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Abstract 3D scene modeling has long been a

fundamental problem in computer graphics and

computer vision. With the popularity of consumer-level

RGB-D cameras, there is a growing interest in digitizing

real-world indoor 3D scenes. However, modeling indoor

3D scenes remains a challenging problem because of the

complex structure of interior objects and poor quality

of RGB-D data acquired by consumer-level sensors.

Various methods have been proposed to tackle these

challenges. In this survey, we provide an overview of

recent advances in indoor scene modeling techniques,

as well as public datasets and code libraries which can

facilitate experiments and evaluation.
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1 Introduction

Consumer-level color and depth (RGB-D) cameras

(e.g., Microsoft Kinect) are now widely available

and are affordable to the general public. Ordinary

people can now easily obtain 3D data from

their real-world homes and offices. Meanwhile,

other booming 3D technologies in areas such as

augmented reality, stereoscopic movies, and 3D

printing are also becoming closer to our daily life.

We are living on a “digital Earth”. Therefore,

there is an ever-increasing need for ordinary people

to digitize their living environments.

Despite this great need, helping ordinary
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people quickly and easily acquire 3D digital

representations of their living surroundings is an

urgent yet still challenging research problem. Over

the past decades, we have witnessed an explosion

of digital photos on the Internet. Benefiting from

this, image-related research based on mining and

analyzing the vast number of 2D images has been

greatly boosted. In contrast, while the growth

of 3D digital models has accelerated over the

past few years, the growth remains comparatively

slow, mainly because making 3D models is a

demanding job which requires expertise and is

time-consuming. Fortunately, the availability

of low-cost RGB-D cameras along with recent

advances in modeling techniques offers a great

opportunity to change this situation. In the longer

term, 3D big data has the potential to change the

landscape of 3D visual data processing.

This survey focuses on digitizing real-world

indoor scenes, which has received significant

interest in recent years. It has many applications

which may fundamentally change our daily life.

For example, with such techniques, furniture stores

can offer 3D models of their products online so

that customers can better view the products and

choose furniture to buy. People without interior

design experience can give digital representations

of their homes to experts or expert systems [1,

2] for advice on better furniture arrangement.

Anyone with Internet access can virtually visit

digitized museums all over the world [3]. Moreover,

modeled indoor scenes can be used for augmented

reality [4, 5] and can serve as a training basis for

intelligent robots to better understand real-world

environments [6].

Nevertheless, indoor scene modeling is still a

challenging problem. The difficulties mainly arise

from two causes [7]: Firstly, unlike outdoor
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building facades, interior objects often have

much more complicated 3D geometry, with messy

surroundings and substantial variation between

parts. Secondly, depth information captured by

consumer-level scanning devices is often noisy,

may be distorted, and can have large gaps. To

address these challenges, various methods have

been proposed in the past few years and this is still

an active research area in both computer graphics

and computer vision communities.

The rest of the paper will be organized as

follows. We first briefly introduce in Section 2

different types of RGB-D data and their properties.

Publicly available RGB-D datasets as well as

useful programming libraries for processing RGB-

D data will also be discussed. In Section 3, we

systematically categorize existing methods based

on their underlying design principles, overview

each technique, and examine its advantages and

disadvantages. Finally, in Section 4, we summarize

the current state of the art and elaborate on future

research directions.

2 RGB-D data

“One cannot make bricks without straw.” Despite

the importance of indoor scene modeling and the

fact that RGB-D scanners have been available

for decades, it did not become a research focus

until the year 2010 when Microsoft launched its

Kinect motion sensing input device. Kinect has a

more far-reaching significance than as the game

controller it was originally released for, because

it has a built-in depth sensor with reasonable

accuracy at a very affordable price. Such cheap

RGB-D scanning devices make it possible for

ordinary people to own one at home, enabling

development and wide use of 3D modeling

techniques for indoor scene modeling. Before

discussing modeling algorithms in detail, we first

briefly introduce RGB-D data in this section,

including different types of RGB-D data and their

properties.

2.1 Types and properties

A variety of techniques have been developed

to obtain RGB-D data. These include passive

techniques such as stereoscopic camera pairs where

the depth is derived from disparity between

images captured from each camera, and active

techniques where some kind of light is emitted

to assist depth calculation. The latter are widely

used due to their effectiveness (e.g., particularly

for textureless surfaces) and accuracy. Currently,

light detection and ranging (LiDAR) is the main

modality for acquiring RGB-D data. Depending

on their working approach, LiDAR systems can

be divided into two classes: scannerless LiDAR

and scanning LiDAR [8]. In scannerless LiDAR

systems, the entire scene is captured with each

laser or light pulse, as opposed to point-by-point

capture with a laser beam in scanning LiDAR

systems. A typical type of scannerless LiDAR

system is the time-of-flight (ToF) camera, used in

many consumer-level RGB-D cameras (including

the latest Kinect v2). ToF cameras are low-

cost, quick enough for real-time applications, and

have moderate working ranges. These advantages

make ToF cameras suitable for indoor applications.

Alternatively, some RGB-D cameras, including the

first generation of Kinect, are based on structured

light. The depth is recovered by projecting specific

patterns and analyzing the captured patterned

image. Both ToF and structured light techniques

are scannerless, so they can produce dynamic 3D

streams, which allow more efficient and reliable 3D

indoor scene modeling.

Laser pulses in a ToF camera and patterns used

for structured light cameras are organized in a 2D

array, so that depth information can be represented

as a depth image. The depth image along with

an aligned RGB image forms an RGB-D image

frame which depicts a single view of the target

scene, including both the color and the shape.

Such RGB-D image frames can be unprojected

to 3D space forming a colored 3D point cloud.

RGB-D images and colored point clouds are

the two most common representations of RGB-

D data. RGB-D images are mostly used by the

computer vision community as they have the same

topology as images, while in the computer graphics

community, RGB-D data are more commonly

viewed as point clouds. Point clouds obtained

from a projective camera are organized (also called

structured or ordered) point clouds because there

is a one–one correspondence between points in

the 3D space and pixels in the image space. This
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correspondence contains adjacency information

between 3D points which is useful in certain

applications, e.g., it can simplify algorithms or

make algorithms more efficient as neighboring

points can be easily determined. Knowing the

camera parameters, organized colored point

clouds, and the corresponding RGB-D images are

equivalent. If an equivalent RGB-D image does not

exist for a colored point cloud, then the point cloud

is unorganized (unstructured, unordered). To fully

depict a target scene, multiple RGB-D image

frames captured from different views are typically

needed. As scannerless cameras are usually used,

scene RGB-D data captured are essentially RGB-

D image streams (sequences) which can later be

stitched into a whole scene point cloud using 3D

registration techniques.

Depending on the operational mechanism,

LiDAR systems cannot capture depth information

on surfaces with highly absorptive or reflective

materials. However, such materials are very

common in real-world indoor scenes, and are used

as mirrors, window glass, TV screens, and steel

surfaces etc. This is a fundamental limitation of

all laser-based systems. Apart from this common

limitation, consumer-level RGB-D cameras have

other drawbacks caused by their low cost. Firstly,

the spatial resolution of such cameras is generally

low (512 × 484 pixels in the latest Kinect).

Secondly, the depth information is noisy and

often has significant camera distortion. Thirdly,

even for scenes without absorptive or reflective

materials, the depth image may still involve small

gaps around object borders. In general, depth

information obtained by cheap scanning devices

is unreliable, and practical indoor scene modeling

algorithms must take this fact into consideration.

2.2 Public datasets

A number of public RGB-D datasets containing

indoor scenes have been introduced in recent years.

Although most of these datasets were built and

labeled for specific applications, such as scene

reconstruction, object detection and recognition,

scene understanding and segmentation, etc., as

long as they provide full RGB-D image streams of

indoor scenes, they can be used as input for indoor

scene modeling. Here we briefly describe some

popular ones (example scenes from each dataset

are shown in Fig. 1).

Cornell RGB-D Dataset [9, 10]: this dataset

contains RGB-D data of 24 office scenes and 28

home scenes, all of which were captured by Kinect.

RGB-D images of each scene are stitched into scene

point clouds using an RGB-D SLAM algorithm.

Object-level labels are provided on the stitched

scene point clouds.

Washington RGB-D Scenes Dataset [11]:

this dataset consists of 14 indoor scenes containing

objects in 9 categories (chair, coffee table, sofa,

Cornell Dataset Washington Dataset NYU Dataset

SUN 3D Dataset UZH Dataset

Fig. 1 Example RGB-D data in each public dataset.
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table, bowl, cap, cereal box, coffee mug, and soda

can). Each scene is a point cloud created by

aligning a set of Kinect RGB-D image frames using

patch volume mapping. Labels for the background

and the 9 object classes are given on the stitched

scene point clouds.

NYU Depth Dataset [12, 13]: this dataset

contains 528 different indoor scenes (64 in the

first version [12] and 464 in the second [13])

captured from large US cities, using Kinect. The

scenes are mainly inside residential apartments,

including living rooms, bedrooms, bathrooms, and

kitchens. Dense labeling of objects at the class

and instance level is provided for 1449 selected

frames. This dataset does not contain camera pose

information, because it was mainly built for single-

frame segmentation and object recognition. To

get full 3D scene point clouds, users may need to

estimate camera poses from the original RGB-D

streams.

SUN 3D Dataset [14]: this dataset contains

415 RGB-D image sequences captured by Kinect

from 254 different indoor scenes, in 41 different

buildings across North America, Europe, and Asia.

Semantic class polygons and instance labels are

given on frames and propagated through the whole

sequences. Camera pose for each frame is also

provided for registration. This is currently the

largest and most comprehensive RGB-D dataset

of indoor scenes.

UZH Dataset [15]: unlike other datasets

mentioned above, this dataset was built specifically

for modeling. It contains full point clouds of 40

academic offices scanned by a Faro LiDAR scanner,

which has much higher precision than consumer-

level cameras like Kinect but is also much more

expensive.

2.3 Open source libraries

Since the release of the Kinect and other

consumer-level RGB-D cameras, RGB-D data

has become popular. Publicly available libraries

that support effective processing of RGB-D data

is thus in demand. The Point Cloud Library

(PCL) [16] was introduced in 2011, which is an

open source library for 2D/3D image and point

cloud processing. The PCL framework contains

numerous implementations of state-of-the-art

algorithms including filtering, feature estimation,

surface reconstruction, registration, model fitting

and segmentation. Due to its powerful features

and relaxed BSD license (Berkeley Software

Distribution), it is probably the most popular

library for RGB-D data processing for both

commercial and research use.
Another useful library is the Mobile Robot

Programming Toolkit (MRPT) [17] which
comprises a set of C++ libraries and a number of
ready-to-use robot-related applications. RGB-D
sensors can be effectively used as “eyes” for
robots: understanding real-world environments
through perceived RGB-D data is one of the
core functions of intelligent robotics. This library
contains state-of-the-art algorithms for processing
RGB-D data with a focus on robotic applications,
including SLAM (simultaneous localization and
mapping) and object detection.

3 Modeling techniques

After introducing RGB-D data, we now discuss
various techniques for modeling indoor scenes in
this section. Based on modeling purpose, these
methods can generally be classified into two main
categories: geometric modeling (Section 3.1) and
semantic modeling (Section 3.2) approaches. The
former aims to recover the shapes of the 3D
objects in the scene, whereas the latter focuses on
recovering semantic meaning (e.g., object types).

3.1 Geometric modeling

Geometric modeling from RGB-D data is a
fundamental problem in computer graphics. Ever
since the 1990s, researchers have investigated
methods for digitizing the shapes of 3D objects
using laser scanners, although 3D scanners were
hardly accessible to ordinary people until recently.
Early works typically start by registering a set
of RGB-D images captured by laser sensors
(i.e., transforming RGB-D images into a global
coordinate system) and fuse the aligned RGB-D
frames into a single point cloud or a volumetric
representation which can be further converted into
mesh-based 3D models. The use of the volumetric
representation ensures the resulting geometry is a
topologically correct manifold. Figure 2 is a typical
geometric modeling result. Based on this pipeline,
geometric modeling problems can be split into two
phases: registration and fusion. Much research
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Fig. 2 Geometric modeling result. Reproduced with permission
from Ref. [5], c© 2011 IEEE.

has been done and theoretically sound approaches
have been established for both phases. For the
registration phase, iterative closest point (ICP)
registration [18, 19] and simultaneous localization
and mapping (SLAM) [20] as well as their variants
generally produce good solutions. For the fusion
phase, the most widely adopted solution is the
volumetric technique proposed by Curless and
Levoy [21] which can robustly integrate each frame
using signed distance functions (SDFs).

Geometric indoor scene modeling methods are

extensions of traditional registration and fusion

algorithms to indoor scenes. The major difference

is that such techniques must take into account the

properties of RGB-D data captured by consumer-

level RGB-D cameras, namely low-quality and

real-time sequences. A well-known technique is the

Kinect Fusion system [4, 5] which provides level-of-

detail (LoD) scanning and model creation using a

moving Kinect camera. As in traditional schemes,

Kinect Fusion adopts a volumetric representation

of the acquired scene by maintaining a signed

distance value for each voxel grid in the

memory. However, unlike traditional frame-to-

frame registration, each frame is registered to the

whole constructed scene model rather than the

previous frames using a coarse-to-fine iterative

ICP algorithm. This frame-to-model registration

scheme has more resistance to noise and camera

distortion, and is sufficiently efficient to allow real-

time applications. The system has many desirable

characteristics: ease of use, real-time performance,

LoD reconstruction, etc. Recently, Heredia and

Favier [22] have further extended the basic Kinect

Fusion framework to larger scale environments

by use of volume shifting. However, when used

as a modeling system for indoor scene modeling,

the volumetric representation based mechanism

significantly limits its usage for large and complex

scenes due to several reasons. Reconstructing large

scale scenes even with a moderate resolution to

depict necessary details requires a large amount

of memory, easily exceeding the memory capacity

of ordinary computers. Moreover, acquisition and

registration errors inevitably exist, and can be

significant for consumer-level scanning devices.

Although frame-to-model registration is more

robust than frame-to-frame registration, it is still

not a global optimization technique. Scanning

larger scenes requires longer moving trajectories.

Error keeps accumulating over the long acquisition

process and eventually breaks the reconstruction.

A typical example is the loop closure problem

which causes misalignment when reconstructing

large rooms using Kinect Fusion when the camera

trajectory forms a closed loop.

Kinect Fusion is designed for real-time online

modeling and interaction within relatively small

environments. A more general modeling framework

is the RGB-D SLAM [23]. As mentioned

before, the depth information obtained by cheap

scanning devices is unreliable. However, the

aligned RGB images can provide important

additional information when estimating camera

poses. The appearance features from the RGB

image and shape features from the depth image

can complement each other and together provide

much more robust point correspondences between

frames. In addition, in a practical scanning

process, it is very common to have loop closures

in the camera trajectories. Thus, overlaps may

exist not only between consecutive frames. Loop

closures can be detected and spatial relationship

between the corresponding frames offers additional

constraints when computing camera poses. The

whole sequence of RGB-D frames can be

represented as a graph, where each node is a

frame and each edge stores the spatial transform

between two adjacent nodes. Such graphs are

called pose graphs and can be efficiently optimized

using SLAM algorithms [20] (see Ref. [24] for

various state-of-the-art SLAM algorithms). The

general pipeline of the RGB-D SLAM framework

is shown in Fig. 3.
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Fig. 3 Pipeline of the RGB-D SLAM framework.

RGB-D SLAM approaches can be divided into

two types: sparse mapping and dense mapping.

For sparse mapping, only a few sparsely selected

key frames are used for reconstruction which

can quickly provide a rough structure of the

target scene, while for dense mapping, the

whole RGB-D stream is used, which can give

detailed reconstruction as long as sufficient data

is available. In both cases, the key technique

is feature point matching, which is the basis

for both transform estimation and loop closure

detection. Due to the poor quality of depth

images obtained by low-cost scanning devices,

most sparse mapping systems mainly rely on

distinctive feature descriptors detected in RGB

images (e.g., SIFT [25], SURF [26], or ORB [27]) to

find corresponding point pairs [23]. As real-world

indoor scenes usually contain large textureless

areas, e.g., painted walls, or repeated patterns,

e.g., tiled floors, even state-of-the-art feature

descriptors may easily generate falsely matched

point correspondences. To reduce the impact

of falsely detected point correspondences on

reconstruction, the RANSAC (RANdom SAmple

Consensus) algorithm [28] is often adopted to

determine a subset of correspondences which

conform to a consistent rigid transform. RANSAC

is an iterative, randomized approach to estimate

parameters of a mathematical model (in this case

a rigid transform) that fits observed data (sample

points) and is robust to outliers (which often

occurs in low-quality RGB-D data) [29]. However,

this may still fail in challenging cases as repetitive

objects or large textureless areas may easily lead to

many false correspondences. In practice, manual

correction of some falsely estimated transforms is

often needed in sparse mapping applications [7].

In contrast, with the help of dense depth streams,

a frame-to-frame ICP registration algorithm can

provide stronger cues for inferring camera poses.

Thus, dense mapping RGB-D SLAM systems [23,

30–32] currently provide more automatic and

robust solutions to modeling indoor scenes with

consumer-level RGB-D sensors.

3.2 Semantic modeling

The main objective of geometric modeling of

indoor scenes is to fully recover 3D geometry.

These methods take the target scene as a

whole regardless of what it contains, and thus

cannot provide a semantic representation of the

modeled scene. However, semantic information is

of vital importance in modeling for the following

reasons. Firstly, semantic information can be

used to improve modeling results. For example,

in cluttered real-world indoor scenes, it is not

practically possible to capture every single corner

of the scene due to occlusion. Nevertheless,

with simple semantic knowledge, e.g., that desk

surfaces are horizontal planes, and chairs have

mirror symmetry, we can easily infer the occluded

structure. Secondly, semantic representation of

the modeled scene is required by higher-level

applications. For instance, to understand and

interact with the modeled digital scenes, a

semantic tag for each object or even part must be

known. In fact, for many higher-level applications

it can be preferable to lose some geometric

precision in exchange for a semantically correct

representation, as long as doing so does not lead

to confusion in understanding the scene contents.

In this spirit, growing attention has been paid

recently to semantic modeling methods.

Semantic modeling algorithms focus on

reconstructing scenes down to the level of specific

objects. Typically, RGB-D data of each semantic

region are separated from the surrounding

environment and fitted using either existing object

models, part models, or even geometric primitives

(e.g., planes or cylinders). Semantic modeling

has many advantages compared to geometric

modeling. Apart from producing a semantically

meaningful representation of the modeled scene

(e.g., knowledge that the scene contains a table

and four chairs) which is beneficial in many

applications, the modeling process is much simpler

compared to traditional geometric modeling

which needs extensive effort for data acquisition,

especially when capturing real-world indoor
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scenes with low-cost RGB-D sensors. In contrast,

semantic modeling systems typically only require

sparse RGB-D images because the basic shapes

of most interior objects are already known a

priori. Hence, semantic modeling techniques are

particularly suited to modeling real-world indoor

scenes from low-quality RGB-D data. The general

pipeline of the semantic modeling framework is

shown in Fig. 4.

Clearly, semantic modeling requires sound

semantic segmentation of the input RGB-D data.

Automatically separating an indoor scene into

different kinds of semantic regions is a challenging

problem. On one hand, to understand what objects

are present in the scene, each object must be

separated from its surroundings. On the other

hand, recognizing the type and shape of an object

is ultimately important for determining whether

an adjacent region belongs to the object or not, for

effective segmentation. This is an intricate chicken-

and-egg problem. To break the interdependency,

human prior knowledge is often adopted in the

form of semantic or contextual rules. Although

many algorithms claim to take advantage of using

semantic or contextual information, there are

significant differences in terms of what they mean

by semantic or contextual information. This is

mainly because there is no universal definition of

what degree of human prior knowledge can be

considered as semantic. Therefore, based on the

level of context being used, we classify semantic

modeling methods into two categories: primitive-

based methods (Section 3.2.1) and model-based

methods (Section 3.2.2).

3.2.1 Primitive-based methods

An important observation concerning interior

objects is that most of them can be decomposed

into a set of geometric primitives (e.g., sphere,

cone, plane, and cylinder). Figure 5 gives an

Fig. 4 Pipeline of the semantic modeling framework.

Fig. 5 Primitive-based semantic modeling result. Reproduced
with permission from Ref. [39], c© 2012 Association for
Computing Machinery, Inc.

example of a semantically modeled scene; note

that objects in it are all constructed from basic

geometric primitives. Finding proper primitives

which best fit the unsegmented noisy input RGB-

D scan is the core of primitive-based methods.

Thus, primitive fitting algorithms must be capable

of reliably distinguishing between inliers and

outliers. The state-of-the-art algorithm is based

on RANSAC [28] due to its robustness to outliers.

However, RANSAC can only estimate one model

(i.e., a single primitive) for a particular data

set. As for any one-model approach, when two

(or more) instances exist, RANSAC may fail to

find either one. As an alternative, the Hough

transform [33] is often used for robust estimation

of models when more than one model instance

is present; it finds instances of objects within a

certain class of shapes by voting in the parameter

space. A major drawback of the Hough transform

is that the time complexity increases at a rate of

O(Am−2) where A is the size of the input data

and m is the number of parameters [34]. Thus, it

is very time-consuming to detect complex models

(large m) in large-scale input scans (large A).

Furthermore, the Hough transform is generally

more sensitive to noise than RANSAC. As a result,

the Hough transform is most often used when we

can convert the problem into a 2D parameter space

to make the problem tractable [3, 35]. Otherwise,

most approaches choose to detect multiple model

instances one by one using RANSAC [36–38].

As the primitives are fitted locally from noisy

and incomplete data, it is very common to see

duplicated primitives where a single primitive is
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reported multiple times, or gaps in the set of

fitted primitives. Thus global consolidation is also

needed to get a consistent scene representation.

Depending on the application, different types of

global consolidation are used with different a priori

assumptions (e.g., regarding typical primitives in

the scene).

In large-scale interior architectural modeling,

a box assumption is most commonly used.

Specifically, walls can be fitted with vertical

planar primitives, floors and ceilings can be fitted

with horizontal planar primitives, and together

they form a strict box. This assumption is the

foundation of the state-of-the-art architectural

modeling approach [3]. It first segments the scene

point cloud into a set of horizontal 2D slices, and

points in each slice are projected onto a 2D plane.

Line segments are detected in the 2D space, which

are then merged into 2D rectangles and combined

with other slices to form 3D cuboids. In some

cases, convex hull or alpha-shape algorithms are

also needed to determine the spatial extent of each

planar primitive [36], as they may form general

polygonal shapes rather than the more common

rectangles.

Many CAD and mechanical models are designed

and manufactured by additive or subtractive

combination of primitive shapes. Such types of

objects can be naturally modeled by primitive-

based methods with suitable assumptions. The

state-of-the-art method for modeling such objects

is proposed by Li et al. [37]. They consider three

types of mutual relations (orientation, placement,

and equality) and propose an iterative constrained

optimization scheme to globally consolidate locally

fitted primitives.

Recently, primitive-based methods have been

extended to model large-scale indoor scenes, not

only for walls or floors but for interior furniture

as well. This is based on the observation that

furniture items (e.g., chairs, tables, and cabinets)

in a large-scale scene usually come from a small

number of prototypes and are repeated multiple

times. Kim et al. [39] proposed a supervised

method which involves two stages. In the offline

learning stage, each object of interest is pre-

scanned and represented as a set of stable

primitives along with necessary inter-part junction

attributes. In the online modeling stage, the

whole scene is segmented and each segment is

fitted with primitives. Then all repeated objects

are detected and modeled through hierarchical

matching. Variation between object parts can

also be handled by specifying degree-of-freedom

for each stable primitive in the pre-scanned

object, which is the main advantage of this

supervised method. Mattausch et al. [15] later

introduced an unsupervised method for modeling

with high-quality RGB-D data also by detecting

repeated objects. They first convert the scene

point cloud into a collection of nearly-planar patch

primitives. Then, based on geometric similarity

and spatial configurations of neighboring patches,

patches are clustered in a Euclidean embedding

space and repeated objects can thus be detected

and modeled. Note that primitives used in these

methods are not just meaningless geometric

shapes but some kind of semantic abstraction of

interior objects or parts, identified from repeated

occurrences of instances in the training data, which

helps to robustly recover repeated objects from

incomplete and noisy data (e.g., chair backs, chair

seats, monitors, etc.).

3.2.2 Model-based methods

Despite attempts with certain levels of success as

described in the previous subsection, primitive-

based methods have fundamental limitations in

modeling interior objects. For example, both

Refs. [39] and [15] only tackle large-scale public or

office buildings with many repeated objects, but

in typical home environments many objects only

occur once (e.g., a television or a bed). Moreover,

many interior objects (e.g., keyboards, desk lamps,

and various types of chairs) are too complex to be

depicted in detail using a set of simple primitives.

Thus, primitive-based methods can only offer an

approximation to the target scene.

What happens if we already have a database

containing similar 3D models of objects to the

ones that appear in the target scene? This is not

unrealistic, as for example chairs frequently occur

in indoor scenes and it is likely that a chair model

similar to the one appearing in the target scene

already exists in the database. In this case we no

longer need to pre-scan the chair [39] or cluster

point cloud regions [15] to learn the underlying
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semantic structural knowledge of that chair. More

importantly, 3D models are far more flexible and

can provide more accurate depiction for chairs in

the scene than a set of basic primitives. As long as

we have sufficient 3D models in the database, it is

much more feasible to get a visually plausible and

semantically segmented digital scene by finding

and placing correct models and parts, adapted

to fit the input scans (see Fig. 6). This is the

key spirit of model-based methods. The growing

availability of free 3D models online (e.g., in the

Trimble 3D Warehouse) has made it possible.

Model-based methods thus represent a new trend

in scene modeling.

Nan et al. [40] use a search-classify strategy and

a region growing method to find independent point

clouds from high-quality laser scans, and assign a

semantic label for each meaningful object. They

first train classifiers for individual pre-defined

object categories. In the online stage, they first

over-segment the input point cloud. Starting

from a seed region in the over-segmentation, the

point cloud of an individual object is detected

and separated from the background by iteratively

adding regions which help to increase classification

confidence. After that, a deform-to-fit technique

is used to adapt 3D models in the training set to

fit the segmented and classified point cloud objects.

Their method relies on high-quality scans, to make

the problem more tractable.

Shao et al. [41] present an interactive approach

to semantic modeling of indoor scenes from sparse

sets of low-quality Kinect scans. To avoid problems

brought by poor-quality depth images, they rely

Fig. 6 Model-based semantic modeling result. Reproduced
with permission from Ref. [7], c© 2014 Association for Computing
Machinery, Inc.

on user interaction to reliably segment RGB-D

images into regions with semantic labels manually

assigned. Then an automatic algorithm is used to

find the best matched model for each object and

arrange them to reconstruct the target scene.

For complex scenes with many object instances,

Shao et al.’s method [41] requires extensive

user assistance for segmentation and labeling to

resolve ambiguity due to noise and occlusion.

Interior objects normally have strong contextual

relationships (e.g., monitors are found on desks,

and chairs are arranged around tables). Such

relationships provide strong cues to determine

semantic categories of each object, and has

been used in a number of recognition and

retrieval tasks, delivering significant improvements

in precision. By utilizing such information, Chen

et al. [7] propose an automatic solution to this

problem. They exploit co-occurrence contextual

information in a 3D scene database, and use

this information to constrain modeling, ensuring

semantic compatibility between matched models.

The performance of model-based methods relies

heavily on the quality, diversity and the number of

existing 3D models as well as scenes that represent

plausible combinations of models. Novel scenes or

scene items without representation in the existing

3D model database are likely to lead to poor

results. This is currently the main bottleneck of

model-based methods.

4 Conclusions

In this paper, we have presented an extensive

survey of indoor scene modeling from RGB-D

data. We first briefly introduced some public

datasets and programming libraries in this area.

We divided methods into two categories: geometric

modeling and semantic modeling, and overviewed

various indoor scene modeling techniques along

with their advantages and limitations in each

category. However, from the reviewed methods

we can see that robust modeling of real-world

complex, cluttered or large-scale indoor scenes

remains an open problem because of numerous

challenges. Generally, researchers in this area

have reached a consensus that utilizing prior

knowledge is the right direction to improve
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modeling algorithms, especially when the data is

incomplete and noisy. In fact, with simple prior

knowledge, even traditional geometric modeling

methods can benefit significantly. Zhou et al. [42]

use an observation that scene parts which have

been scanned particularly thoroughly tend to

be points of interest (POI). By detecting POI

from the scanning trajectory and protecting

local geometry in POI, they can significantly

improve reconstruction results of complex scenes.

Salas-Moreno et al. [43] extend the classic

SLAM framework to object level using the prior

knowledge that many scenes consist of repeated,

domain-specific objects and structures. Therefore,

obtaining more human prior knowledge and better

using it have become a focus of current indoor

scene modeling research. By summarizing a broad

area of literature, we hope this survey will give

valuable insights into this important topic and will

encourage new research in this area.
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