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Axonal density and diameter are two fundamental properties of brainwhitematter. Recently, advanced diffusion
MRI techniques have made these two parameters accessible in vivo. However, the techniques available to esti-
mate such parameters are still under development. For example, current methods to map axonal diameters
capture relative trends over different structures, but consistently over-estimate absolute diameters. Axonal
density estimates are more accessible experimentally, but different modeling approaches exist and the impact
of the experimental parameters has not been thoroughly quantified, potentially leading to incompatibility of
results obtained in different studies using different techniques. Here, we characterise the impact of diffusion
time on axonal density and diameter estimates using Monte Carlo simulations and STEAM diffusion MRI at 7 T
on 9 healthy volunteers. We show that axonal density and diameter estimates strongly depend on diffusion
time, with diameters almost invariably overestimated and density both over and underestimated for some com-
monly used models. Crucially, we also demonstrate that these biases are reduced when the model accounts for
diffusion time dependency in the extra-axonal space. For axonal density estimates, both upward and downward
bias in different situations are removed bymodeling extra-axonal time-dependence, showing increased accuracy
in these estimates. For axonal diameter estimates, we report increased accuracy in ground truth simulations and
axonal diameter estimates decreased away from high values given by earlier models and towards known values
in the human corpus callosumwhenmodeling extra-axonal time-dependence. Axonal diameter feasibility under
both advanced and clinical settings is discussed in the light of the proposed advances.

Crown Copyright © 2016 Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

The possibility of mapping in vivo white matter properties such as
the axonal density and diameter has a huge appeal for neuroscientists
and clinicians alike. Indeed, changes in axonal morphology have been
associated with many conditions of interest. For instance, alterations
of axonal diameters have been observed in psychiatric conditions like
autism (Piven et al., 1997; Hughes, 2007), dyslexia (Njiokiktjien et al.,
1994) and schizophrenia (Randall, 1983; Rice and Barone, 2000).
Axon diameters were found to change following exposure to alcohol
(Livy and Elberger, 2008), and increase in diameter of the axonal initial
segment was reported as an early change in amyotrophic lateral sclero-
sis (Sasaki and Maruyama, 1992). Axonal damage in the spinal cord of
multiple sclerosis patients is associated with both lower densities and
higher diameters (Bergers et al., 2002), and axon degeneration precedes
cell body death in many neurodegenerative disorders like Huntington's
disease (Marangoni et al., 2014).
r Inc. This is an open access article u
While diffusion tensor MRI (DT-MRI) has proven to be an incredibly
powerful tool for studying white matter properties over two decades
(Basser et al., 1994; Basser, 1995), several studies have highlighted its
intrinsic lack of specificity to different sub-compartments of cerebral
tissue (Pierpaoli et al., 1996; Beaulieu, 2002; Budde and Annese, 2013;
De Santis et al., 2014). Understanding the role of white matter (WM)
microstructure in brain function, in health and disease demands more
specific indices that tap into its sub-components. In this context,
multi-compartment modeling approaches based on biophysical models
of brain tissue aim to increase the specificity of diffusion MRI analy-
sis, furnishing compartment-specific information. These methods
generally require the diffusion signal to be acquired overmultiple diffu-
sion weightings, and are thus generically referred to as multi-shell
techniques.

For example, the Composite Hindered And Restricted ModEl of
Diffusion, or CHARMED (Assaf et al., 2004; Assaf and Basser, 2005),
models the signal as the contribution of two different pools: a hindered
extra-axonal compartment and one or more intra-axonal compart-
ments, whose properties are characterised by a model of restricted dif-
fusion perpendicular to the fiber axis within impermeable cylinders
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(Neuman, 1974). A slightly different model called NODDI, which also
accounts for the dispersion of axons around the main orientation, was
introduced more recently (Zhang et al., 2012). These models are able
to estimate the T2-weighted fraction of water belonging to the intra-
axonal pool(s), also interpreted as the axonal density.1

The CHARMED framework has been extended to account for different
axonal diameters, providing the opportunity to map non-invasively the
distribution of axonal calibers within the brain using Axcaliber (Assaf
et al., 2008; Barazany et al., 2009) or ActiveAx (Alexander et al., 2010)
frameworks. To make the diffusion signal sensitive to axonal diameters,
a multi-shell diffusion protocol is acquired over a range of diffusion
times. This is achieved by varying the acquisition parameter Δ, which is
the time elapsed between the beginning of the two gradient pulses.
Varying the diffusion time provides the necessary contrast for estimating
the axonal diameter. For a comprehensive review on axonal diameter
estimation approaches, see Nilsson et al. (2013).

Axonal diameter methods capture the relative trends for the diame-
ter distribution, returning, for example, higher values in the body of the
corpus callosum and lower in the genu and splenium in agreementwith
histological measures (Aboitiz et al., 1992). However, the absolute
diameter value is generally overestimated (Alexander et al., 2010).
Histology has extensively reported axonal diameters to lie in the
range 0.5–2 μm for human WM (Aboitiz et al., 1992; Tang et al.,
1997), whileMRI-derived axonal diameter maps in the literature report
axonal diameters in the range 5–15 μm (Alexander et al., 2010). This
is only partially explained by the fact that larger axons contribute qua-
dratically more signal to the diffusion MR decay (Alexander et al.,
2010). The feasibility of obtaining accurate in vivo estimates of axonal
diameters in humans on commonly-available hardware has recently
been called into question (Burcaw et al., 2015), due to the exceedingly
small differences in signal attenuation that must be detected in order
to differentiate between different diameters. In addition, Innocenti
et al. (2015) pointed out that fibers larger than 3 μm make up no
more than 1% of the total fibers.

In themost widely employed diffusionMR sequences (such as those
used for DT-MRI in clinical research studies), the extra-axonal compart-
ment indeed represents by far the largest contribution to the signal
decay, whereas multi-compartment models focus their attention on
the intra-axonal compartment, that contains information on axonal
density and diameter. The diffusion in the extra-axonal compartment
is typically modeled as a tensor, i.e., it is assumed that it undergoes
Gaussian diffusion and, importantly, that the tensor parameters do not
depend on diffusion time. Recently, however, it was shown (Burcaw
et al., 2013; Novikov et al., 2014) that the extra-axonal compartment
diffusion orthogonal to themain fiber orientation is strongly dependent
on time, creating a potential source of bias through unmodeled effects in
axonal diameter and density estimates (Novikov et al., 2014). Further-
more, it has been shown that this time dependency is amuchmore pro-
nounced effect than the signal attenuation due to finite inner axonal
diameters (Burcaw et al., 2015).

The aims of this work are threefold: 1) to investigate the influence of
diffusion time in vivo over a wide range in multi-compartment models
using diffusion weighted STimulated Echo Acquisition Mode (STEAM)
MR imaging; 2) to study the feasibility of human axonal diameter map-
ping techniques at 7 T; and 3) to modify current models to estimate
axonal diameter distributions and density to account for diffusion
time effects in the extra-axonal compartment, with the ultimate goal
of obtaining more accurate estimates of axonal density and diameters
in vivo in the human brain.
1 Strictly speaking the axonal density is the intra-axonal signal (or water) fraction
(dimensionless) divided by the axonal area (proportional to the squared axonal radius).
However, wewill use the term axonal density here to refer to the intra-axonal signal frac-
tion alone, following the diffusion microstructure MRI literature.
Methods

Theory

All multi-compartment frameworks for estimating axonal density
and diameter are based on decomposing the signal into (at least) two
distinct pools: the extra-axonal compartment, whose diffusion is con-
sidered hindered, and the intra-axonal compartment, whose diffusion
is considered restricted (Assaf et al., 2004). For a generic orientation n,
and considering a diffusion weighted STEAM acquisition, this can be
formalised as:

S q;Δð Þ ¼ e−TM Δð Þ=T1 � S 0ð Þ f h � Sh q;Δð Þ þ f r � Sr q;Δð Þ½ � ð1Þ

where TM is the mixing time, i.e. the time between the two 90° pulses,
T1 is the longitudinal relaxation time, q is the reciprocal wavevector,
defined as γδg/2π ⋅n (where γ is the gyromagnetic ratio, δ is the diffu-
sion gradient duration, g is the diffusion gradient amplitude), Δ is the
diffusion gradient spacing, fh and fr are the signal fraction of the extra-
axonal and intra-axonal compartments, respectively, which sum up to
one, so that fh=1− fr. Some multi-compartment frameworks also
account for an isotropic compartment corresponding to the cerebrospi-
nal fluid, which undergoes free diffusion (Alexander et al., 2010). T1
decay needs to be taken into account when performing experiments
at different diffusion times with a STEAM acquisition, as this implies
using different TMs.

When considering 3-dimensional space in presence of cylindrical
restrictions, the statistical independence of the net displacement distri-
bution implies that the signal can be decomposed as the product of
signal perpendicular and parallel to the cylinder's main orientation
(Assaf et al., 2004), for both Sh and Sr.

The signal from the intra-axonal pool parallel to the fiber orientation
undergoes free diffusion according to:

Sr;∥ q∥;Δð Þ ¼ e−4π2 jq∥ j2 Δ−δ=3ð ÞDr;∥ ð2Þ

where q∥ is the projection of the reciprocal wavevector in the orienta-
tion parallel to the direction of largest diffusivity and Dr ,∥ is the intra-
axonal diffusivity parallel to the direction of largest diffusivity.

The signal from the intra-axonal pool orthogonal to the fiber orien-
tation can be described according to severalmodels of restrictionwithin
cylinders (Neuman, 1974; Callaghan et al., 1992; van Gelderen et al.,
1994), depending on the specific pulse sequence. For the purpose of
this study, Van Gelderen's model was used (van Gelderen et al., 1994):

Sr;⊥ q⊥;Δ;Rð Þ

¼ e
−8π2 q⊥j j2

X∞

m¼1
2Dfα2

mδ−2þ 2e−D f α2
mδ þ 2e−D f α2

mΔ−e−D f α2
m Δ−δð Þ−e−D f α2

m Δþδð Þ

δ2D2
fα6

m R2α2
m−1

� �

ð3Þ

where Df is the free diffusion coefficient, R is the radius of the cylinder
and αm are the roots of the equation J'1(αmR)=0. J'1 is the derivative of
the Bessel function of the first kind, order 1. The total decay in the
restricted compartment can be then written as:

Sr q;Δð Þ ¼
X
i

wi Sr;⊥ q⊥;Δ; rið Þ � Sr;∥ q∥;Δð Þ� � ð4Þ

where wi are defined as:

wi ¼ P rið Þ � A rið ÞX
i
P rið Þ � A rið Þ ð5Þ

P(ri) is the value of the distribution of each radius ri and A(ri) is the
area of the corresponding cylinder, so that wi are the weights of the
in-plane signal attenuation caused by the water spins diffusing in
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cylinders with radius ri. The weights are normalised to sum up to one
and are dimensionless. All models of restriction depend on the size of
the restricting boundary ri, which in the case of white matter means
that they depend on the axonal diameter (i.e., twice ri). For the purpose
of estimating the axonal density, fr, the distribution of axonal radii can
be assumed from histological findings, as in the CHARMED model
(Assaf et al., 2004; Assaf and Basser, 2005). fr can then be estimated by
acquiring S(q,Δ) for different q. Alternatively, a simplermodel of restric-
tion can be used, that assumes zero orthogonal diffusivity in the restrict-
ed pool and thus is independent of the size of the restricting geometries,
as in the NODDI model (Zhang et al., 2012). If the purpose is instead
to estimate the axonal diameter, S(q,Δ) should be acquired for different
q-Δ combinations and the scalar diameter index R estimated directly
from the data, as done in the AxCaliber (Assaf et al., 2008) and ActiveAx
(Alexander et al., 2010) frameworks. The AxCaliber framework fits
a distribution of diameters, rather that a single diameter, using a two-
parameter gamma distribution (called P(ri) in Eq. (5)), characteristic
of histological findings (Aboitiz et al., 1992), with R estimated as
the gamma distribution mean. ActiveAx fits instead a single, average
diameter.

Diffusion in the extra-axonal compartment is assumed to be hin-
dered and, thus, this compartment has a 3D Gaussian displacement
distribution:

Sh q;Δð Þ ¼ e−4π2 Δ−δ=3ð ÞqTDhq ð6Þ

where Dh is the extra-axonal tensor. In coherently oriented white
matter, Dh is likely to be highly anisotropic, with the fastest diffusion
orientation aligned with the predominant fiber orientation. In the
CHARMED/AxCaliber frameworks, there are no priors about Dh, which
is expressed as a generic tensor with six independent components,
and these components are estimated in the fit.When describing a cylin-
drical symmetry with known orientation like the corpus callosum (as in
this paper), only two components are actually needed:

Dh ¼
Dh;∥ 0 0
0 Dh;⊥ 0
0 0 Dh;⊥

0
@

1
A ð7Þ

In the NODDI/ActiveAx frameworks instead, a smaller number of
parameters is fitted, as the orientation of largest diffusivity is linked to
the orientation of largest diffusivity in the intra-axonal compartment
and the values for the orthogonal diffusivities are derived from the lon-
gitudinal diffusivity using the tortuosity approximation (Szafer et al.,
1995), i.e.:

Dh;⊥ ¼ Dh;∥ � 1− f rð Þ ð8Þ

leading to the following expression for the diffusion tensor in the
hindered compartment:

Dh ¼
Dh;∥ 0 0
0 Dh;∥ � 1− f rð Þ 0
0 0 Dh;∥ � 1− f rð Þ

0
@

1
A ð9Þ

In addition, the extra- and intra-axonal diffusivities parallel to the
main orientation (Dr ,∥ and Dh ,∥) are assumed to be equal, although
ongoing work is investigating possible deviations (Novikov et al.,
2015; Jelescu et al., 2015; Jelescu et al., 2016).

Recently, Novikov and co-workers showed both theoretically
(Novikov et al., 2014; Burcaw et al., 2015) and experimentally
(Burcaw et al., 2013) that randomness in fiber arrangement in a
bundle crucially affects diffusion in the extra-axonal space, making
the diffusion orthogonal to the bundle Dh ,⊥ dependent on Δ:

Dh;⊥ Δð Þ ¼ Dh;∞ þ A
F Δ=δð Þ
Δ−δ=3

ð10Þ

whereDh ,∞ is the bulk diffusion constant, A is a characteristic coefficient
and F(x) can be approximated as lnðxÞ þ 3

2 for x≫1 (Burcaw et al.,
2015). The authors suggest that this dependency should be included
in any quantification scheme for adequate fiber characterisation. They
also demonstrated that the coefficient A scales approximately as the
square of the correlation length, which in turn is proportional to the
outer axonal diameter (which includes the myelin sheath).

Given this dependence on axon diameter, we incorporated the time-
dependency represented in Eq. (10) into the framework for estimating
the axonal density and diameter, i.e., in the extra-axonal signal decay
of Eq. (6). Since, again, statistical independence of displacements paral-
lel and perpendicular to a restrictive barrier leads to a simple product
relationship between the diffusion-weighted signals measured along
these orthogonal directions (Assaf et al., 2004), the diffusion tensor in
Eq. (6) can be written as:

Dh ¼

Dh;∥ 0 0

0 Dh;∞ þ A
ln Δ=δð Þ þ 3=2

Δ−δ=3
0

0 0 Dh;∞ þ A
ln Δ=δð Þ þ 3=2

Δ−δ=3

0
BBBB@

1
CCCCA

ð11Þ

where D∥ is the longitudinal diffusivity. This is expected to impact the
frameworks for estimating the axonal density that use a tortuosity
approximation, and to impact the frameworks to estimate the axonal
diameter. Conversely, this is expected not to impact frameworks like
CHARMED, where the acquisition is performed for a single, fixed diffu-
sion time and where there is no prior on the orthogonal diffusivity,
which is a free parameter in the fit.

Simulations

We used two different and complementary approaches to investi-
gate the impact of the diffusion time in modeling axonal density and
diameter. First, we used simulated signals to investigate the impact on
axonal density estimates of neglecting the dependency on the diffusion
time of the extra axonal signal, i.e., the scenario in which Eq. (11) is cor-
rect but the data are fitted to Eq. (6) instead (as done in current
methods). Second, we used Monte Carlo simulations to investigate the
sensitivity of axonal diameter estimates under current settings and to
characterise the impact on the axonal diameter of neglecting the depen-
dency on the diffusion time of the extra axonal signal. Monte Carlo sim-
ulations are needed to model the realistic axonal geometries that are
required to mimic axonal diameter distributions.

Signal simulations
Signal simulations were generated in Matlab (R2012b, The

Mathworks). The diffusion signal was generated for a fiber bundle
oriented along the x axis. The simulated STEAM acquisition scheme
was the same one used for the in vivo experiments: δ = 17 ms, Δ =
48,60,80,100,120,140,160,180,195 ms, 4 b-values (500, 1000, 2000
and 4000 s/mm2) for each Δ, by using 1 (at maximum 70 mT/m) or
2 (resulting in a magnitude of 70� ffiffiðp

2Þ ¼ 99 mT/m) simultaneous
gradients perpendicular to the fiber axis, plus two unweighted im-
ages for each Δ. The signal was simulated using Eq. (1), including
the dependency on diffusion time as given by Eq.(11), with the fol-
lowing parameters: free diffusion coefficient Df=1 ∗10−3mm2/s
and 2∗10−3mm2/s, axonal density fr=0.3 and 0.5, axonal radius R=
0.25 and 1.5 μm, Dh ,∞=0.5∗10−3mm2/s, A=2 mm2 and relaxation
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time T1=800 ms. When using stimulated echo at different diffusion
times, the spins undergo T1 relaxation,which further attenuates the sig-
nal. 10,000 noisy repetitions were generated adding Rician noise at
SNR = 30, to match the SNR of the in vivo data (see next paragraph).
The fitting routine was written in Matlab (The Mathworks, Natick,
MA), based on nonlinear least-squares estimation. As a preliminary
step, the completemodelwas fit to analyze accuracy in all the variables.
Across all the tested configurations, the mean accuracy was larger than
80% for all the variables except A, for which a smaller value of 67% was
measured. Then, to perform the comparison between tortuosity-based
and non tortuosity based approaches, each diffusion time was consid-
ered separately to estimate the axonal density fr using Eq. (1), which
in turn uses Eqs. (2), (3), (4) and (6). Eq. (6)was appliedwith andwith-
out fixing the orthogonal diffusivity for the extra-axonal compartment,
i.e., using Dh from Eq. (9) or from Eq. (7). Since the data were normal-
ised to the b = 0 images (S(0) in Eq. (1)) and a single parameter
(Dh ,∥) was used to describe the non-restricted diffusivities Dr ,∥, Dh ,∥

and Df, the only free parameters in the fit were fr, Dh ,∥ and Dh ,⊥ in the
former case, fr and Dh ,∥ in the latter. Please, note that the fiber orienta-
tion was not fitted; the ground truth (x-axis) was used instead. As
such, for each diffusion time,mean and standard deviation of all param-
eters were obtained.

Monte Carlo simulations
Monte Carlo simulations were generated using Camino (Cook et al.,

2006). Different axonal 3D geometries were generated comprising
parallel cylinders with gamma-distributed radius. The parameters of
the gamma distribution were chosen according to histology reported
in (Aboitiz et al., 1992): the histograms of axonal counts along the
corpus callosum were digitised and fitted to a gamma distribution
(Barazany et al., 2009). As such, 4 different distributions, characterised
by different mean axonal diameter ranging from 1.26 to 1.94 μm, were
obtained. In addition, 3 different values for the walker's diffusivity,
assumed to be the same in the intra- and extra-axonal compartments,
were used: Df=0.7∗10−3 mm2/s, Df=1.5∗10−3 mm2/s and Df=
2.4∗10−3 mm/s. The restricted signal fraction was set to 0.6. 105

walkers and 104 timesteps were used for all simulations. The simulated
acquisition scheme was the same as the signal simulations (4 b-values,
9Δs) and reported above. The relaxation timewas T1=800ms. For each
configuration, 30 repetitions were generated using different starting
points. Rician noise was added to the signal decay at SNR = 25, 40 and
55. As a preliminary step, only low b-value (b≤1000 s/mm2) images
acquired orthogonally to the corpus callosum orientation ([0 1 0] and
[0 0 1]) were considered and fitted to a simple exponential decay to
measure the DT-MRI diffusion coefficient orthogonal to the fiber orienta-
tion, according to:

SDTI bð Þ ¼ e−bDDTI : ð12Þ

This was to reproduce and verify the dependency of the diffusion
coefficient orthogonal to the axonal bundle on the diffusion time. All
data were used to fit the axonal diameter, both using the conventional
framework for estimating axonal diameter, that does not account for
the dependency in Eq. (10), and also including this dependency. The
fitting routine was written in Matlab (The Mathworks, Natick, MA),
based on nonlinear least-squares estimation. The first step is to estimate
T1 from the nominal b=0 images at different STEAMmixing times. The
estimated T1 is then fixed in the axonal diameter fit (Alexander and
Dyrby, 2012). The axonal diameter distribution, i.e., the weights in
Eq.(4), was modeled as a continuous Poisson distribution (Ilienko,
2013), that has a single parameter to define both the mean and the
width. The Poisson distribution has the advantage of reducing the num-
ber of fitted parameters, but still accounts for the inhomogeneous com-
position of fibers (Aboitiz et al., 1992). Data were fitted using Eq.(1),
which in turn uses Eqs. (2), (3), (4) and Eq.(6). Eq.(6) was applied
with and without accounting for the diffusion time dependency in the
extra-axonal compartment, i.e., using Dh from Eq. (9) or from Eq. (11).
Since again Dr ,∥ and Df were assumed to be equal to Dh ,∥, the fitting
parameters were T1, D∥, fr, D∞, A and the mean axonal radius R for the
proposed approach, D∥, fr, D⊥ and the axonal radius R for the earlier
method without diffusion time dependency. Please, note that the fiber
orientation was not fitted; the ground truth (x-axis) was used instead.
For each configuration, the percentage of the signal attenuation associ-
ated with, respectively, the extra-axonal and the intra-axonal compart-
ments was also calculated.

Data acquisition

Diffusion acquisition was performed at 7 T with a STEAM sequence
which allows for a large range of diffusion times while minimising
echo attenuation caused by T2 relaxation. 9 healthy subjects (mean
age: 29± 5 years) with no history of neurological diseases participated
in the study, after giving their informedwritten consent. The study was
approved by the local ethics committee. The protocol comprised a
diffusion-weighted STEAM echo-planar sequence with the following
parameters: TE/TR = 67/6200 ms, δ = 17 ms, TM = 14.4, 26.4, 46.4,
66.4, 86.4, 106.4, 126.4, 146.4, 161.4 ms, corresponding to Δ = 48, 60,
80, 100, 120, 140, 160, 180, and 195 ms, 4 b-values (500, 1000, 2000
and 4000 s/mm2) for each Δ, by using 1 (at maximum 70 mT/m) or
2 (resulting in a magnitude of 70� ffiffiðp

2Þ ¼ 99 mT/m) simultaneous
gradient axes. Data were acquired from 24 slices positioned around
themidsaggital corpus callosum. The focus of this study was the corpus
callosum, which consists of fibers homogeneously oriented along the
left–right (L-R) direction in the midsaggittal plane (arbitrarily denoted
as the x-axis [1 0 0]). As such, the sampled diffusion gradients were ori-
ented along 4 perpendicular and 1 parallel directions: [0 1 1], [0–1 1], [0
1 0],[0 0 1] and [1 0 0], plus two unweighted images for eachΔ. The total
number of collected measurements for each subject was 216, each with
2 averages. An additional HARDI protocol was acquired with a pulsed
gradient spin echo EPI sequence to reconstruct the corpus callosum
and recover local fiber orientation information, using the following pa-
rameters: TE/TR=57.6/7500ms, 60 uniformly distributed gradient ori-
entations (Jones et al., 1999), 6 b0, maximum b-value of 2000 s/mm2.
Acquiring a HARDI protocol to fit the fiber orientations and selecting lo-
cations with L–R fiber orientations avoids errors due to mis-alignment
of the corpus callosum centre with respect to the L-R direction of the
scanner. The resolution of all scanswas 2mm isotropic and the total ac-
quisition time was less than 25 min. The SNR of the highest-Δ b0 image
was calculated using the difference method (Murphy et al., 1993) and
returned values between 25 and 50 across white matter. To rule out
any artifactual dependency on the diffusion time, a spherical phantom
filled with oil also underwent the same protocol. To investigate the im-
pact of including smaller Δs, for one of the subjects an additional diffu-
sion protocol was acquiredwith the following parameters: TE= 48ms,
δ=12ms,Δ=38, 60, 80, 100, 120, 140, 160, 180, and 195ms, 4 shells of
b-value 250, 500, 1000 and 2000 s/mm2. The other parameters stayed
the same. As expected, this lead to a reduction of the achievable TE and
a reduction of the maximum applicable b-value.

Data processing

Motion and distortion correctionswere performed using ExploreDTI
software (Leemans et al., 2009). ExploreDTIwas also used to analyze the
HARDI data: whole brain tractography was obtained for each subject
in native space using constrained spherical harmonic deconvolution
(Tournier et al., 2004). Track termination was based on a fiber orienta-
tion density amplitude threshold of 0.1. Waypoints were then defined
to virtually dissect the corpus callosum. Axonal density maps were
separately reconstructed for each diffusion time, using an in-house
fitting routine written in Matlab (The Mathworks, Natick, MA), with
and without fixing the orthogonal diffusivity for the extra-axonal
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compartment. Then, all the data were used to generate maps of the ax-
onal diameter using the modified version of the AxCaliber approach,
where the extra-axonal tensor incorporated the dependency on the dif-
fusion time as in Eq. (11). For both axonal density and diameter, the fit
was the same as described in the Simulation session; the only difference
was that the fiber orientation for each voxel was taken from the HARDI
tractography, to minimise errors due to misalignment of the fiber tract
with respect to the gradient axes.

Statistical analysis

To perform a group analysis over all the acquired subjects for both
axonal density and axonal diameter, the anterior–posterior central out-
line of the corpus callosum on the midsaggital plane was extracted in
each subject. The central slice was first identified by finding the slice
that has the mean principal eigenvector orientation as close as possible
to the x axis in the corpus callosum. Then, the outline was manually
drawn using Matlab and divided into 20 points. At each point, the
parameters of interest were estimated using bilinear interpolation. To
analyze the influence of the diffusion time on the estimates, a 2-way
ANOVA was performed on the profiles using location and diffusion
time as factors. To test whether the trend of the axonal density versus
the diffusion timewas increasing, decreasing or flat, the Bayesian infor-
mation criterion (Freidlin et al., 2007) was used to choose the function
that best fitted to the data. To test the correlation betweenmean axonal
diameter andmean axonal density, linear and quadratic fitswere tested
using the regression routine in Matlab.

Results

Diffusion in the extra-axonal space

Fig. 1 shows the extra-axonal diffusion coefficient orthogonal to the
main fiber orientation as a function of increasing diffusion time, for
simulated data, for an isotropic phantom and for in-vivo data averaged
over thewhole corpus callosumand across all subjects, respectively. The
dependency on the diffusion time only arises in disordered substrate,
as predicted by theory (Novikov et al., 2014) and as shown in Fig. 1a.
While the isotropic phantom show a flat trend for increasing diffusion
times (Fig. 1b), real data show a decreasing trend, reflecting the com-
plex geometry of white matter.

Simulations

The effect of disregarding the dependency on diffusion time of the
extra axonal signal was evaluated first by simulations. Fig. 2 shows the
plot of the axonal density versus diffusion time when the data are
Fig. 1. Extra-axonal diffusion coefficient orthogonal to the main fiber orientation as a function o
vivo data averaged over all the subjects. For the simulations, both ordered (blue) and short-ran
analyzed without any prior on the orthogonal extra-axonal diffusivity,
i.e., without using the tortuosity approximation (blue line) or using
it (red line) for D0=1∗10−3mm2/s. The same plot for D0=
2∗10−3mm2/s show a similar trend (data not shown). The simulations
are repeated for different axonal diameters (0.5 and 3 μm) and for dif-
ferent axonal densities (0.3 and 0.5), reflecting the variability found
in vivo. When the full extra-axonal tensor is fitted (i.e., all six unique
elements are estimated), there is a slight tendency towards underesti-
mation but no dependence on diffusion time.When instead the tortuos-
ity approximation is used, there are strong dependencies on diffusion
time (both increasing and decreasing) and a complex pattern of interac-
tions of that dependence on axonal diameters and density, leading
to both over and underestimation of the axonal density. The precision
appears to be higher for the model using the tortuosity approximation.
This is likely due to the fact that when the tortuosity approximation is
used, the fit has less parameters to estimate.

Monte Carlo simulations were used to investigate the sensitivity of
axonal diameter measures and to evaluate the impact of the different
models on the estimated axonal diameter. Mean and standard devia-
tions of all fitted parameters are reported in Table 1. Fig. 3 shows the
estimated axonal diameter using the formula in Eq. (11) (blue) and
using the tortuositymodel (red) for three different SNRs. Axon diameter
estimates with the extra-axonal diffusion time dependency are more
accurate than the ones obtained using the tortuosity approximation,
and the residual bias disappears with higher SNR. In contrast, axon
diameter estimates without the extra-axonal diffusion time depen-
dency consistently overestimate the true value. In Fig. 4, the percent-
age of intra-axonal and extra-axonal signal is reported in the range
0–10% (to help visualisation; the remaining percentage is extra-
axonal signal). As expected, smaller diffusivities and larger diame-
ters generate larger signal attenuations (5% in Fig. 4b) and are thus
easier to measure. The most challenging configuration is the one re-
ported in Fig. 3e, which is characterised by high free diffusivity and
small axonal diameter.
In vivo data: axonal density

Fig. 5 shows the axonal densitymaps in the corpus callosum at vary-
ing diffusion times, for one representative subject. The results in the
upper line are obtained without using the tortuosity model (Fig. 5a),
while the results in the lower line are obtained using the tortuosity
model (Fig. 5b). Fig. 5c is the difference between the two. A 2-way
ANOVA was performed on the two sets of maps separately, showing
that the effect of diffusion time is significant (pb0.05) only when the
extra-axonal orthogonal diffusion is constrained by the tortuosity
model. Otherwise, the diffusion time does not have a significant effect
f increasing diffusion time for Monte Carlo simulations (a), isotropic phantom (b) and in-
ge disordered (red) substrates are used.



Fig. 2. Simulations generated using the signal decay predicted by Novikov et al. (2014), i.e. including the extra-axonal axial diffusion dependency on the diffusion time. The axonal density
is plotted as a function of the diffusion time with (red) and without (blue) fixing the orthogonal diffusivity for the extra-axonal compartment. The dotted line is ground truth. Data are
reported for different combinations of axonal density and diameter: 0.3/0.5 μm (a), 0.3/3 μm (b), 0.5/0.5 μm (c) and 0.5/3 μm (d).
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on the axonal density estimated. The location along the corpus callosum,
as expected, has a significant effect (pb0.05).

To compare the in vivo resultswith the simulations, the voxels in the
corpus callosum were cast into two groups, characterised by low (0.4)
and high (0.4) axonal density respectively. For each diffusion time, the
mean value and the standard deviation of the axonal density were cal-
culated and reported in Fig. 6. The trend measured on real data is very
similar to that predicted by simulations: while the trend for increasing
Table 1
Mean and standard deviation of all fitted parameters for the simulations (comprising 4
axonal geometries with axonal diameter 1.26, 1.32, 1.52 and 1.94 μm, for Df=1.5∗
10−3 mm2/s) and for real data. Standard deviations are calculated across different repe-
titions for simulated data, and across subjects for real data. The diffusivities are expressed
in 10−3mm2/s, fr is dimensionless, A is expressed in mm2 and AD in μm.

Sim 1 Sim 2 Sim 3 Sim 4 In vivo

Mean St dev Mean St dev Mean St dev Mean St dev Mean St dev

D∥ 1.44 0.02 1.43 0.02 1.42 0.02 1.44 0.02 1.47 0.05
D∞ 0.68 0.05 0.51 0.06 0.61 0.04 0.64 0.07 0.32 0.22
fr 0.63 0.02 0.75 0.02 0.69 0.01 0.67 0.02 0.39 0.01
A 1.07 0.27 1.26 0.51 1.12 0.49 1.17 0.31 0.86 0.52
AD 1.76 0.44 1.56 0.60 1.92 0.58 2.22 0.40 1.05 0.18
diffusion time is mostly flat when the extra-axonal tensor is not
constrained to follow the tortuosity model, there are strong dependen-
cies on diffusion time when the tortuosity model is used, with a trend
similar to that reported in Fig. 2b and d.

In vivo data: axonal diameter

Themaps of thefitted axonal density, axonal diameter, characteristic
time, intra-axonal diffusivityD∥ and bulk diffusivityD∞with the full pro-
posedmodel are reported for one representative subject in Fig. 7a.Mean
and standard deviations of all fitted parameters across subjects are
reported in Table 1. In Fig. 7b, themean profiles and associated standard
deviations over all subjects are reported. The axonal density shows the
expected high-low-high trend, while the axonal diameter has the in-
verse low-high-low trend. The range of the axonal diameter is between
0.5 and 1.5 μm. The characteristic coefficient shows a trend similar to
that of the axonal diameter, characterised by larger values in the body
as compared to genu and splenium. D∥ and D∞ have a constant trend
along the corpus callosum and low standard deviations. The magnitude
of D∞ is always around 10% of D∥.

Fig. 8 shows the comparison between the axonal diameter map ob-
tainedwith the proposedmethod (panel a) and themap obtainedwith-
out accounting for the diffusion time dependency in the extra-axonal



Fig. 3. Monte Carlo simulations obtained for different microscopic configurations. True axonal diameter versus estimated axonal diameters including (blue) and not including (red)
the delta dependency for D0=0.7∗10−3 mm2/s (a–c), D0=1.5∗10−3 mm2/s (d–f) and D0=2.4∗10−3 mm2/s (g–i). For each value of free diffusivity, the results are reported for
SNR = 25,40 and 55 respectively. The dotted line is the line of identity.

97S. De Santis et al. / NeuroImage 130 (2016) 91–103
compartment (panel b) for the same subject as in Fig. 7. As predicted by
simulations (Fig. 3), when a fixed extra-axonal tensor is used, i.e. with-
out diffusion time dependency, the fit returns larger estimates of the
axonal density.

In vivo data: stability of the fit

To investigate the impact of the choice of the minimum Δ on the
estimated axonal density and diameter, we repeated the acquisition
with two different experimental setups for one representative subject,
as detailed in the Methods section. Fig. 9 shows the profiles for the
axonal density and diameter. The profiles are very similar for the axonal
diameter, while there is a constant bias between the two profiles of
axonal density, with the second acquisition protocol having higher esti-
mated axonal density. This is likely to be due to the difference in the
echo time, and thus T2 weighting between the two acquisitions.

In vivo data: correlations

Fig. 10 shows the scatterplot between the axonal diameter and the
axonal density estimated with the proposed model including diffusion
time dependency in the extra-axonal compartment. The dots are col-
ored according to the location in the corpus callosum. There is a clear
trend, with lower diameters being associated with higher densities
and vice-versa. A linear regression (dotted line) returns r2=0.68. As
expected, the body of the corpus callosum is characterised by lower
density and higher diameter, while the genu is characterised by higher
density and lower diameter. The splenium has an intermediate trend
between the two.

Discussion

In this work we modify current microstructure models for diffusion
imaging to estimate axonal density and diameter to correctly account
for the diffusion in the extra-axonal space. We show that this strongly
affects both axonal density and axonal diameter estimates, improving
accuracy in ground truth simulations. We obtain human axonal diame-
termaps in vivo in the corpus callosum that are in close agreementwith
earlier histological findings.

Until a few years ago, characterising axonal properties was impossi-
ble in vivo, and thus only animal or post-mortem studieswere available.
With the advent of advanced diffusion methods based on multi-
compartment decomposition of the signal, axonal density (Assaf et al.,
2004; Alexander, 2008; Zhang et al., 2012) and diameter (Assaf et al.,
2008; Alexander et al., 2010) have become accessible in the living
brain. Several studies have already been published, demonstrating
the potential that these techniques have. For example, the axon diame-
ter was significantly correlated with the nerve conduction velocity



Fig. 4. Percentage of extra-axonal (light blue) and intra-axonal (orange) signal attenuation for different b-values and Δ=48 ms, reported for the smaller (a) and the largest (b) axonal
diameters and for D0=0.7∗10−3 mm2/s. c) and d) show the same data for D0=1.5∗10−3 mm2/s, while e) and f) show the same data for D0=2.4∗10−3 mm2/s.
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(Horowitz et al., 2014), reporting in vivo a link between brain's structure
and function. Apparent changes in axonal density were observed as a
consequence of a short learning task of only two hours (Tavor et al.,
2013), opening new important questions about neuroplasticity. Axonal
density was reduced in focal cortical dysplasia patients (Winston et al.,
2014) and in adolescents with autism spectrum disorders (Lazar et al.,
2014) compared to control groups, while axonal density was reported
to be a better predictor of myelin content than conventionally used FA
(De Santis et al., 2014). The diffusion kurtosis model (DKI) (Jensen
et al., 2005) has also been used to estimate the axonal density
(Fieremans et al., 2011). DKI showed increased sensitivity in detecting
whitematter abnormality in schizophrenia (Zhu et al., 2015) and provid-
ed better discrimination between amnestic mild cognitive impairment
from Alzheimer's (Fieremans et al., 2013), when compared to conven-
tional DT-MRI metrics.

Despite their success, these methods are still under active develop-
ment. For example, it is already well known that current methods for
estimating axonal diameters are biased towards higher diameters
(Alexander et al., 2010). Although some studies have investigated the
impact of the acquisition parameters on the estimated biomarkers,
recommending optimised protocols (De Santis et al., 2013), little atten-
tion has been paid to the impact of diffusion time in modeling diffusion
in the extra-axonal compartment. Recently, it has been shown both
theoretically (Novikov et al., 2014) and experimentally (Burcaw et al.,
2013) that the randomness in fiber arrangement in a bundle crucially
affects diffusion in the extra-axonal space, making the diffusion



Fig. 5. Axonal density maps at varying diffusion times. In a), the results are obtained without using the tortuosity model, while in b) the tortuosity model is used. In c), the difference
between the two is shown.
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orthogonal to the bundle dependent on the diffusion time. In the same
paper, the authors question the feasibility of axonal diameter estimation
in vivo in humans on current clinical MRI systems as a whole, due to
insufficient attenuation of the signal arising from axonal diameter dif-
ferences. In this work, we modify current models for microstructural
imaging to account for the extra-axonal diffusion time dependency.
We show that correctly accounting for diffusion time is important for
estimating axonal density, and crucial for estimating axonal diameters.
We also study the feasibility of axonal diameter estimation in vivo,
showing that the sensitivity crucially depends on microscopic parame-
ters of the human tissue like the axonal diameter distribution and the
true water diffusivity in the intra-axonal space.

Potential sources of bias of the tortuositymodel have been discussed
in recent literature (Jelescu et al., 2015). Here, we demonstrate that
when the diffusion orthogonal to the main fiber orientation in the
extra-axonal space is modeled using the tortuosity approximation, a
bias is found in the estimated axonal density that changeswith diffusion
times. This result was obtained using simulations (Fig. 2) and in vivo
(Fig. 6). This bias can be either positive or negative, depending on the
axonal morphology. Notably this bias, although present, is not necessar-
ily detrimental when all compared measures have the same diffusion
time, but it becomes crucial when comparing multi-center data, or data
acquired with different protocols. The proposed multi-compartment
model, incorporating diffusion time dependence in the extra-axonal
compartment, yields much more accurate axonal density estimates
under a wide range of acquired diffusion times.

The proposed framework also solves some fundamental issues that
have hampered applications of the current techniques to estimate axo-
nal diameters, providing reproducible estimates that are in agreement
with histological findings. Specifically, reconstructing axonal diameter
using the methods published in the literature (Assaf et al., 2008;
Alexander et al., 2010), i.e., without accounting for the dependency of
the extra-axonal tensor on the diffusion time, returns values for the
mean diameter in the range 5−10 μm. Histological measures on the
human corpus callosum show that the expected range for axonal diam-
eter is instead 0.5−2 μm (Aboitiz et al., 1992). By accounting for
the diffusion times in the extra-axonal compartment, the diameter
estimates become comparable with histology, as predicted using
Monte Carlo simulations (as reported in Fig. 3) and measured in vivo
(as reported in Fig. 7).We speculate that this may be one of the primary
reasons for the high axonal diameter values reported in recent diffusion
microstructure literature (Alexander et al., 2010). Fig. 7 also shows that
the characteristic coefficient A has a similar profile along the corpus
callosum to that reported for the axonal diameter, supporting the rela-
tionship between the two parameters reported in theory (Burcaw
et al., 2015).

Another aim of the presentworkwas also to add new information in
the ongoing debate about the feasibility of axonal diameter mapping
in vivo. It has been recently proposed (Burcaw et al., 2015) that clinical
systems are almost completely insensitive to differences in axon diam-
eter seen in human white matter, requiring an ability to detect differ-
ences in signal attenuation that are of the order of 3∗10−5 in human
whitematter. It shouldfirst be noted that, were it comes to the precision
of an axonal diameter estimate, small signal attenuations per se are not
necessarily detrimental. They can be counter-balanced, up to a point,
by a high SNR and a large number of measurements N. This can be
formalised by considering the Cramer-Rao lower bound (CLRB) on the
variance of the axonal diameter estimate (e.g., see (Alexander, 2008)).
Desirable low variance (high precision) of the estimate is negatively
affected by small signal changes, but positively affected by high SNR
and high N. Here N generally contributes linearly to the improvement
of the CLRB (i.e. CLRB ~ N−1), which means the standard deviation of
the axonal diameter estimate improves with the square root of N. In
the case of the 216measurements performed here, this achieves an im-
provement in precision of a factor of almost 15. However, this still puts a
requirement on the magnitude of signal changes related to axonal
diameters. The intra-axonal signal attenuation mostly depends on
three factors: the gradient amplitude/timings, the expected axonal cal-
iber and the intra-axonal diffusivity (see Eq. (3)). For regular clinical
setups (with a maximum gradient amplitude of 40mT/m) the resulting
attenuation is often too low to be detected irrespectively of the tissue
exact characteristics. For the new generation of clinical scanners, featur-
ing maximum gradient amplitude closer to 100 mT/m, like the one
used in this study, and bespoke human scanners with even stronger
gradients (e.g., 300 mT/m (McNab et al., 2013) ), the attenuation varies
between situations as can be seen from the strongly increasing attenu-
ations with higher b-values up to 4000 mm2/s. In the worst-case
scenario, i.e., small axonal diameter and fast self-diffusion coefficient,



Fig. 6. Mean axonal density and standard error at varying diffusion times for the same
subject of Fig. 5. The plots are reported separately for low axonal density (a) and high
axonal density (b). The blue fit is obtained without using the tortuosity model, while the
red fit is obtained using the tortuosity model. Dashed lines represent the best fit of
axonal density estimates over all diffusion times according to the Bayesian information
criterion (see text for details).
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the resulting signal attenuation due to intra-axonal water is very small
(0.2%), while for the best-case scenario amongst those tested the atten-
uation is around5%. The effective feasibility of axonal diametermapping
now depends on the expected axonal caliber and the intra-axonal diffu-
sivity, as shown in Fig. 4. This scenario is complicated by the fact that
these two parameters have a range of true or plausible values according
to the literature. Larger diameters generate larger signal attenuation, as
seen comparing the first and the second columns of each row. The
values used for the calculations in Fig. 4 are the smallest and largest di-
ameters measured by histology in the human corpus callosum (Aboitiz
et al., 1992). Histology is used as a gold standard but is a techniquewith
its own shortcomings, especially because the tissue needs to be fixed,
leading to tissue shrinkage (Horowitz et al., 2015). Even slightly larger
axonal diameters would increase the sensitivity of the diffusion signal
to axonal diameter. Furthermore, the true value of the intra-axonal dif-
fusivity plays a role in defining the amount of signal attenuation in the
intra-axonal space. It seems likely that, with the presence of microtu-
bules, neurofilaments, organelles and macromolecules, intra-axonal
diffusivity is considerably below that of free water. However, to the
best of our knowledge, the only experiment thatmeasured this quantity
reported water diffusivity in pure axoplasm as 70–80% of that in pure
water, as measured on the squid giant axon at 20 °C (Beaulieu, 2002),
suggesting values in the range 2−2.4∗10−3mm2/s at body temperature
(Hasegawa et al., 1994). No measures are available for the human brain,
while fitted values from CHARMED analysis are around 1.5∗10−3mm2/s
(Table 1). The lower the intra-axonal diffusivity, the larger the signal
attenuation in the intra-axonal space, as shown across rows in Fig. 3.
It has to be noted that the axonal diameter was correctly estimated
for all the combinations of axonal diameters/diffusivities up to D0=
1.5∗10−3 mm2/s, and the impact of combinations generating low signal
attenuation was to bias the absolute value towards larger diameters. To
summarize, rather than taking a unqualified side in the ongoing discus-
sion about feasibility or unfeasibility of axonal diameter measurements
with MRI, we aimed at providing details about the conditions that need
to bemet tomake the approach feasible, although some of them depend
on parameter values that cannot be currently assumed with very high
confidence.

The axonal diameter estimate obtained using the proposed frame-
work is robust with respect to the choice of experimental parameters
like the minimum sampled diffusion time and the echo time (Fig. 9).
Notably, this does not apply to the axonal density, where a large impact
of echo time TE is instead observed (Fig. 9). This is likely to be due to dif-
ferences in T2 relaxation times between the extra- and intra-axonal
water pools, and is the focus of futurework. The results on axonal diam-
eter estimates also support the idea that the contrast at the long diffu-
sion time limit may be more informative than the contrast measured
at short diffusion times, as recently proposed elsewhere (Li et al.,
2014; Drobnjak et al., 2015).

We also investigated the correlation between the axonal density and
the axonal diameter. As reported by histological studies, there is a clear
trend where higher density is always associated with lower diameter,
and vice-versa. The data reported in Fig. 10 support a linear relationship
between the two biomarkers. Investigating the relationship between
these two parameters is of key importance, as one of them (the axonal
density) can be accessed experimentally more easily on clinical scan-
ners, while the other (the axonal diameter) needs a more demanding
acquisition protocol and high gradient strength that might not be avail-
able on current clinical setups.

Limitations

Potential limitations of this work include a number of factors and
physical effects that have not been taken into account in the modeling
of multicompartment diffusion in the intra- and extra-axonal space.
Exchange between the two compartments may bias the estimated sig-
nal fraction (Fieremans et al., 2010), although an agreement about the
true permeability value of typical axonal membranes has not been
reached yet (e.g., see (Laett et al., 2009) and (Quirk et al., 2003)),
making it difficult to conclude whether exchange can be neglected or
not. Furthermore, macroscopic (Zhang et al., 2012) and microscopic
(Nilsson et al., 2012) orientation dispersion is expected to affect axonal
diameter measurements. In this paper, we carefully selected the central
section of the corpus callosum, tominimise the effect of fiber dispersion,
butmore complex geometrymust be accounted forwhen extending the
method to whole-brain analysis. The Poisson distribution, used as a
model for axonal diameter distributionsmight have limited representa-
tional capacity for very narrow or fat-tailed distributions. However, no
such extremes seem to occur in data published for the corpus
callosum (Aboitiz et al., 1992), implying the Poisson distribution is a
good parsimonious model choice. T1 differences between the extra
and intra-axonal compartment might also affect the estimation of the
signal fraction, although this difference, if present, is believed to be rel-
atively small, so thatmanymicrostructuralmodels assign the same T1 to
both compartments (Deoni et al., 2008). Lastly,wefitted a single param-
eter for all the “unrestricted” diffusivities Dr ,∥, Dh ,∥ and Df. Although the
comparative values of these diffusivities is currently being investigated
(Novikov et al., 2015; Jelescu et al., 2015; Jelescu et al., 2016), there is no
clear consensus in literature about it, and more focused studies are
needed.



Fig. 7.Maps of axonal density, axonal diameter, characteristic coefficient A, intra-axonal diffusivity and bulk diffusivity for one representative subject (a). In panel b, themean profiles along
the corpus callosum and the associated standard deviations over all the subjects are reported for the same parameters.
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A further possible improvement of the technique is exploring a
better way of fitting the signal decay equation, which contains many
parameters with non-trivial dependencies. For example, the standard
deviation of the parameter A is quite high both in simulations and
in vivo. Thismight also limit the accuracy on the otherfitted parameters.
Exploring the performance of different optimization algorithms and
Fig. 8.Maps of axonal diameter with (panel a) and without (panel b) accounting for the
dependency on the diffusion time in the extra-axonal compartment.

Fig. 9. Profiles of the axonal density (a) and axonal diameter (b) along the corpus callosum.
Data in dark blue are acquired with the high b-value/high Δ/high TE acquisition scheme,
while data in light blue are acquiredwith the lowb-value/lowΔ/lowTE acquisition scheme.



Fig. 10. Scatterplot between axonal diameter and axonal density. The dots are colored
according to the location in the corpus callosum (schematically shown in the insert).
The dotted line is the linear regression (r2=0.68).
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fixing or initializing of parameters to values from fits of simpler models
may prove advantageous.

Conclusions

In this paper, we show that correctly accounting for the dependency
of extra-axonal diffusion weighted signal on diffusion time strongly af-
fects both axonal density and axonal diameter estimates. Concerning
axonal density estimates, both upward and downward bias in different
situations are removed by modeling extra-axonal time-dependence,
showing increased accuracy in these estimates. Concerning axonal di-
ameter estimates, we report increased accuracy in ground truth simula-
tions and axonal diameter estimates decreased away from high values
given by earliermodels and towards known values in the human corpus
callosum when modeling extra-axonal time-dependence. We note that
relative values in earlier estimates may still be interpretable. We also
stress that the signal attenuation tied to axonal diameter differences
crucially depends on two parameters, the intra-axonal diffusivity and
the axonal diameters, both of which have a range of true or plausible
values according to the literature. In this light, we aimed at providing
details about the conditions that need to bemet to make axonal diame-
ter estimates feasible, although some of them depend on parameter
values (e.g. intra-axonal diffusivity) that cannot be currently assumed
with very high confidence. This adds important information to the on-
going debate about feasibility of in vivo axonal diameter measurements
in both advanced and clinical settings.
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