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Genome-wide association study identifies SESTD1 as a novel
risk gene for lithium-responsive bipolar disorder
J Song1,11, SE Bergen1,2,11, A Di Florio3, R Karlsson1, A Charney4, DM Ruderfer4, EA Stahl4, The International Cohort Collection for Bipolar
Disorder (ICCBD)12, KD Chambert2, JL Moran2, K Gordon-Smith5, L Forty3, EK Green6, I Jones3, L Jones5, EM Scolnick2, P Sklar4,7,8,
JW Smoller9, P Lichtenstein1, C Hultman1, N Craddock3 and M Landén1,10

Lithium is the mainstay prophylactic treatment for bipolar disorder (BD), but treatment response varies considerably across
individuals. Patients who respond well to lithium treatment might represent a relatively homogeneous subtype of this genetically
and phenotypically diverse disorder. Here, we performed genome-wide association studies (GWAS) to identify (i) specific genetic
variations influencing lithium response and (ii) genetic variants associated with risk for lithium-responsive BD. Patients with BD and
controls were recruited from Sweden and the United Kingdom. GWAS were performed on 2698 patients with subjectively defined
(self-reported) lithium response and 1176 patients with objectively defined (clinically documented) lithium response. We next
conducted GWAS comparing lithium responders with healthy controls (1639 subjective responders and 8899 controls; 323
objective responders and 6684 controls). Meta-analyses of Swedish and UK results revealed no significant associations with lithium
response within the bipolar subjects. However, when comparing lithium-responsive patients with controls, two imputed markers
attained genome-wide significant associations, among which one was validated in confirmatory genotyping (rs116323614,
P= 2.74 × 10− 8). It is an intronic single-nucleotide polymorphism (SNP) on chromosome 2q31.2 in the gene SEC14 and spectrin
domains 1 (SESTD1), which encodes a protein involved in regulation of phospholipids. Phospholipids have been strongly implicated
as lithium treatment targets. Furthermore, we estimated the proportion of variance for lithium-responsive BD explained by
common variants (‘SNP heritability’) as 0.25 and 0.29 using two definitions of lithium response. Our results revealed a genetic
variant in SESTD1 associated with risk for lithium-responsive BD, suggesting that the understanding of BD etiology could be
furthered by focusing on this subtype of BD.
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INTRODUCTION
Bipolar disorder (BD) is a serious psychiatric illness characterized
by recurrent episodes of depression and mania.1 The mood
stabilizer lithium effectively reduces episode recurrences and
remains a first-line option for maintenance treatment of BD.2

However, treatment responses vary considerably across
individuals and a number of persons with BD show only partial
or no response.3,4 An understanding of which patients with BD are
most likely to respond to lithium would enable tailored treatment.
Genetic factors may mediate variation in response to lithium,

and several genetic association studies have been performed to
assess this possibility. Most have been candidate gene studies
based on putative pharmacological mechanisms of lithium or the
pathophysiology of BD.5 Although a minority of these findings
have been observed in more than one study (for example, the
CREB family of genes6,7 and synapse-related genes8,9), the majority
of reported associations have not been reproduced. For example,

studies of single-nucleotide polymorphisms (SNPs) in the brain-
derived neurotrophic factor (BDNF) gene have reported different
findings between ethnicities.10–13 Also, two Japanese groups have
examined the X-box binding protein 1 gene and found that -116C
allele carriers seem to have better lithium response, but each was
in a small number of patients (No70).14,15 Small sample sizes in
conjunction with the limited understanding of not only the
pathophysiology of BD but also lithium’s pharmacodynamics to
guide candidate gene selection are likely reasons for these
equivocal findings.
Hypothesis-free genome-wide association studies (GWAS) of

larger samples therefore offer a promising approach. One GWAS
of lithium response performed in a Han Chinese population
showed a strong association with variants in the gene GADL1
(glutamate decarboxylase-like protein 1),16 but not only are the
susceptibility alleles rare in European populations, the findings
were not replicated in other Asian samples.17 Other GWAS of

1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; 2Stanley Center for Psychiatric Research, The Broad Institute of MIT and
Harvard, Cambridge, MA, USA; 3National Centre for Mental Health, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK; 4Division of Psychiatric
Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 5Department of Psychiatry, School of Clinical and Experimental Medicine,
University of Birmingham, Birmingham, UK; 6School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK;
7Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 8Friedman Brain Institute, Icahn School of Medicine at Mount Sinai,
New York, NY, USA; 9Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA and 10Institute of
Neuroscience and Physiology, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden. Correspondence: Professor M Landén, Institute of Neuroscience and
Physiology, The Sahlgrenska Academy at Gothenburg University, Gothenburg 41345, Sweden.
E-mail: Mikael.landen@neuro.gu.se
11These authors contributed equally to this work.
12Members of The International Cohort Collection for Bipolar Disorder are listed before references.
Received 24 June 2015; revised 4 September 2015; accepted 24 September 2015; published online 27 October 2015

Molecular Psychiatry (2016) 21, 1290–1297

www.nature.com/mp

http://dx.doi.org/10.1038/mp.2015.165
mailto:Mikael.landen@neuro.gu.se
http://www.nature.com/mp


lithium response found no SNPs that reached genome-wide
significance, but reported suggestive findings for the gene DGKH
(diacylglycerol kinase eta),18 the GRIA2 gene coding for the
glutamate receptor,19 the gene ACCN1 (amiloride-sensitive cation
channel 1 neuronal)20 and clock genes.21

Another impetus to explore the genetic variability underlying
lithium response is the possibility for new insights into the genetic
basis of BD. The pathophysiology of BD is likely to be
heterogeneous with multiple genetic mechanisms related to
distinct biochemical pathway abnormalities giving rise to illnesses
with similar clinical manifestations.5 The group of patients
responding to lithium could suffer from a more etiologically
homogeneous illness subtype caused by abnormal pathways that
are direct or indirect targets of lithium.22 Indeed, based on
longitudinal stability and familial clustering,23,24 lithium response
has been suggested to define a distinct genetically based subtype
of BD. Since genetic heterogeneity reduces the power to identify
significantly associated variants, GWAS focusing on a homoge-
neous subgroup such as lithium responders may be more fruitful.
Here, we utilized samples from Sweden and the United

Kingdom to identify common genetic variants associated with
lithium response in BD patients. Furthermore, we conducted
analyses comparing lithium responders with controls to identify
common genetic variants that increase susceptibility for the
lithium-responsive subtype of BD. Finally, we estimated the extent
of genetic contribution to lithium-responsive BD (that is, SNP
heritability).

MATERIALS AND METHODS
Subjects
Cases from Sweden were collected through two recruitment streams: the
Stanley study and the St Göran Bipolar Project. Most cases were recruited
from the Stanley study that identified cases through the Swedish Quality
Register for BD (BipoläR), which has been described in detail
previously.25,26 In brief, BipoläR contains individualized data on diagnoses
(that is, BD type 1, type 2, not otherwise specified, or schizoaffective
disorder bipolar type according to the DSM-IV-TR), medical intervention
and outcomes. It also captures basic clinical epidemiological data as well as
longitudinal data on the natural history and clinical course of the disease.
Genotyping has been completed for 1591 BD patients (passing quality
control (QC)) enrolled in the Stanley study. The other recruitment stream
for cases was from the St Göran Bipolar Project (N= 231), which provides
assessment, treatment and follow-up of BD patients within the Northern
Stockholm Mental Health Service and the Affective Unit in Mölndal. The
work-up procedures have been previously described in detail.27–29 Both

projects were approved by the Regional Ethical Review Board in
Stockholm, Sweden, and all participants provided written informed
consent.
Control subjects (N= 3486) were randomly selected from Swedish

population registers, ascertained on a national basis. The exclusion
criterion was any hospitalization with schizophrenia or BD. DNA collection
procedures have been previously described.30 A small number of controls
(N= 56) were from St Göran Bipolar Project as described previously.27

Cases from the United Kingdom were drawn from the Bipolar
Disorder Research Network (BDRN) study, a large ongoing program of
genetic and clinical research into the causes of BD and related mood
disorders. Subjects were recruited via both systematic and non-systematic
methods. Information was gathered retrospectively by semi-structured
interview and case-notes review. More detailed description can be
found in prior publications.31,32 Controls were from the Wellcome Trust
Case Control Consortium 2 (WTCCC2) common control set, which
comprised 2675 healthy blood donors recruited from the UK Blood
Service and 2742 samples from the 1958 British Birth Cohort.33 This study
received approval from the Multi-Region and Local Research Ethics
Committee in the United Kingdom, and all participants provided written
informed consent.

Phenotype definition and assessment
A summary of phenotype assessments and the corresponding numbers of
Swedish and UK samples is shown in Table 1 and Figure 1. The detailed
phenotype definitions and assessments of lithium response were
described in Supplementary Methods.
In brief, lithium response in Swedish participants was assessed through

both interviews (subjective assessment) and register data (objective
assessment). The extent to which subjective assessment and objective
assessment were in line with each other is shown in Supplementary Table
S2. For participants from United Kingdom, lithium response information
was collected by interviews and reviews of clinical notes. The inter-rater
reliability is not applicable in Swedish samples but has been assessed in UK
samples, with a kappa score of 0.76 calculated from a random selection of
cases. We treat lithium response as a dichotomous trait based on the
subjective and objective measurements, to maximize the sample size and
to arrive at a narrower phenotype definition, respectively.

Genotyping, QC, imputation and validation
DNA from Swedish subjects was extracted from whole blood samples at
the Karolinska Institutet Biobank. Genotyping was conducted at the Broad
Institute of Harvard and MIT using Affymetrix 6.0 (wave 1) (Affymetrix,
Santa Clara, CA, USA) and Illumina OmniExpress (wave 2) chips (Illumina,
San Diego, CA, USA). Blood samples from UK BDRN cases underwent DNA
extraction at the neuropsychiatric genetics laboratory at Cardiff University
and were genotyped using Illumina OmniExpress and Illumina ComboChip.
UK control samples were genotyped using Illumina 1.2M Custom Chip
(Illumina), as described in the WTCCC GWAS.33 The detailed genotyping QC
for Swedish and UK samples is described in Supplementary Methods.
Following all QC steps, the final analysis data set consisted of 898 bipolar
cases, 2215 controls with 744 932 genotyped SNPs in Swedish wave 1,
1415 bipolar cases, 1271 controls with 598 894 genotyped SNPs in Swedish
wave 2, and 2577 bipolar cases, 5413 controls with 393 635 SNPs
genotyped in UK sample.
Data sets were then pre-phased using SHAPEIT34 and imputed with the

full 1000 Genomes Project integrated variant set (Phase 1 integrated data
version 3, released March 2012) as the reference panel35 using IMPUTE2.36

After imputation, the three waves shared more than 8 million SNPs.
To confirm the accuracy of imputed SNPs with GWAS significance, DNA

from Swedish subjects putatively carrying the minor alleles for
rs116323614 and rs146727601 and additional non-carriers were sent for
confirmatory genotyping (N= 85). TaqMan assays (Applied Biosystems,
Foster City, CA, USA) were used for genotyping and were performed by
LGC Genomics (Teddington, Middlesex, UK).

Association analyses
Association analyses were conducted using imputed SNP dosages and
logistic regression in PLINK version 1.07.37 Multidimensional scaling (MDS)
was performed on each collection wave and MDS components were
included as covariates (first six MDS components for Swedish wave 2 and
first four MDS components for others) to control for population
substructure. We retained only SNP dosages imputed with high confidence

Table 1. Sample sizes by group and study

Phenotype assessment Swedish sample UK BDRN Meta-analysis

Wave 1 Wave 2

Subjective measurement
Responders 149 588 902 1639
Non-responders 45 338 676 1059
Controls 2215 1271 5413 8899

Objective measurement
Responders — 159 164 323
Non-responders — 780 73 853
Controls — 1271 5413 6684

Abbreviation: BDRN, Bipolar Disorder Research Network. The numbers are
subjects with: (1) available assessments of lithium response according to
our definition (for details, see Supplementary Methods) and (2) passed
genotyping quality control. Too few subjects in Sweden wave 1 had
objective measures of lithium response. Therefore, a GWAS for that sample
and measure was not able to be performed.
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(Info 40.6) and with minor allele frequency 41%. The genome-wide
significance threshold was set at Po5 × 10− 8.
We first compared lithium responders with non-responders. Both

subjective and objective assessments were used for association analysis
separately for each wave, except for Sweden wave 1 due to an
inadequate number of subjects with information regarding objective
lithium measures. Results were then combined by meta-analysis
using a fixed-effects model in PLINK for each measure of lithium
response, respectively. Second, we conducted a GWAS comparing lithium

responders, subjectively and objectively defined, respectively, with
controls without history of schizophrenia and BD. Multiple
testing correction was not attempted since the samples and phenotype
definition were not independent (Supplementary Table S2). To define
regions of association, we conducted PLINK linkage disequilibrium (LD)
based ‘clumping’ to group SNPs with association Po0.0001 and near-by
SNPs with nominal associations (Po0.05) and LD (r240.1) within
500-kb windows. We also identified genes in these and the 20-kb
flanking regions.

Figure 1. Sample ascertainment flow chart. (a) Subjectively defined lithium assessment. (b) Objectively defined lithium assessment.
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SNP-heritability estimation
Furthermore, we estimated the heritability of lithium-responsive BD using
the GCTA (genome-wide complex trait analysis) method.38 We first merged
Sweden wave 2 and UK data sets, which were used for both subjective
assessment and objective assessment of phenotype. We then used GCTA
version 1.24 to calculate the pair-wise genetic relationship between
individuals and created the genetic relationship matrix.38 SNP heritability
of lithium-responsive BD phenotype was then estimated using the restricted
maximum likelihood method in GCTA, with sex, different batches and the
first four eigenvectors calculated from principal component analysis included
as covariates to control for population structure. Details about the analysis
procedure are provided in the Supplementary Methods.

RESULTS
Demographic characteristics for the Swedish and UK samples can
be found in Supplementary Table S1.

Lithium responders vs non-responders
For each genome-wide association analysis, and for meta-analyses
combining each GWAS with comparable assessments of lithium
response, the genomic inflation factor λ showed little or no
evidence for inflation (λ= 0.97–1.02, Supplementary Table S3). The
regions of association with the lowest P-values for each analysis
can be found in Supplementary Table S4, while the top results for
each meta-analysis are summarized in Table 2 (corresponding
results for analyses of each sample separately are in Supple-
mentary Table S7). The quantile-quantile and Manhattan plots for
all analyses are shown in Supplementary Figure S1.
No SNP reached genome-wide significance in any sample

separately, except for one imputed SNP in GWAS for Sweden wave
2 comparing lithium responders and non-responders with

subjective assessment (588 responders vs 338 non-responders,
rs56177802, P= 2.03 × 10− 9, OR = 2.14, Supplementary Table S4).
However, this marker failed to meet the threshold for genome-
wide significance following meta-analysis (1639 responders vs
1059 non-responders, P= 1.81 × 10− 4, OR = 1.31).
No SNP achieved genome-wide significance in meta-analyses of

association with lithium response. In the analyses of objective
lithium response, the SNPs with the greatest evidence for
association were located in an intron of the NOTCH4 gene and
all in high LD (r240.8).

Lithium responders vs controls
For these GWAS and meta-analyses, the resulting genomic inflation
factors again showed little evidence of inflation (λ=1.01–1.05,
Supplementary Table S5). The regions of association with the lowest
P-values for each analysis are shown in Supplementary Table S6,
while the top results for each meta-analysis are shown in Table 2
(corresponding results for analyses of each sample separately are in
Supplementary Table S7). The quantile-quantile and Manhattan
plots for all analyses are in Supplementary Figure S2.
In GWAS for each sample comparing lithium responders

(subjective assessment) and controls, one imputed SNP achieved
genome-wide significance in Sweden wave 1 (149 responders vs
2215 controls, rs10979017, P= 1.08 × 10− 8, OR = 0.20), and one
imputed SNP approached genome-wide significance in Sweden
wave 2 (588 responders vs 1271 controls, rs1442378, P= 5.19 ×
10− 8, OR = 1.55) (Supplementary Table S6). However, the meta-
analysis combining Swedish and UK samples together showed no
genome-wide significant associations for these SNPs.
In the subsequent meta-analyses comparing lithium res-

ponders (objective assessment) with controls, two imputed
variants reached genome-wide significance (323 responders vs

Table 2. Top regions of genetic association for each meta-analysis

Chr Index SNP A1/A2 Freq OR P-value N Position KB Genes

Responders vs non-responders, subjective assessments

20 rs73918339 T/C 0.91 0.56 3.80 × 10− 7 60 61150190–61213367 63 MIR133A2, MIR1-1, C20orf200, C20orf166
18 rs7240206 C/G 0.09 0.60 3.86 × 10− 7 67 74393681–74447380 54 LOC105372213
7 rs116927879 G/A 0.85 1.53 4.99 × 10− 7 267 45588502–46011988 423 SEPT7P2, IGFBP3, IGFBP1, ADCY1
4 rs78295376 T/C 0.90 0.57 6.77 × 10− 7 26 76480371–76729937 250 USO1, TMSL3, G3BP2, FRG2, CDKL2, C4orf26

Responders vs non-responders, objective assessments

6 rs438475 G/A 0.88 0.49 2.13 × 10− 6 165 31 770265–32625494 855 NOTCH4, many genes in MHC region
11 rs113262272 A/− 0.71 1.93 3.77 × 10− 6 99 99298992–99587113 288 CNTN5
14 rs809 C/T 0.53 0.61 4.08 × 10− 6 39 78502019–78558331 56 NRXN3
6 rs181812561 G/A 0.98 0.13 6.39 × 10− 6 3 75079066–75231552 152 LOC101928516

Responders vs controls, subjective assessments

1 rs12144699 G/A 0.96 0.60 6.05 × 10− 7 7 59605197–59863936 259 OR4F16, OR4F29, LOC729467, LOC100133331,
LOC100132287, FGGY

3 rs9834970 T/C 0.50 0.82 7.88 × 10− 7 153 36834099–37285522 451 TRANK1, MLH1, MIR4273, LRRFIP2, GOLGA4, FRG2C,
EPM2AIP1

3 rs12493050 G/A 0.20 1.27 8.78 × 10− 7 276 182478533–182909924 431 MCF2L2, MCCC1, LAMP3, DCUN1D1, ATP11B
7 rs4947962 G/C 0.11 1.35 1.35 × 10− 6 85 54906722–55161372 255 EGFR

Responders vs controls, objective assessments

11 rs146727601 − /TA 0.01 3.98 1.33× 10−8 2 112118590–112343856 225 PTS, PLET1
2 rs116323614 A/G 0.03 3.14 2.74× 10−8 58 179859406–180139219 280 SESTD1, CCDC141
19 rs77866734 C/T 0.98 0.27 1.49 × 10− 7 11 1633923–1642221 8 TCF3, KIR3DP1, KIR2DL4
17 rs142643109 T/G 0.98 0.28 3.93 × 10− 7 3 60086587–60497572 411 TBC1D3P2, MIR4315-2, MIR4315-1, METTL2A, MED13, EFCAB3

Abbreviations: A1/A2, reference and alternate allele; Chr, chromosome; Freq, frequency of reference allele; Index SNP, the single-nucleotide polymorphism
with the strongest association in the genomic region; MHC, major histocompatibility complex; N, number of SNPs in the reported region; OR, odds ratio. We
used LD clumping to define regions of association. Positions are given in UCSC hg19 coordinates. Lines in bold indicate associations that are genome-wide
statistically significant.
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6684 controls, rs146727601, P= 1.33 × 10− 8, OR = 3.98; and
rs116323614, P= 2.74 × 10− 8, OR = 3.14; Table 2). Rs146727601 is
a two-base deletion on chromosome 11q22.4 in the gene PTS
(6-pyruvoyltetrahydropterin synthase) and also about 500 base
pair (bp) downstream of the gene placenta expressed transcript 1
(PLET1). Rs116323614 is an intronic marker on chromosome
2q31.2 in the gene SEC14 and spectrin domains 1 (SESTD1).
Direct genotyping was successful in 82 Swedish samples
confirming the imputed rs116323614 alleles (Pearson correlation
coefficient = 0.92). However, three distinct primer designs failed to
genotype rs146727601. The region plots depicting association
signals surrounding rs116323614 and rs146727601 are in
Supplementary Figure S3.
We calculated the predicted genotype frequencies for imputed

rs116323614 and performed the exact test of Hardy–Weinberg
Equilibrium (details are provided in the Supplementary Methods).
There was no evidence of departure from Hardy–Weinberg
Equilibrium for this variant in either Swedish or the UK population
(Supplementary Table S8).
Noticing the sex differences in the ratio of responders to

non-responders in the UK sample (Supplementary Table S1), we
performed association tests and meta-analysis for male and
female samples separately. The ORs for rs116323614 by sex were
not significantly different (P= 0.55) and including sex as a
covariate in the association analyses did not alter the significance
(P= 3.93 × 10–8) (Supplementary Table S9).

SNP-heritability estimates
SNP heritability (h2) for lithium-responsive BD was 29% for the
subjective definition (95% CI 23–36, Po0.0001) and 25% for the
objective definition (95% CI 0–51, P= 0.03 for the null hypothesis
of being non-heritable) (Supplementary Table S10).

DISCUSSION
By using two large samples of persons with BD treated with
lithium and healthy controls, we found that (i) no markers met the
threshold for genome-wide association with lithium response;
(ii) variation in SESTD1 demonstrated association in the
case–control analysis, where we used lithium response to define
a BD subtype, with the proportion of variance explained by
common genetic variants (SNP heritability) estimated at 0.25–0.29.
Interestingly, SESTD1 encodes a protein involved in the regulation
of phospholipids.39 Inositol phospholipids have been implicated
not only in the pathophysiology of BD but also are among the
most studied molecular targets of lithium.40,41 These results
suggest that using pharmacoresponse to define subgroups within
complex disorders might be a complementary approach for
identifying disease risk loci in case–control association studies.

Lithium-responsive BD
Lithium response has been suggested to be a distinct phenotype of
BD for decades.42–47 A number of studies have identified specific
clinical features in patients responsive to lithium, such as fewer
hospitalizations preceding treatment, later age of onset and an
episodic pattern of mania followed by depression.48 In addition,
lithium response is suggested to have a genetic basis, based on
evidence such as longitudinal stability23 and familial clustering.24

Moreover, both clinical observational and neurobiological studies
show that lithium responders differ from responders to other mood
stabilizers.47,49 Therefore, the present study utilizes this distinct
subtype of BD to investigate the mechanisms behind it.

Lithium responders vs non-responders
GWAS for each sample separately yielded one SNP (Sweden wave
2) showing genome-wide significant association (Supplementary

Figure S1-II, Supplementary Table S4), but it failed to remain
significant in the ensuing meta-analysis. The variants ranking
highly in prior GWAS18–21 also showed little evidence of
association in our results, and although the alleles previously
reported to be strongly associated with lithium response in GADL1
did not exist in our sample,16 other common variants in GADL1 did
not support an association.
Our findings with strong, but not significant, associations might

nevertheless be informative for future genetic and protein-level
studies. For example, the SNPs with the lowest P-values for
objectively defined lithium response are located in the NOTCH4
gene within the major histocompatibility complex. Several studies
have associated NOTCH4 with schizophrenia and BD,50,51 and it
was found to be upregulated in BD.52 The mechanisms might be
related to neurodevelopment and inflammation.52 Thus, our
results are in line with the evidence implicating NOTCH4 in the
pathophysiology of BD and potentially lithium response.

Lithium responders vs controls
By comparing the subgroup of BD patients who were lithium
responders with healthy controls, we identified two variants,
rs146727601 and rs116323614, reaching genome-wide signifi-
cance. When we performed GWAS comparing all patients with BD
with healthy controls, the results for rs146727601 and
rs116323614 were OR= 1.28, P= 0.05 and OR= 1.31, P= 0.003,
respectively, which supports the contention of an association in a
subset of BD cases. Moreover, the minor allele frequencies in these
two variants in lithium responders were markedly higher than
that in non-responders (with objective response definition
meta-analysis, rs146727601, OR= 2.18, P= 0.04; rs116323614,
OR= 2.25, P= 0.01). The different allele distributions suggest that
these variants are unlikely to be general BD-associated markers,
but specifically associated with lithium-responsive BD.
Furthermore, the estimate of SNP heritability in our sample
showed that lithium-responsive BD is modestly heritable.
Although the largest published GWAS for BD did not include
the significant markers in our study,53 we hope that future studies
incorporating them will offer the possibility of replication.
For rs146727601, it is noteworthy that this variant is located in

the gene PTS, a catalyst involved in the regulation of serotonin
biosynthesis and nitric oxide synthase activity. These processes are
suggested to be potential therapeutic targets for lithium.54–56

However, validation attempts failed, and no reasonable proxy
marker exists.
By contrast, we successfully validated the rs116323614 associa-

tion. This is an intronic SNP in the gene SESTD1, which shows
relatively high expression in brain and is also significantly
expressed in vascular cells.39 Importantly, SESTD1 Ca2+ depen-
dently binds phospholipids (for example, phosphatidylinositol
monophosphates (PIP) and diphosphates (PIP2)) that are involved
in the phosphoinositide signaling pathway. This pathway,
activated by G protein-coupled receptors, leads to the hydrolysis
of PIP2 and produces inositol 1,4,5-trisphosphate (IP3) via the
enzyme phospholipase C.57 IP3 regulates calcium signaling58 and
is used to produce inositol, which is utilized to form PIP2, directing
the initial step of this pathway.57 Decades of research into the
therapeutic effects of lithium suggest40,41,59–61 that they are
mediated through the inhibition of inositol monophosphatase and
inositol polyphosphate 1-phosphatase.59,61,62 Both enzymes are
important in the process of recycling inositol to PIP2.

62,63 In fact,
Soares et al.40,64 showed that lithium at therapeutic levels
significantly decreases platelet membrane PIP2 levels in vivo.
Lithium thereby modulates the phosphoinositide pathway, and
indirectly influences the actions of downstream neurotransmitter
receptors.65 The fact that the phosphoinositide pathway is the
most validated lithium target confers biological plausibility to our
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finding of an association between SESTD1 and risk for lithium-
responsive BD.5,66

Additionally, SESTD1 is proposed to be involved in phospholipid
regulation of transient receptor potential channels TRPC4 and
TRPC5.39,67 Both TRPC4 and TRPC5 are Ca2+ permeable channels
and have an important role in functions of neurotransmitter
release68 and in regulation of neurite growth.69,70 Interestingly,
TRPC4 and TRPC5 are assumed to be activated by stimulation of
phospholipase C, through IP3-induced intracellular Ca2+ store
depletion.71 Moreover, recent GWAS for BD identified a novel
variant located in the gene TRPC4 Associated Protein (TRPC4AP).72

The relationships between the TRPC families and the phosphoi-
nositide signaling pathway further imply that SESTD1 is associated,
possibly indirectly, with BD as well as lithium targets.
The A allele frequency for SNP rs116323614 is ~ 3% in European

populations (1000Genome phase 1) with an odds ratio of 3.14
(95% confidence interval 2.10–4.70) in our study, suggesting that
this variant alone is not well suited for clinical use. Moreover, it is
likely that response to lithium is polygenically mediated, and only
by examining multiple variants simultaneously will genetic
screening be sufficiently powerful to guide decisions regarding
mood stabilizers.5

Strengths and limitations
Our samples comprise two distinct populations, and the total
number of patients with available assessment of lithium response
in our study exceeds that of other reported studies to date.
Nevertheless, the sample size is still small by GWAS standards, and
results should be interpreted cautiously pending replication. To
some extent, our results identifying associated variants in the
responders/controls comparison but not in the responders/non-
responders comparison could reflect reduced power rather than
underlying biology.
The evaluation of genetic heterogeneity is important for

meta-analyses, and our relatively homogeneous samples from
Sweden and the United Kingdom offer greater power compared
with studies involving populations that are more diverse. The
markers demonstrating the greatest association in our results
showed no evidence of heterogeneity using Q-tests (P= 0.73) and
I2 heterogeneity index (I2 = 0.00).73

A key issue for pharmocogenetic studies is reliable assessment
of treatment response. The irregular clinical course of BD74 and
the difficulty in accurately measuring treatment adherence75

complicate the assessment of lithium response. Furthermore,
whether a person is lithium responsive takes years to reliably
establish. In this study, the harmonization of lithium response
measures across sites is a potential concern as the assessments
were conducted differently in Sweden and United Kingdom. Even
though we carefully attempted to harmonize measures across
sites, potential phenotypic misclassification cannot be excluded,
and is a possible reason why significantly associated loci in the
respective samples did not hold in the meta-analysis.
In addition to measuring the extent of clinical improvement, a

refined evaluation could also consider additional factors
(for example, the duration and severity of illness before and
during lithium treatment, the duration and compliance of lithium
treatment and additional medications) to determine whether the
reduction of BD symptoms is actually due to the treatment.24

However, in the trade-off between certainty of response and
sufficient sample size, the rate of missing data hampered inclusion
of such variables. Hence, it cannot be excluded that a more
elaborate measurement of lithium response might yield positive
results.

CONCLUSION
In conclusion, the present study suggests that rs116323614,
located in an intron of SESTD1, is associated with a lithium-
responsive subtype of BD. This illustrates that defining
homogeneous subgroups of complex genetic traits by response
to treatment might be a productive strategy for identifying
susceptibility alleles. Although the specific genetic variants
identified in this study are not clinically applicable due to rare
frequency, the findings provide new insights into the pathophy-
siology of BD and lithium’s mechanism of action.
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