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We examine the phase space structures that govern reaction dynamics in the absence of critical points
on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible
to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition
from reactants to products near a critical point of the potential energy surface. We investigate the
problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant
manifold exists at large atom-diatom distances, away from any critical points on the potential. This
normally hyperbolic invariant manifold is the anchor for the construction of a dividing surface in
phase space, which defines the outer or loose transition state governing capture dynamics. We present
an algorithm for sampling an approximate capture dividing surface, and apply our methods to the
recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero
total angular momentum. We have located the normally hyperbolic invariant manifold from which
the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories
for ozone in general, but with particular emphasis on the roaming trajectories. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4940798]

I. INTRODUCTION

Critical points of the potential energy surface (PES) have
played, and continue to play, a significant role in how one
thinks about transformations of physical systems.1,2 The term
“transformation” may refer to chemical reactions such as
isomerizations3–14 or the analogue of phase transitions for
finite size systems.2,15,16 A comprehensive description of this
so-called “energy landscape paradigm” is given in Ref. 2.
The energy landscape approach is an attempt to understand
dynamics in the context of the geometrical features of the
potential energy surface, i.e., a configuration space approach.
However, the arena for dynamics is phase space,17–19 and
numerous studies of nonlinear dynamical systems have taught
us that the rich variety of dynamical behavior possible
in nonlinear systems cannot be inferred from geometrical
properties of the potential energy surface alone. An instructive
example is the fact that the well-studied and nonintegrable
Hénon-Heiles potential can be obtained by series expansion
of the completely integrable Toda system.20 Nevertheless, the
configuration space based landscape paradigm is physically
very compelling, and there has been a great deal of recent
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work describing phase space signatures of index one saddles21

of the potential energy surface that are relevant to reaction
dynamics (see, for example, Refs. 22–25). More recently,
index two26–28 and higher index29 saddles have been studied
(see also Refs. 30–32).

The work on index one saddles has shown that, in
phase space, the role of the saddle point is played by
an invariant manifold of saddle stability type, a so-called
normally hyperbolic invariant manifold or NHIM.33,34 The
NHIM proves to be the anchor for the construction of dividing
surfaces (DSs) that have the properties of no (local) recrossing
of trajectories and minimal (directional) flux.35 There is even
richer variety of phase space structures and invariant manifolds
associated with index two saddles of the potential energy
surface, and their implications for reaction dynamics have
begun to be explored.27,31,32 Fundamental theorems assure
the existence of these phase space structures and invariant
manifolds for a range of energy above that of the saddle.34

However, the precise extent of this range, as well as the
nature and consequences of any bifurcations of the phase
space structures and invariant manifolds that might occur as
energy is increased, is not known and is a topic of continuing
research.36–39

While work relating phase space structures and invariant
manifolds to saddle points on the potential energy surface
has provided new insights and techniques for studying
reaction dynamics,22–25 it by no means exhausts all of
the rich possibilities of dynamical phenomena associated

0021-9606/2016/144(5)/054107/12/$30.00 144, 054107-1 © 2016 AIP Publishing LLC
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with reactions. In fact, a body of work has called into
question the utility of concepts such as the reaction path
and/or transition state (TS).40–49 Of particular interest for
the present work is the recognition that there are important
classes of chemical reaction, such as ion-molecule reactions
and association reactions in barrierless systems, for which
the transition state is not necessarily directly associated
with the presence of a saddle point on the potential
energy surface; such transition states might be generated
dynamically, and so are associated with critical points of
the amended or effective potential, which includes centrifugal
contributions to the energy.50–52 The phenomenon of transition
state switching in ion-molecule reactions53–55 provides a
good example of the dynamical complexity possible in
such systems, as does the widely studied phenomenon of
roaming.41,46,49

The lack of an appropriate critical point on the potential
energy surface with which to associate a dividing surface
separating reactants from products in such systems does not
however mean that there are no relevant geometric structures
and invariant manifolds in phase space. In this paper, we
discuss the existence of NHIMs, along with their stable
and unstable manifolds and associated dividing surfaces, in
regions of phase space that do not correspond to saddle points
of the potential energy surface. We describe a theoretical
framework for describing and computing such NHIMs. Like
the methods associated with index one and two saddles, the
method we develop for realizing the existence of NHIMs is
based on normal form theory; however, rather than normal
form theory for saddle-type equilibrium points of Hamilton’s
equations (which are the phase space manifestation of index
one and two saddles of the potential energy surface), we
use normal form theory for certain hyperbolic invariant
tori. The hyperbolic invariant tori (and their stable and
unstable manifolds) alone are not adequate, in terms of their
dimension, for constructing NHIMs that have codimension
one stable and unstable manifolds (in a fixed energy surface).
However, by analogy with the use of index one saddles
to infer the existence of NHIMs (together with their stable
and unstable manifolds, and other dividing surfaces having
appropriate dimensions), these particular hyperbolic invariant
tori can likewise be used to infer the existence of phase
space structures that are appropriate for describing reaction
dynamics in situations where there is no critical point of the
potential energy surface in the relevant region of configuration
space.

This paper is organized as follows: In Sec. II, we introduce
a model for atom-diatom collision dynamics; specifically, we
study capture of an atom by passage through an outer or
“loose” transition state (OTS). This dividing surface is not
associated with a critical point on the potential surface;
rather, the relevant phase space object is associated with a
NHIM that exists in the vicinity of partially hyperbolic tori.
The general mathematical framework for describing phase
space structure in the vicinity of partially hyperbolic tori
is reviewed in Appendix A. In Sec. II, we describe the
associated NHIM and corresponding (codimension one) DS
on the energy shell. By exploiting the adiabatic separation
of the (fast) diatomic vibration in the phase space region

of interest, we are able to formulate a practical algorithm
for sampling the relevant phase space DS so that trajectory
initial conditions on the DS can be obtained in a systematic
way. Section III applies this algorithm to sample the DS
in a model for the initial recombination reaction in ozone,
O + O2 → O3. Both 2 and 3 degrees of freedom (DoF)
models are considered. An interesting finding is that roaming
dynamics (as defined and explored in our earlier work 56–59) is
important in this reaction, and may therefore be of significance
in understanding the anomalous isotope effect.60–64 Section IV
concludes.

II. A 3 DOF SYSTEM: A 2 DOF SUBSYSTEM WEAKLY
COUPLED TO AN ELLIPTIC DOF APPLICABLE
TO CAPTURE THEORY IN ATOM-DIATOM REACTIONS

We consider a 2 DoF subsystem weakly coupled to an
elliptic DoF (i.e., a 1 DoF nonlinear oscillator). This situation
arises, for example, in triatomic molecules when one of the
atoms is far from the diatomic fragment and serves as a model
for capture of an atom by a diatomic molecule. Specifically,
this is the dynamical model for our trajectory study of
the ozone recombination reaction (see Sec. III). In Jacobi
coordinates, the diatomic molecule vibration adiabatically
decouples20 from the DoF describing the distance of the third
atom to the center of mass of the diatomic and the angle
between the diatomic and the third atom.65

In the following, we will first specify this model more
precisely and show how a NHIM can exist in the model.
In Appendix A, following Ref. 66, we show that, near a
partially hyperbolic invariant torus, a NHIM exists from
which a codimension one DS can be constructed having
the no-recrossing property.35 Such an object is relevant for
constructing a DS for incoming trajectories in our model.

We also describe a method for sampling the DS for a 2
DoF system and a special 3 DoF system which is relevant to
the roaming scenarios that we study.

A. The existence of a NHIM for a 2 DoF subsystem
weakly coupled to an elliptic oscillator

In order to show the existence of a NHIM, we first
describe the model to be analyzed. We consider a Hamiltonian
describing a triatomic molecule in Jacobi coordinates for
total angular momentum J = 0 (rotating in the plane) of the
following form:

H(r,R, θ,pr ,pR,pθ) = p2
r

2µr
+

p2
R

2µR
+

p2
θ

2

(
1

µRR2 +
1

µrr2

)
+V (r,R, θ), (1)

where r is the diatomic internuclear distance, R is the distance
from the centre of mass of the diatomic to the third atom,
and θ is the angle between r and R, pr , pR and pθ are
the corresponding conjugate momenta, and µr and µR are
reduced masses. At large R (ratio r/R ≪ 1), the (fast) diatomic
vibrational mode becomes adiabatically separable from the
(r, θ) DoF.20,65 The approximate decoupling of the (R,pR)
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and (θ,pθ) DoF can be expressed by assuming that for large
atom-diatom distances (small parameter r/R) the potential
V (r,R, θ) has the form

V (r,R, θ) = Vr(r) + VR(R) + Vcoupling(r,R, θ). (2)

For example, using a multipole expansion,67 individual terms
in the above equation can be written explicitly as

Vr(r) = De(1 − exp[−κ(r − re)])2, (3a)

VR(R) = −αν

Rν
, (3b)

Vcoupling(r,R, θ) = − 1
Rν


k=1,2, ...

αν+k

( r
R

)k
Pk(cos θ). (3c)

In Eq. (3a), Vr(r) has been written as a Morse potential
representing the interaction between the two atoms forming
the diatomic. Setting the exponent ν = 4 in Eq. (3b)
corresponds to a charge/induced-dipole interaction, for
example. The coupling term Eq. (3c) is a power series in
the ratio r/R, which as noted is assumed to be small (large R,
r/R ≪ 1).

To show the existence of a NHIM, we first consider the
completely decoupled case, Vcoupling(r,R, θ) = 0 (the potential
is isotropic for R → ∞). Hamilton’s equations then have the
form

ṙ =
∂H
∂pr
=

pr
µr

, (4a)

Ṙ =
∂H
∂pR

=
pR

µR
, (4b)

θ̇ =
∂H
∂pθ
=

(
1

µrr2 +
1
µR2

)
pθ, (4c)

ṗr = −
∂H
∂r
=

1
µrr3 p2

θ −
∂Vr

∂r
(r), (4d)

ṗR = −
∂H
∂R
=

1
µR3 p2

θ −
∂VR

∂R
(R), (4e)

ṗθ = −
∂H
∂θ
= 0. (4f)

Eq. (4f) implies that pθ is a constant of the motion. With
pθ constant, Eqs. (4a), (4d), (4b), and (4e) represent two
uncoupled 1 DoF systems for which the solutions (r(t),
pr(t)) and (R(t), pR(t)) can be found separately. Inserting
these solutions into Eq. (4c), the solution θ(t) can then
be determined. The equations of motion for the uncoupled
case (i.e., Vcoupling(r,R, θ) = 0) therefore have the form of 3
uncoupled 1 DoF systems. The DoF (θ, pθ) is an angle-action
pair, describing either oscillation or free rotation.

We assume that in the 2 DoF subsystem corresponding
to the coordinates (R, θ,pR,pθ), we have located an unstable
periodic orbit. This unstable periodic orbit is the cartesian
product of a hyperbolic fixed point in the (R,pR) coordinates,
denoted (R̄, p̄R) (the “centrifugal barrier” in the 1 DoF (R,pR)
subsystem) and a periodic orbit in the 1 DoF oscillator (θ,pθ)
subsystem which we denote by (θ(t),pθ = constant). From the
discussion in Appendix A, we see that this periodic orbit is a
NHIM for the 2 DoF subsystem.

The NHIM for the 3 DoF uncoupled system for a fixed
energy E is obtained by taking the cartesian product of the

unstable periodic orbit in the 2 DoF subsystem with a periodic
orbit in the (r , pr) subsystem, which we denote by (r̄(t), p̄r(t)).
More precisely,

NIHMuncoupled = {(r,R, θ,pr ,pR,pθ) | �r = r̄(t),R = R̄, θ(t),
pr = p̄r(t),pR = p̄R,pθ ) = E,

θ ∈ S1, pθ ∈ B ⊂ R}, (5)

where B ⊂ R denotes the domain of pθ. The NHIM is
3-dimensional in the 5-dimensional energy surface. More de-
tails of the structure of the NHIM are given in Section II B.

We can now appeal to the general persistence theory for
NHIMs under perturbation34 to conclude that the NHIM just
constructed persists when the term Vcoupling(r,R, θ) is non-zero.
This completes the proof of the existence of a NHIM for a
diatomic molecule weakly interacting with an atom for total
angular momentum J = 0.

1. Decoupling in atom-diatom systems:
Adiabatic separability

The mathematical results we use concerning NHIMs,
etc., which are applied to construct a (partial) DS, require
only that the diatomic vibration be approximately separable
at large R (in the vicinity of the centrifugal barrier). The
ultimate origin of the separability assumed at large R (that is,
for ratio r/R ≪ 1) is to be found in a separation of timescales:
the diatomic vibration frequency is much larger than other
dynamical frequencies in the relevant region of phase space,
so that in the region of phase space studied here the diatomic
vibration can be adiabatically separated from the other degrees
of freedom.20,65,68

In the context of our study, the breakdown of the relevant
adiabatic approximation68 is unlikely to occur in the region
of phase space of interest. This is because, in order to reduce
the vibrational frequency of the diatom substantially, it is
necessary to provide sufficient energy to bring the diatomic
fragment near dissociation. If we require that the other bond
remain extended (i.e., R ≫ 1), then such a configuration is
near the threshold for collision-induced dissociation, which
is well above the energies studied in our paper. In any case,
transfer of large amounts of energy from the R DoF to the r
DoF requires that the system pass through either of the tight
TSs; the details of the resulting reaction dynamics are beyond
the scope of the present study.

The fact that the diatomic vibration does decouple at
large R means that we can use the NHIM to define a
DS which is used to sample trajectory initial conditions.
These trajectories are then integrated numerically and it is
found, in the case of ozone (see Sec. III), that there is a
significant degree of decoupling over the whole phase space
region of interest (bounded by the OTS and the 2 inner
tight TS, roughly speaking between R = 2 Å and R = 9 Å).
We are therefore able to establish a connection between 2
and 3 DoF “roaming” dynamics (see Sec. III). This latter
separability is nevertheless by no means required in order
for us to construct and sample the DS associated with the
OTS.
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B. Approximate numerical procedure
for sampling the DS

In Subsection II A, we demonstrated the existence
of a NHIM for a diatomic molecule weakly interacting
with an atom. The assumptions used to demonstrate the
existence of the NHIM are however not sufficient to provide
a straightforward procedure to sample the DS attached to this
NHIM. We now make an even stronger assumption that will
enable us to sample the DS, albeit approximately.

We start from the fact that for sufficiently large values
of R, the diatomic vibration is completely decoupled from
the other DoF. This means that we assume that (for
large R, r/R ≪ 1) the coupling term Vcoupling(r,R, θ) in the
potential function Eq. (2) will depend only on R and θ,
i.e., Vcoupling(r,R, θ) → Vcoupling(R, θ). Again, this decoupling
results from an adiabatic separation of the diatomic vibrational
mode from the other DoF; the effective potential then de-
pends only on the value of vibrational action, assumed to be
constant.

For simplicity, in the 2 DoF subsystem Hamiltonian, we
can consider the coordinate r to be fixed at its equilibrium
value re, i.e., at the minimum of the Morse like potential well.
(Alternatively, we can fix the value of r at its average value
⟨r⟩ associated with diatomic vibration at fixed action.) Under
these stronger assumptions, our system becomes a completely
decoupled 2 DoF subsystem plus an elliptic oscillator. The
sampling of the DS then reduces to a sampling of the part of
the DS for the 2 DoF subsystem and a sampling of the other
part corresponding to the elliptic oscillator.

In the following, we first describe an algorithm for
sampling a DS attached to a NHIM in a 2 DoF system. Then
we use this algorithm to develop a procedure for sampling a
DS for a system composed of the cartesian product of a 2 DoF
subsystem with an elliptic oscillator.

1. Sampling of a dividing surface attached to a NHIM
for a 2 DoF system for a fixed total energy

When the theory developed in Appendix A is applied to
a 2 DoF system, the hyperbolic torus reduces to an unstable
periodic orbit. In other words, the NHIM in this case is just
an unstable periodic orbit. We now describe an algorithm to
sample points on a DS attached to a periodic orbit for a 2 DoF
system.

For a 2 DoF system, the DS is topologically homeomor-
phic either to a 2-sphere of which the NHIM (the PO) is
an equator or to a 2-torus (see below). To sample points on
the DS, we need to specify the values of four phase space
coordinates. The PO is generally obtained by a numerical
search.69 The NHIM is represented by discrete points in
phase space on the PO at different times corresponding to
the discretization of the period of the PO. Once projected
onto configuration space, these points lie on a curve. This
curve in configuration space can be approximated by a spline
interpolation in order to obtain a continuous representation of
the curve. The sampling of the DS starts by sampling points
along this curve in configuration space. This fixes the values of
the 2 configuration space coordinates. To determine the values
of the remaining 2 phase space coordinates (momenta), we use

the fact that the sampling is at a fixed total energy. So, for each
point on the projection of the PO into configuration space, we
can scan the value of one of the momenta and then obtain the
remaining momentum by solving numerically the equation
H = E, H being the Hamiltonian of the 2 DoF system, for the
remaining momentum coordinate. The maximum value of the
first momentum coordinate to be scanned can be determined by
setting the second momentum coordinate to zero and solving
the equation H = E for each point of the PO in configuration
space.

To specify such an algorithm to sample points on the
DS, we denote configuration space coordinates by (q1,q2)
and momentum space coordinates by (p1,p2). (This notation
emphasizes that our approach is applicable to systems other
than the atom-diatom model considered here.) The algorithm
to sample the DS for a 2 DoF system can be summarized as
follows:

1. Locate an unstable PO.
2. Perform a spline interpolation70 of the curve obtained by

projecting the PO into configuration space.
3. Sample points on that curve and obtain points (q1i,q2i), for

i = 1, . . . ,Np, where Np is the desired number of points.
4. For each point, (q1i,q2i) determine p1max by solving

H(q1i,q2i,p1,0) = E for p1.
5. For each point, (q1i,q2i) sample p1 from zero to p1max and

solve the equation H(q1i,q2i,p1 j,p2) = E to obtain p2.

For kinetic energies that are quadratic in the momenta,
the momentum values satisfying the energy condition H = E
above will appear with plus or minus signs. Computing the
points of the DS with both positive and negative for p1 covers
both hemispheres of the DS.

For a DS is obtained by this sampling procedure, we now
address the following questions:

• What is the dimensionality of the sampled surface?
• What is the topology of the sampled surface?
• Does the NHIM (PO) bound the 2 hemispheres of the

DS?
• Do the trajectories cross the DS and what does

“reaction” mean with respect to the sampled DS?

Consider the Hamiltonian

H(q1,q2,p1,p2) = T(q1,p1,p2) + V (q1,q2) (6a)

=
p2

1

2µ
+

p2
2

2
*
,

1
I
+

1
µq2

1

+
-
+ V (q1,q2),

(6b)

where the potential is periodic in coordinate q2 with period
2π.

As we have noted, the sampling procedure begins with
the location of an unstable PO, where the projection of the
located PO is 1-dimensional. We now turn our attention to the
questions listed above.

a. Dimensionality. The dimensionality of the sampled
DS is relatively straightforward to determine. As described
above, we locate an unstable PO and perform a spline
interpolation for the set of points obtained by projecting
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the PO into configuration space. We then sample points
along this curve. For each (q1,q2) point, we determine the
maximum possible value of one of the momenta by solving the
equation H(q1,q2,p1,0) = E for p1, for example. We obtain
the maximum value for p1, p1max, permitted by the energy
constraint. We then sample the momentum p1 from −p1max to
+p1max.

Topologically, the space sampled in configuration space
is a 1D segment and the space sampled in the momentum is
also a 1D segment. The full space sampled is therefore a 2D
surface embedded in the 3D energy surface in the 4D phase
space.

b. Topology of the DS. We must distinguish 2 cases,
which differ in the type of PO sampled. There are 2 types of
PO to consider. The first type is a PO for which the range of
the PO in the periodic coordinate q2 is less than the full period
of the coordinate. The second type is a PO which makes a full
cycle in the periodic coordinate.

i. Type 1 PO. This type of PO has a range in the periodic
coordinate that is less than the period of the coordinate. These
POs have 2 turning points at which the total energy is purely
potential and the momenta are zero.

If, for example, we sample the q2 coordinate, this also
fixes q1. On a fixed energy surface, we have to satisfy the
equation H(q1,q2,p1,p2) = E, so having fixed q1 and q2, the
potential energy is fixed at a particular value V0. The equation
to be satisfied by the momenta is then

p2
1

2µ
+

p2
2

2
*
,

1
I
+

1
µq2

10

+
-
+ V0 = E. (7)

This is the equation of an ellipse in the (p1,p2) plane. Moreover,
the lengths of the large and small axes of the ellipse tend to
zero as we approach the turning points where E = V0. So, as
we follow the curve of the PO in configuration space from
one turning point to the other, the intersection of the DS
with the (p1,p2) plane begins as a point and then becomes
a family of ellipses whose 2 axes depend on the potential
energy value, eventually shrinking down to a point again as
the other turning point is reached. The topology of the DS
is then the product of the 1D segment in configuration space
with a family of ellipses degenerating to points at either ends,
that is, a 2-sphere.

ii. Type 2 PO. This type of PO makes a full cycle in the
periodic coordinate. It is important to note that for this case,
the DS is constructed from 2 POs. For a PO that makes a full
cycle in the periodic coordinate q2, the conjugate momentum
p2 never vanishes and always has the same sign (either positive
or negative). For a given PO, there is a twin PO for which the
momentum has the opposite sign (the PO trajectory traverses
the same path but in the opposite direction).

When we sample the curve in configuration space and
analyse the shape of the DS in momentum space for a particular
point in configuration space, we solve the same equation as
for the previous case. Therefore, the shape of the DS in
momentum space is also an ellipse. However, now the ellipses
never degenerate to points as there are no turning points along
the PO at which the total energy is purely potential. Also,
since the coordinate q2 is periodic, the end point of the PO

has to be identified with the starting point. In this situation,
the DS is then the cartesian product of a circle with a family
of ellipses and has the topology of a 2-torus.

c. The NHIM separates the DS into two parts. To discuss
this point we also must distinguish between type 1 and type 2
POs.

i. Type 1 PO. As above, we fix a particular point
in configuration space (q10,q20). As we scan one of the
momenta, there will be a particular value corresponding to
the momentum value on the PO. Since, the sampling is at the
same energy as the PO energy, the value of the remaining
momentum will also correspond to the value on the PO. For
the configuration space point (q10,q20), this happens exactly
twice. For a nearby configuration space point (q′10,q

′
20), the 2

momentum space points belonging to the PO will be near the
2 points for the point (q10,q20).

As we move along the PO in configuration space, these
2 points in momentum space will trace out the PO in phase
space. At the turning points, the ellipse in momentum space
shrinks to a point which is also the meeting point of the 2
points in momentum space belonging to the PO. So, the NHIM
(the PO) belongs to the 2D sphere we sample. It forms a 1D
closed curve which divides the sphere into 2 hemispheres.

ii. Type 2 PO. For this type of PO, if we fix a
configuration space point (q10,q20) and scan one of the
momentum variables, we will meet a point for which the
momentum equals the value of that momentum on the PO.
The other momentum has its value equal to its value on the PO
due to the energy constraint. We will also encounter a point
for which the value of the momentum we are scanning is equal
to the value of that momentum coordinate on the twin PO (the
one which moves in the opposite direction with p2 having the
opposite sign of the original PO). The corresponding value of
the remaining momentum coordinate is also on the twin PO.

The 2 POs belong to the surface we are sampling. Taken
individually, these two curves do not divide the 2-torus into
two parts but the DS is divided into two parts when we
consider both POs together: one part of the DS connects the
p2 > 0 PO with the p2 < 0 PO on the left of the ellipse in
momentum space and one part connects the p2 > 0 PO with
the p2 < 0 PO on the right of the ellipse, see Fig. 1.

d. Trajectories cross the DS and the meaning of reaction
for the constructed DS. Except for points on the NHIM, which
belongs to the surface we are sampling, no trajectory initiated
on the DS remains on the DS. Off the NHIM, the Hamiltonian
vector field is everywhere transverse to the sampled surface,
and every trajectory initiated on the DS has to leave the
surface, i.e., trajectories cross the DS.

We have shown that the NHIM (or the 2 NHIMs for
type 2 POs) divides the DS into two parts. One part of the
DS intersects trajectories evolving from reactants to products
and the other intersects trajectories evolving from products
to reactants. Here, “reaction” means crossing one of the two
parts of the DS and the direction of the reaction, forward or
backward, depends on which half of the DS the trajectory
crosses.

To show that the vector field is nowhere tangent to the
sampled surface, except on the NHIM, we must evaluate
the flux form27 associated with the Hamiltonian vector field
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FIG. 1. Topology of the DS for type 2 POs.

through the DS on tangent vectors to the DS. The Hamiltonian
vector field is not tangent to the DS if the flux form is nowhere
zero on the DS, except at the NHIM. Details of the calculation
to verify this assertion are given in Appendix B.

2. Sampling of a dividing surface attached to a NHIM
for a 2 DoF subsystem plus an elliptic oscillator
at a fixed total energy

Under the assumptions introduced at the beginning of
this section, the problem of the capture of an atom by a
diatomic molecule at zero total angular momentum reduces to
consideration of the dynamics of a 2 DoF subsystem and an
elliptic oscillator. The algorithm presented for the sampling
of a DS attached to a PO is an essential element in our
derivation of a sampling procedure of the DS in the case of a 3
DoF system composed of a 2 DoF subsystem plus an elliptic
oscillator.

To begin, we need to understand the nature of the
NHIM for this case. The motion for the elliptic oscillator
(the diatomic vibration) is periodic. For sufficiently small
amplitude vibration (for example, at energies below the
dissociation energy of the Morse like potential), these POs are
stable. The NHIM for the full 3 DoF system (2 DoF subsystem
plus 1 DoF elliptic oscillator) is obtained by considering the
direct product of the NHIM for the 2 DoF subsystem with
a PO of the elliptic oscillator. The NHIM for the 2 DoF
subsystem, as we saw above, is just an unstable PO. If we
consider a particular unstable PO for the 2 DoF subsystem
and a particular PO for the elliptic oscillator, the structure
obtained by the cartesian product of these 2 manifolds is
a 2-dimensional torus. Every particular partitioning of the
total energy between the 2 DoF subsystem and the elliptic
oscillator corresponds to a particular 2-dimensional torus for
the NHIM. The NHIM is then made up of a 1-parameter
family of 2-dimensional tori, where the parameter of this
family determines the distribution of energy between the 2
DoF subsystem and the elliptic oscillator.

Now that we have the structure of the NHIM, it remains
to construct the associated DS. Like the NHIM, the DS has
a product structure: one part is associated with the 2 DoF
subsystem and the other with the elliptic oscillator. For the
elliptic oscillator, all phase space points belong to a particular
PO. For the 2 DoF subsystem, the component of the DS
consists of a DS attached to a PO as we described in Sec. II B.
If we consider one particular partitioning of the total energy
E between the 2 DoF subsystem and the elliptic oscillator,
the portion of the DS associated with this distribution consists
of the direct product of the DS associated with the unstable
PO for the 2 DoF subsystem and the PO for the elliptic
oscillator. The full DS is obtained by considering the DS
for all possible partitions of the energy. The full DS is then
foliated by “leaves,” where each leaf of the DS is associated
with a particular partitioning of the energy.

To implement an algorithm for sampling, the DS we need
to determine the potential Vr(r) for the diatomic molecule.
This can be done by fixing a sufficiently large value of R,
and fixing a value for θ. In general, for large values of R, the
potential V (r,R, θ) is isotropic, so any value of θ is sufficient.
One can then use spline interpolation to obtain an analytical
representation of the resulting Morse-like potential.

An algorithm to sample the DS in the case of a decoupled
2 DoF subsystem plus an elliptic oscillator is given as follows:

1. Consider a total energy E for the full system.
2. Consider a particular partitioning of the total energy E

between the 2 DoF subsystem and the elliptic oscillator.
3. Sample points on the PO corresponding to the energy

associated with the elliptic oscillator.
4. Sample points on the DS attached to the PO corresponding

to the energy associated with the 2 DoF subsystem using
the algorithm presented in the Sec. II B.

5. Take the direct product the two sets of points obtained in
the two previous steps.

6. Repeat the previous steps for many different energy
distributions between the 2 DoF subsystem and the elliptic
oscillator.

There is a subtlety related to the sampling procedure just
described. The hyperbolic POs of the 2 DoF subsystem are
associated with the centrifugal barrier arising in the atom-
diatom Hamiltonian in Jacobi coordinates. Following the
family of these POs, it is found that as the energy decreases
to the dissociation threshold, their location in the (R, θ) plane
moves to larger and larger values of R. This suggests that the
family goes asymptotically to a neutrally stable PO located
at R → ∞.71 Reducing the energy in the 2 DoF subsystem
therefore means locating POs at larger and larger distances
in R, with longer and longer periods. Location of all such
POs is clearly not possible numerically so that the sampling
procedure must stop at some finite (small) energy in the
diatomic vibration. The sampling procedure will nevertheless
cover the DS, at least partially.

Alternatively, the energy in the diatomic vibration can
simply be fixed at a specific value, as in standard quasiclassical
trajectory method (see, for example, the work of Bonnet and
Rayez72 in which the energy of the diatomic vibration is
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fixed at the zero point energy). This approach then samples a
particular “leaf” of the classical DS.

III. AN EXAMPLE: RECOMBINATION
OF THE OZONE MOLECULE

The recombination reaction O + O2 → O3 in the ozone
molecule is known to exhibit an unconventional isotope
effect.60 There is a large literature on this subject and several
theoretical models have been proposed to identify the origin
of this isotope effect.60,61,64 One key to understanding the
isotope effect in ozone is to model the recombination of
an oxygen molecule with an oxygen atom. Marcus and co-
workers have made a detailed study of the isotope effect in
ozone61–63 and have used different models for the transition
state in the recombination of ozone (tight and loose TS).
In their studies, they used a variational version of Rice-
Ramsperger-Kassel-Marcus (RRKM) theory73,74 (Variational
Transition State Theory (VTST)) to locate the transition state.
In order to obtain agreement between their calculations and
experimental results, they introduced parameters whose role
consisted of correcting the statistical assumptions inherent
in RRKM theory. Marcus and co-workers proposed several
explanations for the physical origin of these parameters61–63

but their significance is still not fully understood. The deviation
from statistical behavior in the ozone molecule suggests that a
dynamical study of the recombination reaction of ozone rather
than a statistical model might shed light on the origin of the
unconventional isotope effect. Such a study necessitates the
use of DSs having dynamical significance, i.e., constructed in
phase space.

To illustrate the construction of phase space DS for the
capture of an atom by a diatomic molecule, we apply the
algorithms described in Sec. II to the ozone recombination
reaction. To attack this problem we require a PES for the
ozone molecule which describes large amplitude motion.
Schinke and co-workers produced the first accurate PES for
ozone.75,76 This PES exhibits a small barrier in the dissociation
channel just below the asymptote for dissociation forming a
van der Waals minimum and an associated “reef structure.”
Recent ab initio calculations77–79 have however shown that
the barrier is not present, and that the potential increases
monotonically along the dissociation coordinate (there is no
saddle point along the reaction coordinate). Here, we use
the PES produced by Tyuterev and co-workers,77 which has
recently been used to interpret experimental results.80

In the following, we treat the recombination of ozone
molecule for the isotopic combination 16O16O16O using two
models. First, we treat the problem with a reduced 2 DoF
model with zero total angular momentum, and then we look
at the 3 DoF problem also with zero angular momentum.

A. 2 DoF model

The 2 DoF case is easily treated using the analysis of
Sec. II A by freezing the diatomic vibration, i.e., (r,pr)
variables. We therefore fix the diatomic bond length at its
equilibrium value, re, and set pr = 0. The dependence on r
in the coupling term of the potential then drops out and we

have simply Vcoupling(R, θ) = Vcoupling(r = re,R, θ). The NHIM
is obtained as previously by considering the uncoupled case
with Vcoupling(R, θ) = 0 and a hyperbolic equilibrium point in
the (R,pR) DoF, and is just a periodic orbit in the (θ,pθ) DoF.
This NHIM persists for non-zero coupling and consists of a
periodic orbit where variables (R,pR) and (θ,pθ) are in general
coupled.

The sampling of the DS follows the algorithm presented
in Sec. II B 1. We use the sampled points on the DS to
initiate trajectories and follow the approach of the atom to
the diatomic molecule. The resulting DS is a 2-dimensional
surface in phase space whose points belong to the chosen
energy surface. For our simulation, we choose the total energy
E = 9200 cm−1. The DS constructed from our algorithm is the
first “portal” the system has to cross in order for the atom to
interact with the diatomic molecule. This DS is then the phase
space realisation of the so-called OTS.50,52 At the so-called
Tight Transition State (TTS),56 the coordinate θ undergoes
small oscillations. In our phase space setting, these TTSs for
a 2 DoF system are DSs attached to unstable POs. In the
following, the terms OTS and TTS are to be understood as
synonymous with DSs constructed from NHIMs (POs for a
2 DoF system). An important mechanistic issue arising in
modeling a reaction is to determine whether the reaction is
mediated by an OTS or a TTS. However, in many situations,
both types of TS co-exist for the same energy and one has
to understand the dynamical implications of the presence of
these two types of TS.

In a recent work, we analysed this question for
a model ion-molecule system originally considered by
Chesnavich.53–55 We established a connection between the
dynamics induced by the presence of these 2 types of TS
and the phenomenon of roaming.56,57 Specifically, our phase
space approach enabled us to define unambiguously a region
of phase space bounded by the OTS and TTS which we called
the roaming region. We were also able to classify trajectories
initiated on the OTS into four different classes. These four
classes were derived from two main categories. The main
category consists of reactive trajectories. These trajectories
start at the OTS and enter the roaming region between the
OTS and TTS. They can then exhibit complicated dynamics in
the roaming region and eventually react by crossing the TTS
to form a bound triatomic molecule. Within this category,
we distinguish between roaming trajectories making some
oscillations in the roaming region (oscillations were defined
by the presence of turning points in R coordinate) and direct
trajectories that do not oscillate in the roaming region. The
other main category of trajectories consists of trajectories that
do not react and for which the atom finally separates from the
diatomic molecule. Again we distinguish between trajectories
which “roam” (making oscillations in the roaming region) and
those that escape directly by bouncing off the hard wall at
small values of R.

For the ozone recombination problem reduced to a 2 DoF
model, we employ the same classification. Figure 2 shows the
four classes of trajectories obtained by propagating incoming
trajectories originated at the OTS. The black line at R ≃ 8 Å
is the PO from which the OTS is constructed. The two black
curves at R ≃ 2.5 Å are the two POs from which the two
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FIG. 2. Trajectories propagated from the OTS for the 2 DoF model projected on configuration space. The black line at R ≃ 8 Å is the PO from which the
OTS is constructed. The short black curves at R ≃ 2.5 Å are the POs from which the TTS are constructed. (a) Direct reactive trajectories. (b) Roaming reactive
trajectories. (c) Direct non reactive trajectories. (d) Roaming non reactive trajectories.

TTS are constructed. These two TTSs correspond to the two
channels by which the ozone molecule can recombine. For the
case of 16O3, the two channels reform the same ozone molecule
but for different isotope composition, these channels may lead
to different ozone molecules. These trajectories show that the
roaming phenomenon is at play in the ozone recombination
problem. It would be very interesting to investigate how the
roaming dynamics varies as the masses of the different oxygen
atoms change, as this may provide new insight into the isotope
effect in ozone recombination.

B. 3 DoF Model

We now consider the problem of ozone recombination in
a 3 DoF model with zero total angular momentum. Addition of
angular momentum DoF is in principle possible in our phase
space description of reaction dynamics, but consideration of
these DoF will increase the dimensionality of the problem
and will require a more elaborate sampling procedure.
Consideration of angular momentum in capture problems
has been investigated by Wiesenfeld and co-workers50–52 and
recently by MacKay and Strub.81

The construction of the DS for the OTS follows the proce-
dure described in Sec. II B 2. As explained in Sec. II B 2, we
cannot sample the full DS. In our simulation, we sample one
leaf of the DS by considering a single partitioning of the energy
between the two DoF subsystem and the diatomic vibration.
Here, for the sampling of the DS, we fixed the diatomic length
r to its equilibrium value and use the same value of the total
energy as for the 2 DoF model, 9200 cm−1.

The sampled points on the DS were again used to
propagate trajectories, which are classified as previously into
four classes. The result of the propagation is shown on Fig. 3.

Again the black line at R ≃ 8 Å represents the projection
of the PO defining the OTS, while the two black curves
at R ≃ 2.5 Å are projections of POs. These POs are not
strictly (projections of) the proper phase space structures from
which TTSs can be constructed, as for a 3 DoF system the
NHIM supporting a DS consists of a 1-parameter family of
invariant 2-tori. Nevertheless, these POs give an idea of the
approximate location of the projection of these structures
into configuration space for ozone recombination. For the
ozone problem, it nevertheless appears that they are very good
approximation to the true NHIMs for the TTSs as we can
see in Fig. 3 that none of the non reactive trajectories (panels
(c) and (d)) extends beyond the projections of those POs on
configuration space. The reason for that is presumably that
for ozone the diatomic vibration is well decoupled from the
2 other DoF throughout the entire roaming region. This fact
validates the reduced 2 DoF model presented above.

C. Role of separatrices in the 2D and 3D model

The approach taken in the present paper has been to
classify the behavior of trajectories initiated on the OTS,
especially with respect to “roaming” behavior. Roaming
trajectories are trapped as a consequence of energy transfer
between radial (R) and angular (θ) DoF. This energy transfer
could (at least in 2D) be described and analyzed in terms
of passage across a broken separatrix following the work
of Davis, Gray, and Skodje (see, for example, Refs. 5 and
82). This kind of analysis has already been attempted: see,
for example, the paper of Ramachandran and Ezra.83 The
latter work suggests that the separatrix/turnstile view, while
formally applicable, is not necessarily very useful or practical
in the context of problems with (internal) rotational degrees
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FIG. 3. Trajectories propagated from the OTS for the 3 DoF model projected on configuration space. The black line at R ≃ 8 Å is the projection of the PO from
which the OTS is constructed. The short black curves at R ≃ 2.5 Å are projections of POs that may be used as approximations of the TTS (see text). (a) Direct
reactive trajectories. (b) Roaming reactive trajectories. (c) Direct non reactive trajectories. (d) Roaming non reactive trajectories.

of freedom, for the reason that the return time to the surface
of section by means of which the separatrix is visualized can
diverge; this makes the lobes and turnstiles difficult to plot
and visualize.

In the present paper, we have chosen to investigate the
dynamics of trajectories entering a region of phase space
bounded by well-defined bottlenecks/DS and to classify them
with respect to reactive/non-reactive, roaming/non-roaming
behavior, as in our other recent studies.56–59 The separatrix
perspective is complementary to this approach, but more
detailed comparison will require further work.

It should nevertheless be noted that in a recent paper,59 we
have used the lobe/turnstile construction to provide a phase
space rationale for the roaming behavior seen in a model for
formaldehyde dissociation.

IV. CONCLUSION

In this paper, we have examined the phase space structures
that govern reaction dynamics in the absence of critical points
on the PES. We showed that in the vicinity of hyperbolic
invariant tori, it is possible to define phase space dividing
surfaces that are analogous to the dividing surfaces governing
transition from reactants to products near a critical point of
the PES.

We investigated the problem of capture of an atom by a
diatomic molecule and showed that a NHIM exists at large
atom-diatom distances, away from any critical points on the
potential. This NHIM is the anchor for the construction of a
DS in phase space, which is the entry “portal” through which

the atom has to pass in order to interact with the diatomic
molecule. This DS defines OTS governing capture dynamics.

Exploiting adiabatic separability of the diatomic vibra-
tional mode in the phase space region of interest, we presented
an algorithm for sampling an approximate capture DS. As an
illustration of our methods, we applied the algorithm to the
recombination of the ozone molecule. We treated both 2
and 3 DoF models with zero total angular momentum. The
co-existence of the OTS and TTS in ozone recombination
means that roaming dynamics is observed for this reaction.
Such roaming dynamics may have important consequences
for the unconventional isotope effect in ozone formation.
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APPENDIX A: REACTION DYNAMICS
IN THE ABSENCE OF EQUILIBRIUM POINTS

Here, we discuss the work of Ref. 66 on partially
hyperbolic tori in Hamiltonian systems and associated phase
space structures. The starting setup is an m DoF canonical
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Hamiltonian system defined on a 2m-dimensional phase space,
which we can take to be R2m. This discussion provides the
theoretical foundation for our analysis of the atom-diatom
system given in Sec. II.

The steps involved in describing phase space structure in
the vicinity of partially hyperbolic tori are as follows:

Step 1: Locate a partially hyperbolic invariant torus in the
original system. First, we define the term “partially hyperbolic
invariant torus.” A hyperbolic periodic orbit provides the
simplest example. The mathematics literature contains rather
technical discussions of the notion of partial hyperbolicity,66

but a practical definition is that, under the linearized dynamics,
in directions transverse to the torus and the directions
corresponding to the variables canonically conjugate to the
angles defining the torus (this is where the qualifier “partially”
comes from), there is an equal number of exponentially
growing and exponentially decaying directions. The following
steps express the original Hamiltonian in coordinates defined
near the torus.

Step 2: Express the Hamiltonian in coordinates near the
partially hyperbolic invariant torus. Following Ref. 66 we
denote the partially hyperbolic n-dimensional invariant torus
by N . In Theorem 5 of Ref. 66 (with the explicit construction
of coordinates in Sec. 5), Bolotin and Treschev show that
there exist canonical coordinates in a neighborhood of N in
which the Hamiltonian takes the following form:

H(θ, I, z+, z−) = ⟨ω, I⟩ + 1
2
⟨AI, I⟩ + λ(θ)z−z+ + O(3),

θ ∈ Tn, I ∈ Rn, z− ∈ R1, z+ ∈ R1, (A1)

where ⟨·, ·⟩ denotes the usual Euclidean inner product on
Rn, A denotes an n × n symmetric matrix, and λ(θ) > 0 for
all θ ∈ Tn (this is the condition insuring hyperbolicity). The
corresponding Hamiltonian vector field is

θ̇ = ω + AI + O(2), (A2a)

İ = O(2), (A2b)
ż+ = λ(θ)z+ + O(2), (A2c)
ż− = −λ(θ)z− + O(2). (A2d)

Note that in these coordinates the invariant torus is given by

N = {(I, θ, z+, z−) | I = z+ = z− = 0} . (A3)

Several comments are now in order.

• It is important to realize that (A1) is not the
“normal form” that is usually discussed in Hamiltonian
mechanics.84 This is because λ(θ) is not necessarily
constant. A normal form requires additional transfor-
mations to transform λ(θ) to a constant (the Floquet
transformation). We will see that such a transformation
is not necessary for constructing NHIMs and DSs.

• From the form of Equations (A2) the origin of the
term “partially” hyperbolic is clear: not all directions
transverse to the torus are hyperbolic (the transverse
directions that are not hyperbolic are those described
by the coordinates I).

• For n = 1, N is a periodic orbit.

• For n > 1 the frequency vector of N , ω, must be
nonresonant. More precisely, it is required to satisfy a
diophantine condition,18 i.e.,

|⟨ω, k⟩| > α|k |−β, α, β > 0, k ∈ Zn − {0}, (A4)

where |k | ≡ n
i=1 |ki |.

• z− and z+ are the exponentially decaying and growing
directions, respectively, normal to N ; they are of equal
dimension. Here, we are only considering the case
where they are 1-dimensional. This is the analogous
case to index one saddles for equilibria. Both z− and
z+ can each have dimension greater that one. In that
case, we would have a generalization of the notion of
index k saddles,31 for k ≥ 1, to periodic orbits and tori.
We will not consider that case here.

It is useful to emphasize at this point that the phase space
is 2n + 2 ≡ 2m dimensional.

Before using the Hamiltonian (A1) to construct NHIMs
and DSs, we (symplectically) rotate the saddle coordinates in
the usual way,

z+ =
1
√

2
(p − q), z− =

1
√

2
(p + q), (A5)

to obtain the Hamiltonian,

H(θ, I,q,p) = ⟨ω, I⟩ + 1
2
⟨AI, I⟩ + λ(θ)

2
(p2 − q2) + O(3),

θ ∈ Tn, I ∈ Rn, q ∈ R1, p ∈ R1, (A6)

Step 3: Construction of phase space structures. We consider
the 2m − 1 dimensional energy surface H(θ, I,q,p) = h. The
motivation for rotating the saddle in Eq. (A5) was to clarify
the meaning of reaction — it corresponds to a change in sign
of the q coordinate. Therefore, neglecting the O(3) terms,
setting q = 0, the forward and backward DSs are given by

pf = +


2

λ(θ)


h − ⟨ω, I⟩ − 1
2
⟨AI, I⟩, (A7a)

pb = −


2

λ(θ)


h − ⟨ω, I⟩ − 1
2
⟨AI, I⟩, (A7b)

respectively, and these two DSs meet at the NHIM, q = 0,
p = 0,

h = ⟨ω, I⟩ + 1
2
⟨AI, I⟩. (A8)

These are interesting equations. They show that the DSs
vary with θ, but that the NHIM is constant in θ, as follows
from the form of Hamilton’s equations in these coordinates.
At the origin in the space of the saddle degrees of freedom,
we have an integrable Hamiltonian system in action-angle
variables. We do not attempt to make the hyperbolic DoFs
constant by carrying out a Floquet transformation. As a result,
the DS (which incorporates hyperbolic DoFs) varies with θ.
In some sense, one could view the procedure that gives these
coordinates as a type of “partial normalization” where we
normalize the elliptic DoFs and leave the hyperbolic DoFs
alone.

In this appendix, we have shown that near a partially
hyperbolic invariant torus a NHIM exists from which a
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codimension one DS can be constructed having the no-
recrossing property.35 We have not provided a method
for explicitly constructing the coordinates in which we
constructed the NHIM and DS. In Section II, we describe
a method for sampling the DS for a 2 DoF system and
a special 3 DoF system which is relevant to the roaming
scenarios that we study.

APPENDIX B: VERIFICATION THAT TRAJECTORIES
ARE TRANSVERSE TO THE DS ASSOCIATED
WITH THE NHIM

To carry out this calculation, we require a parametrization
of the DS that will enable us derive expressions for tangent
vectors to the DS. We can then compute the flux form and
evaluate it on tangent vectors to the DS.

Parametrization of the DS. The DS is a 2-dimensional
surface and therefore we require 2 parameters to parametrize
it. These 2 parameters appear naturally from the sampling
method, where we sample in the periodic coordinate q2
and then in the momentum coordinate p2. So, we use
parameters (p2,q2). Spline interpolation gives the function
q1 = q1(q2) describing the dependence of coordinate q1 on q2
in the projection of the NHIM onto configuration space. The
remaining momentum coordinate, p1, is obtained by imposing
the constant energy constraint H = E. The parametrization Φ
of the DS can then be specified as

Φ(p2,q2) = *..
,
p1 = ±


*
,
E − V (q1(q2),q2) −

p2
2

2I1(q1(q2))
+
-

2µ


1
2

,

q1(q2),p2,q2
+//
-
, (B1)

with 1/I1 = 1/I + 1/(µq2
1).

Tangent vectors to the DS are obtained by differentiating
the parametrization with respect to the parameters p2 and q2,

u1 =
∂Φ

∂p2
=

(
∂p1

∂p2
,0,1,0

)
=

(
− µp2

I1p1(p2,q2) ,0,1,0
)

(B2a)

u2 =
∂Φ

∂q2
=

(
∂p1

∂q2
,

dq1

dq2
,0,1

)
,

=
*...
,

−

(
∂V/∂q2 −

p2
2(dI1/dq2)
2I2

1 (q2)

)
µ

p1(p2,q2) ,
dq1

dq2
,0,1

+///
-

. (B2b)

The flux form associated with the Hamiltonian vector
field. For a 2 DoF system the phase space volume form Ω is
expressed using the symplectic 2-form ω as follows:

Ω =
1
2
ω ∧ ω. (B3)

The energy surface volume 3-form η is defined by

Ω = dH ∧ η. (B4)

The Hamiltonian vector field is

XH =

(
−∂H
∂q1

,
∂H
∂p1

,−∂H
∂q2

,
∂H
∂p2

)
. (B5)

The symplectic 2-form ω when applied to an arbitrary vector
ξ and the vector field XH gives

ω(ξ,XH) = dH(ξ). (B6)

The flux 2-form ϕ through a codimension one surface in
the energy surface (that is a 2-dimensional surface like our
DS) is simply given by the interior product of the energy
surface volume form η with the Hamiltonian vector field,

ϕ = iXH
η. (B7)

To compute ϕ, we take two vectors ξ1 and ξ2 tangent to the
DS and a vector ξ3 such that dH(ξ3) , 0. First we note that
the volume form Ω when applied to ξ1, ξ2, ξ3 and XH gives

Ω(ξ1, ξ2, ξ3,XH) = ω(ξ1, ξ2)ω(ξ3,XH) − ω(ξ1, ξ3)ω(ξ2,XH)
+ω(ξ1,XH)ω(ξ2, ξ3) (B8a)

= ω(ξ1, ξ2)dH(ξ3) − ω(ξ1, ξ3)dH(ξ2)
+ω(ξ2, ξ3)dH(ξ1) (B8b)

= ω(ξ1, ξ2)dH(ξ3). (B8c)

The last line follows since ξ1 and ξ2 are tangent vectors to
the DS and therefore dH(ξi) = 0 for i = 1,2. Also, we have
dH(XH) = 0 as XH is a tangent vector field to the energy
surface. From the definition of the energy surface volume
form, we have

Ω(ξ1, ξ2, ξ3,XH)
= dH ∧ η(ξ1, ξ2, ξ3,XH) (B9a)

= dH(ξ1)η(ξ2, ξ2,XH) + dH(ξ2)η(ξ1, ξ3,XH)
+ dH(ξ3)η(ξ1, ξ2,XH) + dH(XH)η(ξ1, ξ2, ξ3) (B9b)

= dH(ξ3)η(ξ1, ξ2,XH). (B9c)

Since ϕ(ξ1, ξ2) = iXH
η(ξ1, ξ2) = η(ξ1, ξ2,XH), it then

follows from (B8) and (B9) that

dH(ξ3)ω(ξ1, ξ2) = dH(ξ3) iXH
η(ξ1, ξ2) (B10)

and

ϕ = iXH
η(ξ1, ξ2) = ω(ξ1, ξ2). (B11)

The flux form through the DS is simply the symplectic 2-form
applied to tangent vectors of the DS.

Condition for non-tangency of the Hamiltonian vector
field. To check that the vector field is not tangent to the DS
(i.e., trajectories cross the DS) we need to evaluate the flux
form on tangent vectors to the DS.

The calculation we need to carry out is the following:

ω(u1,u2) = (dp1 ∧ dq1 + dp2 ∧ dq2)(u1,u2) (B12a)

= (up1
1 uq1

2 − uq1
1 up1

2 ) + (up2
1 uq2

2 − uq2
1 up2

2 ) (B12b)

= − µp2

I1p1

dq1

dq2
+ 1. (B12c)

The flux through the DS is then zero whenever

dq2

dq1
=

p2/I1

p1/µ
=

q̇2

q̇1
. (B13)

That is, the ratio of velocities corresponds precisely to the
phase point being on the NHIM (PO).
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