO synthesis and endothelium-derived hyperpolarizations (EDH), in a fashion 

similar to dilating agents like acetylcholine (ACh) acting on muscarinic receptors (MR). 
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Legends for supplemental videos 

Video S1 

Characterization of the cardiac phenotype of 
SM22α

CaSR
∆flox/∆flox

 mice. Cardiac cine MRI 

sequence of one heartbeat from three representative WT and three remodeled (5 out of 11 

investigated hearts) KO hearts shown in long axis. 

 

Video S2 

Characterization of the cardiac phenotype of 
SM22α

CaSR
∆flox/∆flox

 mice. Representative video of 

one heartbeat of a WT mouse heart shown as 3D-reconstruction of the left ventricular 

endocardium (red) intersected with short and long axis image planes (black and white) from 

cardiac cine MRI.  

 

Video S3 

Characterization of the cardiac phenotype of 
SM22α

CaSR
∆flox/∆flox

 mice. The left ventricle of 

remodeled hearts from KO mice exhibits full apical closure. Representative video of one 

heartbeat of a remodeled (5 out of 11 investigated hearts) KO mouse heart shown as 3D-

reconstruction of the left ventricular endocardium (red) intersected with short and long axis 

image planes (black and white) from cardiac cine MRI. 
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Tables 

Table 1 

 

Aorta log(EC50) ± SEM (mol / L)  

 
Genotype  

Treatment WT  KO  

PE -6,871 ± 0,083 (N=19) -6,534 ± 0,093 (N=18) * 

PE + L-NAME -7,450 ± 0,106 (N=6) -7,281 ± 0,145 (N=6) ns 

PE - E -7,491 ± 0,164 (N=9) -7,353 ± 0,303 (N=8) ns 

ACh -7,469 ± 0,095 (N=14) -7,475 ± 0,067 (N=15) ns 

ACh + L-NAME -6,150 ± 0,142 (N=4) -6,146 ± 0,263 (N=5) ns 

SNAP -6,892 ± 0,167 (N=5) -6,886 ± 0,279 (N=5) ns 

Calcium NA -2,636 ± 0,081 (N=9)  

   
 

MA log(EC50) ± SEM (mol / L)  

 
Genotype  

Treatment WT KO  

PE -5,875 ± 0,080 (N=16) -5,702 ± 0,070 (N=16) * 

PE + L-NAME -6,047 ± 0,070 (N=11) -5,928 ± 0,095 (N=9) ns 

PE - E -6,352 ± 0,111 (N=10) -6,263 ± 0,120 (N=11) ns 

ACh -7.073  ± 0.056 (N=15)  -6.898 ± 0.072 (N=15)  ns 

ACh + L-NAME -6,374 ± 0,161 (N=9) -6,148 ± 0,182 (N=7) ns 

SNAP -6,717 ± 0,134 (N=6) -6,646 ± 0,071 (N=6) ns 

Calcium -2.832 ± 0,045 (N=10) -2.782 ± 0,046 (N=9) ns 
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Table 2 

 

Night-time  WT Control KO    WT L-NAME KO     

Systolic (mm Hg) 127.3 ± 4.9 112.1 ± 2.6 * 138.7 ± 5.8 126.7 ± 3.1 ++ ## 

Diastolic (mm Hg) 101.4 ± 4.9 81.3 ± 2.2 ** 106.7 ± 4.4 88.9 ± 3.9 ** +++ 

MAP (mm Hg) 114.6 ± 4.7 97.3 ± 2.4 * 121.8 ± 4.4 107.1 ± 3.4 * +++ # 

PH (mm Hg) 25.8 ± 2.5 30.8 ± 1.5 32.0 ± 3.4 37.8 ± 1.9 + # 

HR (bpm) 621.1 ± 19.7 515.7 ± 16.1 ** 489.3 ± 29.6 409.1 ± 11.4 * +++ ### 

dp/dt (mm Hg / s) 1934.9 ± 162.3 2437.2 ± 244.3 1884.5 ± 186.8 2436.9 ± 236.2 + 

Day-time  WT Control KO    WT L-NAME KO     

Systolic (mm Hg) 108.6 ± 2.3 106.6 ± 2.3  123.9 ± 3.7 118.9 ± 2.5   ### 

Diastolic (mm Hg) 82.7 ± 1.5 76.8 ± 3.4  95.1 ± 5.6 80.3 ± 3.6 * +  

MAP (mm Hg) 96.0 ± 1.60 92.01 ± 2.8  109.1 ± 4.1 98.9 ± 3.0  + ## 

PH (mm Hg) 26.0 ± 2.0 29.9 ± 1.9  28.8 ± 4.4 38.6 ± 3.0  +  

HR (bpm) 482.8 ± 23.9 459.7 ± 20.0  450.4 ± 23.5 372.2 ± 23.5  + # 

dp/dt (mm Hg / s) 2008.4 ± 95.1 2399.2 ± 259.7  1919.6 ± 279.8 2647.9 ± 261.3  +  

                

Night-time  WT Control KO    WT High salt KO     

Systolic (mm Hg) 133.5 ± 1.8 126.6 ± 4.4 133.1 ± 4.5 123.5 ± 3.3 + 

Diastolic (mm Hg) 104.1 ± 1.6 92.4 ± 3.8 ** 103.8 ± 1.0 90.5 ± 3.3 ** +++ 

MAP (mm Hg) 119.0 ± 1.3 109.7 ± 4.2 * 118.1 ± 2.1 107.1 ± 3.2 * ++ 

PH (mm Hg) 29.4 ± 2.0 34.2 ± 1.6 29.3 ± 3.9 33.0 ± 1.1 

HR (bpm) 638.9 ± 2.3 545.3 ± 22.8 ** 610.5 ± 19.8 515.2 ± 24.6 ** +++ 

dp/dt (mm Hg / s) 2412.1 ± 109.4 2628.5 ± 300.3 2041.8 ± 104.6 2307.4 ± 231.4 

Day-time  WT Control KO    WT High salt KO     

Systolic (mm Hg) 116.04 ± 3.2 119.4 ± 3.9  114.0 ± 2.6 113.6 ± 1.9    

Diastolic (mm Hg) 87.15 ± 1.6 84.7 ± 4.1  85.6 ± 1.4 78.6 ± 2.3    

MAP (mm Hg) 101.65 ± 2.4 102.0 ± 4.1  99.7 ± 1.5 95.9 ± 1.9    

PH (mm Hg) 28.88 ± 1.8 34.7 ± 2.3  28.5 ± 2.5 35.0 ± 1.9  +  

HR (bpm) 489.0 ± 13.6 457.7 ± 32.8  469.8 ± 14.0 382.9 ± 9.1 * ++ # 

dp/dt (mm Hg / s) 2181.7 ± 96.1 2451.4 ± 245.8  2197.5 ± 127.3 2293.6 ± 186.3    
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Figures 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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