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ABSTRACT

Although CD8� T cells are important for the control of HIV-1 in vivo, the precise correlates of immune efficacy remain unclear.
In this study, we conducted a comprehensive analysis of viral sequence variation and T-cell receptor (TCR) repertoire composi-
tion across multiple epitope specificities in a group of antiretroviral treatment-naive individuals chronically infected with
HIV-1. A negative correlation was detected between changes in antigen-specific TCR repertoire diversity and CD8� T-cell re-
sponse magnitude, reflecting clonotypic expansions and contractions related to alterations in cognate viral epitope sequences.
These patterns were independent of the individual, as evidenced by discordant clonotype-specific transitions directed against
different epitopes in single subjects. Moreover, long-term asymptomatic HIV-1 infection was characterized by evolution of the
TCR repertoire in parallel with viral replication. Collectively, these data suggest a continuous bidirectional process of adaptation
between HIV-1 and virus-specific CD8� T-cell clonotypes orchestrated at the TCR-antigen interface.

IMPORTANCE

We describe a relation between viral epitope mutation, antigen-specific T-cell expansion, and the repertoire of responding
clonotypes in chronic HIV-1 infection. This work provides insights into the process of coadaptation between the human im-
mune system and a rapidly evolving lentivirus.

CD8� T cells are key determinants of immune efficacy in hu-
man immunodeficiency virus type 1 (HIV-1) infection (re-

viewed in reference 1). Although simple quantitative correlates of
protection are generally lacking, previous studies have identified pa-
rameters that typically associate with effective HIV-specific CD8�

T-cell responses, including targeting specificity and breadth, antigen
sensitivity, recall proliferation, and polyfunctionality (reviewed in
references 2 to 4). Nonetheless, these and other potentially important
properties cannot fully explain the different disease outcomes associ-
ated with infection.

The inherent quality of a CD8� T-cell response depends on the
arsenal of T-cell receptor (TCR) clonotypes deployed to engage
the targeted peptide-human leukocyte antigen class I (pHLA-I)
complex. Current paradigms hold that diverse and/or cross-reac-
tive TCR repertoires are beneficial in the face of rapidly evolving
RNA viruses because they enable early recognition of emerging
epitope variants (5–7). Indeed, restricted TCR diversity is associ-
ated with immune escape in hepatitis C virus (HCV) infection (8).
Moreover, diverse but highly biased repertoires can facilitate
escape due to a lack of variant recognition (9). On the other
hand, CD8� T-cell repertoires that incorporate highly cross-
reactive clonotypes are associated with delayed disease pro-
gression in simian immunodeficiency virus (SIV) and HIV-1
infection (10–12). Nonetheless, a broad TCR repertoire per se is
not necessarily protective, implicating additional clonotypic
determinants of CD8� T-cell efficacy (13). In this light, it has
been shown previously that superior viral control can associate
with enhanced antigen-specific clonal turnover, reflecting con-
tinual replenishment of the response with effective T-cell
clonotypes (14–16). However, repertoire evolution is a variable

phenomenon, even within CD8� T-cell responses directed
against the same viral epitope (16). In addition, clonotype per-
sistence has similarly been linked with long-term asymptom-
atic HIV-1 infection (17). These contrasting observations un-
derscore the fact that the HIV-specific CD8� T-cell response is
highly heterogeneous.

Most antigen-specific repertoire studies to date in the HIV-1 field
have focused on a single epitope, with limited information on the
circulating viral quasispecies. In contrast, we conducted a compre-
hensive analysis of cognate TCR sequences and viral epitope variation
across four targeted specificities in a group of antiretroviral treat-
ment-naive individuals with chronic HIV-1 infection. All subjects
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carried the highly prevalent HLA-I alleles A*02 and B*08, enabling
simultaneous analysis of more than one epitope-specific CD8� T-cell
response over time. A delicate balance was observed between HIV-1
variation and the virus-specific TCR repertoire, whereby only a few
clonotypes reacted to changes in the viral milieu. These so-called “clo-
notypic shifts” markedly affected CD8� T-cell response magnitude in
an antigen-driven manner. Moreover, long-term asymptomatic
HIV-1 infection was achieved when the TCR repertoire adapted in
response to viral replication.

MATERIALS AND METHODS
Study population. Eight initial participants with known seroconversion
dates were selected from the Amsterdam Cohort Studies on HIV-1 infec-
tion and AIDS based on the presence of both HLA-A*02 and HLA-B*08;
three individuals also carried the protective HLA-B*27 allele. All subjects
were antiretroviral therapy naive prior to and during the time of sample
collection. Peripheral blood mononuclear cell (PBMC) and serum sam-
ples were drawn from two time points per person: (i) early (time point 1,
t1), with a median of 218 days postseroconversion (range, 169 to 568
days), and (ii) late (time point 2, t2), with a median of 1,133 days postse-
roconversion (range, 986 to 1,226 days) (Table 1). Further PBMC samples
were collected from three participants, subjects 5, 6, and 9, an additional
seroprevalent individual exclusively selected for these extra analyses (see
Table SI in the supplemental material). All individuals were in the asymp-
tomatic, chronic phase of infection.

Flow-assisted sorting of antigen-specific CD8� T cells. As no pre-
screening information was available on the presence/absence of measur-
able epitope-specific CD8� T-cell responses, we selected well-defined,
dominant epitopes for the three HLA-I alleles of interest: B*08-FLKE
KGGL (B8-FL8), B*08-EIYKRWII (B8-EI8), A*02-SLYNTVATL (A2-
SL9), and B*27-KRWIILGLNK (B27-KK10). Antigen-specific CD8� T
cells were labeled with pretitrated concentrations of the respective fluoro-
chrome-conjugated pHLA-I tetrameric complexes: (i) B*0801-FL8 and
B*0801-EI8 (monomers produced in-house as described previously with
minor modifications [18]), conjugated with QD705 and QD605 (Life
Technologies), respectively; (ii) A*0201-SL9-APC (where APC is allophy-
cocyanin) (Sanquin); and, as applicable, (iii) B*2705-KK10-PE (where PE
is phycoerythrin) (Sanquin). Nonviable cells were eliminated from the
analysis using Live/Dead Aqua (Life Technologies). Cells were then
washed and surface stained with the following monoclonal antibodies
(MAbs): anti-CD3-APC-H7, anti-CD4-PE-Cy5.5, anti-CD8-PE-Cy7,
anti-CD14-Alexa Fluor 700, and anti-CD19-AmCyan (where AmCyan is
the cyan fluorescent protein from Anemonia majano) (Caltag/Invitro-
gen). After exclusion of nonviable/CD14�/CD19� cells, up to four CD3�

CD8� tetramer-positive populations were sorted in parallel at �98% pu-
rity directly into RNAlater solution (Life Technologies) using a custom-
ized FACSAria II flow cytometer (BD Biosciences) and stored at �80°C
for subsequent TCR� clonotype analysis.

TCR� clonotype analysis. Clonotype analysis was performed as de-
scribed previously with minor modifications (19). Briefly, mRNA from
sorted CD8� T-cell populations was extracted using a �MACS mRNA isola-
tion kit (Miltenyi Biotec). An anchored template-switch reverse transcrip-
tion-PCR (RT-PCR) was then used to amplify all expressed TCR� chains
linearly. Amplified products were ligated into the pGEM-T Easy vector (Pro-
mega) and transformed into chemically competent Escherichia coli bacteria.
Subcloned products were amplified using M13 primers and sequenced via
capillary electrophoresis with a BigDye Terminator cycle kit, version 3.1,
cycle kit (Life Technologies). Analysis of each TCR� sequence and assign-
ment of gene usage were performed using Web-based software from
ImMunoGeneTics (20). At least 50 TCR� sequences were successfully
analyzed for each sample, a cutoff widely considered appropriate for an-
tigen-specific memory T-cell responses (21).

Sequence analysis of HIV-1 epitopes. For Gag, viral RNA was isolated
from serum using a Viral RNA Minikit (Qiagen) or silica particles as
described previously (22). A combined cDNA synthesis and first-round
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PCR was then performed in 30-�l reaction mixtures using a Titan One-
Tube RT-PCR kit (Roche). The following parameters were used: (i) 50°C
for 30 min to synthesize cDNA; (ii) 95°C for 2 min to melt; (iii) 40 cycles
of 95°C for 15 s, 57°C for 30 s, and 68°C for 2.5 min (increased by 5 s per
cycle for the last 30 cycles) to amplify; and (iv) 72°C for 10 min to com-
plete extension. The second, nested PCR was performed using 5 �l of the
first-round product in 30-�l reaction mixtures with an Expand High Fi-
delity PCR System (Roche). The following parameters were used: (i) 95°C
for 2 min to melt; (ii) 30 cycles of 95°C for 15 s, 58°C for 30 s, and 68°C for
2.5 min to amplify; and (iii) 72°C for 10 min to complete extension.
Primers KVL064 (forward, 5=-GTTGTGTGACTCTGGTAACTAGAGAT
CCCTCAGA-3=) and NCrev-2 (reverse, 5=-CCTTCCTTTCCACATTTC
CAACAG-3=) were used for the combined cDNA synthesis/first-round
PCR, and primers KVL066 (forward, 5=-TCTCTAGCAGTGGCGCCCG
AACAG-3=) and NCrev-3 (reverse, 5=-CTTTTTCCTAGGGGCCCTGCA
ATTT-3=) were used for the second, nested PCR.

For Nef, viral RNA was isolated from serum using a Viral RNA Minikit
(Qiagen). cDNA was synthesized with SuperScript III reverse transcriptase

(Invitrogen) using a Nef-specific primer (Nef rv1, 5=-GCTTATATGCAGGA
TCTGAGG-3=) and purified on silica-based columns (Macherey-Nagel).
Template-specific amplification was performed as described previously (23).

Amplified Gag and Nef products were gel purified (Macherey-Nagel),
A-tailed, and ligated using a pGEM-T Easy vector system (Promega).
Ligated products were then transformed into chemically competent E. coli
bacteria and sequenced as described above (4 to 48 clones per sample).

TCR� diversity analysis. A T-cell clonotype was defined as a TCR�
chain encoded by a unique nucleotide sequence. Sample clonality was
estimated by counting the relative number of distinct clonotypes and by
using Simpson’s diversity index (DS) (21). This index is defined according
to the following equation:

Ds � 1 � �
i�1

c ni(ni � 1)

n(n � 1)

where ni is the clonal size of the ith clonotype (i.e., the number of copies of
a specific clonotype), c is the number of different clonotypes, and n is the
total number of analyzed TCR� sequences. This index uses the relative
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FIG 1 Analysis of CD8� T-cell populations directed against A2-SL9, B8-EI8, B8-FL8, and B27-KK10. (A) Antigen-specific CD8� T cells were labeled with
pHLA-I tetramers and quantified by flow cytometry. Response magnitude is shown as the frequency of tetramer-positive (multimer�) events in the total CD8�

T-cell population. (B and C) TCR� diversity was quantified using the relative number of clonotypes (B) and Simpson’s diversity index (C). Data are shown for
each individual at both the early and late time points.

TABLE 2 HIV-1 sequence analysis of epitopes restricted by HLA-A*02 and HLA-B*08

Subject
no.

ACS
no.a HLA type(s)

Time
point

A2-SL9 B8-EI8 B8-FL8

SLYNTVATL Frequency (%)b EIYKRWII Frequency (%) FLKEKGGL Frequency (%)

1 19957 A*01, A*02, B*0801, B*15 t1 --------- 100 -------- 100 ----T--- 79.2
-------- 19.2
----R--- 1.6

t2 -----I--- 100 -------- 100 ----M--- 93.4
-------- 6.6

3 19861 A*01, A*02, B*0801, B*51
or B*52

t1 --------- 100 -------- 100 -------- 100
t2 NDc ND ND

4 19453 A*01, A*02, B*0801, B*38 t1 --F------ 51.7 ND ND
--------- 48.3

t2 --------- 100 -------- 100 ----M--- 86.7
-------- 13.3

5 19342 A*01, A*02, B*0801, B*40 t1 ND ND ND
t2 --F------ 100 D------- 100 ----E--- 100

8 18785 A*01, A*02, B*0801, B*07 t1 --------- 100 -------- 100 --N----- 86.1
----E--- 14.0

t2 --------- 100 ND --N----- 93.9
L-N----- 3.0
-------- 3.0

a ACS, Amsterdam Cohort Study.
b Percentage of sequences in which the epitope occurs.
c ND, not detected.
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frequency of each clone to calculate a diversity index ranging between 0
and 1, indicating minimal and maximal diversity, respectively. To account
for differences in sample size (i.e., the number of successfully analyzed
TCR� sequences), all samples were normalized by random sampling
(without replacement) to an equal number of sequences (n 	 50) prior to
the calculation of TCR� diversity (i.e., the relative number of unique
clonotypes and Simpson’s diversity index). This process was repeated
1,000 times, after which median values of TCR� diversity were deter-
mined and used for subsequent analyses.

Statistical analysis. Sample normalization and statistical analyses were
performed using SPSS, version 20.0.0 (SPSS, Inc.). A P value of �0.05 was
considered statistically significant. Graphics were generated using GraphPad

Prism, version 5.04 (GraphPad Software, Inc.). Note that in some analyses
(see Fig. 2A and 3), data from multiple T-cell populations per individual and
different epitope specificities were pooled; in these instances, the data points
cannot be considered fully independent of each other.

RESULTS
Isolation and analysis of antigen-specific CD8� T cells. Eight
treatment-naive individuals with chronic HIV-1 infection were
selected for coexpression of the HLA-A*02 and HLA-B*08 alleles.
Each subject was studied at two time points, approximately 1 (0.5
to 1.5) and 3 (2.7 to 3.5) years postseroconversion (Table 1). Ini-

TABLE 3 HIV-1 sequence analysis of epitopes restricted by HLA-A*02, HLA-B*08, and HLA-B*27

Subject
no.

ACS
no.a HLA type

Time
point

A2-SL9 B8-EI8 B8-FL8 B27-KK10

SLYNTVATL
Frequency
(%)b EIYKRWII

Frequency
(%) FLKEKGGL

Frequency
(%) KRWIILGLNK

Frequency
(%)

2 19885 A*01, A*02, B*0801,
B*27

t1 --F-A--V- 100 -------- 96.8 --R----- 100 ---------- 93.6
---E---- 3.2 E--------- 3.2

-----P---- 3.2
t2 --F----V- 93.8 -------- 85.7 ND ---------- 85.7

--F--A-V- 6.3 -------V 14.3 ----VM---- 14.3
6 18840 A*02, A*02, B*0801,

B*27
t1 --------- 94.7 -------- 100 -------- 48.9 -----M---- 68

P-------- 5.3 --R----- 51.1 ---------- 28
-----I---- 4

t2 NDc ND ND ND
7 18839 A*0207, A*0207,

B*0801, B*27
t1 --------- 100 -------- 100 -------- 64 -----M---- 100

----R--- 36
t2 --------- 90.3 -------- 94.7 ----R--- 97.6 ---------- 52.6

-----I--- 9.7 ---R---- 5.3 ----E--- 2.4 -----M---- 42.1
R--------- 5.3

a ACS, Amsterdam Cohort Study.
b Percentage of sequences in which the epitope occurs.
c ND, not detected.

A2-SL9 early time point
A2-SL9 late time point

B8-FL8 early time point
B8-FL8 late time point

B27-KK10 early time pointB8-EI8 early time point
B8-EI8 late time point B27-KK10 late time point

p = 0.271       r = 0.246
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FIG 2 CD8� T-cell repertoire diversity is not related to viral epitope variation. Antigen-specific TCR� repertoire diversity (Simpson’s diversity index) and viral
epitope sequences were determined in parallel for a subset of samples (n 	 22). The percentage of wild-type (WT) epitope sequences (A) and the number of
variant epitopes present at the time of analysis (B) were used as measures of epitope composition in the autologous viral quasispecies. All plots include data
derived from the early and late time points. Correlation testing for data in panel A was performed using the Spearman rank test. Note that Simpson’s diversity
index was determined after data normalization for appropriate diversity comparisons (see Materials and Methods for details).
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tially, we used pHLA-I tetramers to characterize CD8� T-cell re-
sponses directed against the frequently targeted epitopes A*02-SL
YNTVATL (A2-SL9; p17-Gag), B*08-EIYKRWII (B8-EI8; p24-
Gag), B*08-FLKEKGGL (B8-FL8; Nef), and B*27-KRWIILGLNK
(B27-KK10; p24-Gag). Response magnitude varied as a function
of specificity, with B27-KK10 and A2-SL9 eliciting the biggest and
smallest CD8� T-cell responses, respectively (Fig. 1A).

To compare the clonotypic composition of distinct antigen-
specific CD8� T-cell populations, we used a template-switch an-
chored RT-PCR to amplify all expressed TCR� chains from
pHLA-I tetramer-positive cells sorted by flow cytometry to high
levels of purity. Two measures of diversity were calculated: (i) the
relative number of clonotypes (i.e., each unique TCR� nucleotide
sequence after normalization) and (ii) Simpson’s diversity index
(DS), which accounts for clonotype frequency (21). CD8� T-cell
populations directed against B8-EI8 and A2-SL9 selected repertoires
with the highest and lowest degrees of diversity, respectively (Fig. 1B
and C; see also Fig. S1 and S2 in the supplemental material). Of note,
highly focused and polyclonal responses were observed within each
specificity; these patterns were not associated with either the time of
sampling (Fig. 1, filled versus open symbols) or the magnitude of the
CD8� T-cell population (data not shown).

Viral epitope variation does not correlate directly with CD8�

T-cell repertoire diversity. Previous studies from our group and
others have suggested that the T-cell repertoire is shaped primarily
by the presented epitope (24, 25). To assess the relationship be-
tween TCR� diversity and viral epitope mutation, we conducted
an extensive analysis of autologous HIV-1 sequences in targeted

regions of the viral genome. Modest variations were detected
across viral populations. A single epitope sequence was usually
dominant, deviating from the wild type (WT) most prominently
in the B8-FL8 and B27-KK10 regions (Tables 2 and 3). Of note, the
majority of these variants were predicted to bind their respective
HLA-I molecules (73% according to the NetMHC 3.4 server; 82%
according to the NetMHCpan server) (see Table SII in the supple-
mental material) (26, 27). No significant correlations were de-
tected between the frequency of the WT epitope and the diversity of
the corresponding TCR� repertoire, either in terms of Simpson’s
diversity index (Fig. 2A) or the relative number of clonotypes (see Fig.
S3 in the supplemental material). Similarly, there were no associa-
tions between TCR� diversity and either the presence of epitope vari-
ants or the number of different epitope sequences (Fig. 2B; see also
Fig. S3). A direct analysis of viral epitope variation quantified using
Simpson’s diversity index also failed to reveal significant correlations
with TCR� diversity (data not shown). These findings indicate that
the composition of the viral epitope population does not necessarily
associate with TCR� repertoire diversity at any given time point, al-
though a relationship between these parameters cannot be excluded
from the current data.

Parallel evolution of the TCR repertoire, viral quasispecies,
and CD8� T-cell responses. It is well established that CD8� T-cell
response magnitude, TCR diversity, and viral epitope sequences
can evolve significantly during the course of HIV-1 infection (16).
Accordingly, we examined a subset of HIV-specific CD8� T-cell
responses (n 	 10) over time. Repertoire diversity varied between
the early and late time points without a common tendency to increase
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FIG 3 Longitudinal variations in CD8� T-cell response magnitude correlate negatively with TCR� diversity. (A and B) TCR� diversity was quantified at the early
(t1) and late (t2) time points for a subset of antigen-specific CD8� T-cell responses (n 	 10) using the relative number of clonotypes (A) and Simpson’s diversity
index (B). Statistical analyses were performed using the Wilcoxon signed-rank test. (C and D) Changes in CD8� T-cell response magnitude (ratio of t2 to t1) were
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represents a CD8� T-cell response analyzed at two time points. Correlation testing was performed using the Spearman rank test.
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or decrease (Fig. 3A and B). Next, we studied how changes in TCR�
diversity (measured as the ratio of the number of normalized clono-
types or the Simpson index at time point 2 divided by the correspond-
ing values at time point 1) related with longitudinal changes in CD8�

T-cell response magnitude (measured as the ratio of the response
magnitude at time point 2 divided by the corresponding value at time
point 1) (Fig. 3C and D). A significant negative correlation was ob-
served between these two parameters, indicating that the repertoire
became less diverse with CD8� T-cell expansion and more diverse
with CD8� T-cell contraction. Similar correlations were observed
between absolute changes in response magnitude and absolute
changes in TCR� diversity (data not shown). These observations sug-
gest that shifts in response magnitude over time were associated with
inflation and deflation of particular clonotypes.

On this basis, we examined the relationship between clono-
typic stability and viral epitope diversity. All longitudinal CD8�

T-cell responses were first stratified according to changes in mag-
nitude over time (ratio of t2 to t1): (i) large decreases in magnitude
(ratio of �0.5); (ii) conservation of magnitude (ratio of �0.5 and
�2.0); and (iii) large increases in magnitude (ratio of �2.0)
(Fig. 4, upper panels). The corresponding TCR� repertoires
(Fig. 4, middle panels) and circulating viral epitopes (Fig. 4, lower
panel) were then compared across categories. Interestingly, the

observed shifts in CD8� T-cell response magnitude were often
linked with changes in the TCR� repertoire and viral epitope over
time. For example, the two decreasing responses (subject 1 and
subject 7, B8-FL8) were accompanied by deflation of one (subject
1) or two (subject 7) dominant clonotypes (Fig. 4A). Similarly,
two increasing responses (subject 2 and subject 6, B27-KK10)
were paralleled by inflation of previously subdominant clonotypes
(Fig. 4C). In both scenarios, viral epitope sequences changed over
time. For CD8� T-cell responses that remained relatively stable,
however, fewer mutations were detected in the targeted viral
epitopes and TCR� repertoire composition remained largely un-
changed (Fig. 4B).

To validate these observations, we calculated changes in the
absolute numbers of tetramer-binding CD8� T cells (see Table
SIII in the supplemental material). Based on these values, the
majority of subjects adhered to the categories determined
above with respect to changes in response magnitude. The only
exception was the B8-EI8-specific response in subject 7, where
the ratio in absolute numbers fell below 2.0. Notably, more
pronounced shifts were apparent in the corresponding TCR�
repertoire than in other HIV-specific CD8� T-cell responses in
this category.

Together, these results suggest that preferential inflation or

FIG 4 The relationship between CD8� T-cell response magnitude, TCR� diversity, and viral epitope variation. Antigen-specific CD8� T-cell responses were
stratified according to changes in magnitude over time (ratio of t2 to t1). The bar graphs at the top represent CD8� T-cell responses that subsided over time (A),
remained stable over time (B), or increased over time (C). The clonotypic composition of each CD8� T-cell population is illustrated in the pie charts (middle),
with each color illustrating a unique clonotype, and the respective viral epitope sequences are shown in the chart at the bottom (where P5�R, for example,
indicates the substitution of an R residue at position 5). Response magnitudes are indicated in the pie charts as the frequency of tetramer-positive events in the
total CD8� T-cell population. Pie chart colors match clonotypes for each epitope pair but do not correspond between pairs. pt, patient.
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deflation of specific clonotypes within the available repertoire may
relate to viral epitope mutations and drive changes in the magni-
tude of the antigen-specific CD8� T-cell response.

Discordant evolution of CD8� T-cell responses within indi-
viduals. Next, we conducted a longitudinal analysis of HIV-spe-
cific CD8� T-cell responses in three individuals (Fig. 5). Differ-
ences in response magnitude over time (upper panels) were again
linked with TCR� repertoire stability (lower panels), now strati-
fied per person. Discordant patterns of evolution across epitope
specificities were also apparent in each donor. For example, the
B8-EI8-specific response in subject 1 showed minimal changes in
magnitude and clonotypic representation over time, whereas the
corresponding B8-FLK-specific response varied substantially
across both parameters. Similarly, some responses were stable in
subject 6 (B8-EI8) and subject 7 (A2-SL9 and B8-EI8), while oth-
ers changed dramatically in terms of magnitude and TCR� reper-
toire composition (subject 6, B27-KRW; subject 7, B8-FL8 and
B27-KK10). Together, these data indicate that HIV-specific CD8�

T-cell responses evolve independently of the host, most likely
driven by TCR-antigen interactions.

TCR repertoire evolution and viral load dynamics. A minor-
ity of individuals infected with HIV-1 maintain control of viral
load at low or undetectable levels. To determine the long-term
impact of such low-level viral replication and antigen presenta-
tion, we analyzed TCR� repertoire composition in CD8� T-cell
populations specific for B8-FL8 and B8-EI8 using additional sam-
ples from subjects 5, 6, and 9 (Fig. 6), all of whom showed signs of
delayed disease progression (asymptomatic with stable viral loads
and CD4� T-cell counts of �300 cells/�l at least 7 years after
seroconversion).

Subject 9 maintained undetectable viral loads 14 years after
entry into the cohort (Fig. 6A). Subjects 5 and 6 similarly con-
trolled viral loads to low or undetectable levels after acute infec-
tion, although progressive increases approximately 7 years after
seroconversion warranted subsequent antiretroviral therapy (Fig.
6B and C). Different patterns of TCR� repertoire evolution were
observed in these individuals. Clonotypic representation re-
mained stable in some epitope-specific CD8� T-cell popula-
tions (B8-EI8 in subject 9; B8-FL8 and B8-EI8 in subject 6
during early infection), whereas considerable changes in the
constituent TCR� clonotypes were observed in others (B8-FL8
and B8-EI8 in subject 5; B8-FL8 and B8-EI8 in subject 6 during
late infection). Moreover, these clonotypic characteristics of-
ten paralleled viral load trajectories. Subject 6 displayed stable
viral loads during early infection in conjunction with largely
constant TCR� repertoires specific for B8-FL8 and B8-EI8. As
viral loads increased during late infection, however, dramatic
changes in clonotypic composition were apparent for both
specificities. Similar patterns were observed in subject 5. In this
case, epitope-specific TCR� repertoire instability mirrored vi-
ral load fluctuations during both early and late infection. Con-
versely, the B8-EI8-specific TCR� repertoire in subject 9 re-
mained stable in the presence of undetectable viral loads,
although clear clonotypic shifts were observed in the B8-FL8-
specific CD8� T-cell population. Collectively, these data sug-
gest that the HIV-specific TCR repertoire evolves more rapidly
with changes in viral load. Thus, viremic control can be asso-
ciated with relatively conserved repertoires, whereas higher
levels of viral replication tend to drive clonotypic turnover.
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DISCUSSION
Although it is widely accepted that HIV-1 evades CD8� T-cell
immunity via epitope mutation, the clonotypic correlates of this
phenomenon remain poorly understood. Accordingly, we inves-

tigated antigen-specific CD8� T-cell repertoire dynamics in rela-
tion to viral epitope variation in antiretroviral therapy-naive se-
roconverters with asymptomatic HIV-1 infection. In line with
previous work, we found no time-matched correlations between
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viral epitope composition and clonotypic diversity within the cog-
nate HIV-specific CD8� T-cell response (28). However, longitu-
dinal analyses revealed a more nuanced picture. A negative corre-
lation across multiple specificities was initially detected between
changes in TCR repertoire diversity and CD8� T-cell response
magnitude. More detailed investigations showed that this associ-
ation reflected clonotype-specific expansions and contractions
related to alterations in cognate viral epitope sequences. These
patterns were discordant within individuals, suggesting an anti-
gen-driven process. Moreover, clonotype turnover was related to
viral load, as noted previously (16). Although tempered by sam-
pling limitations, these data suggest a continuous bidirectional
process of adaptation between HIV-1 and virus-specific CD8�

T-cell clonotypes that could ultimately govern immune efficacy
and the outcome of infection.

Previous studies have highlighted such dynamic interplay be-
tween the TCR repertoire and lentiviral pathogens. This is perhaps
best exemplified in the B27-KK10 system, where the early mobi-
lization of public TRBV4-3/TRBJ1-3 clonotypes drives the emer-
gence of TCR escape mutations, which can subsequently be con-
trolled by cross-reactive TRBV6-5/TRBJ1-1 clonotypes in some
individuals (11, 29). Adaptive plasticity in the B27-KK10-specific
repertoire may even underlie the protective phenotype conferred
by this HLA-I allele (30). Similarly cross-reactive clonotypes are
also thought to confer preferential outcomes in the context of
nonprotective HLA-I alleles. Indeed, a B8-FL8-specific TCR pre-
viously associated with long-term nonprogressive disease was de-
tected in this study (12). Nonetheless, it is possible that clonotypic
adaptation represents a double-edged sword, in some cases ex-
hausting immune resources without demonstrable benefit. Fur-
ther detailed studies will be required to clarify these issues in rela-
tion to specific epitopes and restriction elements.

In silico analysis predicted sufficient affinities for the majority
of epitope variants detected in this study to bind the relevant
HLA-I molecules. It therefore seems likely that many of these mu-
tations arose to circumvent TCR recognition. However, the effi-
cacy of this evasion strategy in the presence of a potentially vast
cognate TCR repertoire is almost certainly limited to specific sce-
narios, in contrast to viral mutations that abrogate epitope pre-
sentation via effects on antigen processing and/or HLA-I binding.
Nonetheless, our data suggest that such “shifting” epitope struc-
tures shape the virus-specific TCR repertoire over time. It is nota-
ble in this context that clonotypic overlap between CD8� T-cell
populations directed against WT and variant epitopes has been
reported previously and may even be commonplace (17, 28).

Despite the primary roles of antigen quantity and quality as
determinants of TCR repertoire dynamics, it is important to note
that other factors are implicated by the heterogeneous patterns
observed in our study. For example, the A2-SL9-specific TCR rep-
ertoire in subject 4 remained stable despite substantial sequence
variation in the cognate viral epitope and changes in response
magnitude. In this case, it seems likely that both dominant clono-
types were equally responsive to the emerging variant, suggesting
the operation of additional selection pressures during viral evolu-
tion. Conversely, the B8-FL8-specific TCR repertoire in subject 9
shifted substantially over time despite a consistently undetectable
viral load. In contrast, the corresponding B8-EI8-specific re-
sponse remained clonotypically stable over the same prolonged
time period. Thus, antigen drive alone does not fully explain the

evolutionary patterns observed across distinct epitope-specific
TCR repertoires in this study.

In summary, our data show that the antigen-specific CD8�

T-cell repertoire is intimately linked with viral load and epitope
variation during chronic HIV-1 infection. This complex dynamic
interplay confounds simplistic interpretation and hinders the
search for clonotypic determinants of CD8� T-cell efficacy.
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