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Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen
consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction
with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory chal-
lenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an im-
portant parameter for understanding brain energetics. In this paper, we empirically optimize a previously
presented “original calibration model” relating BOLD and blood flow signals specifically for the estimation
of oxygen extraction fraction (OEF) and absolute CMRO2.
To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce
experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3 T. A wide range of phys-
iological conditions was simulated by varying input parameter values (baseline cerebral blood volume
(CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit
(Hct)).
From the optimization of the calibration model for estimation of OEF and practical considerations of hyper-
capnic and hyperoxic respiratory challenges, a new “simplified calibration model” is established which re-
duces the complexity of the original calibrationmodel by substituting the standard parameters α and βwith
a single parameter θ. The optimal value of θ is determined (θ = 0.06) across a range of experimental respi-
ratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to
the true values used to simulate the experimental data compared to those estimated using the original
model incorporating literature values of α and β. Finally, an error propagation analysis demonstrates the
susceptibility of the original and simplified calibration models to measurement errors and potential viola-
tions in the underlying assumptions of isometabolism. We conclude that using the simplified calibration
model results in a reduced bias in OEF0 estimates across a wide range of potential respiratory challenge ex-
perimental designs.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Blood oxygenation level dependent (BOLD) fMRI is a common tool
for basic neuroscientific and clinical research. However, relating chang-
es in BOLD signal to local brain activity is complicated by its dependence
on various physiological parameters, in particular cerebral blood flow
earch Imaging Centre, School of
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. This is an open access article under
(CBF), rate of cerebral metabolic oxygen consumption (CMRO2) and ce-
rebral blood volume (CBV). Mathematical models have been proposed
to describe this dependence (Davis et al., 1998; Hoge et al., 1999a;
Wise et al., 2013).

The study of CMRO2 is of particular interest because the metabolism
in thebrain ismostly oxidative and CMRO2 potentially offers amarker of
the (patho)physiological state of brain tissue (Lin et al., 2010). An MRI-
based method for measuring relative CMRO2 changes was originally in-
troduced byDavis et al. (1998)) exploiting the effects of hypercapnic va-
sodilatation. Later, similar approaches were proposed using hyperoxic
stimuli (Chiarelli et al., 2007). More recently, newmethods for absolute,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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rather than relative, CMRO2 measurement have been introduced based
on quantifying venous oxygen saturation via the T2 of venous blood (Lu
and Ge, 2008; Xu et al., 2009), exploiting the pattern of magnetic field
distortions aroundmajor veins (Fan et al., 2012) or T2-oxygenation cal-
ibration curves refined with velocity selective techniques (Bolar and
Rosen, 2011; Guo and Wong, 2012). Recently, extensions of the ap-
proaches of Davis et al. (1998) and Hoge et al. (1999b) have also been
developed allowing the use of both hypercapnia and hyperoxia induced
CBF and BOLD signal changes within the same experiment, to estimate
venous deoxyhemoglobin concentration and thus OEF and absolute
CMRO2 (Bulte et al., 2012; Gauthier and Hoge, 2012; Wise et al., 2013).

It is this last approach that we investigate in this paper, focusing on
improving the calibrationmodel previously defined for describing BOLD
signal behavior byWise et al. (2013). This model permits simultaneous
application of hypercapnic and hyperoxic stimuli and provides an
Fig. 1. Models summary. From the top to the bottom, in the green box, the detailed model pro
model defined in the previous paper (Wise et al., 2013), used in the estimates and for the ca
model. For details please refer to the respective papers.
expression for the baseline deoxyhemoglobin concentration ([dHb]0,
see models summary, Fig. 1). It extends the models proposed by (Davis
et al. (1998)) and Hoge et al. (1999b) by exploiting the information
given by both oxygen (O2) and carbondioxide (CO2), leading to estimates
of absolute CMRO2 under the assumption of isometabolic conditions.

Our aim in this paper is to empiricallymodify the original calibration
model to optimize the integration of information carried by BOLD and
CBF signals, modulated through hypercapnic (elevated CO2) and
hyperoxic (elevated O2) respiratory challenges, in order to provide the
best estimates of OEF0 and therefore absolute CMRO2 from the analysis
of a set of synthetic BOLD signals generated with a detailed BOLD signal
model (Griffeth and Buxton, 2011) in the ideal noiseless condition. Ac-
curate estimates of OEF are crucial for the assessment of absolute
CMRO2, as it represents the fraction of arterial oxygen extracted by
brain tissue (by definition CMRO2 = CaO2 ⋅OEF ⋅CBF, where CaO2 is
posed by Griffeth and Buxton (2011), used for the data simulation; in red, the calibration
lculation of RSS index and OEF0 discrepancy; in yellow, the newly proposed simplified
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the arterial O2 content (seemodels summary, Fig. 1); therefore it is nec-
essary to optimize the calibration model (Wise et al., 2013) to best ex-
plain BOLD signal behavior across a range of potential underlying
physiological states to apply the calibration model in practice in the
healthy and diseased brain.

In this simulation study, we focus on optimizing the values of two
parameters of the calibration model: α and β (see models summary,
Fig. 1). In the original implementations, these parameters represented
the exponent in a power law relationship between blood flow and ve-
nous blood volume (Grubb's parameter, Grubb et al., 1974) and the ex-
ponent of a nonlinear dependence of the MR signal on venous
oxygenation (Boxerman et al., 1995) respectively. Here instead, follow-
ing the scheme adopted by Griffeth and Buxton (2011), they are simply
recast as fitting factors, removing the previous strict connection to the
biophysical origin of the signal.

However, other assumptions underlying the original calibration
model are still made, in particular that mild hypercapnia and hyperoxia
change respectively CBF and arterial O2 content (CaO2), but not CMRO2

(Jain et al., 2011). The validity of physiological assumptions is still con-
troversial and is examined in detail in a recent paper by Blockley and
colleagues (2015) that investigates sources of systematic error in dual
calibrated BOLD approaches to CMRO2 estimation.

The simulations in this study (a flowchart of the analysis framework
is illustrated in Fig. 2) provide a detailed analysis of the biases present in
estimating OEF from the original calibrationmodel assuming previously
reported values of α and β. The simulations allow us to define a simpli-
fied calibration model, with fewer parameters. This model is similar to
others recently proposed to simplify the original Davis model
(Blockley et al., 2015; Griffeth et al., 2013) by linearizing the relation-
ship between BOLD signal and changes in deoxyhemoglobin. What dis-
tinguishes the simplified calibrationmodel is the subsequent process of
optimization of the parameters, which eventually leads to improved
performance in estimating OEF0.

Moreover, an analysis on the effects of input errors was carried out
comparing the simplified calibration model with the original one. This
provided a first evaluation of the behavior of this model when dealing
with errors in measurements and also a further understanding of its
limits.

Our simulated results suggest that this approach, and the simplified
calibrationmodel that it yields, can produce unbiased results in estimat-
ing OEF0 across a wide range of physiological states potentially offering
an effective practical tool for calibrated BOLD-fMRI experiments aimed
at measuring OEF and CMRO2.

Methods

The approach for estimating baseline CMRO2 from hypercapnia and
hyperoxia experiments

The following is a brief summary of themethodology developed and
described inmore detail byWise et al. (2013). More details on the nota-
tion are reported in the models summary of Fig. 1. The signal model
used in Wise et al. (2013) was:

ΔS
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¼ M 1−
CBF
CBF0
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dHb½ �0
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where φ represents the O2 carrying capacity of hemoglobin [Hb].
The baseline deoxyhemoglobin [dHb]0 is then related to the venous

saturation SvO2, arterial and venous oxygen content (respectively CaO2

and CvO2) and oxygen extraction fraction OEF by:

dHb½ �0 ¼ Hb½ � 1−SvO2ð Þ ; and ð3Þ

OEF ¼ 1−
CvO2

CaO2

� �
ð4Þ

Finally, CMRO2 is determined from the OEF and CBF:

CMRO2 ¼ CaO2 CBF OEF ð5Þ

Experimentally, the BOLD signal and CBF are measured, along with
the end tidal partial pressure of oxygen fromwhich the arterial content
of oxygen CaO2 is calculated. There are then just two unknown param-
eters in this set of equations: M and OEF. During experimentation, hy-
percapnia is used predominantly to alter CBF and hyperoxia
predominantly to alter CaO2 in order to provide sufficient information
to estimate these two unknown parameters.

In the current work, our focus is on Eq. (1) (the original calibration
model), optimizing the choice of the parameters α and β, and develop-
ing a new simplified calibration model to replace Eq. (1). In the follow-
ing numerical studies, OEF is estimated from simulated BOLD signals for
particular combinations of hypercapnia and hyperoxia that could be de-
livered experimentally. The simulated BOLD signals are generated with
a more detailed BOLD signal model as described in the next section.
Note that the parameterM does not appear in the detailed BOLD signal
model, and comes into the approximate expression (Eq. (1) as a lumped
parameter that captures several effects that are modeled explicitly in
the detailed model. In our simulations to optimize our choice of the pa-
rameters α and βwe aim to improve the estimation of OEF and not the
lumped parameter M.

Generation of physiological states

A set of BOLD signals was created to simulate experiments at 3 T, the
most common MRI field strength for neuroimaging research, using the
detailed model employed by Griffeth and Buxton (2011), developing
an approach taken by Uludaǧ et al. (2009) and adapted here to simulate
experiments in which arterial oxygen and carbon dioxide tensions are
modulated for the measurement of baseline oxygen extraction fraction
(OEF0) and CMRO2. The model relates the BOLD signal (change in MR
signal relaxation rate,ΔR2*, Hoge et al., 1999b) to the echo time TE, tak-
ing into account the contribution of four different compartments: one
extravascular and three intravascular, i.e. arterial, venous and capillary.
The signal is therefore computed as a sum of the different sources
weighted for their respective volumes (see models summary, Fig. 1).

This model was chosen because of its sensitivity to different aspects
of the signal, in particular the introduction of the capillary compart-
ment, which represents an improvement in accuracy of signal descrip-
tion compared to previous models. Moreover it allows the variation of
the underlying physical and physiological factors (for which we refer
to the paper by Griffeth and Buxton, 2011), allowing us to simulate a
wide set of different experimental conditions. Our purpose is in fact to
propose an empirical model able to cope with such a heterogeneous
dataset and robust enough to provide accurate results for as large a
range of realistic physiological conditions as possible.

We simulated different physiological states by picking 1000 quartets
of values of baseline cerebral blood volume (CBV0), baseline cerebral
blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and he-
matocrit (Hct). These parameters were designed to span wide ranges
of plausible physiological values with assumed Gaussian distributions
(N ~ (μ,σ2)) centered on typically previously reported values.



Fig. 2. Flowchart of the analysis process.
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CBV0 was chosen from a distribution with mean μ= 5.5 ml/100 g
and standard deviation σ = 1.5 ml/100 g (spanning the range
[0.5,10.5] ml/100 g), CBF0 with μ = 50 ml/100 g/min and σ =
8.3 ml/100 g/min (spanning the range [23,83] ml/100 g/min), OEF0
with μ = 0.5 and σ = 0.133 (spanning the range [0.1, 0.9]) and Hct
with μ = 0.415 and σ = 0.0284 (spanning the range [0.31,0.53]).
The remaining physical and physiological parameters required by
the detailed model, were set to the values proposed by Griffeth and
Buxton (2011) at 3 T (see Fig. A1 in the Appendix).

BOLD signal generation

Different sets of BOLD signals were created from the detailed
model by combining these physiological inputs with the expected
CBF changes produced by different combinations of respiratory gas
challenges. These are tasks in which the subject is asked to breathe
particular gas mixtures within which the partial pressures of O2

and CO2 vary over time. Here, elevated levels of O2 (hyperoxic condi-
tion) and CO2 (hypercapnic condition) were simulated and consid-
ered (see gas designs summary, Fig. 3) following our practical work
using similar designs (Wise et al., 2013).

The effects of hypercapnic stimuli were directly related to CBF
changes through an assumed linear cerebrovascular reactivity to CO2

(fixed to 3% ΔCBF/mmHg accordingly to reports from Bulte et al., 2012
and Mark et al., 2010). It is noteworthy that for the values of CBF0 and
the mild levels of hypercapnia considered we expect an approximately
linear relationship between end tidal CO2 and CBF (as per Tancredi and
Hoge, 2013 and Reivich, 1964).

In order to reflect BOLD signal changes with hyperoxia, the de-
tailed model has been integrated with well-known physiological de-
scriptions of carriage of oxygen in the blood, summarized in the
appendix to Wise et al. (2013), under the assumption of
isometabolism in hyperoxia. Then a modified version of eq. A7 in
Griffeth and Buxton (2011) has been adopted to take account of
the arterial oxygen concentration CaO2, incorporating in hyperoxia
the important component of oxygen carried in solution in the
blood plasma. Therefore venous oxygen saturation has been calculat-
ed as SvO2 = (CaO2 − OEF·CaO2)/(φ·[Hb]), where the O2 carrying
capacity of hemoglobin φ equals 1.34 mlO2/gHb. In the last equation
O2 dissolved in venous plasma has been considered negligible as in
Chiarelli et al. (2007).

Each simulated respiratory experiment and therefore each BOLD sig-
nal simulated, consisted of 13 values, corresponding to 13 equally
spaced samples each representing a block of experimental data. This ap-
proach aimed to simulate studies in which data time series (BOLD, CBF,
PO2, PCO2) are averaged over blocks of time (as in Bulte et al., 2007;
Chiarelli et al., 2007; Wise et al., 2010). Levels of end-tidal CO2 and O2

partial pressure modulation were chosen to represent those typically
used in previous calibrated fMRI studies.

The simulated respiratory experiments (see gas designs summa-
ry, Fig. 3) were chosen to be of two main types: simultaneous or
interleaved modulation of the O2 and CO2 supply. For the simulta-
neous experiment, a single instance being considered (design A), hy-
percapnia and hyperoxia were applied at the same time. A challenge
of this kind was employed in our previous paper to demonstrate that
it potentially allows the extraction of more information than the in-
terleaved design when studied with the original calibration model
(Wise et al., 2013). For the interleaved experiments either hypercap-
nia or hyperoxia is applied, but not both together. Typically a single
level of hypercapnia and hyperoxia is chosen, alternated with
normocapnia and normoxia as used by Bulte et al. (2012) for their
CMRO2-calibration study and also in our previously presented work
(Wise et al., 2013).

In addition we propose three new interleaved designs for which
more than one level of hypercapnia (“interleaved modulated in CO2”),
hyperoxia (“interleaved modulated in O2”) or hypercapnia and
hyperoxia (“interleaved modulated”) is employed (Fig. 3). We include
these additional designs to explore the information that they can yield
for the original calibration model, discussed further below. These new
designs are aimed at simplifying the experiment compared to the simul-
taneous design while possibly allowing the extraction of the same
amount of information as available from that design.

Criteria for optimizing α and β values

Estimates of OEF0 using the original calibration model (Fig. 2) were
obtained by setting literature values of the α and β parameters:
(0.2,1.3) as used by Bulte et al. (2012), and (0.14,0.91) as suggested
by Griffeth and Buxton (2011). The resulting values, for both the simul-
taneous and interleaved gas challenge designs, were considered as
“standard” results against which others are referenced. The aim of the
optimization process was to establish values of α and β that minimize
the error and bias in OEF0 estimated across the range of physiological
states using the original calibration model.

The first part of the optimization process fitted the original calibra-
tion model to the generated BOLD signals. We estimated the values of
the parametersM and [dHb0], defined inWise et al. (2013), withMatlab
(MathWorks, Natick, MA) function lsqnonlin for different pairs of the α
and β parameters: 2500 combinations of parameters in which α ranged
from 0 to 1 in steps of 0.0204 and β from 0.5 to 3 in steps of 0.051. Two
different approaches were chosen and compared for assessing the best
(α,β) pairs: (1) the (α,β) parameters were chosen to minimize the re-
sidual sum of squares (RSS) fit to the BOLD signal, and (2) they were
chosen to minimize the difference between the OEF0 estimate from
the original calibration model and the true OEF0 entered into the de-
tailed model (dOEF).

The first approach optimized α and β by minimizing the RSS
index among all combinations of physiological states. This was ob-
tained as the sum of the squared differences between the fitted and
simulated BOLD signal. However it must be remembered that a
good fit of the model to the signal is not a guarantee for good OEF0
estimate; in fact the relationship between the BOLD signal and
OEF0 is non-linearly regulated through the original calibration
model. α and β are regarded simply as parameters to be fit: the
search space is extended broadly beyond the literature values and
no constraint is imposed on their value.

Computing the RSS over the entire search space leads to the def-
inition of characteristic surfaces, whose minimum points represent
the pairs of (α,β) which give the best fit for the specific physiological
states considered. The surfaces of all the physiological states were
studied and the respective minima found. Also the median surface
was calculated from all the physiological states and the results
were compared to those of the single states in order to understand
if common and representative patterns of minima could be detected
across all physiological states. These common surface shapes would
suggest that a single (α,β) combination would optimize the fit of
all the physiological states. Otherwise, if the single surfaces present
patterns so greatly different among each other that the median sur-
face is not representative of the whole set, the choice of an optimum
(α,β) pair may not be possible.

The second approach optimized α and β by minimizing the abso-
lute difference between the estimated OEF0 from the original calibra-
tion model and the true OEF0 used as an input to the detailed model
(dOEF). The analysis was carried out calculating difference index
surfaces for all physiological states and also the median surface.
This is of course a theoretical exercise given that experimentally
the information about the real value of OEF0 is not available as it is
the goal of the measurement. Nevertheless, as in the case of the sig-
nal RSS indices, it is useful in the context of simulations to assess
whether a common representative pattern can be found in the calcu-
lated surfaces and what kind of information may be extracted in ex-
periments. In contrast to the first approach, this second approach
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was introduced to specifically address the minimization of errors in
OEF0 estimate without aiming at a good fit to the simulated BOLD
data.

We further addressed the need to find a single representative
value of (α,β) that optimizes OEF0 estimates when only the BOLD
and CBF information are available and OEF0 is unknown, reflecting
the real world situation. The search for the best combination was
performed by combining, for our simulations, the information
given by both the RSS and dOEF indices. The resulting values of
(α,β) would be a trade-off between a good fit to the real data and
accurate estimates of OEF0, therefore matching the criteria for an op-
timummodel which provides reliable estimates of CMRO2 consump-
tion in a real world case.
Development of the original calibration model and proposal of the simpli-
fied model

We also investigated the nature of the relationship between α and β
and its dependence on the respiratory challenge design. In fact, the re-
sults from the analysis above may be influenced by the interaction of
the two parameters for the particular task considered rather than reflect
their general behavior. We aimed, therefore, to find reliable optimum α
and β values with reduced dependence on the choice of experimental
design, making the model applicable over a wide range of potential
experiments.

In particular, we studied the RSS and dOEF indices having fixed β, so
that its relationship with α is disentangled. We tested different
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literature values of β and the results were compared to investigate the
relationship between these two parameters. On the basis of the results
of these analyses we introduced a new optimal model, the simplified
calibration model (Eq. (6), also see models summary, Fig. 1), that aims
to offer a single estimation framework for all different respiratory
designs.

This new model removes the β parameter, reducing the complexity
from 4 to 3 parameters: M, dHb0 and θ (Eq. (6); see models summary,
Fig. 1). For M and dHb0 we refer to the previous paper (Wise et al.,
2013), while θ may be considered an empirical parameter lumping to-
gether different sources of physiological information expressed by α
and β in the original calibration model. The single optimum value of θ
was selected as a representative value across all the designs considered.

ΔS
S0

¼ M 1−
CBF
CBF0

� �θ dHb½ �
dHb½ �0

� �( )
ð6Þ

The choice to remove the β parameter, equivalent to setting β = 1,
rather than fixing α, was a pragmatic one in order to reduce the
model complexity. In addition there is a historical trend to increasing
field strength in MRI. At higher field β tends closer to 1 as a larger pro-
portion of the BOLD signal contribution is extravascular. The formof this
simplified model therefore becomes physically more representative at
higher field strengths.

Approaching the real-world case

Having proposed the simplified model we returned our focus to the
initial practical goal of the study, namely obtaining the best estimates of
OEF0 from the analysis of a set of BOLD signals, with no information of
the real OEF0 itself, that is, without calculation of the dOEF index. At the
same time, the respiratory challenge designs showing the lowest bias
and variability in estimated OEF0 were identified. This was done with
the intention of providing practical advice for experimental designs.

We further investigated the situation in which θwas fixed to the op-
timum value found.We considered both thewhole dataset and a subset
including only the physiological states for which the value of each input
parameter (i.e. CBF0, CBV0, Hct and OEF0) lay within the μ ± σ range.
This set (270 cases) ismore similar to an ideal “average dataset”, exclud-
ing outliers while including physiological states which should be more
frequently found in real data, at least in the healthy brain. The results
for all designs are reported and compared to those previously found
with the original calibrated model and literature values of α and β.

Error propagation analysis

Weperformed a targeted error analysis of the original and simplified
calibration models to demonstrate the effect, on OEF estimation, of er-
rors in themeasurement of key elements of the brain's responses to hy-
percapnia andhyperoxia. Only the interleaveddesign (des. B, Fig. 3)was
considered at this stage, as oneof themore common types of respiratory
experimental designs employed in calibrated fMRI studies. In particular,
five sources of error were tested independently of one another:
(1) error in themeasurement of the CBF response to CO2, which we ex-
press as error in cerebrovascular reactivity (change in CBF per mmHg
change in partial pressure of end-tidal CO2), (2) error in the measure-
ment of the BOLD signal response to CO2, (% BOLD signal change per
mmHg change in partial pressure of end-tidal CO2), (3) error in the
measurement of the BOLD signal response to O2, (% BOLD signal change
per mmHg change in partial pressure of end-tidal O2), (4) change in
CMRO2 with hypercapnia and (5) change in CMRO2 with hyperoxia.

Error in themeasurement of theCBF response to CO2was introduced
as an additive factor on the assumed value of cerebrovascular reactivity
in themodel (fixed to 3%ΔCBF/mmHg, see Section 2.3 inMethods). The
simulated measured values of cerebrovascular reactivity considered
were, therefore, between 2 and 4% ΔCBF/mmHg (an error from −33
to +33%). The same rationale was applied to introduce error in BOLD
signal measurement during hypercapnia and hyperoxia, with measure-
ment errors ranging from−33 to+33% of the true value of BOLD signal
response. In these three cases the resulting erroneous simulated traces
of CBF and BOLD signal were input to the nonlinear estimate framework
for OEF0 estimation.

The final two sources of error introduce the effects of non-
isometabolism, violation of the assumption of isometabolism, during
hypercapnia and hyperoxia that have been suggested in some previ-
ous investigations. The CMRO2 changes with hypercapnia and
hyperoxia were introduced during the BOLD signal generation with
the detailed model. The ranges of changes in oxygen consumption
were fixed below extreme values found in literature: 1% change in
CMRO2 for 1 mmHg change in end-tidal CO2 (against 1.5%/mmHg
found by Xu et al. (2012)) and 1% change in CMRO2 for 40 mmHg
change in end-tidal O2 (against between 1.86%/40 mmHg and
1.16%/40 mmHg found by Xu et al. (2011) for hyperoxia with a frac-
tion of inspired O2 of respectively 50 and 98%). These values there-
fore led to errors spanning between −7 and +7% change in CMRO2

during hypercapnia and −5 and +5% change in CMRO2 during
hyperoxia, for the chosen respiratory design (des. B, Fig. 3). The anal-
ysis incorporating changes in oxygen metabolism was carried out
over a full range of both positive and negative changes. This is be-
cause in the literature contrasting directions of altered metabolism
have been reported. For example, hypercapnia has been reported to
increase (Jones et al., 2005), decrease (Xu et al., 2011) and have no
significant effect (Jain et al., 2011) on CMRO2.

Performance in estimating OEF0 in the simplified calibration model
was compared to the original calibration model. The nature of the differ-
ence between thesemodelswas further investigated by analysing the role
of the balance between the fractions of capillary and venous baseline CBV
(respectivelyωc andωv) and the exponents relating CBF to total, capillary
and venous CBV (respectively ϕt, ϕc and φv, in (Griffeth and Buxton,
2011), see Appendix). In particular, estimates of OEF0 were calculated
for the interleaved design (des. B, Fig. 3)where, on top of the four varying
input baseline physiological parameters, different values ofωc andωv, φt,
φc andφv have been considered. The values consideredmatched the ones
used in Griffeth and Buxton (2011), that is: [0.6–0.2] and [0.2–0.6] forωc

andωv while maintaining the arterial blood volume fraction equal to 0.2,
[0.3–0.65] for φt, [0–0.33] for φc and [0–0.65] for φv.

Finally the robustness of the simplified model has been tested
against variations of two experimental parameters: the echo time TE
and the static magnetic field B0. This was done to assess the sensitivity
of the optimization process to such parameters and the degree of
error introduced in the estimates of OEF0 when using the simplified
model in applications other than the one it has been optimized for
(i.e. TE = 32 ms and B0 = 3 T).

We firstly repeated the process of optimization of α and β on
datasets of synthetic BOLD signals created for TE of 22, 27, 32, 37 and
42 ms at both 3 and 7 T. Only the simultaneous design (des. A, Fig. 3)
was considered in this case, as the interleaved design (des. B) is
shown not to carry enough information for the optimization both of α
and β. Then, exploiting the same approach adopted for the rest of the
error propagation analysis, we estimated OEF0 with the simplified cali-
brationmodel considering the different values of TE and B0 as sources of
systematic error. In this case only the interleaved design (des. B, Fig. 3)
was considered for consistency with the error propagation analysis. For
the application at 7 T, the detailed model, optimized for 3 T experi-
ments, had to be modified in order to take account of the field depen-
dency of the baseline extravascular signal decay rate and of the
baseline intravascular signal decay rate. The former was fixed at 35 ms
(Griffeth et al., 2013), while for the latter a quadratic model has been
used to extrapolate its dependency on hematocrit, based on data avail-
able in literature for experiments at 1.5 and 4.7 T (Silvennoinen et al.,
2003), 3 T (Zhao et al., 2007) and 7 T (Blockley et al., 2008).
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The simulated data and optimization code used in this article are
openly available from the Cardiff University data Catalogue at http://
dx.doi.org/10.17035/d.2015.100127. The simulation code (detailed
model) remains with the original authors of that work.

Results

The original calibration model

The results of using literature values for the parameters (α,β) and
fitting the original calibration model to the simulated BOLD signal at
3 T using the nonlinear RSS estimates are shown in Fig. 4. The percent-
age errors in OEF0 estimates for values of (0.14, 0.91) and (0.2, 1.3) in
both the simultaneous and interleaved gas challenge designs are
shown as compared to OEF0, the input into the detailedmodel. An over-
estimate of OEF0 is observed in all cases, with mean and median values
of 11.63% and 11.17% respectively for the simultaneous design with
(α,β) = (0.2, 1.3) (Fig. 4-1); 10.46% and 9.89% for the simultaneous de-
sign with (α,β) = (0.14, 0.91) (Fig. 4-2); 10.54% and 10.11% for the in-
terleaved design with (α,β) = (0.2, 1.3) (Fig. 4-3); 10.66% and 10.14%
for the interleaved design with (α,β)= (0.14, 0.91) (Fig. 4-4). These re-
sults provided us with the motivation to optimize the α and β parame-
ters in order to minimize this bias.

Fig. 5 shows the RSS surfaces in theα, β space for a singlemean state
(OEF0 = 0.4, CBF0 = 55 ml/100 g/min, CBV0 = 5 ml/100 g and Hct =
0.44 – top row) and the median across all physiological states (bottom
row). A reliable and representative minimum point cannot be found
for either type of experimental design; a minimum for each physiolog-
ical state can be found but not consistently across states, i.e. it is not pos-
sible to select a single pair of (α, β) values which minimizes the
discrepancy between the data generated with the detailed model and
the signal fitted with the original calibration model. In the interleaved
case this is due to the extreme irregularity of the surfaces in a single
physiological state (Fig. 5-2). Then in the median over all physiological
states and in the simultaneous cases those surfaces assume a character-
istic “valley shape”, whose minima are ill-defined (Fig. 5-1,3,4). The
minima lie in a wide region at the bottom of the valley which appears
to broaden once the boundaries of the α, β space are extended (data
not shown). This suggests a difficultywithfitting the original calibration
model, namely, the collinear nature of the relationship between the two
parameters α and β.
Fig. 4. OEF0 estimate errors for literature values of α and β. Percentage errors in OEF0
estimates from fitting (residual sum of squares) the calibration model for different
literature values of (α,β) parameters and gas challenge design (design A: simultaneous
design, design B: interleaved design, referred to Fig. 3).
Fig. 6 plots the surfaces for the discrepancy between true OEF0 and
that estimated from the original calibration model over (α,β) space. In
contrast with the RSS surfaces, similar patterns are observed for the
two respiratory challenge designs, but large differences exist between
the single mean physiological state and the average one. In all cases,
similarly to what has been shown for the RSS analysis, it is possible to
find aminimum for each physiological state, but not one representative
for all states, demonstrating that an optimal α and β combination can-
not be prescribed when considering only the minimization of the
error in measured OEF0.

Collinearity in the original calibration model

Fig. 7 shows the lines extrapolated from the points of minimum of
the RSS and dOEFmedian curves for the five different gas challenge de-
signs considered. The intersection for the simultaneous design (des.
A) is (0.07,1), whereas for the interleaved modulated (des. C) is
(0.06,0.7) and for the interleaved modulated in CO2 (des. D) is
(0.06,0.85). An optimum combination was found also for the inter-
leaved design modulated in CO2 design (des. E) but laying outside the
space of the (α,β) considered for our analyses (0.08,0.4). For the inter-
leaved design (des. B), the distribution of the minima is such that it is
not informative to calculate a line of best fit. Fig. 7 also shows how the
intersection for designs A, C and D differs from the optimum values of
(α,β) previously proposed in literature and here marked with a black
circle and a green star (respectively (0.2,1.3) and (0.14,0.91)).

Fig. 8 illustrates statistics on the logarithm values of the two indi-
ces, RSS and dOEF. Three values of fixed βwere tested in order to re-
move the effect of collinearity between parameters α and β. These
values were 0.91, 1.3 and 1: the first two taken from the literature,
while the last chosen as the value that effectively removes the effect
of β from the model. The minima of the median curves reflect the be-
havior of the whole set of physiological states for the simultaneous
design (des. A) and for respiratory designs when CO2 delivery mod-
ulation is exploited in interleaved designs (des. C, D). By comparison,
in the interleaved design (des. B) there is more variability across
physiological states, suggesting that the choice of a minimum
would be far less representative of the general behavior of the
curves. Also the magnitude of the RSS index is so low that it becomes
uninformative (note the change of scale in Fig. 8 des. B compared to
the others). Finally the result for the interleaved designmodulated in
O2 (des. E) is noteworthy as the calculated RSS index seems to be in-
sensitive to the considered values of α and therefore a significant
minimum cannot be identified.

The simplified model

For the simplified model, i.e. the original calibration model in which
the β parameter is fixed to 1 and the new parameter θ substitutes for α,
the single optimumvalue of θ has been selected that gives theminimum
of the median dOEF curves across the dataset. This value is θ=0.06 for
each design (apart from the interleaved one, des. B) as reported in the
middle column of Fig. 8. Strictly, this is a suboptimal solution, given
that theminima of RSS and dOEFmedian curves do not coincide. Never-
theless this choice matches the value of α for the intersections found in
Fig. 7. Also, the consistency across designs of selecting this single repre-
sentative value of the θ parameter for the simplifiedmodel offers a prac-
tical benefit justified by the results below.

The percentage errors in OEF0 estimates fitting the simulated signal
through minimization of RSS only using the simplified model are re-
ported in Fig. 9. The biases in the distributions of estimates from the
set of underlyingphysiological states are only slight,withmean andme-
dian values lower that those reported in Fig. 4: 2.45% and −0.35% re-
spectively for the simultaneous design (Fig. 9-1, des. A); 2.83% and
0.05% for the interleaved design (Fig. 9-1, des. B); 2.44% and −0.39%
for the interleaved modulated design (Fig. 9-1, des. C); 2.15% and

http://dx.doi.org/
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Fig. 5. Surfaces of residual sum of squares (RSS). Logarithm of the RSS surface in the (α,β) space for simultaneous (des. A) and interleaved (des. B) designs. (1) and (2) show surfaces for a
single mean physiological state (OEF0= 0.4, CBF0= 55ml/100 g/min, CBV0= 5ml/100 g and Hct= 0.44). (3) and (4) show surfaces for themedian calculated on all 1000 states. In both
cases a reliable minimum cannot be found and the collinearity between the two parameters α and β is highlighted.
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−0.69% for the interleaved modulated in CO2 design (Fig. 9-1, des. D);
and 3.13% and 0.33% for the interleaved modulated in O2 design (Fig.
9-1, des. E). In summary all respiratory designs show similar results
with this simplified calibration model. The small value of θ found led
us to consider the effect of fixing its value to 0. Results (not reported
in figures) showed mean errors in OEF0 estimates about −6%, with
Fig. 6. Surfaces of absolute error in OEF0 estimate. Logarithm of the absolute error in OEF0 estim
(1) and (2) show surfaces for a single mean physiological state (OEF0 = 0.4, CBF0 = 55 ml/100
calculated on all 1000 states. In both cases reliable minima cannot be found.
distributions mainly within the range −10 to 5%. Finally in Fig. 9-2
the percentage errors in OEF0 estimates are shown for the simplified
model but considering only the physiological states in which the value
of each input variable is included in the respective μ ± σ range. For all,
as expected, the boxplots are tighter than those comprising the wider
range of physiological states.
ate surface in the (α,β) space for simultaneous (des. A) and interleaved (des. B) designs.
mg/min, CBV0 = 5 ml/100 g and Hct = 0.44). (3) and (4) show surfaces for the median



Fig. 7. Lines extrapolated from theminimal points. Lines extrapolated from theminimal points of themedian curves for the residual sumof square (RSS) and absolute discrepancy in OEF0
(dOEF) indices in all different designs. The combinations of (α,β) forwhichminima coincide are (0.07,1.00) in designA, (0.06,0.07) in design C and (0.06,0.85) in designD. The combination
is outside the search space for design E (0.08,0.4), whereas a line of best fit was not calculated for the RSS index in design B. Literature combinations of (α,β) are shownwith a black circle
(0.2,1.3) and a green star (0.14,0.91) for comparison.
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Error propagation

Fig. 10 summarizes the results of the error propagation analysis. The
upper row (A) reports results from the original calibration model,
whereas the lower row (B) reports results from the simplified calibra-
tionmodel. The columns report the effect of the different errors consid-
ered. For both models and for all sources of error considered, the
performance in estimating OEF0 worsens as the error increases, and
worsens at higher values of true underlying OEF0. Furthermore, the de-
gree of error affects both the offset and the slope of the scatterplot lines
in each of the five cases of error. Of particular note is the effect of altered
oxygen metabolism with hyperoxia (Fig. 10-5, A and B). The relation-
ship between true and estimated values of OEF0 is non-linear and larger
changes in oxygen metabolism lead to a huge increase of error in OEF0
estimates (some of the results not shown in the figure).

The direction of the effect on OEF0 is different depending on the
error. For both models a positive error in CBF estimation due to CO2

(Fig. 10-1, A and B), BOLD estimation due to O2 (Fig. 10-3, A and B)
and CMRO2 increases due to CO2 (Fig. 10-4, A and B), causes an
underestimate of OEF0 while a negative error causes an overestimate
of OEF0 compared to the noiseless condition. In the other cases (error
in BOLD estimation due to CO2, Fig. 10-2, A and B, and CMRO2 increase
due to O2, Fig. 10-5, A and B) the opposite is true.

The principal difference between the original calibration and the
simplified model, highlighted in Fig. 10, is the offset and slope of the
lines,most clear in the error-free condition (blue crosses, corresponding
to noiseless condition in all panels). The original calibration model
shows a slope very close to the unity but also a significant offset that
shifts the relationship between true and estimated OEF0 away from
the identity line (plotted as a black line), leading to consistent overesti-
mation of OEF0. In comparison, for the simplified model, the offset is
minimized and the slope is close to unity such that the discrepancy be-
tween true and estimated OEF0 is particularly small over the middle
range of OEF0 values.

Fig. 11 illustrates the influence of the balance between the fractions
of capillary and venous baseline CBV and the effects of altered expo-
nents relating CBF to total, capillary and venous CBV. The estimates of
OEF0 show relatively little sensitivity to changes in all parameters



Fig. 8.Curves of indices for different values of fixed β. Curves of the logarithmof the RSS index (blue) and dOEF index (red) for the calibrationmodel with βfixed to different values. All the
designs are considered. The median curves are shown in solid lines, while the boundaries containing the central 75% of the distributions are shown in dotted lines.
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apart fromφv (the exponent relating fractional changes in venous blood
volume to blood flow, Figs. 11-4, A and B) and venous blood volume
fraction ωv at lower values of OEF0. Similarly to Fig. 10, the main differ-
ence between the two models is the offset in the estimate of OEF0. The
biases in the results introduced by altering the blood volume parame-
ters change little between themodels and appear independent of offset
between the two models.
Fig. 12 illustrates the sensitivity to changes in TE and B0 of the opti-
mization approach presented and of the simplified calibration model
proposed. In Fig. 12-A are shown lines extrapolated from the points of
minimum of the RSS and dOEF median curves for the simultaneous de-
sign (des. A) at different combinations of TE and B0. This figure is anal-
ogous to Fig. 7, where only the case of TE = 32 ms and B0 = 3 T is
reported. Results show that the optimum combinations found are



Fig. 9. OEF0 estimate errors for the simplified calibration model. Percentage errors
resulting from the estimate of OEF0 using only a nonlinear RSS minimization, simulating
the experimental situation. (1) shows results achieved from implementing the
simplified model (θ = 0.06) on all physiological states. (2) presents results using the
simplified model (θ = 0.06) with ranges of physiological states considered narrowed to
μ ± σ.

Fig. 10. OEF0 estimates for different input errors. Estimated vs. true OEF0 values of the dataset f
different sources of error: (1) percentage error inmeasuredCBF response to CO2, (2) percentage
to O2, (4) change in oxygen metabolism due to +7 mmHg change in end-tidal CO2 and (5) ch
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sensitive to both parameters, TE and B0. However, while for 3 T (Fig. 12-
A, solid lines) the combinations gravitate around the optimum one se-
lected for the simplified model, for 7 T (Fig. 12-A, broken lines) they
are shifted towards values of approximately (0.19,1.2). Furthermore,
while in the first case TE mostly affects the optimal value of β, at 7 T it
affects more the optimum α. The scatterplot in Fig. 12-B reports the
error introduced estimating values of OEF0 with the simplified model
from the BOLD signals created at different values of TE and B0. Similar
values are obtained for the other respiratory experiments considered
(data not shown). Results highlight that the estimates are only slightly
sensitive to variations in TE, with the introduced error being negligibly
small when considering 3 T experiments, but showing a larger offset
when using the 3 T optimized simplified model at 7 T.

Discussion

The process that led to the optimization of the original calibration
model is summarized in Fig. 2. Our simulated datawas a set of BOLD sig-
nals created using the detailed signalmodel (Griffeth and Buxton, 2011)
with Gaussian distributed values of physiological parameters (CBV0,
CBF0, OEF0 and Hct) and five different specific respiratory experimental
designs employing hypercapnia and hyperoxia, some previously pub-
lished and some new. Estimates of OEF0 obtained using the original cal-
ibration model (Wise et al., 2013) and literature combinations of α and
β using residual sum of squares (RSS) proved unsatisfactory. We there-
fore considered an index based on themagnitude of the discrepancy be-
tween the real and estimated OEF0 (dOEF) in addition to the RSS. The
consequent minimization led to values of α and β that are a good
trade-off between the experimental necessity to fit to the BOLD signal
and the capacity to estimate OEF0 in an unbiased manner.

We demonstrate substantial collinearity between the parameters of
the original calibration model when estimating OEF0, a feature that
leads to erroneous results illustrated by the valleys in Figs. 5 and 6, in
which we have almost the same value of the RSS and dOEF indices for
very different combinations of α and β which therefore produce broad
distributions of potential OEF0 estimates. The collinearity suggests that
for practical applications using the respiratory challenges here analyzed,
values of α and β need to be fixed. We overcame the collinearity, in a
practical sense, by the analysis of the relationship between the two indi-
ces for fixed values of β. Fixing the α and β parameters to those values
where minima of both RSS and absolute discrepancy in OEF0 estimate
curves coincided, providing optimized OEF0 estimates and BOLD signal
or two different models (A, original calibration model; B, simplified calibration model) for
error inmeasured BOLD response to CO2, (3) percentage error inmeasuredBOLD response
ange in oxygen metabolism due to +200 mmHg change in end-tidal O2.



Fig. 11. Influence of capillary–venous distribution on OEF0 estimates. Estimated vs. true OEF0 values of the dataset for two different models (A, top row, original calibration model and B,
bottom row, simplified calibrationmodel) anddifferent values of: (1) fractions of venousbaselineCBV (ωv,with capillary baseline CBV=0.8−ωv), exponents relating CBF to (2) total CBV
(φt), (3) capillary CBV (φc) and (4) venous CBV (φv).
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fits. Fig. 8 shows that this is not achieved using the literature values of α
and β and explains the bias in the results in Fig. 4.

The consequence of our practical optimization in this work is that we
take α and β parameters to have no specific physiological meaning com-
pared to those introduced in the original models by Davis (Davis et al.,
1998) and Hoge (Hoge et al., 1999a). This is similar to the approach pre-
viously adopted by Griffeth and Buxton (2011). Fig. 8 also shows that
once alpha isfixed to the valueminimizing the dOEF index, the sensitivity
of the model to the chosen β is only small. In fact the values of β consid-
ered mostly affect the behavior of the RSS index, which is orders of mag-
nitude lower than the dOEF one. This therefore allows us to fix β to 1 and
thus to introduce the simplifiedmodel. Note that the approachwe take is
similar to others recently taken (Blockley et al., 2015;Griffeth et al., 2013),
in which β has been fixed to 1. Differences arise when considering that in
those cases α has been chosen as Grubb's parameter (Grubb et al., 1974),
instead of an optimized fitting parameter, as in the present case. The one
we propose is of course, strictly speaking, a suboptimal model, in which,
for the purpose of simplicity and generality of themodel, the best possible
Fig. 12. Dependency of the model on different B0 and TE. A) Optimal (α,β) combinations found
indices (solid lines: 3 T, broken lines: 7 T) and combinations previously considered (black ci
simultaneous design (des. A) is analyzed. B) Values estimated with the simplified model aga
only the interleaved design (des. B) is considered.
fit to the data is compromised in favour of a better estimate of OEF. This
model overcomes the difficulty of defining an optimum value for α and
β in the interleaved gas challenge designs (such as design B of Fig. 3)
and of needing to consider a different pair of parameters, α and β, for
each different respiratory experiment. For all the designs considered,
the distributions of percentage errors in OEF0 estimates lay almost exclu-
sively within the ±5% range, with rare outliers. This same accuracy, as-
suming good estimates of CBF, would be directly translated into CMRO2

estimates through the defining relationship, CMRO2 = CBF ⋅OEF ⋅CaO2,
in which CaO2 represents the concentration of oxygen carried in arterial
blood. The simplified model shows good performance for all interleaved
modulated designs, which mimic more closely the behavior of a real ex-
periment in which end tidal values will vary over time and between hy-
percapnic and hyperoxic blocks. The simplified model offers, therefore,
a reliable and adaptable tool for estimating OEF0, and then absolute
CMRO2, across a range of respiratory experiment designs. Indeed, the sim-
ulation framework that we have presented could be applied to any arbi-
trary respiratory experimental design.
for different TE and B0. Shown are extrapolated lines of minimal values of RSS and dOEF
rcle = (0.2,1.3), green star = (0.14,0.91) and red star = (1,0.06)). In this case only the
inst true values of OEF0 for different TE and B0 (dots: 3 T, open circles: 7 T). In this case
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Given the substantial equivalence between experimental designs in
their ability to estimate OEF0 once the model parameters are fixed, we
may substitute the more sophisticated experimental designs, in which
both CO2 and O2 are elevated simultaneously, with simpler interleaved
designs (as in Bulte et al., 2012). The simplification achieved would be
significant firstly in terms of instrumentation and control of the experi-
ment, as this requires only one gas to be delivered at any given time.
Moreover the BOLD signal behavior itself is likely to be simplified in
an interleaved block sequence, less affected for instance by transients
between different levels of hypercapnia and hyperoxia. Both of these
improvements may also lead to more rapid data acquisition.

Our simulated results also help to explain the estimates of OEF0 in
our previous study (Wise et al., 2013). Fig. 4 reports overestimates of
OEF0 when using the original calibration model with two pairs of liter-
ature (α,β) parameters, leading directly to overestimates in CMRO2. In
our previous study (Wise et al., 2013) experimental data were fitted
with literature values of α and β. This may help to explain the higher
values of CMRO2 reported in Table 1 of the Wise and colleagues study
(Wise et al., 2013), compared to previous MRI and PET studies (Bulte
et al., 2012; Gauthier and Hoge, 2012; Ito et al., 2004). From the current
work, similar biases in OEF0 estimates from other groups' work using
similar respiratory challenges (Bulte et al., 2012) and literature (α,β)
values would also be expected.

The limitations of the present study lie mainly in the synthetic na-
ture of the data. In the BOLD signal generation process no noise was
added to the resulting time series. We made this choice because our
focus was on the analysis of the model properties and in particular on
its bias in OEFo estimation, with an approach similar to that of Griffeth
and Buxton (2011). The simulation environment was necessary to
study and optimize the behavior of the original calibration model, in
particular for the analysis of the discrepancy in OEF0 estimates, which
leads to the identification of the optimum parameters α and β and to
the definition of a simplified model with an optimum parameter θ.
Even though synthetic, the set of simulated BOLD signals was designed
to span a wide range of physiological states defined by CBF0, CBV0, OEF0
andHct. The results show the distributions of errors in OEF0 estimates to
be narrow with median values close to 0, demonstrating a substantial
insensitivity to differences in the underlying physiological state for
both the original calibrated model and the simplified one. In particular
these models to estimate OEF are robust to variations in hematocrit
that is considered to be an unknown variable, and therefore a source
of uncertainty.

Using the simplified model, the analysis of a subset of physiological
states in which the value of each input parameter was included in the
narrower mean± one standard deviation range, that is, a more realistic
range for the healthy brain, led to even more accurate final results in
OEF0 estimates (Figs. 9-2). This suggests that the outliers found using
the wider range of physiological states may be due to particular combi-
nations of unusual physiological states rather than possible critical is-
sues with the simplified model.

The error propagation analysis illustrated the differences between
the original and simplified calibration models and their likely practical
limitations. Fig. 10 shows the offset in OEF0 estimates in the application
of the original model, eliminated by the new simplified model. Both
models are susceptible to errors in the measurement of the CBF and
BOLD responses to the respiratory challenges. Performance in terms of
absolute error in estimated OEF0 tended to be worse at higher OEF
values, although fractional errors were largely independent of true
OEF0. In practice, the accurate estimation of CBF responses to CO2 is
more challenging, and carries greater uncertainty, than the estimation
of BOLD signal responses to CO2 and O2, largely as a result of the low
contrast-to-noise of arterial spin labelling. The errors represented in
Fig. 10-1 (CBF response to CO2) are likely to be of a realistic order of
magnitude, depending on a number of experimental factors, while the
uncertainty of BOLD responses is likely to be smaller and contribute
less to OEF0 estimate error in practice.
Changes in CMRO2 during hypercapnia and even more during
hyperoxia would strongly affect the estimated OEF0. This is to be ex-
pected, as the assumptions of isometabolism in hypercapnia and
hyperoxia, although still object of discussion, are commonly as-
sumed as hypotheses for BOLD calibrated methods. Dependence of
CMRO2 on altered arterial CO2 and O2 levels has been reported with
variable results. Hyperoxia has been found to cause increase
(Rockswold et al., 2010), decrease (Richards et al., 2007; Xu et al.,
2012) and no change (Diringer et al., 2007) in oxygen metabolism.
Similarly hypercapnia has been observed to cause increases
(Horvath et al., 1994; Jones et al., 2005; Yang and Krasney, 1995), de-
creases (Sicard and Duong, 2005; Xu et al., 2011) and no change
(Chen and Pike, 2010; Barzilay et al., 1985; Kety and Schmidt,
1948; Novack et al., 1953) in oxygen metabolism.

The most relevant studies suggest hypometabolism resulting
from both hypercapnia and hyperoxia with relative decrease in
CMRO2 respectively up to 13% (for a +10 mmHg increase in end
tidal CO2 (Xu et al., 2011)) and 10% (for a 50% fraction of inspired
O2 (Xu et al., 2012)). These, according to our results, would translate
in very severe errors in OEF0 estimates even for average values of
OEF0: 50% overestimate in hypercapnia and 42% underestimate in
hyperoxia (for the simplified calibrated model with OEF0 = 0.4 and
CMRO2 changes scaled to match the variations in end tidal CO2 and
O2 of our interleaved design, des. B, Fig. 3). This indicates the failure
of both the original and the newly proposed model in accordance
with results from Blockley and colleagues (2015) when testing the
effect of changes in metabolism during hypercapnia on OEF esti-
mates for calibrated BOLD methods.

Further investigation of the circumstances in which CMRO2 is al-
tered needs to be performed. It is possible that, with mild respiratory
challenges that limit the violation of the assumption of isometabolism,
the errors in OEF0 suggested by Fig. 10-4 and 10-5 can be maintained
within practically acceptable levels. Given the successful literature re-
ports of the calibrated fMRI approaches to estimating OEF and CMRO2,
it seems unlikely that they are strongly affected by violation of assump-
tions of isometabolism to the worst degrees simulated in Fig. 10-4 and
10-5. Were they affected in such a way by the published respiratory
challenges more bias in reported OEF in the literature would be expect-
ed. However, we must be cautious in future assumptions of
isometabolism in studies of cerebral pathology. For example, it may be
hypothesized that in conditions of reduced blood flow where OEF is el-
evated, CMRO2 may be oxygen limited and therefore an increase of CBF
or arterial oxygen content in hyperoxia may itself stimulate an increase
in CMRO2.

Finally it has been demonstrated that the better estimates of OEF0
obtained with the simplified model, and more specifically the absence
of the offset affecting the estimates of the calibrationmodel, are not de-
pendent on the particular balance between the fractions of capillary and
venous baseline CBV or the exponents relating CBF to CBV used in the
detailed model for creating the synthetic BOLD signal. This suggests
that the optimization carried out and the performance of the simplified
model is not significantly dependent on the characteristic features of the
detailed model when considering the blood volumes of the venous and
capillary compartments. The effects of different blood volumes will be
partly absorbed into the parameterM in the original and simplified cal-
ibrationmodels.While this is often considered in studies using the orig-
inal calibration model as the maximum achievable BOLD response, in
the current framework where the focus is the unbiased estimation of
OEF, we do not interpret its biological significance and consider it sim-
ply as a fitting parameter of no particular interest. In fact, the role of M
in our approach is different from earlier approaches to calibrated fMRI.
In our approach, thanks to a model in which hypercapnia- and
hyperoxia-induced changes are both accounted for simultaneously, M,
although still estimated, is just a by-product of an estimation of OEF0
and has therefore been put into the background. Given the different
form of the simplified calibration model, we expect the estimate of M
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obtained to be different to those reported in literature as they are repre-
sentative of different information.

Effects of considering different values of TE and B0 are investigated
showing that the optimal combination of α and β is sensitive to TE at
both 3 and 7 T. However, at 3 T the error introduced in the estimates
of OEF0 over a practical range of TE is negligible. Conversely, the effect
of B0 cannot be ignored as results at 7 T show that using the simplified
calibration model would lead to a significant bias in the estimates of
OEF0 and therefore another (α,β) combination should be used. Consid-
ering a characteristic TE of 25 ms for a GRE experiment at 7 T, the opti-
mal combination found is about (0.21,1.245). Our analysis, therefore,
not only supplies a complete picture of the influence of TE and B0 on
the newly proposed model, but also demonstrates how our optimiza-
tion approach can conveniently be adapted by other groups to different
research settings, such as 7 T experiments.

In conclusion,we have demonstrated our simulation framework as a
useful means of testing calibration models for respiratory experiments
aimed at measuring OEF0. We have shown that the simplified model is
a potentially valuable tool for the unbiased evaluation of OEF0 and
therefore absolute CMRO2 in studies using respiratory challenges. In
particular, we would recommend the simplified calibration model
as it offers accurate results along with reduced complexity and en-
hanced flexibility with respect to the respiratory design of the exper-
iment. As the model has been found to be particularly affected by
errors in measurements for high values of OEF0, its application for
absolute estimates of CMRO2 may not be optimal in those patholog-
ical conditions where extreme values of OEF0 might be expected. In
considering practical experimentation, since similar accuracy is
achieved across different respiratory challenge designs when θ is
fixed to its optimal value in the simplified model, the least complex
interleaved designs may be used with that model with no detriment
to the OEF0 estimates.
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