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Abstract	

The	Permo-Triassic	Cooper	Basin	is	one	of	the	largest	intracratonic	basins	in	Australia,	

covering	approximately	130,000	km2	 in	South	Australia	and	Queensland.	The	basin	 is	one	of	

Australia’s	 major	 onshore	 hydrocarbon	 province	 and	 most	 prospective	 region	 for	 both	

conventional	and	unconventional	hydrocarbon	exploration.	Organic	petrography	and	thermal	

maturity	 of	 two	 Permian	 lacustrine	 shale	 units	 in	 the	 Cooper	 Basin,	 the	 Murteree	 and	

Roseneath	 shales,	 were	 investigated	 on	 21	 wells	 with	 the	 objective	 of	 evaluating	 the	 gas	

generating	 potential	 of	 these	 units.	 Vitrinite	 reflectance	 values	 for	 the	 Murteree	 and	

Roseneath	 shales	 range	 between	 1.17%	 and	 2.00%.	 Macerals	 show	 systematic	 changes	 in	

properties	relative	to	maturity	rank.	A	range	of	maceral	compositions,	dominated	by	vitrinite	

group	macerals,	 are	present	 in	both	units,	which	vary	between	 rich	and	very	 rich	 in	organic	

content.	Rock-Eval	data	suggest	fair	to	very	good	kerogen	quality	(of	kerogen	types	II,	III,	and	IV	

ranging	from	immature	to	mature)	and	 imply	a	mostly	gas-prone	generation	potential	 in	the	

shales.		

Keywords:	 Shale	 gas,	 Hydrocarbon	 prospectivity,	 Roseneath	 Shale,	Murteree	 Shale,	 Permian,	

Cooper	Basin.	
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1	Introduction	

The	Cooper	Basin	is	a	mature	petroleum	province	with	oil/gas	production	since	1963.	

However,	 relative	 to	 its	 size	 and	 poor	 exploration	 coverage,	 large	 potentials	 remain	 for	

undiscovered	 stratigraphic	 and	 sub-unconformity	 traps	 as	well	 as	 unconventional	 reservoirs	

and	has	demonstrated	by	 renewed	 interest	 in	 the	past	 five	years.	Pinch	out	plays	along	 the	

margins	 of	 the	 Cooper	 Basin	 have	 been	 tested	 with	 commercial	 success	 (PIRSA,	 2007)	 and	

more	recently	unconventional	shale	gas	potential	has	been	investigated	by	several	exploration	

companies	 (PIRSA,	 2012).	 	 The	 focus	 of	 this	 investigation	 are	 the	 Roseneath,	 and	Murteree	

Shales	that	are	typically	considered	to	present	the	most	advanced	unconventional	gas	plays	in	

Australia	 (PIRSA,	2012).	 Indeed,	shale	gas	reservoirs	 in	the	basin	are	thought	to	be	the	main	

source	for	conventional	gas	and	oil	accumulations	(CSIRO,	2012).		However,	proposed	shale	gas	

plays	 in	 both	 formations	 and	 other	 prospective	 units	 across	 the	 basin	 are	 still	 very	 poorly	

evaluated	and	have	been	only	generally	characterized	as	fine-grained,	low	permeability	facies	

that	vary	widely	 in	their	reported	reservoir	characteristics	(Wüst	et	al.,	2014).	 	Several	shale	

gas	 reservoir	wells	 in	 the	basin	are	currently	 commercially	developed	by	different	operators	

making	use	of	extensive	midstream	infrastructure	already	in	place.	One	critical	aspect	of	oil/gas	

exploration	across	the	basin	is	understanding	organic	facies	distribution,	which	is	poorly	known	

in	 this	study,	vitrinite	reflectance	 (VR)	was	 investigated	on	65	samples	 from	wells	across	 the	

Cooper	Basin	(with	target	zones	of	both	Roseneath	and	Murteree	shales).		Thirty-five	of	these	

samples	were	also	analysed	for	H/C	ratios	of	kerogen	and	pyrolysis	Tmax	 including	spatial	and	

stratigraphic	 variations	 in	 TOC.	 The	 primary	 goal	 of	 this	 study	 is	 to	 better	 understand	 the	

thermal	maturity	and	impact	of	changes	in	H/C	ratios	on	the	hydrocarbon	potential	of	organic	

matter	in	the	Roseneath	and	Murteree	shales	across	the	Cooper	Basin.	
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2	Geological	setting	of	the	Cooper	Basin	

The	Cooper	Basin	is	an	intracratonic	rift	basin	of	Permian	to	Triassic	age	that	extends	

from	the	northeastern	corner	of	South	Australia	 into	southwestern	Queensland.	 It	covers	an	

area	of	approximately	130,000	km2,	of	which	~35,000	km2	are	 in	NE	South	Australia,	where	

most	exploration	has	focused.	Three	major	troughs	(Patchawarra,	Nappamerri,	and	Tenappera)	

are	 separated	 by	 structural	 ridges	 (Gidgealpa,	 Merrimelia,	 Innaminka,	 GMI	 and	 Murteree)	

associated	 with	 the	 reactivation	 of	 NW-directed	 thrust	 faults	 in	 the	 underlying	

Neoproterozoic–Ordovician	Warburton	Basin	(Wopfner,1985).	 In	addition	to	the	sedimentary	

deposits	of	the	Warburton	Basin,	the	base	of	the	Cooper	Basin	is	underlain	in	part	by	younger,	

intrusive	granitoids	 (Klemme,	1980;	Radke	et	al.,	2012).	Overlying	and	extending	beyond	the	

Cooper	Basin	are	Jurassic-Cretaceous	sequences	of	the	Eromanga	Basin.		

The	basal	sedimentary	unit	 in	the	Cooper	Basin	is	the	Merrimelia	Formation,	which	is	

considered	 the	 economic	 basement	 for	 hydrocarbon	 exploration	 (Williams	 &	 Wild,	 1984;	

Williams	et	al.,	1985).	The	Merrimelia	Formation	is	late	Carboniferous	to	early	Permian	(Price	

et	al.,	1985;	Price,	1996)	and	consists	of	conglomerates,	sandstones	and	shales	deposited	in	a	

glacial	paleoenvironment	(Williams	&	Wild,	1984)	(Fig.	1).	The	overlying	Tirrawarra	Sandstone	

is	 characterized	 by	 thick,	 multi-story	 channel	 sandstones	 with	 distinctive	 quartzose	

compositions	(Kapel,	1972;	Gostin,	1973;	Thorton,	1979).	The	Patchawarra	Formation	succeeds	

this	unit	and	is	considered	to	be	the	thickest	unit	in	the	Cooper	Basin	although	it	shows	great	

lateral	thickness	variation	(Gatehouse,	1972).	It	is	thickest	in	the	Nappamerri	and	Patchawarra	

troughs	 and	 thins	 by	 onlap	 onto	 the	 crests	 of	 intrabasinal	 ridges	 and	 at	 the	 basin	margins	

(Battersby,	1977).	The	Patchawarra	Formation	represents	an	interbedded	succession	of	minor	

channel	 lag	 conglomerates	 and	 massive,	 cross-bedded	 and	 laminated	 sandstones	 of	 fluvial	
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origin,	along	with	laminated	siltstones,	shales,	and	coals	that	formed	in	abandoned	channels,	

shallow	 lakes	 and	 peat	 mires.	 The	 overlying	 Murteree,	 Epsilon,	 Roseneath	 	 and	 Daralingie	

formations	record	alternating	lacustrine	and	lower	delta	plain	environments,	consisting	mainly	

of	 interbedded	 fluvial-deltaic	 sandstones,	 shales,	 siltstones	 and	 coals	 (Kapel,	 1972;	 Gostin,	

1973;Thorton,	1979).			

The	Early	Permian	Murteree	Shale	(Price,	1996)	is	widespread	across	the	Cooper	Basin	

in	both	 South	Australia	 and	Queensland	and	was	defined	by	Gatehouse	 (1972)	 as	 the	 shale	

interval	between	the	sandstone-dominated	Patchawarra	and	Epsilon	formations.	It	consists	of	

black	 to	 dark	 gray	 brown	 argillaceous	 shales,	 siltstones	 and	 fine-grained	 sandstones,	 which	

become	 coarser	 grained	 towards	 the	 southern	 part	 of	 the	 basin.	 	 These	 organic-rich,	

carbonaceous	siltstones	with	abundant	pyrite	and	muscovite	represent	an	important	potential	

source	rock	in	the	Basin.	The	type	section	lies	between	1922.9	–	1970.8	m	in	the	Murteree	1	

well	 (Latitude	 280	 23’	 48.3’’S,	 Longitude	 1400	 34’	 15.3’’E;	 (Gatehouse,	 1972).	 It	 is	 relatively	

uniform	in	thickness,	averaging	~50	m	but	has	a	maximum	thickness	of	86	m	in	the	Nappameri	

Trough.	 It	 thins	 to	 the	 north,	 where	 a	 maximum	 thickness	 of	 35	 m	 is	 developed	 in	 the	

Patchawarra	 Trough.	 It	 is	 absent	 over	 the	 crests	 of	 structural	 ridges	 (Boucher,	 2000).	 A	

relatively	deep	lacustrine	depositional	environment	has	been	interpreted	for	the	formation,	in	

part	based	on	the	rarity	of	wave	ripples	and	other	evidence	of	storm	reworking	as	would	be	

expected	for	a	shallow	lake	system	(Gravestock	et	al.,	1995).	

The	Roseneath	Shale	was	defined	by	Gatehouse	(1972)	as	the	suite	of	shales	and	minor	

siltstones	that	conformably	overlie	the	Epsilon	Formation.	The	unit	was	originally	included	as	

one	of	 three	units	 in	 the	Moomba	Formation	by	Kapel	 (1972).	Gatehouse	(1972)	raised	 it	 to	

formation	 status	 with	 a	 type	 section	 between	 1956.8	 –	 2024.5	m	 in	 the	 Roseneath	 1	 well	
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(latitude	28°10.10"S,	longitude	141°	14’’E).	The	Roseneath	Shale	is	composed	of	light	to	dark	

brown-grey	or	olive-grey	 siltstone,	 and	 shale	with	minor	 fine-grained	pyrite	 and	pale	brown	

sandstone	interbeds.	It	occurs	across	the	central	Cooper	Basin,	but	has	been	eroded	from	the	

Dunoon	 and	 Murteree	 ridges	 and	 crestal	 areas	 of	 other	 structural	 highs	 during	 late	 Early	

Permian	uplift.	The	Roseneath	Shale	is	not	as	extensive	as	the	Murteree	Shale.	It	conformably	

overlies	and	intertongues	with	the	Epsilon	Formation	and	is	overlain	by	and	also	intertongues	

with	the	Daralingie	Formation.	Where	the	Daralingie	Formation	has	been	removed	by	erosion,	

the	Roseneath	Shale	is	unconformably	overlain	by	the	Toolachee	Formation.	The	unit	thickens	

into	the	Nappamerri	and	Tenappera	Troughs	and	reaches	a	maximum	thickness	of	105	m	in	the	

Strathmount	1	well	 (Boucher,	2000).	 It	 is	 considered	 to	be	Early	Permian	 (Kungurian)	 in	age	

(Price	 et	 al.,	 1996).	 A	 lacustrine	 environment	 of	 deposition,	 similar	 to	 that	 of	 the	Murteree	

Shale,	is	inferred	for	the	Roseneath	Shale	(Stuart,	1976;	Thornton,	1979).	Variations	between	

massive	 to	 finely	 laminated	 intervals	with	minor	 cross-lamination	 and	wave	 ripples,	 suggest	

storm	 reworking,	 and	 flame	 structures	 and	 slump	 folds	 indicate	 slope	 instability.	 The	unit	 is	

inferred	 to	 have	 been	 deposited	 in	 a	 shallower	 lacustrine	 environment	 than	 the	Murteree	

Shale	(Stuart,	1976;	Thornton,	1979).	

3		Petroleum	geology	of	the	Cooper	Basin	

The	 Cooper	 Basin	 has	 produced	 conventional	 oil	 and	 gas	 for	 many	 decades	 from	

sandstone	 reservoirs,	 particularly	 in	 the	 Tirrawara	 Sandstone,	 which	 was	 identified	 as	 a	

significant	hydrocarbon	source	in	the	early	phase	of	exploration.	Producing	gas	and	oil	fields	in	

the	 basin	 are	 primarily	 related	 to	 broad	 arches	 and	 folds	 as	 both	 crestal	 and	 non-crestal	

hydrocarbon	 accumulations	 (Mott,	 1952).	 Multiple	 oil	 and	 gas	 pools	 are	 stacked	 in	 coaxial	

Permian	and	Mesozoic	structures,	from	as	low	as	the	Tirrawarra	Sandstone	to	as	high	as	the	
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Murta	Formation		(in	the	overlying	Eromanga	Basin	succession)	(PIRSA,	1998;	DMITRE,	2012).	

Locally,	 Permian	 oil	 has	 also	 migrated	 downwards	 into	 the	 underlying	 Warburton	 Basin	

reservoirs	 on	 the	 basin	 margin	 and	 Permian	 gas	 has	 migrated	 into	 a	 fractured	 Ordovician	

reservoir	fringing	the	Allungu	Trough.	Anticlinal	and	faulted	anticlinal	traps	have	been	relied	on	

as	proven	exploration	 targets,	but	potential	 remains	high	 for	discoveries	 in	stratigraphic	and	

sub-unconformity	 traps,	 especially	 where	 Permian	 strata	 are	 truncated	 by	 strata	 of	 the	

overlying	 Eromanga	Basin	 succession.	 Economic	 oil	 and	 gas	 reservoirs	 are	 also	 found	 in	 the	

Nappamerri	 Group,	 which	 is	 paradoxically	 regarded	 as	 a	 regional	 seal	 to	 the	 Cooper	 Basin	

(Geoscience,	 2000;	 DMITRE,	 2012).	 The	 Early	 to	 Middle	 Triassic	 Nappamerri	 Group	 is	 the	

uppermost	succession	in	the	Cooper	Basin,	and	consists	of	interbedded	shales,	siltstones	and	

sandstones	 interpreted	 to	 represent	 fluvial	 depositional	 environments	 associated	 with	 arid	

climatic	conditions	(Papalia,	1969;	Price,	1985;	Youngs	and	Boothby,	1985).	

Multi-zone,	 high-sinuosity,	 fluvial	 sandstones	 form	poor	 to	 good	quality	 reservoirs	 in	

the	basin.	The	main	gas	reservoirs	occur	within	the	Patchawarra	Formation	(Gatehouse,	1972;	

Morton	&	Gatehouse,	1985).	Shoreface	and	delta	distributary	sandstones	of	 the	Epsilon	and	

Daralingie	 formations	are	also	 important	oil	 reservoirs.	Oil	 is	 produced	principally	 from	 low-

sinuosity	 fluvial	 sand	 bodies	 within	 the	 Tirrawarra	 Sandstone	 (Kapel,	 1972;	 Williams	 et	 al.,	

1984).	 Towards	 the	margin	 of	 the	 Cooper	 Basin,	 oil	 is	 also	 produced	 from	 the	 Patchawarra	

Formation	and	from	fluvial	channel	sandstones	in	the	Merrimelia	Formation	in	the	Malgoona	

field.	Intraformational	shale	and	coal	form	local	seals	in	the	major	reservoir	units.	Beneath	the	

Daralingie	 unconformity	 the	 Roseneath	 and	 Murteree	 shales	 form	 two	 important	 Early	

Permian	regional	seals	(Gatehouse,	1972).	The	Roseneath	Shale	is	the	top	seal	of	the	Epsilon	
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Formation,	and	the	Murteree	Shale	seals	the	Patchawarra	Formation.	A	younger	regional	seal	

is	provided	by	the	Triassic	Arrabury	Formation.	

4		Samples	and	methods	

Sixty-five	samples	were	selected	from	both	cuttings	and	core	material	of	the	Roseneath	

and	Murteree	 shales	 in	 various	 exploration	wells,	with	 sampling	 in	 the	 following	 areas:	 the	

Patchawarra	Trough,	Nappameri	Trough,	Allunga	Trough	and	Tenappera	Trough.	 	Wells	were	

also	 selected	 to	 range	 across	 the	 South	 Australian	 and	 Queensland	 portions	 of	 the	 Cooper	

Basin.	 All	 sampling	 was	 undertaken	 at	 Department	 of	 Manufacturing,	 Innovation,	 Trade,	

Resources	 and	 Energy	 (DIMITRE)	 South	Australia	 and	Department	 of	Natural	 Resources	 and	

Mines,	Queensland	core	library	facilities.		

Maceral	analyses	used	reflected	light	and	where	necessary,	reflected	fluorescent	light	

with	a	10x	ocular	and	50x	oil	immersion	objective.	At	least	500	points	on	each	VR	sample	were	

counted	using	mechanical	stage	steps	and	a	point	counter.	All	counting	included	maceral,	sub	

maceral	 and	 mineral	 matter.	 The	 results	 are	 expressed	 in	 volume	 percentage	 of	 each	

component	(vol	%)	 for	V	(Vitrinite),	L	 (Liptinite),	and	 I	 (Inertinte)	 (see	 ICCP,	1998;	 ICCP,	2001	

and	 Taylor	 et	 al.,	 1998)	 for	 detailed	 procedures	 of	 maceral	 analysis).	 Random	 VR	

measurements	were	made	by	calibrating	against	two	sets	of	reference	standards	(Gadolinium-	

Gallium-Granat	 0.	 91-59,	 R	 546	 nm,	 Oil=1.674%,	 and	 Glass,	 R	 546,	 oil=0.576%)	 using	

monochromatic	 (546)	 non-polarized	 light	 in	 conjunction	 with	 a	 10x	 ocular	 and	 40x	 oil	

immersion	 objective.	 The	 reflectance	 measurements	 were	 carried	 out	 mostly	 on	 vitrinite,	

although	other	macerals	were	used	when	vitrinite	was	absent.	Reflectance	 is	mainly	 carried	

out	on	solid/	bitumen	if	available	or	fluorescing	material	like	spore	etc.	
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Organic	matter	 in	 these	 samples	 occurs	 as	 a	 complex	mixture.	 The	 identification	 of	

indigenous	vitrinite	populations	is	based	upon	petrographical	observations	and	the	distribution	

of	 reflectance	 data.	 The	 use	 of	 interpretive	 step	 to	 determine	 the	 indigenous	 vitrinite	

population	can	lead	to	different	results	when	compared	to	whole	rock	analyses.		

A	source	rock	analyzer	(SRA)	was	used	to	perform	pyrolysis	as	described	by	Espitalie	et	

al.	 (1977,	1986),	Peter	 (1986),	and	Riedeger	 (1991).	This	method	permits	rapid	evaluation	of	

the	organic	matter	type	and	the	thermal	maturity	of	the	organic	matter.	The	pyrolysis	method	

is	based	on	steady	heating	of	rock	samples	so	that	hydrocarbon	production	is	monitored	as	a	

function	 of	 temperature.	 Rock-Eval	 pyrolysis	 values	 are	 presented	 in	 Appendix-1,	 which	

includes	 measures	 at	 Tmax,	 Production	 Index	 (PI),	 TOC	 (total	 organic	 carbon),	 HI	 (hydrogen	

index),	 OI	 (oxygen	 index)	 and	 S1	 (the	 free	 hydrocarbons	 present	 in	 the	 sample	 before	 the	

analysis),	 S2	 (the	 volume	 of	 the	 hydrocarbon	 that	 formed	 during	 thermal	 pyrolysis	 of	 the	

sample),	 S3	 (the	 CO2	 yield	 during	 thermal	 breakdown	 of	 kerogen),	 S4	 (the	 residual	 carbon	

content	 of	 the	 sample).	 All	 these	 values	 are	 indicative	 of	 the	maturity	 level	 of	 the	 organic	

matter	and	a	number	of	hydrocarbons	already	produced,	or	that	could	be	produced	from	the	

rock	samples.	Tmax	represents	the	temperature	at	which	the	maximum	amount	of	hydrocarbon	

is	 generated	 from	 kerogen	 by	 heating.	 	 The	 measure	 does	 not	 represent	 the	 actual	 burial	

temperature	of	the	rock,	but	rather	a	relative	estimate	of	thermal	maturity.	If	the	rock	has	not	

been	significantly	altered,	it	will	produce	free	hydrocarbons	when	heated	during	pyrolysis.	

5		Results	and	interpretation	

5.1	 Maceral	analysis	of	the	Roseneath	Shale	
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Inertodetrinite	is	widely	distributed	in	the	Roseneath	Shale,	as	well	as	in	the	Murteree	

Shale,	 but	 vitrinite	 is	 the	 main	 maceral	 in	 both	 units,	 consisting	 of	 collotelinite	 and	

vitrodetrinite.	Inertinite	is	the	second	most	common	maceral	in	terms	of	abundance,	consisting	

of	mainly	inertodetrinite.	Liptinite,	in	the	form	of	liptodetrinite,	is	a	minor	component	of	both	

shales.	Organic	matter	is	mainly	coaly	in	nature	and	derived	from	a	variety	of	different	sources	

including	 lipid-rich	 phytoplankton	 and	 terrigenous	 humic	 organic	matter.	 Sample	 V-1423	 of	

Roseneath	 Shale	 at	 depth	 2127m	 to	 2133m	 in	 the	Munkarie-02	 well	 contains	 telalginite,	 a	

structured	organic	matter	 (alginite)	 that	 is	 composed	of	 large	discrete	 colonial	or	unicellular	

algae	 in	 distinct	 laminae	 (Fig.	 2c).	 Detrital	 resinite	 is	 common	 in	 many	 sections	 and	 is	

interpreted	to	occur	in	close	proximity	to	deltaic	facies.		It	may	contain	some	internal	domains	

showing	that	more	than	one	phase	is	present	(Fig.	2d).	The	occurrence	of	resinite	as	cell	fillings	

indicates	 that	at	 some	point	 in	 the	maturation	process,	 the	 resinite	was	 relatively	 fluid.	The	

organic	constituents	luminesce	when	irradiated	with	blue	light	and	UV	excitation.	Under	white	

light,	the	resinite	shows	streaks	of	inorganic	material.	In	white	light,	collotelinite	that	occupies	

the	spaces	between	cell	walls	and	present	as	groundmass	(Fig.	2e).	

In	the	Toolachee-25	well	Roseneath	Shale	samples	at	depths	of	2020	m	to	2029	m	show	

medium-grained	 vitrodetrinite	 fragments	 of	 varying	 shapes	 that	 are	 surrounded	 by	 non-

vitrinitic	material	(Figs.	2f,	2g,	and	2i).	The	vitrodetrinite	consists	of	small	particles	of	vitrinite,	

but	the	boundaries	between	particles	becomes	obscured	with	increasing	depth.	Inertodetrinite	

is	also	present	and	represented	by	small	fragments	derived	by	the	physical	degradation	of	the	

other	types	of	inertinite,	most	probably	fusinite	and	semifusinite.	

In	Moomba-46	well	 samples	 V-1415	 (2464	 to	 2465m)	 and	 V-1417	 (2463	 to	 2464m),	

organic	 matter	 is	 common	 and	 mostly	 medium	 sand	 sized	 grained.	 Vitrinite	 is	 the	 main	
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maceral,	consisting	of	vitrodetrinite.	Inertinite	is	comprised	of	inertodetrinite.	Liptinite	occurs	

as	thin	alginite	and	liptodetrinite.	Telinite	shows	non-gelified	plant	tissues	with	well-preserved	

cells	 (Fig.	 2j).	 Under	 yellow	 fluorescence	 light,	 alginite	 is	 visible	 as	 irregular	 slender	 bands	

representing	 discrete	 laminae	 across	 domains	 with	 dispersed	 macerals	 (Figs.	 2h,	 2i).	 The	

samples	exhibit	high	fluorescence,	suggesting	the	organics	have	either	a	high	hydrogen	index	

or	 enhanced	 lipid	 content,	 whereas	 other	 samples	 exhibiting	 little	 or	 no	 fluorescence	 are	

interpreted	as	being	hydrogen-poor	or	low	in	lipid	content.	Other	domains	(Figs.	2b,	2f	and	2g)	

show	vitrodetrinite,	dominantly	with	small	particles	of	vitrinite	of	other	types.	Vitrodetrinite	is	

surrounded	by	siliciclastic	material,	but	the	boundaries	between	the	particles	can	be	obscure.		

In	 Moomba-73	 well	 samples	 V-1400	 to	 V-1402	 (2657	 m	 to	 2694	 m)	 contain	 high	

percentages	 of	 vitrinite	 that	 are	 small	 and	 look	 oxidized	 and	 detrital	 in	 nature	 (Fig.	 2k),	

deposited	close	to	the	source.	The	vitrinite	consists	of	vitrodetrinite.	Some	inertinite	consists	of	

inertodetrinite,	and	liptinite	is	present	in	the	form	of	liptodetrinite.	

5.1.1	 Maceral	analysis	of	the	Murteree	Shale	
Vitrinite	 is	 the	main	maceral,	 consisting	 of	 vitrodetrinite	 and	 inertinite	 is	 the	 second	

most	 abundant,	 consisting	 of	 inertodetrinite.	 Liptinite	 in	 the	 form	 of	 liptodetrinite	 is	

subordinate.	Organic	matter	in	the	Murteree	Shale	is	derived	from	a	variety	of	sources	such	as	

lipid-rich	 phytoplankton	 and	 terrigenous	 humic	 organic	matter.	 It	 is	 abundant	 and	 typically	

medium	 grained.	 	 Changes	 in	 optical	 properties	 reflect	 chemical	 changes	 in	 the	 macerals.	

Murteree	Shale	macerals	from	different	wells	in	the	Cooper	Basin	show	variability.		

In	sample	V-1374,	from	2128m	in	the	Epsilon	well,	organic	matter	 is	of	medium	sand	

size	 grained	 and	 consists	 of	 mainly	 fusinite	 and	 subordinate	 semi-fusinite,	 which	 mainly	
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represent	woody	plant	material.	These	are	mostly	derived	relic	tissues	and	cellular	structures	

and	are	commonly	well-preserved	with	yellow	colour(Figs.	3n,	3o,	and	3p)	whereas	white	light	

shows	unstructured	collotelinite	in	the	groundmass	(Fig.	3m).		

Sample	V-1391	from	Toolachee-East-2	well	at	a	depth	of	2203m	to	2209	m	is	rich	in	the	

organic	matter	of	medium	grain	size.	Vitrinite	is	the	primary	maceral,	consisting	of	collotelinite	

and	vitrodetrinite.	Graphite	is	a	trace	component	in	numerous	samples	(Fig.	3v).	Collotelinite	is	

dominant	over	vitrodetrinite	in	the	ground	mass.	It	is	not	optically	uniform,	in	part	due	to	strain	

anisotropy,	and	shows	micro-domains	with	micrinite	characteristics.		

In	 the	Moomba-145	 well	 sample	 V-1410	 at	 a	 depth	 of	 2727	m	 to	 2740	m,	 organic	

matter	is	common	and	mostly	of	medium-sand	grain	size.		Vitrinite	has	been	in	part	degraded	

to	structureless	collotelinite	(Fig.	3s).	Cellular	structures,	which	are	commonly	well	preserved,	

show	 the	 prominence	 of	 semifusite	 (Fig.	 3q).	 This	 represents	 humic	material	 that	 has	 been	

partially	 degraded	 by	 biochemical	 activity,	 most	 likely	 by	 fungal	 attack.	 Semifusinite	 is	

preserved	with	 relict	 plant	 tissue	 structures.	 Epsilon	well	 samples	 V-1373	 and	 V1374	 (from	

2128	to	2139m)	have	abundant	medium	grained	size	organic	matter,	mainly	as	structure	less	

vitrinite.	

In	Dirkala-02	well,	sample	V-1428	from	1896	to	1896.16m,	the	organics	are	composed	

mostly	of	an	 interconnected	network	of	amorphous,	 light	brown	kerogen	with	minor	to	rare	

inertodetrinite	 and	 variable	 fluorescence.	 Inertodetrinite,	 as	 small	 fragments	mainly	 derived	

from	the	physical	degradation	of	other	types	of	 inertinite,	 is	widely	distributed.	Some	of	 the	

smaller	 fragments	 may	 have	 been	 of	 wind-born.	 Their	 definition	 becomes	 obscure	 with	

increasing	rank.	A	major	prominent	feature	of	this	sample	is	the	abundance	of	micrinite	with	
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bituminite	 and	 a	 wide	 range	 of	 other	 liptinitic	 macerals	 which	 occur	 between	 vitrinite	 rich	

layers	 (Fig.	3w).	Telinite	shows	non-gelified	plant	 tissues	with	well-preserved	cells	containing	

organic	matter,	including	vitrinite	as	discrete	small	fragments	of	varying	shapes.	Samples	from	

a	depth	of	1893.42	to	1893.81	m	V-1429	contain	 large,	discrete	relicts	of	colonial	unicellular	

algae	under	the	blue	fluorescent	light.	For	sample	V-1429-(1894m)	organic	matter	is	abundant	

and	 medium	 grain	 size.	 Inertodetrinite	 is	 abundant	 as	 small	 fragments	 derived	 from	 the	

physical	degradation	of	other	types	of	inertinite.	Liptinite	occurs	as	alginite.		Bituminite	is	also	

present	(Fig.	3t),	as	prominent	domains	of	even	higher	reflectance.		

5.2	 Vitrinite	reflectance	(VR)	

Average	random	vitrinite	reflectance	(%	R0)	measurements	of	Roseneath	and	Murteree	

shales	 from	 20	 different	 wells	 range	 from	 0.68	 to	 2.2%	 R0	 (Appendix-1).	 Histograms	

summarizing	 the	 data	 show	 that	 through	 sections	 of	 both	 the	 Roseneath	 and	 Murteree	

Formations,	%	R0	values	generally	increase	with	depth	(Appendix-3)	in	supplementary	data.			

5.2.1	 VR	of	the	Roseneath	Shale	

Results	 for	 Roseneath	 Shale	 samples	 (Appendix-1)	 show	 that	 VR	 values	 generally	

increase	with	 depth,	 but	 the	 relationship	 does	 not	 always	 apply.	 For	Moomba1-45	well,	 VR	

increases	from	2612.14	m	to	2621.28	m	reaching	a	value	of	1.72%	R0.	Samples	from	Moomba-

76	well	are	shallower	and	have	lower	VR	values	of	0.74%	R0	(2688m	to	2697m),	and	0.92%	R0	

(2663.95m	to	2673.10m),	with	still	 lower	values	for	other	samples.	This	variability	most	likely	

reflects	 sample	 quality	 and	 the	 accuracy	 of	 measurement.	 	 At	 depths	 between	 2593.85	 to	

2606.04m	in	the	Moomba	North-01	well,	average	VR	is	1.41%	R0	and	this	increases	to	1.46%	R0	
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at	 depths	 between	 2624.33	 to	 2627.38m.	 The	 overall	 trend	 is	 an	 exponential	 increase	 in	

maturity	with	depth.	

For	Moomba-73	well,	VR	is	0.98%	to	1.89%	R0.	The	49	readings	do	not	show	a	direct	

relationship	 to	depth,	 reaching	a	maximum	value	of	1.89%	R0	 .	 In	 the	Moomba-	133	well	at	

2816	 to	 2825m,	 VR	 ranges	 from	 1.25%	 to	 1.45%R0	 (19	 readings)	 (Appendix-1,	 Table-3)	

supplement	 material.	 Moomba-46	 samples	 are	 all	 from	 core	 samples	 and	 have	 excellent	

quality	with	a	uniform	organic	matter	composition.		

VR	 from	 the	 Roseneath	 Shale	 wells	 is	 tabulated	 in	 Table-3	 (Appendix-1).	 The	 shale	

shows	 a	 considerable	 scatter	 of	 values,	 but	 data	 are	 sufficient	 to	 identify	 that	 the	 samples	

correspond	 to	 maturity	 levels	 associated	 with	 early	 stages	 of	 oil	 generation;	 some	

characteristics	are	listed	in	Table-1,	and	plotted	as	a	histogram	in	Appendix-2	in	supplementary	

data.	Observed	changes	in	VR	with	depths	between	2465m	to	2467m	(0.82%	to	1.01%	R0)	may	

be	caused	by	one	or	all	of	the	following:	1)	Difficulties	in	recognizing	true	vitrinite	particles;	2)	

VR	was	measured	on	vitrinized	woody	plant	material;	3)	Different	maceral	types	may	undergo	

different	rates	of	thermal	alteration	under	similar	time-temperature	conditions.	

VR	 is	a	useful	guide	to	maturity	of	 the	Roseneath	Shale	with	respect	 to	hydrocarbon	

generation.	 A	 sample	 from	Ashby-01	well	 at	 2068	 to	 2079m	 	 provided	 	 VR	 values	 between	

1.83%	 and	 1.88%	R0,	 indicating	 that	 these	 samples	 are	 in	 the	mature	 zone	 for	 hydrocarbon	

generation.	Samples	from	Epsilon-01	and	Epsilon-02	wells	with	VR	values	between	(1.17%	and	

1.23%	 R0)	 are	 also	 sufficiently	 mature	 for	 oil	 generation.	 Samples	 from	 Encounter-01	 well	

averaging	1.79%	R0,	 indicate	that	 they	are	 in	 the	gas	generation	zone.	Samples	 from	Vintage	

Crop-01well	at	2133m	in	Roseneath	Shale	average	1.80%	R0,	suggesting	a	position	in	the	wet	to	
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dry	gas	zone.	Moomba-46	and	Moomba-76	samples	at	depths	of	2463	to	2688m	indicate	the	

early	stage	of	oil	generation	(0.74%	to	0.97%	R0).	Finally,	samples	from	the	Moomba	North	-01	,	

Moomba	 73	 and	Moomba-133	 wells	 indicate	 the	 zone	 of	 late	 oil	 and	 early	 gas	 generation	

(1.68%	to	1.88%	R0)	(Fig.	4)	

	

Table-1:	Organic	matter	of	Roseneath	and	Murteree	shales	of	different	wells,	thermal	maturity	
parameters	 based	 on	 vitrinite	 reflectance	 %	 R0.	 Moomba-46,	 Moomba-73,	 Dirkala-02,	
Toolachee	East-02	and	Epsilon-02	wells	were	selected	for	the	maceral	analysis.	Vit%	is	vitrinite,	
Inet%	Inertinite,	Lip%	liptinite	and	Bit%	bituminite.	

5.2.2	 VR	of	the	Murteree	Shale		

Overall	 the	 Murteree	 Shale	 VR	 values	 are	 higher	 than	 those	 for	 Roseneath	 Shale	

reflecting	its	lower	stratigraphic	position	and	hence	burial	depth.	Samples	from	the	Moomba-

145	well	show	a	gradual,	almost	 linear,	 increase	from	1.50%	to	1.92%	R0	across	depths	from	

2740	 to	 2770	m.	 	 The	 VR	 of	 samples	 from	 Ashby-01	 well	 is	 1.83%	 to	 1.88%	 R0,	 at	 depths	

between	2068	to	2079m	(Appendix-2)	which	corresponds	to	the	maturity	in	the	gas	window.		

Sample	
No.	

Formation	 Depth		m	 Abundance	 ORGANIC	MATTER	
Composition	

Maturity	

	

	
Main	types	

Vitrinite	
reflectance	

n	 Well		
Name	

	 Vit%	
Inet	

%	
Lip	
%	

Bit	
%	

%	R0	 	 	

V-1398	 Roseneath	 2682.24–2694.43	 abundant	 >	50		 <5	 <5	 	 0.98	 14	 Moomba-73	

V-1417	 Roseneath	 2466.44–2463.24	 abundant	 >	50		 <5	 <5	 <5	 0.97	 12	 Moomba-46	

V-1415	 Roseneath	 2464.19–2465.53	 abundant	 >	50		 <5	 <5	 <5	 0.85	 23	 Moomba-46	

V-1373	 Roseneath	 2128.30-2130.25	 abundant	 >	50	 <5	 <5	 	 1.17	 18	 Epsilon-02	

V-1374	 Murteree	 2202.70–2206.18	 abundant	 >	50		 <5	 <5	 	 1.17	 13	 Epsilon-02	

V-1391	 Murteree	 2203.70–2209.80	 abundant	 >	50		 <5	 <5	 	 0.91	 28	 Toolachee	East-02	

V-1402	 Murteree	 2791.97-2798.06	 abundant	 >	50	 <5	 <5	 	 2.00	 20	 Moomba-73	

V-1428	 Murteree	 1896–1896.16	 common	 >	50		 <5	 <5	 	 1.07	 19	 Dirkala-02	

V-1429	 Murteree	 1893.42–1893.81	 abundant	 >	50		 <5	 <5	 	 1.01	 19	 Dirkala-02	

V-1431	 Murteree	 1895.86–1905.00	 common	 >	50		 <5	 <5	 <5	 1.09	 20	 Dirkala-02	
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In	the	Epsilon-1	and	Epsilon-2	wells,	samples	in	the	2128	to	2130m	depth	range	have	

1.23%	 to	 1.30%	 R0	 values.	 	 For	 Big	 Lake-43,	 Toolachee-25,	 Toolachee-36,	 Toolachee-39,	

Toolachee-East-2	 wells	 average	 VR	 ranges	 from	 0.79%	 to	 1.10%	 R0,	 indicating	 that	 these	

samples	 are	 within	 the	 oil	 window.	 Organic	 matter	 is	 mainly	 coaly	 in	 nature	 and	 of	 small	

particle	size.		

For	Moomba-73	the	VR	is	slightly	elevated	for	samples	from	depths	26657	to	2679m,	at	

1.68%	to	1.88%	R0.	At	depths	between	2776m	and	2798	m,	VR	values	from	1.60%	to	2.00%	R0		

were	obtained.	The	values	indicate	elevated	maturity	for	hydrocarbon	generation.	In	Moomba-

133	well	from	2776	to	2785m	the	average	VR	is	1.28%	R0.		

The	VR	results	in	the	Munkarie-02	and	Baratta-south-01	wells	at	1965	m	to	2134	m	are	

0.82%	to	0.94%	R0.	For	Baratta-	south	-01	the	Murteree	Shale	at	2212	m	to	2228	m	has	values	

of	0.94%	to	1.07%	R0.	Variation	across	this	range	is	of	little	significance	and	indicates	maturity	

for	oil	generation	(Table-2).	

Results	from	the	Dirkala-02	well	at	1895	to	1905m	with	0.86	to	1.09%	R0	indicate	early	

to	mature	stages	of	hydrocarbon	generation,	whereas	analyses	from	depths	of	1838	to	1905m	

give	values	of	0.84%	to	1.07%	R0,	 indicating	 the	onset	of	oil	generation.	For	 the	Big	Lake-70	

well,	at	depths	from	2417	to	2557m,	average	values	are	0.84%	to	0.97%	R0	indicating	the	onset	

of	the	hydrocarbon	generation.	Similar	values	are	present	in	Toolachee-25,	Toolachee	East-02,	

Toolachee-36	 and	 Toolachee-39	wells	 across	Murteree	 Shale	 Formation	 at	 depths	 between	

2179	to	2209m,	indicating	lower	oil	window	maturity,	whereas	Toolachee-21	well	samples		at	

depths	of	2176	to	2188m	are	at	a	mature	stage	of	hydrocarbon	generation	with		VR		0.83	%	to	

1.30%	R0.	

Samples	from	the	Munkaries-02	well	are	 in	the	early	oil	generation	zone,	with	values	

ranging	from	0.68%	to	0.94%	R0	at	depths	of	1965	to	2029	m.	Baratta	South-01	well	samples	

show	the	onset	of	hydrocarbon	generation	zone	with	VR	values	of	0.94%	to	1.20%	R0	at	depths	

of	2157	 to	2188m.	Samples	 from	depths	of	2431	 to	2599m	 from	Big	 Lake-43	well	 are	more	

mature	 than	 those	 from	 Big	 Lake-70	 well	 at	 similar	 depths	 (2548	 to	 2551m),	 and	 have	 VR	

values	of	1.01%	to	1.10%	R0	and	0.84%	to	0.97%	R0,	respectively	(Fig.5)	
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5.3	 Rock-Eval	Pyrolysis	

Selected	 samples	 were	 analysed	 by	 Rock-Eval	 pyrolysis	 to	 evaluate	 maturity	 and	

identify	kerogen	types	(II,	III	and	IV)	in	both	formations.	Estimates	of	thermal	maturity	derived	

from	 cross-plots	 of	 hydrogen	 index	 (HI)	 versus	 Tmax	 (Appendix-3)	 in	 supplementary	 data	 are	

particularly	useful	where	the	distribution	of	organic	matter	in	vitrinite	phytoclasts	is	lean.			The	

Tmax	values	from	the	Roseneath	and	Murteree	shales	range	between	400	0C	to	470	0C.	For	most	

samples,		organic	matter	maturity	based	on	Tmax	are	in	close	agreement	with	those	based	on		

VR	and	estimates	of	maceral	content	correspond	with	those	based	on	petrography.	

In	the	HI	-	Tmax	diagram	(Appendix-1)	all	samples	indicate	significant	thermal	maturity	

with	respect	to	hydrocarbon	generation.	The	Rock-Eval	data	shows	that	the	Roseneath	Shale	is	

in	the	oil	to	wet	gas	zone	and	dominated	by	type	II	kerogen,	with	some	mixtures	of	types	III	

and	IV.	Tmax	for	these	samples	is	440	0C	to	450	0C	(Fig.7).	

Data	 for	 the	Moomba-73	well	 shows	 the	Roseneath	 Shale	 is	 typically	 gas	 prone	 and	

dominated	by	type	III	kerogen.	In	the	Epsilon-01	and	Epsilon-02	wells,	Tmax	values	range	from	

4400C	 to	 4620C,	 indicating	 that	 the	 shale	 is	 in	 the	 wet	 to	 dry	 gas	 zones	 (Appendix-3)	 in	

supplementary	material,	and	dominantly	gas	prone	in	the	well	intersections.		For	the	Dirkala-2	

well,	pyrolysis	reveals	 fairly	variable	generation	potential	 for	samples	that	are	moderately	to	

quite	 rich	 in	 organic	matter.	 The	 data	 classify	 the	 organic	matter	 as	 dominated	 by	 type	 III	

kerogen	and	shows	that	the	Murteree	Shale	is	typically	wet	to	dry	gas	prone.	Tmax	identified	for	

the	Roseneath	Shale	in	Toolachee	21	well	indicates	type	IV	kerogen	is	dominant	and	thermally	

mature,	with	the	Murteree	Shale	showing	wet	to	dry	gas	thermal	maturity	(Fig.	8)	

	For	 the	 Encounter-01	well	 the	Roseneath	 Shale	 presents	 a	 low	Hydrogen	 Index	 and	

Tmax	ranging	between	4400C	to	4550C,	representing	the	oil	to	wet	gas	zone.	The	Vintage	Crop-

01	well	samples	of	the	Murteree	Shale	have	similar	values	(Tmax	at	4400C	to	4550C)	with	some	

type	III	kerogen	present	but	elevated	type	IV	(Appendix-3)	in	supplement	material.	Roseneath	

Shale	from	this	well	 lies	within	oil	to	wet	gas	zone,	with	Tmax	values	between	4400C	to	4500C	

and	dominated	by	type	IV	maceral.	 In	Moomba	46	and	Ashby-01	wells,	 the	Roseneath	Shale	

with	Tmax	values	range	from	4300C	to	4550C	and	4450C	to	4650C,	respectively,	which	implies	oil	

to	dry	gas	maturity.		
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6		Discussion		

The	results	of	quantitative	optical	analyses,	VR	and	Rock	Eval-pyrolysis	presented	in	this	

study	 of	 the	 Roseneath	 and	 Murteree	 shales	 provide	 new	 information	 on	 their	 maceral	

content,	 kerogen	 types,	 and	 general	 potential	 for	 hydrocarbon	 generation.	Hydrocarbons	 in	

the	 Cooper	 Basin	 are	 generally	 thought	 to	 have	 originated	 from	 the	 abundant	 dispersed	

organic	 matter	 (3	 to	 6%	 TOC	 weight)	 in	 fluvial	 and	 deltaic	 shales	 of	 the	 Toolachee	 and	

Patchawarra	formations	(Taylor	et	al.,	1988).	Here,	data	show	that	coal	and	dispersed	organic	

matter	 in	 the	 shales	 are	 dominated	 by	 vitrinite	 and	 inertinite	 (Type	 III	 kerogen)	with	minor	

amounts	of	 sporinite	and	cutinite,	derived	 from	a	higher	plant	assemblage.	Type	 III	 kerogen	

corresponds	to	terrestrial-derived	organic	matter,	most	likely	from	higher	plants.	This	type	of	

kerogen	is	therefore	a	source	of	gas	rather	than	oil (Barker,	1974).		The	local	concentration	of	

liptinite	 	 and	 bacterially	 biograded	 organic	 matter,	 indicating	 significant	 oil	 generation	

potential,	have	been	proposed	as	the	source	of	oil	found	in	Permian	reservoirs	across	the	basin	

(Kantsler	 et	 al.,	 1983).	 The	 organic	 characteristics	 of	 Cooper	 Basin	 source	 rocks	 have	 been	

previously	discussed	by	Kantsler	et	al.	 (1983),	Symyth	 (1983),	Cook	and	Struck	Meyer	 (1986)	

and	Taylor	et	al.	(1988).		

6.1	Thermal	maturity	of	the	Cooper	Basin	

The	 Nappameri	 Trough	 is	 particularly	 large	 (~15,000km2),	 deep	 (>3050m),	 thermally	

mature	and	over-pressured,	 suggesting	 that	 it	 is	 the	most	prospective	oil/gas	portion	of	 the	

Cooper	Basin	 (ICON	Energy,	 2011).	 The	Permian	uppermost	 unit	 boundary	occurs	 at	 depths	

>2800	m	in	the	center	of	this	structure	and	over	3050	m	in	the	Patchawarra	Trough	(Fig.	6).	The	

thermal	maturity	 of	 the	 Roseneath	 and	Murteree	 shales	 intervals	 is	 high	 in	 the	 Nappameri	

Trough	 (Figs.4-5)	 and	wells	 in	 this	 area	 are	 gas	 prone	 (3	 to	 4%	 R0).	 These	 intervals	 for	 the	

Patchwarra	Trough	have	lower	thermal	maturity	(1%	R0),	whereas	 in	the	Tennappera	Trough	

they	show	R0	values	equivalent	to	medium	maturity.	

The	 Cooper	 Basin	 extends	 across	 the	Queensland	 and	 South	 Australia	 border	 and	 is	

coincident	with	a	prominent	geothermal	anomaly	(Cull	&	Denham,	1979;	Cull	&	Conley,	1983;	

Somerville	et	al.,	1994).	The	region	forms	part	of	a	broad	area	of	anomalously	high	heat	flow,	

which	 is	 attributed	 to	 Proterozoic	 basement	 enriched	 in	 radiogenic	 elements	 (Sass	 &	
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Lachenbruch,	 1979;	Mclaren	 et	 al.,	 2003).	 Thick	 sedimentary	 sequences	 in	 the	 Cooper	 and	

overlying	Eromanga	Basins	provide	 	a	 thermal	blanketing	effect	 resulting	 in	 temperatures	as	

high	as	2700C	at	depths	<5km	(Holgate,	2005).	There	is	evidence	of	rapid	uplift,	high	heat	flow	

and	mobilization	of	granites	 in	the	upper	crust	of	the	Cooper	Basin	during	the	Early	Permian	

(Battern	and	Grenfell,	1996)	as	a	result	of	deep	mantle	process.	

Thermal	gradients	in	the	Cooper	Basin	are	generally	high,	averaging	1.410C/30	m	(Icon	

Energy,	2011).	Bottom	hole	temperatures	at	depths	of	2750	m	average	about	166.66	0C.	The	

Nappameri	Trough	experiences	unusually	high	heat	flow,	with	a	thermal	gradient	of	up	to	1.90	
0C/30m,	due	to	 its	radiogenic	basement.	The	Patchawarra	Trough,	which	has	a	sedimentary/	

metasedimentary	 basement,	 has	 a	 lower,	 but	 still	 elevated	 (1.12	 0C/30m)	 thermal	 gradient.	

The	OZ	temperature	map	(Fig.	9)	also	highlights	that	relatively	high	bottom-hole	temperature	

have	 been	 observed	 in	 patchy	 distributions	 in	 the	 Nappameri,	 Patchawarra,	 Allunga	 and	

Tennapera	 Troughs	 (Holgate,	 2010).	 In	 these	 areas	maturity	modelling	 also	 suggests	 higher	

temperatures	(~100	0C	at	4km	depth).	Validation	of	the	subsurface	temperature	estimates	was	

attempted	 through	direct	 comparison	with	measured	bottom	hole	 temperature	 recorded	 in	

the	OZ	temperature	dataset	(Holgate	and	Gerner,	2010).		

Gravity	lows	are	coincident	with	Nappameri	and	Tenappera	troughs	and	extend	beyond	

the	 trough	 boundaries.	 There	 is	 also	 evidence	 that	 density	 variations	 in	 the	 basement	 are	

contributing	to	the	observed	gravity	field.	There	are	also	a	number	of	prominent	gravity	lows	

which	 are	 not	 associated	 with	 any	 known	 basinal	 structures	 (Meixner	 et	 al.,	 2012).	 The	

negative	gravity	anomaly	coinciding	with	Patchawarra	Trough	is	much	more	pronounced	than	

that	of	the	Nappamerri	Trough,	even	though	sediment	thicknesses	are	similar.	This	 indicates	

that	the	density	of	the	basement	beneath	the	troughs	is	different.		

Glikson	et	al.	(2015)	has	suggested	that	the	basement	of	the	Cooper	Basin	was	affected	

by	a	large-scale	meteorite	impact	in	the	late	Paleozoic.	Thermal	anomalies	within	the	Cooper	

Basin,	combined	with	the	gravity	anomaly	pattern	suggest	granitoid	plutons	are	present	in	the	

basement.	 	Basement	cores	obtained	for	some	wells	confirm	this	hypothesis	 (Meixner	et	al.,	

2012).	 Thermal	 conductivity	 values	 have	 been	 assigned	 to	 the	 inferred	 granitoid	 bodies	 by	

Meixner	 et	 al.,	 (2012)	 based	 on	 data	 for	 a	 range	 of	 granite	 samples	within	 the	Geoscience	
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Australia	 thermal	 conductivity	 database	 (Fig.11).	 This	 work	 indicates	 that	 thermal	

conductivities	fall	within	the	range	of	2.79±.38	Wm-1	K-1,	whereas		metasedimentary	samples	in	

the	Geoscience	Australia	database	all	provide	higher	values	 	(3.5±	0.89	Wm-1	K-1),	confirming	

that	heat	retention	by	granite	bodies	has	occurred	 in	certain	areas	 (e.g.	Nappameri	Trough).	

The	drill-hole	intersection	shows	down-hole	conductivity	measurements	(Fig.10).	

6.2	Organic	macerals	

The	maceral	content	of	 the	Roseneath	and	Murteree	shales	 is	dominated	by	vitrinite	

with	 subordinate	 telinite,	 vitrodetrinite,	 and	 collotelinite.	 	 For	 vitrinite	 particles,	 vitrinite	

content	 is	50-55%,	which	 is	supported	by	 fluorescence	observation.	Accordingly	the	organics	

have	 either	 a	 low	 hydrogen	 index	 and	 /or	 contain	 a	 high	 percentage	 of	 gas	 prone	 kerogen	

debris.	Vitrinite	is	a	major	source	of	catagenic	gas	at	high	levels	of	maturation	(	Bostick,1979;	

Hunt,	 1991;	 Taylor	 et	 al.,	 1998)	 but	 its	 role	 in	 hydrocarbon	 generation	 is	 uncertain.	 Several	

samples	showed	some	liquid	hydrocarbon.	One	significant	observation	from	this	study	 is	 the	

fact	that	vitrinite	commonly	generates	some	liquid	hydrocarbons	in	these	two	units.	

The	second	most	abundant	maceral	in	the	Roseneath	and	Murteree	shales	is	inertinite,	

which	 is	 dominantly	 comprised	 of	 inertodetrinite.	 This	 maceral	 type	 represents	 small	

fragments	derived	by	the	physical	degradation	of	inertinite,	which	in	turn	is	probably	derived	

from	fusinite,	semifusinite,	and	less	commonly,	micrinite.	The	Roseneath	and	Murteree	shales	

have	 abundant	 inertinite,	 typically	 between	 ~20	 -40%	 (Figs.	 12-13).	 	 The	 inertinite	 maceral	

group	corresponds	to	type	IV	kerogen	identified	within	the	Roseneath	and	Murteree	shales	by	

Rock-Eval	pyrolysis.	

Liptinite,	 in	 the	 form	 of	 alginite,	 liptodetrinite,	 sporinite,	 cutinite,	 resinite	 and	

bituminite,	 is	 also	 present	 in	 Murteree	 and	 Roseneath	 shales.	 It	 generally	 represents	 an	

amorphous	component	intimately	associated	with	the	mineral	matrix.	Telalginite	derives	from	

alginite	 and	 is	 identified	 in	 both	 shales,	 but	 is	 restricted	 to	 isolated	 beds.	 It	 occurs	 in	 large	

bodies	 that	commonly	show	botanical	 tissue	structures	and	are	predominantly	yellow	under	

intense	 fluorescence	 light	 (Figs.	2c-2h).	Extant	green	algae	of	 this	association	are	planktonic,	

found	in	fresh	water	or	brackish	environments	and	are	prolific	producers	of	lipids	rich	in	C25	–

C34	paraffinic	hydrocarbon	(Maxwell	et	al.,	1968;	Largeau	et	al.,	1980;	Metzger	et	al.,	1985a,	
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1985b;	Mckirdy	et	al.,	1986a).	The	bulk	of	these	hydrocarbons	are	synthesized	and	stored	 in	

the	outer	 cell	wall	where	 they	 impart	buoyancy	 to	 the	 living	algae.	Resistant	polymers	have	

also	been	identified	 in	the	cell	wall	of	these	algae,	and	are	potential	precursors	of	highly	oil-

prone	kerogen	(Berkaloff,	1983;	Largeau	et.,	1984).	Resinite	is	common	in	the	Roseneath	Shale,	

and	is	rich	in	hydrogen	and	shows	internal	structures	that	suggest	that	more	than	one	phase	is	

present.	The	 internal	 structure	 is	 similar	 to	bitumen	and	appears	 to	 reflect	degradation	 (Fig.	

2d).	The	presence	of	resinite	is	an	indicator	of	thermal	immaturity.		

Shales	 in	 the	 Cooper	 Basin	 are	 rich	 in	 organic	matter	 and	 have	 hydrocarbon	 source	

potential.	 VR	 values	 increase	 in	 response	 to	 increasing	 maturation	 of	 organic	 matter	 with	

depth	in	both	shales.	Lower	reflectance	values,	ranging	from	0.1	to	0.7%	R0,	were	obtained	for	

the	Roseneath	Shale;	whereas	the	Murteree	shale	values	range	from	0.6	to	0.90%	R0.		The	data	

show	 a	 relationship	 of	 well	 intersections	 to	 the	 oil,	 wet	 gas	 and	 dry	 gas	 domains	 (Fig.14).	

Moreover	differentiation	of	these	domains	broadly	relates	to	sample	depths.	Maximum	source	

rock	maturity	 is	 usually	 at	 depths	 of	 approximately	 2900	m,	which	 returned	 the	 highest	 VR	

values	for	both	shales		

The	Rosneath	Shale	is	interpreted	to	be	in	the	condensate/oil	window	(VR=	1-1.5%	R0)	

at	depths	of	1950	–	2700	m,	whereas	the	Murteree	Shale	is	interpreted	to	be	in	this	window	at	

depths	of	2150	–	2800	m	(Fig.	14).	The	dry	gas	window	(VR	>	1.5%	R0)	is	interpreted	to	be	at	

depths	of	2050-	2700m	within	the	basin.	Overall	the	Roseneath	Shale	is	mainly	interpreted	be	

within	the	oil	to	wet	gas-prone	zone	above	2700	m	and	the	Murteree	shale	is	mainly	in	the	wet	

gas	/dry	gas-prone	zone	below	2700	m	(Fig.14).	

Rock-Eval	 results	 provide	 additional	 geochemical	 information	 on	 the	 hydrocarbon	

potential	 of	 the	Murteree	 and	 Roseneath	 shales,	 and	 such	 data	 is	 particularly	 useful	 when	

considered	in	combination	with	the	VR	data.	Oxygen	Index	(OI)	values	of	both	shales	samples	

range	from	10	to	200	mg	CO2/g	TOC,	indicating	a	terrestrial	provenance	for	all	organic	matter	

in	 the	 two	 formation.	 Kerogen	maturity,	 assessed	 by	 plotting	HI	 versus	 Tmax,	 is	 valuable	 for	

determining	the	potential	hydrocarbon	generation	windows,	which	range	between	Tmax			values	

of	4300C	to	4650C.	Tmax	varies	with	the	type	of	kerogen	as	well	as	the	maturity	of	the	samples.	
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Because	 the	 chemical	 nature	 of	 a	 particular	 kerogen	 is	 intimately	 related	 to	 observe	 Tmax,	

different	kerogen	types	may	have	influenced	the	maturation	process.	

In	 this	 study,	 the	 Tmax	 data	 are	 summarized	 for	 kerogen	 types	 I,	 II,	 III	 Appendix-3,	 in	

supplementary	 data	 .Tmax	 is	 a	 good	 maturation	 indicator	 for	 kerogen	 types	 II	 and	 III	 in	

Roseneath	and	Murteree	shales.	True	type	I	source	rocks	tends	to	be	primarily	oil	prone	upon	

maturation	and	are	relatively	rare	in	both	shales.	Tmax	values	for	types	I	and	II	merge	during	the	

maturation	process	so	that	the	type	I	can	only	be	recognized	at	low	maturation	levels	(below	

about	0.8%	R0).	At	all	higher	maturation	 stages,	 type	 I	 kerogen	values	become	merged	with	

type	II	(Appendix-3)	in	supplementary	data.	Type	III	kerogen	comes	predominantly	from	higher	

plant	material	in	the	Roseneath	and	Murteree	shales.	Type	III	tends	to	be	more	gas	prone	than	

type	 I	 and	 II	 is	 chemically	 analogous	 to	 the	 coal	maceral,	 vitrinite.	 In	 fact	 kerogen	maturity	

reflects	 Tmax	 and	 (unlike	 VR)	 it	 is	 not	 sensitive	 to	 time.	 Temperature,	 therefore,	 controls	

kerogen	breakdown	and	its	relationship	to	oil	and	gas	generation.		

6.3	 Comparison	with	the	North	American	Shale	gas	

Unconventional	shale	gas	plays	in	the	North	America	have	resulted	in	unprecedented	

growth	in	domestic	energy	supply	in	the	USA.	The	best	known	and	most	productive	shale	gas	

producing	 systems	 are	 in	 the	 Fort	 Worth,	 East	 Texas	 and	 in	 the	 Appalachian	 basins.	 It	 is	

instructive	to	compare	the	petrology	of	the	Cooper	Basin	shales	with	these	systems,	including	

the	Mississippian	Barnett	Shale	in	the	Fort	Worth	Basin,	the	Devonian	Marcellus	Shale	in	the	

Appalachian	 Basin,	 and	 the	 Cretaceous	 Eagle	 Ford	 Shale	 in	 East	 Texas.	 Their	 characteristics	

provide	 benchmark	 comparisons	 for	 evaluating	 the	 Roseneath/Murteree	 shales	 in	 terms	 of	

hydrocarbon	 potential.	 These	 examples	 are	 from	 different	 age	 strata	 to	 that	 found	 in	 the	

Cooper	 Basin,	 thus	 the	 different	 organic	 content	 between	 basins	 may	 lead	 to	 comparison	

issues..	

Barnett	 Shale	 macerals	 are	 composed	 largely	 of	 amorphous	 kerogen	 (91-93%)	 with	

minor,	sporadic	algal	Tasmanite	(telealginite)	(Hill,	2007).		Vitrinite	maceral	shows	that	3-5%	is	

derived	 from	 lignin.	 Inertinite	 charcoal	 ranges	 from	1-5%,	 and	 liptinite	 (1%)	 is	 derived	 from	

pollen	 and	 spores.	 VR	 values	 for	 the	 Barnett	 Shale	 are	 0.7	 to	 1.9%	 R0	 with	 Tmax	 ≥4650	
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(Montgomery	 et	 al.,	 2005).	 	 Total	 organic	 carbon	 (TOC)	 ranges	 from	 1-10%.	 The	 kerogen	 is	

classified	as	type	II	with	a	minor	proportion	of	type	III;	which	together	produce	hydrogen	index	

(HI)	values	of	350	to	475	(Pollastro	et	al.,	2003	and	Jarvie	et	al.,	2007).	Peters	and	Cassa	(1994)	

classified	the	prospectivity	of	Barnett	Shale	as	good	(TOC	2-4%)	to	excellent	(TOC>4%),	with	an	

original	hydrogen	index	of	350	to	475	milligrams.	The	core	areas	produce	dry	gas;	maturity	is	

related	to	burial	depth	and	high	heat	flow	over	deep	seated	faults.	

The	Marcellus	Shale	TOC	ranges	from	1	to	10%,	and	the	kerogen	is	dominantly	typed	II	

and	minor	 type	 III.	 %	 R0	 ranges	 from	 1.2	 to	 3.5	 with	 Tmax≥4700	 in	 the	 dry	 gas	 zone.	 The	

dominant	organic	component	is	algal	maceral	(Lash,	2008,	Hill	et	al.,	2004	and	Nyahay	et	al.,	

2007).	The	Marcellus	Shale	is	characterised	by	a	mixture	of	terrestrial	humic	type	III	kerogen	

(Zielinski	and	Mclver,	1982)	(Hill	et	al.,	2004	and	Nyahay	et	al.,	2007).	Based	on	Rock-Eval,	

Hydrogen	Index	(HI)	is	250	to	400	and	Oxygen	Index	(OI)	is	less	than	50.	The	kerogen	is	type	

II	with	a	mixture	of	type	III.	The	Eagle	Ford	shale	consists	of	organic	rich	mud	rock	with	TOC	

2	to	12	%	and	thermal	maturity	0.45	to	1.4%R0	(Cardneaux,	2012).		

By	contrast,	organic	matter	in	Roseneath	and	Murteree	shales	is	composed	of	Type	II/III	

and	IV	kerogen	within	the	lacustrine	macerals	(i.e.	inertinite>liptinite>	vitrinite).	Organic	matter	

is	abundant	and	of	fine	to	medium-sand	grain	size.	Vitrinite	is	the	main	maceral	and	consists	of	

mostly	vitrodetrinite.	Inertinite,	the	second	most	common	maceral,	consists	of	inertodetrinite	

and	semi-fusinite.	Liptinite	occurs	as	thin	horizons	with	alginite	and	liptodetrinite.	Bituminite	is	

also	present	in	both	shales.	VR	values	range	between	0.79	to	1.79%	R0,	higher	for	coal	material	

at	1.83	to	1.88%	R0,	for	the	Roseneath	Shale.	Values	for	the	Murteree	Shale	are	0.83	to	2.00	%	

R0.	 There	 is	 very	 little	 variation	 in	maceral	 composition	 between	 the	 American	 shale	 gas	

basins	and	that	of	the	Cooper	Basin	shales.		

	

Shale	 Basin	 Age	 Basin	type	 TOC	 R0	 Tmax	 Kerogen	type	

Barnett	 Fort	Worth	 Mississippian	 Foreland	 1-10%	
1.60-
3.5%	

≥470	0C	
Type	II	with	minor	
admixture	of	type	III	

Marcellus	
Shale	

Appalachian	 Devonian	 Foreland	 2-6%	 1.2-	
1.9%	

≥465	0C	 Type	II	with	mixture	
of	type	III	

Eagle	Ford	 East	Texas	 Late	 Passive	 2-12%	 0.45- 435-4750C	 Type	II	with	mixture	
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Cretaceous	 margin	 1.4%	 of	type	III	

Roseneath	 Cooper	
Permo-
Triassic	

Intracratonic	
2.89-	
30.74%	

0.79-	
1.88%	

>600	0C	 Type	II	,III	and		IV	

Murteree	 Cooper	 Permo-
Triassic	

Intracratonic	 2-6%	 0.83-
2.00%	

>600	0C	 Type	II	,III	and		IV	

Table	2:	Generalized	characteristics	of	productive	American	shales	gas	(Bruner	&	Smosna,	
2011)	and	Cooper’s	shales(Roseneath/Murteree).	

The	organic	content	of	 the	American	shales	 ranges	 from	2	 -	12%	TOC	and	 is	broadly	

comparable	 with	 the	 Cooper	 Basin,	 which	 is	 between	 2	 and	 15%	 TOC.	 Perhaps	 one	major	

difference	 is	 that	 the	 American	 shale	 gas	 units	 lack	 kerogen	 type	 IV,	which	 is	 prominent	 in	

Roseneath	and	Murteree	shales.	By	comparison	with	Cooper	Basin	shales,	thermal	maturity	as	

measured	by	the	vitrinite	reflective	index	is	higher	in	two	of	the	American	shales	the	Barnett	

and	Marcellus	shales).		

Conclusion	

Cuttings	 and	 core	 samples	 from	 the	 Permian	Roseneath	 and	Murteree	 shales	 of	 the	

Cooper	 Basin	 show	 variable	 organic	 contents	 (TOC	 ranging	 between	 2%	 and	 30%),	 in	 the	

lacustrine	siltstones	and	shales	across	 the	basin.	The	organic	matter	 is	dominated	by	 fine	 to	

medium	sand-sized	carbonaceous	and	coaly	particles.	Vitrinite	is	the	main	maceral	present	in	

formations,	dominated	by	detrital	particles	primarily	of	vitrodetrinite.	Inertinite	is	the	second	

most	abundant	maceral	dominated	by	inertodetrinite	that	represents	small	fragments	derived	

by	the	physical	degradation	of	inertinite	with	fusinite	and	semi-fusinite	indicating	kerogen	type	

IV.	 	Although	a	significant	amount	of	the	organic	matter	 in	the	basin	appears	oxidized,	these	

results	and	associated	 fluorescence	data	 indicate	 that	gas	prone	organic	material	dominates	

both	 the	 Roseneath	 and	Murteree	 formations	 and	 that	 in	 most	 portions	 of	 the	 basin,	 the	

formations	are	dominantly	within	the	gas-generating	zone.	However,	the	presence	of	liptinite	

macerals,	especially	resinite,	and	associated	fluorescence	values	showing	high	hydrogen	values	

also	 indicates	a	component	of	 immature	oil	prone	source	rocks	containing	type	II	kerogen	in	

the	study	interval.		

Vitrinite	reflectance	results	 for	 the	Roseneath	and	Murteree	shales	 indicate	potential	

for	significant	hydrocarbon	generation,	and	the	Rock-Eval	Pyrolysis	data	indicate	that	type	II,	III,	

and	IV	kerogens	are	all	present,	with	fair	to	the	excellent	generative	potential	for	oil	and	gas.	
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The	most	prospective	portion	of	 the	Murteree	and	Roseneath	shales	 in	the	Cooper	Basin,	 in	

terms	of	thermal	maturity,	appears	to	be	in	the	Nappamerri	Trough	and	to	a	lesser	extent,	the	

Patchawarra	Trough.	The	combination	of	techniques	applied	here	provides	a	holistic	approach	

for	evaluating	gas	shale	potential	 in	the	Cooper	Basin;	suggesting	the	significant	potential	for	

shale	gas	exploitation	from	the	Roseneath	and	Murteree	shales.	
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Figure 1: Stratigraphy of the Cooper Basin (PIRSA, 2007). Arrow shows the study interval that includes the Roseneath and Murteree shales. 
PIRSA 200171_2 and 200171_004. 

 

  



 

 

 

 

  

Figure 2 : a) Photomicrograph of polished sections,(oil immersion  50 X)  showing coal maceral  alginite occurs as larger bodies, it is commonly 
shows the botanical structure and typically gives more intense fluorence light than most other maceral and types ( V-1417 Roseneath Shale 
(well Moomba-46).b) Inertinite  derived from plant material  strongly altered and degraded under oxidizing conditions. c)Alginite  which  is 
occurring  colonial and thick walled unicellular  larger bodies  well Munkerie-02 d)Resinite  rich in hydrogen and shows the internal structure 
like to be bitumen and occurring in this mode appears to be concentrated as a result of degradation. e) Collotellinite (red arrow) as a ground 
mass with fusinite (blue arrow). f) Vitrodetrinite at depth 2020m. g) Inertodetrinite at depth of 2020 to 2029m. h) Yellow alginite slender lines 
across the organic matter with flocculent groundmass are visible in fluorescence. i)Lower arrow shows collotellinite and upper lower shows 
fusinite j)Telinite  thin longitudinal  strip with organic matter k)Telinite maceral show s non-gelified plant tissues with well-preserved cell in  
well Moomba-73.l)Yellow alginite lumpy granular flocculent groundmass are visible in fluorescence light. 

 

 

 

 



 

 
Figure 3: m) Photomicrograph set polished sections, (oil immersion 50 X) of coal maceral in the Murteree Shale in white light with sample 
V-1374   at depth 2128 m arrow is showing collotellinite. n) At depth 2128 m arrow is showing semi-fusinite. o) Arrow is showing fusinite. 
p) Fusinite which chiefly represents material resulting from wood. q) Arrows show the semi-fusinite has been partially oxidized by 
biochemical activity. r) Yellow arrow shows the collotellinite as groundmass with inorganic material. s) Collotellinite -rich and unstructured 
debris in plane light well Moomba-145.t) Coal maceral in fluorence light shows yellowish color of Bitumen that is group of liptinite maceral 
and those of vitrinite. The major distinguishing features are abundance of micrinite within bitumen, and it is typically interbedded with 
vitrinite layers. u) Yellow color of alginite in Dirkala 2. v) At depth 2203 m arrow is showing Graphite. w) Coal maceral in white light shows 
bituminite (orange arrow). A major distinguishing feature is the abundance of micrinite with bituminite and another association with a 
wide range of other liptinitic macerals which is interbedded with vitrinitic rich layers. x) Coal maceral in white light shows introdetrinite 
Dirkala-02. 

 



 

 

 
Figure 4: Distribution of core samples for the Roseneath Shale in the Cooper Basin showing generalized TOC and vitrinite reflectance 

characteristics, which indicate hydrocarbon potential. 

 



 

Figure 5: Distribution of core samples for the Murteree Shale in the Cooper Basin showing generalized TOC and vitrinite reflectance characteristics. 

 

 

 

 



 

                          

 

 

 

  Figure 6: Schematic section showing the central Nappameri Trough, REM (Roseneath, Epsilon, and Murteree) shales in the                      
Cooper Basin. Basement is Warburton Basin succession intruded by granitoid plutons modified from Beach Energy. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

Figure 7: Roseneath Shale Tmax Vs HI cross plot. Data in large part lie in Kerogen II 
with a mixture of types III. 

 



 

 

 

 

 

Figure 8: Murteree Shale Tmax Vs HI cross plot Tmax shows kerogen III. 

 

 

Figure 9: Well bottom temperature and 1780 boreholes temperature measurements in the Cooper 

Basin in relation to underlying basement (modified from OZ temp Gerner and Holgate, 2010).  

 



 

  

  

Figure 10: Thermal anomalies identified in the Cooper Basin (Geoscience 
Australia, 2010) showing a complex pattern of heat residue most likely 
due to emplacement of granitoid plutons across the Basin.  
  

Figure 11: Cooper, Eromanga, and Warburton basin succession 
from drill hole intersection is showing down hole conductivity 
measurements (modified from NGMA, 2001 and Beardsmore, 
2004). 
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 Figure 12: Vitrinite- Liptinite-Inertinite plot for the Permian 
Roseneath and Murteree shales base maceral study on five 
wells, Epsilon-02, Toolachee-02 and Dirkala-02 from Cooper 
Basin. 

 

 Figure 13: Vitrinite- Liptinite-Inertinite plot for the Permian 
Roseneath and Murteree shales base maceral study on five 
wells, Moomba-73, Moomba-46 from Cooper Basin. 
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Figure 14: Vitrinite reflectance profile is showing the effect of change of in %R0 with depth in Roseneath and Murteree 
shales of Cooper Basin. The data represents a wide geographic distribution of wells. 
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Supplementary	Data	

Appendex-1	

Sr.No.	
Sample	
No	

Formation	
Well	 Lab	No	 Depth(m)	 Maturity	

1	 V-1370	
Roseneath	

Ashby-01	
Pr-
13299	

2068.07	
m	

1.83	%.	

1	 V-1371	
Roseneath	

Ashby-01	
Pr-
13300	

2079	m	 1.88	%.	

2	 V-1372	
Roseneath	

Epsilon-01	
Pr-
13301	

2136m	 1.23	%.	

2	 V-1373	
Roseneath	

Epsilon-02	
Pr-
13303	

2128.38	 1.17	%.	

2	 V-1374	
Murteree	

Epsilon-02	
Pr-
13303	

2202.70–
2206.18	 1.30	%.	

2	 V-1375	 Murteree	 Epsilon-02	
Pr-
13304	

2158.28	 1.18	%.	

3	 V-1376	 Roseneath	
Big	Lake-
43	

Pr-
13305	

2431.39		-		
2625.24		 1.01	%.	

3	 V-1377	 Murteree	
Big	Lake-
43	

Pr-
13306	

2590.80	
2599.94	

1.03	%.	

3	 V-1378	 Roseneath	
Big	Lake-
43	

Pr-
13307	

2447.54	
2453.64	

1.06	%.	

3	 V-1379	 Roseneath	
Big	Lake-
43	

Pr-
13308	

2459.74	
2465.83	

1.10	%.	

4	 V-1380	 Roseneath	
Toolachee-
25	

Pr-
13309	

2020.82	
2029.97	

0.88	%.	

4	 V-1381	 Roseneath	
Toolachee-
25	

Pr-
13310	

2002.54	
2011.68	

1.01	%.	

4	 V-1382	 Roseneath	
Toolachee-
25	

Pr-
13311	

2029.97	
2036.06	

0.95	%.	

4	 V-1383	 Roseneath	
Toolachee-
25	

Pr-
13312	

2039.11	
2060.45	

0.79	%.	

4	 V-1384	 Murteree	
Toolachee-
25	

Pr-
13313	

2179.32	
2194.56	

0.90	%.	

5	 V-1387	 Roseneath	
Toolachee-
39	

Pr-
13316	

2167.13	
2176.27	

0.88	%.	

5	 V-1388	 Murteree	
Toolachee-
39	

Pr-
13317	

2191.51	
2203.70	

1.01	%.	

6	 V-1389	 Roseneath	
Toolachee-	
East-02	

Pr-
13318	

2124.46	
2133.60	

0.90	%.	

6	 V-1390	 Murteree	
Toolachee-	
East-02	

Pr-
13319	

2218.94	
2228.09	

0.83	%.	

6	 V-1391	 Murteree	
Toolachee-	
East-02	

Pr-
13320	

2203.70	
2209.80	

0.91	%.	

6	 V-1392	 Murteree	
Toolachee-		
East-02	

Pr-
13321	

2261.62	

2273.81	
0.92	%.	

7	 V-1393	 Roseneath	
Toolachee-	
36	

Pr-
13322	

1947.67	

1959.86	
0.94	%.	

8	 V-1394	 Murteree	
Toolachee-	
21	

Pr-
13323	

2176.27	

2188.46	
1.05	%.	

8	 V-1395	 Murteree	
Toolachee-	
21	

Pr-
13324	

2157.98	

2164.08	
1.02	%.	

8	 V-1396	 Murteree	
Toolachee-	
21	

Pr-
13325	

2164.08	

2176.27	
1.30	%.	

9	 V- Murteree	 Moomba-	 Pr- 2813.30	 1.89	%.	
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1397	 73	 13326	 2822.45	

9	 V-1398	 Roseneath	
Moomba-	
73	

Pr-
13327	

2682.24	

2694.43	
0.98%.	

	

	

	

	

	

	

	

14	 V-1416	 Roseneath	
Moomba-
46	

Pr-13345	
2464-
2464.31	

	
0.84	%.	

14	
V-
1417	

Roseneath	
Moomba-
46	

Pr-
13346	

2464.9	
-
2463.2
4	

0.97%	

14	 V-1418	 Roseneath	
Moomba-
46	

Pr-13347	
2466.44	
–	
2466.59	

0.89	%	

14	 V-1419	 Roseneath	
Moomba-
46	

Pr-13348	
2468.27
-
2468.58	

0.82	%.	

9	 V-1399	
Murtere
e	

Moomba-	
73	

Pr-13328	
2782.82	

2791.97	
1.60	%.	

9	 V-1400	
Rosenea
th	

Moomba-	
73	

Pr-13329	
2657.86	

2663.95	
1.88	%.	

9	 V-1401	
Rosenea
th	

Moomba-	
73	

Pr-13330	
2673.10	

2679.19	
1.68	%.	

9	 V-1402	
Murtere
e	

Moomba-	
73	

Pr-13331	
2791.97	

2798.06	
2.00	%.	

10	 V-1403	
Murtere
e	

Moomba-	
133	

Pr-13332	
2776.73	

2785.87	
1.28	%.	

10	 V-1404	
Rosenea
th	

Moomba-	
133	

Pr-13333	
2828.54	

2831.59	
1.25	%.	

10	 V-1405	
Rosenea
th	

Moomba-	
133	

Pr-13334	
2816.35	

2825.50	
1.45	%.	

11	 V-1406	 Roseneath	
Moomba	
North-	01	

Pr-13335	
2593.85	

2606.04	
1.41	%.	

11	 V-1407	 Roseneath	
Moomba	
North-	01	

Pr-13336	
2624.33	

2627.38	
1.46	%.	

12	 V-1408	 Roseneath	
Moomba-
145	

Pr-13337	
2612.14	

2621.28	
1.72	%.	

12	 V-1409	 Murteree	
Moomba-
145	

Pr-13338	
2767.58	

2770.63	
1.52	

12	 V-1410	 Murteree	
Moomba-
145	

Pr-13339	
2727.96	

2740.15	
1.50	%.	

13	 V-1411	 Roseneath	
Moomba-
76	

Pr-13340	
2676.14	

2685.29	
0.82	%.	

13	 V-1412	 Roseneath	
Moomba-
76	

Pr-13341	
2663.95	

2673.10	
0.92	%.	

13	 V-1413	 Murteree	
Moomba-
76	

Pr-13342	
2788.92	

2795.02	
0.86	%.	

13	 V-1414	 Roseneath	
Moomba-
76	

Pr-13343	
2688.34	

2697.48	
0.74	%.	

14	 V-1415	 Roseneath	
Moomba-
46	

Pr-13344	
2464.19	

2465.53	
0.85%	
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14	 V-1422	 Roseneath	
Moomba-
46	

Pr-13349	
2465.22	
–	
2465.53	

0.94	%.	

15	 V-1423	 Roseneath	
Munkarie-
02	

Pr-13350	
1965.96	

1975.10	
0.94	%.	

15	 V-1424	 Murteree	
Munkarie-
02	

Pr-13351	
2127.50	

2133.60	
0.82	%.	

15	 V-1425	 Murteree	
Munkarie-
02	

Pr-13352	
2017.78	

2029.97	
0.68	%.	

16	 V-1426	 Murteree	
Baratta	
South-01	

Pr-13353	
2212.85	

2228.09	
0.94	%.	

16	 V-1427	 Roseneath	
Baratta	
South-01	

Pr-13354	
2097.02	

2103.12	
1.02	%.	

17	 V-1428	 Murteree	 Dirkala-02	 Pr-13355	
1896-	

1896.16	
1.07	%.	

17	 V-1429	 Murteree	 Dirkala-02	 Pr-13356	
1893.42	

1893.81	
1.01	%	

17	 V-1430	 Murteree	 Dirkala-02	 Pr-13357	
1897.08	
–	
1897.38	

1.01	%.	

17	 V-1431	 Murteree	 Dirkala-02	 Pr-13358	
1895.86	

1905.00	
1.09	%	

17	 V-1432	 Murteree	 Dirkala-02	 Pr-13359	
1837.94	

1844.04	
0.85	%.	

18	 V-1433	 Roseneath	
Big	Lake-
70	

Pr-13360	
2426.21	

2432.30	
0.93	%.	

18	 V-1434	 Murteree	
Big	Lake-
70	

Pr-13361	
2557.27	

2560.32	

0.97	%.	

	

18	 V-1435	 Murteree	
Big	Lake-
70	

Pr-13362	
2548.13	

2551.18	
0.84%.	

18	 V-1436	 Roseneath	
Big	Lake-
70	

Pr-13363	
2417.06	

2423.16	
0.97%.	

	

	

	Table-	3:				Organic	matter	is	abundant,	fine	to	medium	grain	size.	Organic	matter	is	mainly	coal	in	nature	and	oxidized	in	nature.	Vitrinite	is	the	

main	maceral	consist	of	vitrodetrinite	and	collinite.	Inertinite	is	the	second	maceral	consists	of	inertodetrinite	.Liptinite	is	the	third	

maceral	in	the	form	liptodetrinite,	alginite,	bituminite	are	present.	Kerogen	types	are	III,	IV,	and	II.		
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