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a b s t r a c t

A systematic review of latent heat storage in building elements was conducted to establish the current
knowledge base and reveal key design and performance factors that could be used to define technologies
available for immediate implementation and for specific applications. All relevant literature published by
April 2014 was critically evaluated and a data extraction procedure was used to organise, analyse and report
design and performance parameters of Phase Change Material (PCM) elements. The review of a total of 120
papers revealed that published information on these aspects is diverse and in many cases insufficient. The
diversity of test conditions and variety of reported values indicate that physical properties and performance
data concerning materials and complete PCM elements are not directly comparable. Therefore matching
technologies and applications for specific climates and building typologies is not possible solely through
published information. However evidence was collected which shows that, with appropriate design, PCM
elements can contribute to reducing loads and achieving energy savings in buildings, while securing a
comfortable indoor environment. Key design factors to this end were found to be the climate and target
season, the design of appropriate controls for active and passive systems used in combinationwith the PCM
elements and cost-related factors. The review also mapped the research foci to date, revealing the range of
variations previously examined and potential research gaps worth pursuing in the future.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A strong potential in reducing current levels of energy con-
sumption and Greenhouse Gas Emissions, especially those related
to heating and cooling, has been recognised for the building sector
[1]. A key challenge to this end is to reduce energy consumption
and emissions from space conditioning without compromising
thermal comfort needs. Current policy [1] supports the use of high
insulation levels that are seen as effective in significantly reducing
energy use in buildings [2]. However the dynamic behaviour of
thermal mass and its positive contribution to delaying heat fluxes
and regulating temperature fluctuations has been recognised [3–7]
in contrast to the rigid thermal performance of lightweight and
highly insulated building envelopes.

Latent Heat Storage (LHS) technologies that use Phase Change
Materials (PCM) impregnated in lightweight building elements are
considered as an interesting alternative to sensible storage in
heavyweight constructions [8], with a theoretical volumetric sto-
rage density of up to 15 times higher than traditional storage
materials [9]. The enhanced storage capacity of these materials is
due to their latent heat storage ability i.e. they can undergo a
phase change (e.g. melting/solidification) and therefore exchange
more heat with the environment than through solely their sen-
sible heat storage capacity. Attention is drawn to LHS-enhanced
building fabric as current construction trends demand speed and
ease of assembly and thus favour lightweight constructions [10].

Research on LHS technologies ranges from PCM material
development to experimental storage applications and from sys-
tem modelling to design guidelines. There is also R&D work
undertaken for integration of PCM in building services [9,11–13].
However research in the subject is still fragmented and the actual
potential held by these technologies in improving thermal condi-
tions and reducing heating and cooling needs in existing and new
buildings is not well understood. The aim of this study is to review
published evidence, establish the current knowledge base and
reveal key design factors for these technologies. The main objec-
tive is to examine whether current knowledge can be used to
define technologies available for immediate implementation and
technologies suitable for specific applications i.e. enable the
matching of existing and emerging needs with technologies
available.

A number of relevant past reviews has been identified; [8] had
a focus on load shifting applications, [14] on PCM integrated into
wall elements, [15] and [16] on materials, techniques for embed-
ding PCM into building elements and resulting thermal beha-
viours. [17] reviewed selected studies on passive and active sto-
rage modes of building integrated PCMs. The more recent [18,19]
and [20] have reviewed more broadly PCM integration processes,
methods for measuring physical properties of finished elements,
simulation tools and future research potentials. This study is dif-
ferent from these preceding reviews in that it encompasses and
critically evaluates all relevant literature to date, whilst also
addressing data quality and availability issues. To achieve that
it employs a systematic (structured) review procedure as
explained below.
2. Methodology

The systematic review presented here builds on a well-
established methodology originating from the health and social
sciences [21–22]. This methodology is applied here, not only to
assure the comprehensiveness of the research, but also to guide
the filtering of information identified. However the added value in
systematic reviews is the transparency of the methodology used
which allows reproducibility and thus creates a precedent for
future reviews to build upon. Two electronic databases have been
used in this study, Web of Science and Scopus, chosen for their
prevalence in the subject area. Both databases provide abstract
and citation information on peer-reviewed papers in the area of
physical sciences [23–25].

2.1. Search and data selection

A systematic review uses clearly defined search criteria that are
justified by the scope and orientation of the research [21,26]. The
present review is concerned with LHS, having a focus on PCM
integration in building elements. The keywords, operators and
nesting combinations used for the searches in the two databases
were as follows:

A. A generic set: TITLE (“thermal energy storage” OR “energy sto-
rage” OR “thermal energy” OR “heat storage” OR “thermal sto-
rage” OR “phase change material*” OR PCM) AND TOPIC (latent)
AND TOPIC (application or system).

B. A focused set: TITLE ONLY (“phase change” or PCM) AND (wall*,
roof, floor, panel, window, tile, curtain, shutter, building).

The search was deliberately broad, to allow all relevant pub-
lications indexed in the two databases to be identified. The first –
generic – set search (A) was performed in September 2013 (Web of
Science). The focused set search includes publications available
online up to April 2014 (Web of ScienceþScopus). The searches
were followed by manual text screening that completed the
selection process. The preliminary search revealed that a little
more than 1/3 of the tracked literature was related to LHS appli-
cations in buildings. Around 1/6th of these was on PCMs integra-
tion in building elements and was selected for review, along with
the results that came out of the second search set. Fig. 1 depicts a
summary of the search process. A further filtering, using criteria
for data quality and availability was performed (explained further
below).

2.2. Data extraction

Following guidance for systematic reviews [21,26], a data
extraction method was developed. In [27] evaluation criteria for
thermal energy storage implementation have been proposed.
Using these suggestions as a starting point, a list of parameters
critical for successful design, implementation and performance of
LHS building elements was formed. These parameters, organised
in groups, are shown in Table 1 while in Table 2 a sample of the
data extraction table is provided.
3. Results

3.1. Data availability and mapping

The search process tracked 140 studies to be reviewed. These
covered a variety of building elements; more popular being walls
(Fig. 2). Following the review, 20 papers were identified as inap-
propriate for data extraction and were excluded from the analysis.
Reason for exclusion was lack of most or all data required for
extraction [28–40]. For papers [41–47] that a more recent version
was found the review included only the latest version [48–53].

Fig. 3 presents data availability in the 120 papers considered,
revealing that very few papers offered data for extraction for all
aspects reviewed. In some instances data availability was deter-
mined by the actual focus of the research. Very few papers were
concerned with the role of internal (incidental) gains, and those
were mostly dealing with simulation analyses [54–66]. A paper



Fig. 1. Summary of search process; (a) generic keyword set and (b) focused keyword set.

Table 1
Groups of examined parameters.

Group name Parameters

Context and application Element – application – climate – season –

auxiliary system – control – internal gains
Element attributes PCM type – PCM amount – thickness
Thermal properties (mate-
rial or finished element)

Energy density – thermal capacity – specific
heat capacity – conductivity – temperature
range – super-cooling – storage duration –

discharge time
Element performance LHS effect – surface temperature – room tem-

perature fluctuation
Implementation aspects Cost – environmental risk – health/safety –

lifetime – finishing
Test conditions Method of investigation – method verification
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discussing numerical modelling of a PCM-enhanced building ele-
ment deliberately ignored any gains from occupants or appliances,
focusing on the heat flow within the studied element [67]. [68]
discussed in particular the role that the occupancy pattern could
play in defining an optimum melting temperature and [57] saw
internal gains as crucial in determining the element's ability in
fully meeting the cooling load. In studies using experimental test
rigs, occupancy or appliance use was not considered. However
some authors report energy demand reductions, meaning that
energy load estimations had been made, considering or not inci-
dental gains [69–72].
Information about the element studiedand its proposed appli-
cation could be extracted from all papers, being the focal point and
either the reason or the main conclusion of each study respec-
tively. Season and climate are widely reported being closely linked
to the application type, i.e heating or cooling, or the choice of PCM
material. Most of the studies could provide data on PCM type and
element thickness and half of the studies provided data on amount
of PCM. Thickness, describes the thickness of a single board mixed
with PCM or the thickness of a PCM layer within a sandwich (or
sandwich-type) panel or a multilayer element. PCM amount has
been usually reported in cases of PCM impregnation into a board,
given in PCM-weight-percentage (wt%) and related to mechanical
strength considerations [51,73]. It was mainly parametric studies,
examining optimum melting temperature ranges, rather than
specific PCM material or board types, that did not provide data on
amount of PCM [74–76].

Energy density information, in kJ/m², was scarcely reported.
Furthermore as with most extracted data concerning thermal
properties, information on energy density and thermal capacity (in
kJ/kg) was found to be inconsistently reported, often without
differentiating the sensible to the latent component. The tem-
perature or temperature range where the phase change occurs was
reported in most cases. For studies that did not discuss storage
duration, this review assumes it was diurnal. However two studies
discussed the potential of storing heat seasonally, utilising the
incomplete melting/solidification effects of PCMs during different
seasons [47,77]. Performance related aspects i.e. surface



Fig. 2. Number of papers on each subject in the 140 papers.

Table 2
Form of table for data extraction (extract of).

Application PCM Thickness Thermal
capacity

LHS effect Cost Environmental risk

Heating, cooling, load
shifting, demand limit-
ing etc.

Paraffin, fatty
acids etc.

Thickness of PCM ele-
ment or PCM layer in
element

Storage capa-
city in kJ/kg

Temperature fluctuation,
energy saving etc.

Investment, pay-
back etc.

Sustainability aspects,
energy efficiency etc.
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temperature, room temperature swing and the LHS effects were
also sought for extraction. The term ‘LHS effect’ describes any
positive result from introducing PCM in building elements i.e.
improvement of heat storage capacity, percentage of heat flux
reduction, effect on human comfort, energy saving and load
shifting potential. For time-varying quantities, an indication of the
month or the hour of day that the temperatures represented was
recorded accordingly. The LHS effect was studied alongside surface
and room temperatures. This is because a promising element
might not be able to achieve comfortable temperatures, as in the
case of [78].

Mostly in recent studies insights into implementation aspects
have been provided i.e. manufacturing, production, installation
costs, payback periods, lifetime expectancy, wider environmental
benefits, environmental, health and safety risks and final appear-
ance. In some cases the cost of HVAC operation has been dis-
cussed, especially in places where off-peak pricing system is
applied [58,79–84]. Four studies [58,85–87] have looked at pre-
dicted payback, and one [58] provided an economic comparison to
ordinary materials that can achieve similar performance. The
review identified lack of data on installation and maintenance
costs. Lifetime is represented by the number of cycles that the
element would undergo without showing deterioration of its
thermal performance. Most information regarding this parameter
could be extracted from studies that performed sample testing
with repeated heating/cooling cycles. These experimental
sequences are more rapid than in real time cycles and provide an
indication of the minimum number of days that the element
can perform satisfactorily [79]. Three of the reviewed studies
elaborated on life cycle assessment (LCA) of PCM enhanced ele-
ments [50,85,88]. On health and safety risks the only information
available was about PCM toxicity or flammability. Specifically [57]
indicated that fire safety of the proposed PCM panels and com-
pliance with fire regulations should be noted.

Considerations to do with finishing options like paints, wall-
papers and plasters can be relevant to designers and occupants
and thus were included in the data extraction. When a PCM is
considered as a layer within a multi-layer element, such as a
masonry wall, then typical finishing options were assumed for the
review. More data on this parameter was obtained from studies on
floor elements, where the finishing material was clearly stated
[58,89–92]. In the case of PCM-gypsum boards, no information
regarding compatibility with finishing materials was traced. It is
likely that this factor is omitted in recent studies due to it being
extensively examined in very early studies on the same subject, as
suggested in [93]. This might indicate that it isno longer of further
concern. Nonetheless two studies [52,94] discussed that the per-
formance of a PCM-enhanced element depends on the convective
heat transfer ability. Consequently, the surface orientation and
coverage by furnishings could reduce the element’s effective per-
forming area. To what extend this could be a drawback is subject
to future analysis but, apparently, implementation of PCM-
elements in real spaces will also have to include interior design
considerations.

Fig. 4 presents a categorisation of the methods of investigation
traced in the literature, including single element studies, test cells,
indoor chambers, computer simulations, outdoor cabins, para-
metric studies and method combinations. This categorisation was
seen as important for extraction and analysis, given that the
method largely determines the data used for, or resulting from,
each investigation. The breadth of research methods employed is
evident here. It is noticeable in Fig. 4 that the studies which could
not have provided an approximation or measurement about the
indoor temperature swing are those examining single elements
and those performing LCA. These studies correspond to a total of
28 papers and represent approximately 2/3 of the missing data on
indoor temperature swing. Similarly data relevant to internal gains
and indoor temperature swings were available in most studies
performing room simulations.

Studies that used a mathematical model – either for element
study or for simulations – report on whether it is a verified model
or whether it is validated in comparison to data existing in lit-
erature [60,61,84,95–98]. Studies that used two methods of
investigation reported agreement between results [69,48–49,57–
58,63,74,78,90,99–116]. Agreement between results is usually
reported as a phrase “good agreement” or “reasonable agreement”
and rarely with numerical comparisons. Often the need for future
work was discussed [48,57,67–68,70,73,77,79,82,84–85,93–
94,100,104,106–107,110–111,117–129] with an aim to include
omitted parameters or to extend their investigations e.g. from test
cell to macro-scale investigation.

3.2. Properties and performance factors

In the following sections the results of this systematic review
are presented using the same structure as that used for data
extraction. Results for walls, roofs and floors are presented toge-
ther, whereas results for windows and shading devices are pre-
sented separately as they represent a small but distinct part of the
reviewed literature. The discussion reveals that research on LHS
fabric solutions is fragmented and the data resulting from it can-
not lead to generalisable conclusions for these technologies. For
completeness, any conclusions that can be drawn from the data
are presented below, even if these are specific to a specific context
or building type, or even tied to a particular research experiment.



Fig. 4. Methods of investigation identified in the 120 papers.

Fig. 3. Number of papers that provided data for each parameter.
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3.2.1. Context and application
Table 3 presents the building parts and the type of PCM ele-

ments that have been examined to date. On wall elements, most of
the available data concern panels and primarily gypsum wall-
boards. The second more popular category is brick walls and
composite wall constructions, such as TIM-façade and TROMBE
walls. In TIM-facades and TROMBE walls, the PCM layer is used as
the “collector panel” of the composite wall in order to increase the
passive solar heating potential [48,67,71,100,119,130]. An auxiliary
system has been described for most cases along with the designed
or proposed control. Specifically [82] studied the performance of a
LHS-enhanced building using two different control modes and
concluded to the optimum control for achieving best energy cost
savings. The study highlights the critical role that controls can play
in utilising effectively LHS element's thermal properties. Other
studies have suggested the need for applying night ventilation,
either natural or mechanical (free cooling concept), to aid PCM
discharge [55,85,93,106,120]. In TROMBE wall studies attention is
drawn to strategies for reducing radiative heat loss [48,71,119].

A number of studies discuss applications of PCM impregnated
elements on flat and sloped roofs [53,72,109–110,126,131]. Ceilings
incorporating a tube system that circulates a heat transfer fluid
(water), have been described in [56] and [57], while in [97] PCM
cylinder macro-capsules embedded in a hollow core slab are dis-
cussed. With regard to floor-integrated LHS, data have been col-
lected from simulated spaces and some outdoor monitored cabins.
Such radiant floor constructions (see Fig. 5) have been studied for
their ability to achieve heating energy savings when incorporating
a PCM layer [58,83,113,132–133]. Apart from heating, there have
also been studies (see Fig. 6) investigating the cooling potential of
PCM embedded into floors [90,92,112,134]. Also, two PCM-floors
have been monitored in outdoor experimental rooms for their
passive solar heating potential [89,127].

In most studies looking at combinations of PCM integration to
the building fabric a combination of wall and ceiling or roof ele-
ment has been examined [61,62,65,77,114,115,128,161–163]. Only
a few studies examine coverage of all internal surfaces with a PCM
layer [59,96,129] and these usually follow up on preliminary
single-element studies. For example a renovated office where
Energains panels were applied as interior lining on walls and
ceilings to improve the building’s thermal inertial was presented
by [161]. Energains panels have been previously studied by the
same research group under various test conditions [103,120,141].
Initial results of the office monitoring showed an increased num-
ber of hours during which internal conditions are within the
thermal comfort range due to the addition of a PCM layer to the
otherwise lightweight construction.

In [115] a PCM-enhancedceiling was studied following a pre-
vious investigation on PCM-enhanced plaster tested solely on
walls. The combined effect (walls and ceiling) was found to be
effective in reducing the maximum room temperature by 4 °C,
with night ventilation used to aid solidification of the PCM-plaster.
PCM-plasterboards used on walls and ceilings were also studied by
[77]. Simulation results showed that solar energy stored passively
at the end of the heating season can be discharged after summer,
at the beginning of the new heating season. This seasonal storage
effect can reduce the heating energy demand at the beginning of
the heating season by 90%. The authors do not however discuss
any possible negative or neutral effects on cooling during summer
months when the system is operating at a saturated status.

As seen in Table 3, the SSPCM (Shape Stable PCM) is a widely
examined PCM element type. SSPCM consists of microencapsulated



Table 3
Building parts and types of PCM elements studied to date.

Wall Roof Ceiling Floor Combination

Gypsum board 2 stainless steel
panels

PCM embedded
piping

PCM tiles Gypsum board
[93,69,79,135,99,117,73,49,54,51,136,118,52,137,74,138,139] [89,50] [84,77,65,160]

[56] Concrete floor
[109,156] [127,113,112,157] DuPont™ Energain™TIM-PCM intelligent façade Sheet steel tray

containing
PCM/gypsum
composite

Panels
[67,100] [161]
TROMBE Concrete slab FSPCM Sandwich panel
[119,48,71,140,130] [58] [128][126,110] [57]
PVC panel filled with PCM and coupled to a VIP SSPCM SSPCM

[133,158,91] [162,63,62,61,96,60,129][101]
Trapezoidal
metal sheet

Hollow core ceil-
ing slabs filled
with PCM
cylinders

Piped radiant floor with a
steel matrix to improve
thermal conductivity

DuPont™ Energain™ panels

[94,85,103,141,120,121,142] [111]
[90]

Sandwich Reinforced
cement concrete
roof with PCM

[97] Concrete mixed with Micro-
encapsulated PCM[102,70,122] Radiant floor with water

pipes embedded in con-
crete slab and two PCM
layers (cooling/heating)

TABS with PCM
Structural insulated panels [163,164][124,125]
[81] [53]

[92] PVC panel filled with PCM
and coupled to a VIP

Honeycomb panels
[55,104,143] PV-PCM roof

Under-floor electric heating
system

[78][72]

PCFW [132,159] Gypsum plaster
[144] [115]
Panel composed of microencapsulated paraffin and not-expanded
polyurethane as binding

Slope roof with
PCM panel
below insulation
layer

Radiant floor with water
pipes embedded in concrete
slab

CSM panels
[88]

[145] SSPCMþgypsum board
[83]PCM Integrated copper foam panels with ventilation holes [164]

[123] OA floor
[131] [134]SSPCM

[75,76,82,146,147]
Bricks filled with PCM
[148,105,98,149,150]
PCM layer in masonry wall
[151,152,107,71,68]
Concrete mixed with PCM
[108]
Hollow glass brick
[106]
Ventilated facade with fins filled with PCM
[97]

PCM-enhanced cellulose insulation
[153]
Macro-encapsulated PCM panel on concrete wall
[87,154]
BioPCM25™
[155]
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paraffin dispersed in High Density Polyethylene (HDPE) or other
supporting materials (polyethylene and styrene-butadiene-styrene
comopolymere, graphite foam). Applied to walls, ceilings and floors
as interior lining, SSPCM technologies (Fig. 7) have resulted to 10%
heating energy savings [129]. In addition, SSPCM on walls and
ceilings coupled with night ventilation have been shown to reduce
the need for auxiliary cooling during summer days and save up to
76% of daytime cooling [61–62]. A number of parametric studies
have examined SSPCM [63,76–76,91,132,159]. The application of
SSPCM as interior lining on all interior surfaces was studied in [96]
and as a floor element in [91]. The performance of SSPCM was
found by both studies to be dependent on the convective heat
transfer coefficient, whilst the thermal conductivity of the element
had an insignificant effect on resulting indoor temperatures. [91]
presented optimised values of latent heat around 120 kJ/kg and
thickness at 20 mm. These values have been confirmed and/or
adopted by other parametric studies [63,75–76]. The same authors
suggested that thin PCM layers applied over large surfaces are
preferable than thicker layers applied to smaller areas [96]. A
similar argument has also been presented by [127] about PCM-
concrete floors.

Focusing on convective heat transfer effects, [94] observed that
the inner convective heat transfer coefficient is higher for PCM
walls in comparison to conventional walls. Both [94] and [96]
agree that the convective heat transfer coefficient values given in
guidance or calculated through the equations do not represent the
performance of PCM building fabric elements, due to the enhanced
energy exchange effects between the element and the volume of
air. More specifically, guidance gives a value of E2 W/m2 K, while
[96] suggested values between 5.62 W/m2 K and 8.72 W/m2 K and
[94] reported measured experimental values at 4.43 W/m2 K. Also,
it has been commented that high values like 10 W/m2 K can only
be achieved with forced convection [94]. The dual role of venti-
lation in aiding the discharge process not only by cooling the
element but also by enhancing convection has also been discussed
[66,94].

In [52] the thermal behaviour of PCM-gypsum board, when
used as partition wall or lining, was studied. The board's storage
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capacity was found to be higher when it was used as partition wall
rather than as lining. This effect was accredited to the dual-side
energy exchange with the environment in the case of a partition
wall. However in the reviewed literature, rarely PCM wallboards or
panels have been mentioned as partition walls (Table 4). In Table 4
all reported positions for the placement of PCM boards or other
PCM layers in wall constructions are given. The term PCM layer has
been used in the literature to describe PCM panels such as SSPCM
or PCM panel constructions that encompass a PCM layer. The term
has even been used theoretically without describing a specific
construction, differentiating the subject of study from PCM-boards
which are clearly described as gypsum boards impregnated with
PCM. The terminology used by the authors has been preserved in
this review.

In the case of TIM facades a PCM layer is placed behind the wall
system facing the conditioned space [67,100]. In TROMBE walls the
PCM layer has replaced the traditional storage wall [48,71,119]. In
masonry walls it has been used as filling in bricks, as a layer after
outer brick leaf or as middle layer [105,107,148]. Gypsum and
other PCM-panels are also placed as interior lining of external
walls or as internal partitions [69,118]. Overall, PCM layers have
been considered as interior lining in temperate and continental
climates, as middle layers in all types of climates and after the
outer brick leaf or as brick filing in temperate and hot climates.

A few studies [84,87,107,121,152,154] have examined the
optimum positioning of the PCM layer in the building envelope. All
these studies conclude that the optimum position depends on
both the climate and the intended application. For some climates
Fig. 5. Structure of the under-floor heating system (reproduced here with per-
mission from [132]).

Fig. 6. Radiant floor experimental set-up: (a) the metal container with the pipes and the
specimen, and (d) the specimen before closing the testing chamber (reproduced here w
double PCM layers have also been proposed for achieving best
performance during both heating and cooling periods as reported
by [70,84,122,138]. In that case the outer layer has a higher
melting temperature than the inner and is active in summer
conditions, while the inner is active in winter conditions. The use
of double layers was examined for roofs by [109], sandwiched
between the top roof slab and the ceiling. This study found that
the two layers of PCM, iwith the top having a high melting tem-
perature and the lowerlayer having a melting temperature near
the thermal comfort range, can give best results. Double layers
have been considered for floor constructions too. Double PCM
layers with two different melting temperatures were also studied
by [92], one at 38 °C for heating and another at 18 °C for cooling
(Fig. 8). [152] studied the options of having PCM before or after the
insulation layer. The study also examined the optimum melting
temperature for both seasons, with either configuration. It con-
cluded that for the specific climatic context (Csa) no such tem-
perature can be identified. The suggestion made was for a target
application (heating or cooling) to be identified or double layers to
be considered.

A broad range of climatic types has been examined to date,
largely corresponding to the regions where the research was done.
For climates with both cooling and heating needs, the aim is to
dampen temperature fluctuations, and thus reduce heating and
cooling demands [70,84,102,118]. There are a few studies discussing
in particular the potential of completely eliminating the need for
‘auxiliary’ heating or cooling systems [54,89,96,100,119,127]. In
general, it is observed that the climatic context often influences
decisions that are key to the design of the research, such as the
positioning of PCM layer, season and application type (heating/
cooling), phase change temperature, and consequently PCM type
(see also Fig. 10 and Fig. 12).

3.2.2. Element attributes and thermal properties
The range of thicknesses that have been studied to date, for

either PCM-board or PCM-layer, is shown in Fig. 9 (to link the
information presented in this figure to the publications reviewed,
see also Table 3). The thickness ranges from 0.01 m to 0.095 m for
PCM-gypsum boards and from 0.005 m to 0.02 m for PCM panels.
A thickness of 0.02 m has also been used as layer in TROMBE, TIM
and masonry walls. Regarding PCM floors, the thickness of concrete
slabs that have been examined is between 0.05 m and 0.095 m,
while for PCM layers added in floor constructions thicknesses
between 0.01 m and 0.025 m have been tested. [127] suggested that
PCM-concrete mixes in layers thinner than 0.05 can be charged
faster. Two studies discussed incomplete solidification issues; [113]
reported impediment of complete solidification-and thus discharge
of energy-due to excessive amount of PCM in a concrete slab.
However even without complete solidification, the concrete-PCM
slab studied by [113] was able to maintain appropriate surface
temperatures and provide heating during the 16 h that the auxiliary
supporting metal net, (b) the specimen filled with the granular PCM, (c) the closed
ith permission from [90]).



Fig. 7. Photos of a shape-stabilized PCM plate: (a) photo of the plate, (b) electronic microscopic picture by scanning electric microscope (SEM) (reproduced here with
permission from [36]).

Table 4
Position of PCM layers on wall element and climate for which position was studied; positions indicated as optimum in the literature are highlighted in bold.

PCM part position PCM-gypsum board Energain SSPCM Sandwich panels Various panels Filling

Interior lining Dwa Dfb [121,160] Cwa [82] Csa [70] – N/A
[135,137] Dwa [60,96,162]Dfa [161,160]

Cfa [162]
Csa Csa, Csb, Dfc [160]
[118],[138]
Cfb
[69],[115],[65]
Dfb [77]

After outer brick leaf – – – – Af [123] N/A
BSk [71]
Cfb [151]

PCM in middle layer Dfa, Cfa, Am [84] Cwa [85] – – Dfb [107] N/A
Cwa[114,87]
BSk[71]
Csb[155]

As partition Csa [118] – – – Cfb [55] N/A
As external wall – – – Cfb [102] Dfa [144],[81] N/A

BSk [71]
In bricks N/A N/A N/A N/A N/A Bwh [148]

Cfa [98]
Csa [149]
Csa [105]

For consistency, climatic information is codified here following the Köppen climate classification [165]. Climate symbols (for the codes used) explained below:
Dwa: Cold/dry winter/hot summer.
Csa: Temperate/dry summer/hot summer.
Cfb: Temperate/without dry season/warm summer.
Dfb: Cold/without dry season/warm summer.
Dfa: Cold/without dry season/hot summer.
Csb: Temperate/dry summer/warm summer.
Dfc: Cold/without dry season/cold summer.
Cwa: Temperate/dry winter/hot summer.
Cfa: Temperate/without dry season/hot summer.
Af: Tropical/rainforest.
BSk: Arid/steppe/cold.
Am: Tropical/monsoon.

A. Mavrigiannaki, E. Ampatzi / Renewable and Sustainable Energy Reviews 60 (2016) 852–866 859
system was off. In [56] the incomplete solidification of the LHS-
enhanced ceiling was credited to poor design factors, e.g. pipe spa-
cing, inlet cooling water temperature and PCM thermal properties.

Paraffins, esters of fatty acids and hydrated salts have been
examined to date. In some cases commercially available PCMs
have also been studied [88,94,118,162]. Esters of fatty acids are
usually impregnated in gypsum boards in a weight percentage
ratio of 25–26 wt%. In [69] a total heat energy density of 430 kJ/m2

for a gypsum board impregnated with 25 wt% liquid butyl stearate
has been reported. Latent heat energy density was mentioned to
be 85% of the total value, which gives 365.5 kJ/m². This value
is similar to 312.9 kJ/m2 reported in [80] for a 82 wt% capric
acidþ18 wt% lauric acid mixture at 26 wt% in gypsum. It can be
concluded that fatty acids impregnated in gypsum boards at a
percentage of 25–26% are likely to result to a highly improved
energy density of gypsum boards owing to latent storage.

Different compositions of fatty acid esters could result in dif-
ferent thermal capacities of a PCM-gypsum board even when same
amount of PCM is impregnated in gypsum, as can be observed by
comparing values reported by [79] and [135] (Table 5). The
recorded data (Table 5) reveals that a mixture of capric acid
(83 wt%) and steatic acid (17 wt%) impregnated in 25 wt% in
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gypsum has resulted to the highest thermal capacity value of PCM-
gypsum board reported to date, at 48.97 kJ/kg [117].

A wide range of latent heat storage capacities of gypsum boards
impregnated with paraffin, are reported in literature, as shown in
Table 5. From the values reported in [49,73,136] it could be con-
cluded that by increasing the paraffin weight percentage, a cor-
responding increase on the thermal capacity of gypsum board is
expected. This is also confirmed by [52]. [66,98,138,154] have also
indicated that by increasing the PCM filling or thickness the latent
heat effect is increased.

The range of phase change temperatures that have been con-
sidered in the studies reviewed is shown in Fig. 10, in relation to
the climates examined. For most PCM options and for each climate
a range of melting and solidification temperatures have been
studied in literature. The lowest recorded value is indicated as
melting or solidification “low” and the highest recorded is indi-
cated as melting or solidification “high” on this figure. When a
single value was found, this is recorded as low (melting or soli-
dification accordingly). In most cases the phase change tempera-
ture is determined by prevailing climatic conditions and falls
within the human comfort range. High melting temperatures, up
to 37 °C, have been considered for flat roofs, responding to the
outdoor prevailing conditions. However the resulting inside sur-
face and room temperatures of these constructions are within the
thermal comfort levels as shown by [53,109,126]. Very high
Fig. 8. The schematic of the double layer PCM floor (reproduced here with per-
mission from [92]).

Fig. 9. Thickness of PCM boards/panels and PCM layers in various building elements that
literature. As high has been indicated the highest value found in literature. Where only
melting points have been mainly examined for active systems.
A phase change temperature at 52 °C was considered for an under-
floor electric heating system with SSPCM plates (between the
plates and the final wood floor a 10 mm thick air layer interfered)
[132,159].

The phase change temperature varies according to climate and
in the same climate could vary from one season to another.
Parametric studies have shown that optimum temperatures exist
according to climatic context [59,68,74,84,160]. A study that
examined optimum melting temperature and optimum latent heat
levels for PCM for passive solar rooms in various climates con-
cluded that LHS-enhanced fabric solutions may not be viable for
some climates [59]. These are very cold climates, where the use of
active heating systems is imperative for thermal comfort, or rela-
tively mild climates, where passive heating techniques using tra-
ditional materials may be adequately effective. A number of stu-
dies [58,68,82,138] highlight the importance of selecting suitable
melting temperatures as well as designing appropriate controls for
optimising performance.

3.2.3. Element performance
Most studies report beneficial effects from PCM incorporation

in building elements. A maximum 24.22% and 32.8% heat flux
reduction (measured in W/m2) on the inner surface has been
reported from two different studies that tested bricks filled with
PCM compared to ordinary bricks [148–149]. The cooling load
reduction, resulting from monitoring the performance of outdoor
experimental cabins has been found to be close to 7% for a sand-
wich panel cabin and 10.8% for a phase change frame wall (PCFW)
cabin [70,144]. Agreement was found in the literature on the
predicted heating load reduction of the sandwich panel cabin and
of a PCM-gypsum board cabin. Predicted values were 17% and 15%
respectively [69,70]. However due to inconsistencies in these data,
no broad comparisons can be made. Furthermore, the results
correspond to specific climatic conditions, internal gains and
controls. For the purpose of this review an attempt is made to
identify “optimised” effects that could be considered as indicative
of cutting edge performance for these technologies.

In [48], a TROMBE wall with a Triple Glass Unit (TGU) was
studied for Dfb. For this construction, a PCM plaster board was
have been studied in literature. As low has been indicated the lowest value found in
one value was recorded, this was indicated as low.



Table 5
Observations on the relation between PCM type, amount and thermal capacity. Superscripts explained; a: total thermal capacity of board and b: latent only thermal capacity
of board. Only studies that could provide all three parameters have been cited.

System PCM PCM amount
(%)

Thickness (m) Thermal capacity (kJ/
kg)

Ref.

Laminated gypsum board Paraffin based encapsulated PCM (hexadecane) 11.8 wt 0.0125 20.1a [49]
Gypsum board attached to wood
structural panel

RT27 13.5 wt 0.012 56a [136]

Gypsum wallboard Ester of fatty acids: 93�95 wt% MeP and 7�5 wt% MeS 23 wt – 38.2a [93]
Gypsum wallboard Liquid butil stearate (BS) 25 wt 0.013 30.7b [69]
Gypsum wallboard for wall/ceiling Paraffin 25 wt 0.013 33.5b [84]
Form-stable gypsum wallboard Eutectic mixture of capric acid (83 wt%CA) and steatic acid

(17 wt%SA)
25 wt 0.01 48.97b [117]

FSPCM in electric floor heating system FSPCM: micro-encapsulated paraffin blended with HDPE/
wood flour composite

25 wt 0.01�0.025 27.6b (melting) 28.2b

(freezing)
[58]

Gypsum wallboard Eutectic mixture of capric acid (CA65%) and lauric acid
(LA35%)

26 wt 0.095 35.1b [79]

PCM-gyppsum board as interior lining Eutectic mixture of capric acid (CA82%) and lauric acid
(LA18%)

26 wt 0.095 36.9b [135]

Gypsum wallboard n-octadecane, 5�15μm 50 wt – 65.5b (melting) 64.2b

(cooling)
[73]

DuPont™ Energain™ Microencapsulated paraffin within a comopolymer 60 0.0052 34.8b (average) [94]
DuPont™ Energain™ Microencapsulated paraffin within a comopolymer 60 0.015 70b [121]
SSPCM Paraffin dispersed PCM 70 wt 0.02 120b [91]
Water pipe floor heating with sspcm Paraffin as dispersed PCM in polyethylene as supporting

material and expanded graphite
75 wt 0.016 139b [133]

Under-floor electric heating system SSPCM: paraffin as dispersed PCM in polyethylene as sup-
porting material

75 wt 0.015 150b [159]

Hollow concrete floor panel SSPCM: paraffin (RT 27 from Rubitherm) 85 wt 0.19 110711b [112]
Panels containing micro-encapsulated
PCM

Paraffin wax in powder form 85.71 0.01 45b [145]

Fig. 10. Phase change temperature and its relation to climate. As low has been indicated the lowest value found in literature. As high has been indicated the highest value
found in literature. Where only one value was recorded, this was indicated as low.
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placed on the outer side of the masonry wall and a TGU was placed
in front of the wall, instead of ordinary glass. A Prismasolars glass
in the middle of the TGU was designed to reflect direct solar
radiation to reach the PCM during summer months, thus pre-
venting overheating. The efficiency of the system was found to
vary from 37% in October to 21% in February and no benefits could
be obtained for the rest of the heating season, that was reported to
last until April in the considered location. It was concluded that a
TGU was not an appropriate choice for that climate. The selection
of an appropriate glazing system, or shading strategy, would help
utilise higher amount of the stored heat by reducing radiative heat
losses, as discussed by [71,119]. A 30% efficiency for a TROMBE wall
with PCM was also predicted by [119], who discussed the option of
reducing radiative heat losses by using a low emissivity glass.

The predicted heat flux reduction from roof slabs incorporating
PCM was reported to be 39% by [126] for Bwh and 56% by [53] for
Aw in comparison to conventional roof structures. Furthermore
[72] has predicted a 55% reduction in average cooling loads (W/
m2) for the space under the attic with the PCM layer placed below
the insulation layer of a sloped roof in Cfa (Fig. 11). These values,
although not directly comparable, indicate the beneficial effects of
PCM incorporation into various roof constructions. In the roof
presented by [53] a satisfactory heat flow control was noticed even
when the PCM did not completely melt and/or solidify during a
day cycle. During half of the year the solid fraction would increase,
while during the other half the liquid portion would increase
throughout the day cycles. A similar finding for a ceiling was
presented by [56] who proved that comfortable surface tempera-
tures and smoothed-out electricity peak loads were achievable
even when the PCM does not completely melt during daytime.
Both [124] and [125] reported that Thermally Activated Building
Systems (TABS) do not substantially benefit from the PCM addition



Fig. 11. Location of the PCM heat sink directly on top of the roofing deck material with air channels above and below the fibreglass insulation (reproduced here with
permission from [72]).
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neither in the concrete deck nor as ceiling PCM-mortar tiles.
Researchers suggested that further options could be investigated
with other material mixtures, such as PCM-gypsum.

In most cases the resulting indoor temperature swing was
reported to be short and dependent on the applied control. Pre-
dicted swings from laboratory results were in the range of 5–6 °C
and from simulations around 6–7 °C. Monitoring of outdoor rooms
has given swings that range from 2 °C to 10 °C. In the outdoor
cabin where the 10 °C swing was monitored, a heating system was
in operation during night times, with a set point temperature at
16 °C and during the day, when the passive solar strategy was
applied, temperature in the room would reach 26 °C [69].

3.2.4. Implementation aspects
Unaffected lifetime ranging from 60 to 5000 cycles was recor-

ded for PCM-gypsum boards [51,73,79,99,117]. For other types of
wall constructions there is no information about lifetime. Results
of actual lifetime performance were obtained from [114,162,163].
Unchanged performance of the PCM layer ‘PEG1000þPEG600’
during the two years that the monitoring of the outdoor cabin
lasted was reported by [114]. Likewise, [162] reported unchanged
performance of concrete walls mixed with micro-encapsulated
PCM after 6 months of monitoring. Considering that the following
research [163] on the same cubicles was dated 5 years later, a
minimum lifetime of 5 years can be assumed.

The LHS integration is reported to result to an overall improved
efficiency of HVAC operation by regulating heat transmitted to the
interior environment. Low cost of HVAC operation was discussed
in [69,80–82,137]. Reduced cost of electricity consumption can be
expected due to night-time operation of the ceiling systems, which
eliminates the need for additional use of air conditioning during
the day. Reduced operation cost was also reported with relation to
PCM floors, owing to the reduction of peak loads and overall
energy demand for space conditioning and extended lifetime of
auxiliary system due to efficient operation [58,83,89,92,127]. Floor
systems that are subject to controlled charging and discharging
are charged preferably during off-peak electricity pricing hours,
providing benefits due to demand shifting [90,92,113,132].

Additional economic factors have been considered by some
authors. Low cost of PCM has been reported by [79,93,101] for
fatty acids and type “PEG600”. Furthermore [117] and [102] stated
that the manufacturing cost is low for gypsum impregnation with
PCM and for sandwich panels, respectively. However high capital
cost was mentioned by a study using a commercial product [85].
Considering the same product as interior lining of a lightweight
wall for cold climates, [121] commented that it was a costly
alternative to traditional brick walls with insulation. In [58] the
payback cost was estimated to vary from 9.9 to 99.3 years
according to the applied control mode, in the case of a form stable
PCM (FSPCM) radiant floor. A payback of 11 years was estimated by
[87] for PCM layer added in concrete wall. The importance of
selecting appropriate thickness and controls in order to achieve
the best possible cost benefits was also discussed in this research.
Another important issue raised by the same study is cost com-
parison with common materials. The results showed that
improving wall insulation was a more economically attractive
option than installing a FSPCM floor.

Despite the high payback time predicted for a commercial pro-
duct, its energy payback period was estimated by [85] at 23.4 years.
This number is less than half the building's lifespan (60 years
according to researchers); consequently energy saved by the
application of the element could make up for its embodied energy.
Optimistic results from the environmental impact point of view
were given by two more studies that applied LCA [50,88]. These two
studies also found that salt hydrates have a lower environmental
impact than paraffin, considering 50 year building lifetime; the first
used the ‘Recipe indicator’ and calculated percentage of emissions
reduction, whilst the second used the ‘EcoIndicator 99’ method and
calculated impact reduction in impact points. [50] performed a LCA
of PCM tiles. Three PCM types (paraffin MicronalDS5008X-Basf, salt
hydrates ClimSel C24, ClimSel C21-Climator) and five different cli-
mate types were studied. Salt hydrates were found to offer higher
environmental impact reduction than paraffin and this was true for
all climate types considered. Also, PCM tiles were found to have
greater environmental impact reduction potential in two of the
climates (Bwh, BSk) compared to the other three (Csa, Csb, Cfb). In
all climates the three PCM types were considered with unaltered
thermal properties. It was therefore noted that by choosing PCM
type according to climate, better performance and limited envir-
onmental impact during operation could be expected.

Finally, finishing options have been mostly discussed in studies
on PCM floors. These include wood floor [92,132], tiles [83,90,133],
marble [58] and carpet [134]. Clay stoneware was the finishing
of PCM-tiles proposed by [89] and thin concrete-PCM layer was
suggested by [127]. Also both studies mention that the floor areas
that were more efficient, were those near the windows and at
unobstructed parts of the space that can receive direct solar
irradiation.

3.3. Windows and shading systems

Windows and shading systems have been studied for their
potential to reduce incoming solar gains [95,116,166,167,168]. As
they represent a small part of the related research, drawing from
them general conclusions on system performance implementation
aspects is not possible. However, useful information could be
extracted from publications discussing monitoring results.

An outdoor installation with double glazing façade was studied
by [116]. The system could effectively shift peak loads and reduce
solar gains approximately by 50% with either paraffin RT25 or with



Fig. 12. Flowchart of critical parameters to be considered when deciding to inte-
grate a PCM element in the building envelope.
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salt hydrate S27. The two PCM options presented differences in
appearance during solidification, forming flakes and crystal nee-
dles, respectively. These issues were seen as easy to overcome by
adding screen-print on the façade.

A PCM-slats shading system has been experimentally installed
in two offices in a Cfb climate. The monitoring study revealed
satisfactory outcomes under the experimental conditions, redu-
cing the summer operative temperature by 2 °C. However, oper-
ating restrictions imposed by researchers during the experimental
period resulted to occupants rejecting and dismantling the system
before the completion of monitoringcs neutral or slightly positive
in terms of resulting optical environment in the offices [167].
4. Discussion

The data collected and reviewed here reveal that there is a
potential for energy savings through the use of a range of PCM-
enhanced elements. The data suggests that the longer the PCM is
active within a year cycle, the lower its environmental impact will
be. This would be true for regions that demonstrate stable climatic
conditions throughout the year as also mentioned in [88]. How-
ever, as this is rarely the case, the PCM selection appears as a key
design parameter to consider when optimising performance con-
sidering seasonality [50,64,88,152,162]. On that matter, the option
of using double PCM layers seems to offer a potential for year-
round performance in climates that demonstrate both heating and
cooling needs. However this choice may also increase manu-
facturing impact as well as investment costs. Since analysis on
double layers from a combined – economic and environmental
impact – perspective was not found in the available literature, no
safe conclusion on their feasibility can be currently drawn.

As the selection of appropriate PCM and resulting element
performance appears to be highly climate dependent, more
attention on climate change effects may need to be drawn in LHS
research in the future. Climate change considerations can be
related to both element lifetime and cost, as it is likely to affect the
required melting temperature range. The environmental payback
estimates discussed above, though hopeful, are based on the
assumption that the element will “live” that long. However, data
reviewed on the lifetime parameter cannot confirm – neither can
refute – such a long life expectancy. This issue is relevant to cost
payback too. Even if investment cost is decreased, a promising
lifetime should be guaranteed so that a second investment will be
delayed as much as possible to avoid frequent disruptions in space
use as well as additional labour costs. One more parameter to be
considered is the selection of suitable controls that will allow
efficient use of the PCM element [58,82]. This might mean
selecting the most appropriate working mode for the auxiliary
system, where one exists, as described in [58, 68,82], or con-
trolingthe night ventilation strategy, either natural or mechanical
(free cooling concept) [55,85,120,128,162,167]. It is also noted that
all published cost analyses are based on electricity prices that were
current at the moment of writing and material costs specific to the
region where the research was done. Hence, the only general
conclusion that can be drawn is that the use of PCM elements can
be a cost beneficial option if appropriate controls are applied and
current manufacturing cost is decreased to compete well with
conventional materials. It is further noted here that future
research will also have to examine material availability in the short
and long term future, as this is missing from the current literature.

SSPCM elements appear to be a promising LHS option. However
the use of microencapsulated paraffin and the reported high
commercial cost of these systems suggest that further research
needs to be performed having a focus on cost and environmental
impact considerations. It is also becoming evident through this
review that LHS in radiant floors and ceilings might be at the
moment the two most promising applications for residential
applications. These appear viable in achieving considerable energy
savings with the addition of a PCM layer, subject to a suitable
system control and a high capital cost. However research on this
particular subject area is still limited, in contrast to research on
wall elements.

Fig. 12 presents a decision-making diagram for integrating LHS in
building elements, based on the analysis of the results in Section 3.
5. Conclusion

A systematic review has been conducted to examine LHS-
enhanced building fabric systems. A total of 120 paper was iden-
tified as suitable for review and a list of investigated parameters,
organised in six groups, guided the data extraction. The review of
published research revealed that a range of parameters that are
key to the performance of these systems can be identified. How-
ever published information on those aspects appeared to be
diverse and in many cases insufficient, in contrast to respective
information on other energy storage systems for which a more
comprehensive knowledge base exists [169].

The review has shown that with appropriate design, PCM ele-
ments can contribute to reducing loads and achieving energy
savings in buildings, while securing a comfortable indoor envir-
onment. More specifically:

� Phase change temperature should be chosen according to cli-
mate and (target) season;

� If year-round performance is required double layers might be a
suitable option;

� Optimum position should be selected according to climate and
intended application;

� LHS benefits cannot be utilised effectively without the appro-
priate control.

� The auxiliary system's working mode affects the PCM element's
performance.

The diversity of test conditions and variety of reported values
indicate that physical properties and performance data concerning
materials and complete elements that are found in the literature
are not directly comparable. The analysis of published data also
reveals that even with desirable performance assured, parameters
such as investment cost, investment payback and environmental
payback may inhibit the use of a PCM-element and favour the use
of conventional materials. The systematic review has further
revealed that information on the above mentioned aspects is
deficient. The results highlight areas where future research would
be beneficial in broadening our understanding of the actual
potential held by these technologies in energy and carbon reduc-
tions from heating and cooling. At the moment of writing
matching technologies and applications for specific climates and
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building typologies is not possible solely through published
information. Further research is needed to enrich the knowledge
base and enable a broader mapping of performance aspects that
could guide design.
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