Supporting Information

A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease

Manon F. Pritchard,^{†,§,*} Lydia C. Powell,^{†,§} Georgina E. Menzies,[§] Paul D. Lewis,[§] Karl Hawkins,[⊥] Chris Wright,[⊥] Iolo Doull,^{II} Timothy R. Walsh,[‡] Edvar Onsøyen,[#] Arne Dessen,[#] Rolf Myrvold,[#] Philip D. Rye,[#] Astrid H. Myrset,[#] Howard N.E. Stevens,[∇] Lee A. Hodges,[∇] Gordon MacGregor,[⊗] James B. Neilly,[¶] Katja E. Hill^{†,*} and David W. Thomas^{†,*}

[†]Advanced Therapies Group, Cardiff University School of Dentistry and [‡]Medical Microbiology, School of Medicine, College of Biomedical and Life Sciences, Cardiff, UK, [§]Respiratory Diagnostics Group and [⊥]Centre for Nanohealth College of Medicine, Swansea University, Swansea, UK, ^{II}Respiratory/Cystic Fibrosis Unit, Children's Hospital for Wales, Cardiff, UK, [#]AlgiPharma AS, Sandvika, Norway, [∇]Bio-Images Drug Delivery Ltd., [®]Gartnavel Hospital, Glasgow, UK, [¶]Glasgow Royal Infirmary, Glasgow, UK.

Corresponding Author

*Address correspondence to pritchardmf@cardiff.ac.uk (0292 074 5029)

Supporting Information Figure 1. Atomic force microscopy imaging (20 µm) of (a) pig gastric mucin (0.1% PGM) (b) PGM with OligoG CF-5/20 (0.001%), z-scale 9 nm.

Supporting Information Figure 2. Shear rheology showing changes in elastic response (*G*') and viscous response (*G*'') of 2% OligoG CF-5/20 treatment of sputum samples compared to water treated controls measured at 10 Hz (n=21).

Supporting Information Figure 3. Shear rheology showing changes in elastic response (*G*') and viscous response (*G*'') of 2% OligoG CF-5/20 treatment of sputum samples following 5, 30, 60 and 240 mins of incubation at 37°C (0.16 Hz; n=3).

Patient	Ade			Antibiotic regime	en at time of samp	- Recent sputum	FEV1 (%)	
No.	(Yrs)	Sex	rhDNase I	IV	Oral	microbiology		
1 ^a	17	F	Y	Tobramycin Meropenem	Flucloxacillin Azithromycin	Colistin (alternate month with) Tobramycin	P. aeruginosa	1·10 L (37%)
2	31	Μ	Ν	Colistin Meropenem Chloramphenicol		Colistin (alternate month with) Tobramycin	P. aeruginosa	1·85 L (51%)
3	28	М	Y	Tobramycin Ceftazidime			P. aeruginosa	1-93 L (54%)
4	39	М	Y		Azithromycin Flucloxacillin	Colistin (alternate month with) Tobramycin	P. aeruginosa S. aureus	1·85 L (50%)
5	30	F	Ν	Tobramycin Aztreonam	Azithromycin	Colistin (alternate month with) Tobramycin	Pseudomonas sp. P. aeruginosa	1·93 L (65%)
6	20	М	Y	Tobramycin Meropenem	Azithromycin	Colistin	Pseudomonas sp.	0-80 L (20%)
7	18	М	Y	Tobramycin Ceftazidime	Flucloxacillin Azithromycin	Colistin (alternate month with) Tobramycin	P. aeruginosa	1·30 L (43%)

Supporting Information Table 1. Patient data, including antibiotic and rhDNase I (if applicable) regimen at time of sampling.

^aSputum from Patient 1 was used for the longitudinal study. *P. aeruginosa, Pseudomonas aeruginosa; S. aureus, Staphylococcus aureus*

Atom Name	Atom Type	Partial Charge
C1	СТ	0.3135
C2	СТ	0.164
O2	OH	-0.3819
C3	СТ	0.1172
O3	ОН	-0.3872
C4	СТ	0.1236
O4	OS	-0.4405
C5	СТ	0.1584
O5	OS	-0.4105
C6	СТ	0.2175
O6A	OS	-0.6366
O6B	OS	-0.6366
H1	HC	0.0746
H2	HC	0.237
H3	НО	0.066
H4	HC	0.1807
H5	НО	0.0696
H6	HC	0.0775
H7	HC	0.0937

Supporting Information Table 2. Atom names, types and partial charges used for the guluronate residues (OligoG).

Atom Name	Atom Type	Partial Charge		Cont	i.		Con	t.
CG2	СТ	0.065	H81	HC	-0.0025	OA	0	-0.091
HG22	HC	-0.0025	0	0	-0.352	C1A	С	0.1235
HG23	HC	-0.0025	C5	С	0.1235	H1A	H4	-0.0025
HG21	HC	-0.0025	H5	H4	-0.0025	O1A	ОН	-0.095
OG1	0	-0.091	C6	СТ	0.066	H85	HO	0.0235
С	С	0.181	H61	HC	-0.0025	C2A	СТ	0.08
CA	СТ	0.08	H62	HC	-0.0025	H2A	HC	-0.0025
HA	H1	-0.003	O6	ОН	-0.0955	O2A	ОН	-0.095
N	Ν	0.323	H63	HO	0.0235	H86	HO	0.0235
СВ	С	0.1235	C4	СТ	0.08	СЗА	СТ	0.076
HB	H4	-0.0025	H41	H1	-0.0025	НЗА	HC	-0.0025
C1	С	0.1235	O4	ОН	-0.095	O3A	ОН	-0.095
H1	H4	-0.0035	H42	HO	0.0235	H87	HO	0.0235
C2	С	0.0795	C3	С	0.1235	C4A	СТ	0.11
H21	H4	-0.0025	H3	H4	-0.0025	H4A	H1	-0.0025
N2	Ν	0.3225	O3	0	-0.091	O4A	ОН	-0.095
H2	н	0.0005	C5A	С	0.08	H88	HO	0.0205
C7	С	0.08	C6A	СТ	0.066	O5	0	-0.091
07	O2	-0.095	H6A	H1	-0.003	Н	Н	-0.0025
C8	СТ	0.065	H84	H1	-0.0025			
H82	HC	-0.0025	O6A	ОН	-0.095			
H83	HC	-0.0025	H89	НО	0.0235			

Supporting Information Table 3. Atom names, types and partial charges used for the Threonine amino acid with core one sugars attached at the glycosylation site

Atom Name	Atom Type	Partial Charge		Cont. Cont.					t.	
OG1	0	-0.091	H61	HC	-0.0025		H86	HO	0.076	
С	С	0.181	H62	HC	-0.0955		СЗА	СТ	-0.0025	
CA	СТ	0.08	O6	ОН	0.0235		НЗА	HC	-0.095	
HA	H1	-0.003	H63	НО	0.08		O3A	OH	0.0232	
Ν	Ν	0.323	C4	СТ	-0.0025		H87	HO	0.17	
СВ	С	0.1235	H41	H1	-0.095		C4A	СТ	-0.0055	
HB1	H4	-0.0006	O4	ОН	0.0235		H4A	H1	-0.095	
HB2	H4	-0.0006	H42	НО	0.1235		O4A	OH	0.02	
C1	С	0.1235	C3	С	-0.0025		H88	HO	-0.091	
H1	H4	-0.0035	H3	H4	-0.091		Н	Н	-0.0025	
C2	С	0.0795	O3	0	0.08					
H21	H4	-0.0025	C5A	С	0.066					
N2	Ν	0.3225	C6A	СТ	-0.003					
H22	н	0.0005	H6A	H1	-0.0025					
C7	С	0.08	H84	H1	-0.095					
07	O2	-0.095	O6A	ОН	0.0235					
C8	СТ	0.065	H89	НО	-0.091					
H82	HC	-0.0025	OA	0	0.1235					
H83	HC	-0.0025	C1A	С	-0.0025					
H81	HC	-0.0025	H1A	H4	-0.095					
0	0	-0.352	O1A	ОН	0.0235					
C5	С	0.1235	H85	НО	0.08					
O5	0	-0.0025	C2A	СТ	-0.0025					
H5	H4	0.066	H2A	HC	-0.095					
C6	СТ	-0.0025	O2A	ОН	0.0235					

Supporting Information Table 4. Atom names, types and partial charges used for the Serine amino acid with core one sugar attached at the glycosylation site

Atom Name	Atom Type	Partial Charge	Cont.			Cont.			Cont.			
CG2	СТ	0.123	Н	Н	-0.012	H6F	HC	0.04	OA	0	-0.188	
С	С	0.356	H1	H4	-0.011	H81	HC	-0.012	OA1	0	-0.188	
C1	С	0.24	H12	HO	-0.012	H82	HC	-0.011	OG1	0	-0.188	
C1A	С	0.24	H1A	H4	-0.012	H83	HC	-0.012	C2A	СТ	0.147	
C1B	С	0.24	H1M	HC	0.04	H84	H1	-0.012	H2A	HC	-0.012	
C2	С	0.153	H2	Н	-0.005	H85	HO	-0.012	НЗА	HC	-0.012	
C2B	С	0.153	H21	H4	-0.012	H86	HO	-0.012	H48	H4	-0.012	
C2N	С	0.356	H2B	H4	-0.012	H87	HO	-0.012	HB	H4	-0.012	
C3	С	0.24	H2M	HC	0.04	H88	HO	0.04	HG21	HC	-0.012	
C3A	СТ	0.153	H2N	Н	0.04	H89	HO	0.04	HG22	HC	-0.012	
C3B	С	0.153	H3	H4	-0.012	HA	H1	-0.011	HG23	HC	-0.012	
C4	СТ	0.153	НЗВ	H4	-0.012	N	Ν	0.641	0	0	-0.709	
C4A	СТ	0.153	НЗМ	HC	-0.012	N2	Ν	0.126	O1A	OH	-0.197	
C4B	СТ	0.153	H3O	HO	-0.012	N2B	Ν	0.127	O2A	OH	-0.197	
C5	С	0.24	H41	H1	-0.012	O2N	O2	-0.709	O3A	OH	-0.197	
C5A	С	0.153	H42	HO	0.04	O3	0	-0.188				
C5B	С	0.24	H4A	H1	-0.012	O3B	ОН	-0.197				
C6	С	0.279	H4B	H1	-0.012	O4	ОН	-0.197				
C6A	СТ	0.125	H4O	HO	0.04	O4A	ОН	-0.197				
C6B	СТ	0.125	H5	H4	0.04	O4B	ОН	-0.197				
C7	С	0.356	H5B	H4	-0.012	O5B	0	-0.187				
C8	СТ	0.123	H61	H4	-0.012	O6	0	-0.188				
CA	СТ	0.153	H62	H4	-0.012	O6A	ОН	-0.197				
СВ	С	0.24	H6A	H1	-0.012	O6B	ОН	-0.196				
CME	СТ	0.123	H6B	HC	-0.012	07	O2	-0.709				

Supporting Information Table 5. Atom names, types and partial charges used for the Threonine amino acid with core two sugars attached at the glycosylation site

Atom Name	Atom Type	Partial Charge		Cont	t.		Con	t.		Con	
С	С	0.356	Н	Н	-0.012	H6B	HC	-0.012	O6B	ОН	-0.1
C1	С	0.24	H1	H4	-0.011	H6F	HC	0.04	07	O2	-0.7
C1A	С	0.24	H12	HO	-0.012	H81	HC	-0.012	OA	0	-0.
C1B	С	0.24	H1A	H4	-0.012	H82	HC	-0.011	OA1	0	-0.
C2	С	0.154	H1M	HC	0.04	H83	HC	-0.012	OG1	0	-0.
C2B	С	0.153	H2	Н	-0.005	H84	H1	-0.012	C2A	СТ	0.2
C2N	С	0.356	H21	H4	-0.012	H85	HO	-0.012	H2A	HC	-0.0
C3	С	0.24	H2B	H4	-0.012	H86	HO	-0.012	НЗА	HC	-0.0
C3A	СТ	0.153	H2M	HC	0.04	H87	HO	-0.012	H48	H4	-0.0
C3B	С	0.153	H2N	н	0.04	H88	HO	0.03	HB1	H4	-0.0
C4	СТ	0.153	H3	H4	-0.012	H89	HO	0.04	HB2	H4	-0.0
C4A	СТ	0.153	НЗВ	H4	-0.012	HA	H1	-0.011	0	0	-0.
C4B	СТ	0.153	НЗМ	HC	-0.012	N	Ν	0.641	O1A	OH	-0.
C5	С	0.24	H3O	HO	-0.012	N2	Ν	0.122	O2A	ОН	-0.
C5A	С	0.153	H41	H1	-0.012	N2B	Ν	0.127			
C5B	С	0.24	H42	HO	0.04	O2N	O2	-0.709			
C6	С	0.279	H4A	H1	-0.012	O3	0	-0.188			
C6A	СТ	0.125	H4B	H1	-0.012	O3B	OH	-0.197			
C6B	СТ	0.125	H4O	HO	0.04	O4	OH	-0.197			
C7	С	0.356	H5	H4	0.04	O4A	ОН	-0.197			
C8	СТ	0.123	H5B	H4	-0.012	O4B	ОН	-0.197			
CA	СТ	0.153	H61	H4	-0.012	O5B	0	-0.187			
СВ	С	0.24	H62	H4	-0.012	O6	0	-0.188			
CME	СТ	0.123	H6A	H1	-0.012	O6A	ОН	-0.197			
С	С	0.356	н	Н	-0.012	H6B	HC	-0.012			

Supporting Information Table 6. Atom names, types and partial charges used for the Serine amino acid with core two sugars attached at the glycosylation site

ijk	func	th0	cth
СОС	1	120.000	669.440
C H4 C	1	120.000	418.400
H4 C H4	1	120.000	292.880
OS CT OH	1	101.000	502.080
N* C O2	1	120.900	669.440
N C O2	1	120.900	669.440
HC CT OH	1	109.500	418.400
HC CT OS	1	109.500	418.400
C C CT	1	111.100	527.184
ССТС	1	111.100	527.184
ССС	1	111.100	527.184
C C N	1	111.200	669.440
H4 C N	1	120.000	418.400
C N C	1	121.900	418.400
N2 CT C	1	123.200	418.400
N2 CT CA	1	123.200	418.400
NA CA CA	1	123.200	418.400

Supporting Information Table 7. Additional angle measurements required for the running of GROMACS simulations of both Mucin and OligoG simulations

Supporting Information Table 8. Additional dihedral angle measurements required for the running of GROMACS simulations of both Mucin and OligoG simulations

ijkl	func	phase	kd	pn
NC CB N* CB	4	180.00	4.60240	2
H5 N* CK NB	4	180.00	4.60240	2
NB CB CB C	4	180.00	4.60240	2
CA CA CA CA	4	180.00	4.60240	2
C CA NA CA	4	180.00	4.60240	2
NA NA CA NC	4	180.00	4.60240	2
NA CA CA CA	4	180.00	4.60240	2
N* CK OH HO	4	180.00	4.18400	2

Supporting Information Table 9. Summary of sampling for inhalation studies with 3H⁻ OligoG CF-5/20 in experimental Sprague-Dawley rats.

Dose group/ Treatment [#]	Samples	Additional samples	Additional samples from selected animals
1. IV (n=4) 2. OD (n=4)	Blood, plasma		
3. IV (n=4) 4. OD (n=4)	Urine/faeces	Blood, plasma, selected tissues/organs, carcass Blood, plasma, GI tract, carcass	Expired air (n=2)
5. IV (n=18)	Tissues and organ	S	
All animals received	a dose of 5 mg kg ⁻¹	tritium-labelled OligoG; IV, intravenous; OD, oral dos	Se.

Supporting Information Table 10. Study design for inhalation studies with OligoG CF-5/20 as a nebulized solution in experimental Sprague-Dawley rats.

Phase of study	Dose group/ Treatment ^a	Daily exposure duration (min)	OligoG CF-5/20 formulation (mg ⁻¹ kg ⁻¹ day ⁻¹)	Non-aqueous component (mg ⁻¹ kg ⁻¹ day ⁻¹)
A. Single dose	1. 6% OligoG	60	500.0	75.6
	2. 6% OligoG	120	997.5	150.8
	3. 6% OligoG	240	1,999.8	301.9
B. 7 days dosing	4. 6% OligoG	60	511.4	71.0
	5. 6% OligoG	240	2034.4	282.4
C. 14 days dosing	 6% OligoG 6% OligoG 8. Vehicle only 	60 240 240	498.5 1,984.3 1,916.7	71.6 284.8 0
D. 28 days dosing	9. 6% OligoG	120	494.4	71.6
	10. 6% OligoG	240	1,988.2	288.0

^a(n=10; 5 female, 5 male rats)

Supporting Information Table 11. Study design for multiple dosing of OligoG CF-5/20 as a dry powder for inhalation (DPI) in experimental Sprague-Dawley rats.

Group	Treatment	OligoG CF-5/20 dose (mg)		Expos (mg⁻¹k	Exposure level (mg ⁻¹ kg ⁻¹ day ⁻¹)		Ν	umber of animals	
		Target	Achieved	Target	Achieved	Duration (mins)	Main	Recovery	Satellite ^a
1	Control	0	0	0	0	150	10	5	3
2	OligoG DPI	150	157	1.6	1.77	120	10	0	6
3	OligoG DPI	300	280	3.2	3.15	120	10	0	6
4	OligoG DPI	467	467	4.0	4.20	150	10	5	6

^aSatellite animals used for toxicokinetic sampling only

Supporting Information Table 12. Summary of the macroscopic and microscopic findings for multiple dosing of OligoG CF-5/20 as a dry powder for inhalation (DPI) in experimental Sprague-Dawley rats.

Group No. (Male/Female)	1 M	2M	3M	4M	1F	2F	3F	4F
Achieved dose (mg ⁻¹ kg ⁻¹ day ⁻¹)	0	157	280	467	0	157	280	467
Macropathology	Incider	ice						
Lungs								
Pale areas (Main)	0/10	0/10	1/10	1/10	0/10	0/10	0/10	2/10
Pale areas (Recovery)	0/5	-	-	0/5	0/4	-	-	1/5
Tracheobronchial lymph								
Enlarged (Main)	0/10	2/10	7/10	8/10	0/11	2/10	4/10	10/10
Enlarged (Recovery)	0/5	-	-	2/5	0/4	-	-	1/5
Histopathology	Incider	ice						
Lungs								
Diffuse alveolar macrophages/ macrophage debris (Main)	0/10	10/10	10/10	10/10	0/11	10/10	10/10	10/10
Diffuse alveolar macrophages/ macrophage debris (Recovery)	0/5	-	-	5/5	0/4	-	-	5/5
Tracheobronchial lymph								
Cellularity (Main)	0/10	2/10	6/10	8/10	0/11	3/10	4/10	10/10
Cellularity (Recovery)	1/4	-	-	1/5	1/4	-	-	1/5

Supporting Information Table 13. Summary of dosing for inhalation studies with OligoG CF-5/20 in healthy human volunteers (n=28).

Phase of study	Dose group/ Treatment	No. of volunteers
A. Single dose	 90 mg 6% OligoG CF5/20 0.9% NaCl placebo 	2 2
B. 3 days OD ^a	 90 mg/day 6% OligoG CF5/20 0.9% NaCl (placebo) 	6 2
C. 3 days OD	 270 mg/day 6% OligoG CF5/20 0.9% NaCl (placebo) 	6 2
D. 3 days BID ^b	 540 mg/day 6% OligoG CF5/20 0.9% NaCl (placebo) 	6 2

^aOD, oral dose; ^bBID, twice daily.

Supporting Information Table 14. Scintigraphic study comparing pulmonary and extra pulmonary depositions using the dry powder formulation versus the nebulized solution on the distribution and deposition of OligoG CF-5/20 in the lungs of CF patients.

Parameter	Dry powder inhalation	Nebulised solution	P-value*
% dose in whole lung	38.6 ± 12.8	17.1 ± 3.5	0.001
% dose in central lung	11.3 ± 3.3	5.5 ± 1.2	0.002
% dose in peripheral lung	27.3 ± 9.9	11.6 ± 2.6	0.001
central to peripheral ratio index	0.4 ± 0.1	0.5 ± 0.1	0.117
% dose in mouth washing	2.3 ± 3.1	1.4 ± 1.0	0.341
% dose in oropharyngeal region	0.9 ± 0.8	10.9 ± 5.4	0.001
% dose in gastric region	8.1 ± 9.4	7.6 ± 2.8	0.853
% combined (mouth, oropharyngeal and gastric)	11.3 ± 9.6	19.9 ± 7.1	0.033

*P<0.05 was regarded as significant

Supporting Information- Methods

Sample incubation times. Incubation times for all experiments were \leq 4 hours in accordance with the original *ex vivo* OligoG CF-5/20 rheological studies (Supporting Information Figure 3) which showed the greatest change in elastic or viscous response between 60 mins and 240 mins.

Molecular dynamic studies of mucin-OligoG interactions. The sequence studied, was composed of the repeating unit of the MUC5AC protein downloaded from NCBI (http://www.ncbi.nlm.nih.gov) and inputted into Hamby and Hirst's (2008)¹ glycosylation prediction tool. This 2-dimensional sequence was translated into a 3-dimensional structure using Acerlys Discovery Studio (ADS). Core 1 and 2 sugars were generated using Ambertools glycol tool protocols,² saved as *pdb* files and incorporated into the appropriate amino acid using the small ligand and mutate tools which are built into ADS. These sugars were incorporated into amino acids predicted to be glycosylation observed in the CF lung.³ The Alpha-L-Guluronate structure was downloaded in the form of the crystal structure, PDB ID 1J1N⁴ and converted into a repeating unit using ADS. This repeating unit was elongated to make the OligoG structure file. MUC5AC and OligoG structures were then amalgamated into a single *pdb* file for simulation.

Partial charges for the sugars and OligoG molecules were calculated using Ambertools and the Amber99 force field as were atom types (Supporting Information Tables 2-6). Bondand angle-parameters were assigned based upon chemically-similar, existing parameters with Ambertools (Supporting Information Tables 7-8). MD simulations were performed using GROMACS 4.5 software⁵ and the Amber99 force-field. Structures were boxed and solvated using the GROMACS modules, editconf and genbox. The DNA molecule was placed in the center of a cubic box and solvated using single-point charge water molecules, SPC216. The box surrounding the molecule was approximately 36.47 nm³ and filled with ~18,324 water molecules. To neutralize the system, an appropriate number of Na⁺ ions were added to the box in place of the same number of water molecules. The Particle mesh Ewald (PME) method

19

was used to treat long-range electrostatic interactions and a 1.4 nm cut-off was applied to Lennard-Jones interactions. MD simulations were performed in a three-step process: (a) Energy minimization stage (EM); the EM process used was steepest descent, with a tolerance of 1000 KJ⁻¹nm⁻¹; (b) A pre-MD run (PR) stage of 25,000 steps at 0.002 ps per step. This simulation was run at 300 K; (c) The MD was run at 300 K for a total of 10 ns.

Fourier transform infrared spectroscopy of mucin-OligoG CF-5/20 interactions. Infrared (IR) spectra were obtained using a Bruker Alpha Fourier Transform IR (FTIR) instrument equipped with a platinum-attenuated total reflection (ATR) single reflection diamond-sampling module (Bruker Optics). The instrument was placed in a Captair Pyramid (Erlab) housed in a Concept 1000 workstation (Ruskinn Technology Ltd, Bridgend, Wales) and the equipment purged continuously overnight with a gentle flow of nitrogen. Sputum samples (3 μl) were then spotted directly onto the ATR sampling module and evaporated at room temperature under nitrogen flow. IR spectra were collected as an average of 24 scans per sample (at a wavenumber range 4000–450 cm⁻¹) at a resolution of 4 cm⁻¹, controlled by Optics User Software (OPUS) version 6.5 (Bruker Optics). The background spectrum was subtracted from the sample spectrum. Each sample spectrum was checked for a smooth baseline between 1750 and 2000 cm⁻¹ to ensure no interference from water vapor. IR spectra were pre-processed using OPUS by subtracting a baseline between 1750 and 1485 cm⁻¹. Mean IR spectra were generated and a second derivative spectra was performed using OPUS and the R Statistical Programming Environment (www.R-project.org).

Pre-clinical studies with OligoG CF-5/20 in experimental animals. Initial studies with tritium-labelled OligoG CF-5/20 (Supporting Information Table 9) showed no toxicity, and rapid excretion in faeces and urine (after oral or IV administration respectively). Following this, inhalation studies with aerosolized OligoG CF-5/20 were performed in Sprague-Dawley rats using a modular, flow-past system. Aerosols of 6% (w/v) OligoG CF-5/20 in sterile water were generated using HEART[®] airjet nebulizers (Westmed, Tuscon, Arizona, USA). In the first series of experiments (Supporting Information Table 10), rats were assigned to 6% OligoG CF-5/20 dose for variable exposure times and screened for changes in body-weight, food

consumption, and respiratory function. In the second series of experiments (Supporting Information Table 11), daily inhalational dosing was performed with a 14 day off-test recovery period to assess the reversibility of any observed effects. Rats were screened for clinical, biochemical and pathological changes (Supporting Information Table 12).

Since the final drug formulation was to be a DPI (Dry Powder for Inhalation) a bridging study was required to ensure comparability with the previously used nebulized formulation. The DPI formulation of OligoG CF-5/20 was developed with the purpose of improving patient compliance and enabling increased doses to be administered. The product is manufactured in compliance with Good Manufacturing Practice as a spray dried powder with a particle size distribution for inhalation $D_{10} \leq 2.5 \ \mu m$, $D_{50} \leq 5 \ \mu m$, $D_{90} \leq 10 \ \mu m$.

Therefore, Sprague-Dawley rats were dosed with placebo or OligoG DPI at three different doses by inhalation once daily for 4 weeks. Recovery from any potential effects was evaluated during a 4-week recovery period. The inhalation exposure system comprised a snout-only flow past inhalation exposure chamber, restraining tubes and a Rotating Brush Generator (RBG) mechanism to generate the test atmospheres. Separate exposure systems were used for each dose group. The mass aerosol concentration of the OligoG CF-5/20 formulation or Vehicle in the animal's breathing zone via the reference port was measured gravimetrically for all groups during each exposure period. From the concentration samplings the achieved dose levels for each group were calculated based on the following criteria:

Dose (mg/kg/day) = $C \times RMV \times T$

Body weight (kg)

where C is the aerosol concentration, RMV the Respiratory Minute Volume (L/min) and T the duration of exposure (min).

Animals were dosed once daily using a snout only inhalation exposure technique. Exposures to the OligoG CF-5/20 aerosols and the control vehicle were performed using a modular (3 tier) stainless steel flow past systems. The system allowed a continuous supply of test aerosol to be delivered to each animal; the biased flow ensured no re-breathing of the test atmosphere. Separate exposure chambers were used for the Vehicle control and the OligoG CF-5/20 groups. The following parameters were investigated: toxicokinetics, clinical condition, body weight, food consumption, ophthalmoscopy, hematology (peripheral blood), blood chemistry, urinalysis, lung sampling, organ weight, macropathology and histopathology.

Clinical safety and efficacy testing of inhaled OligoG CF-5/20. The Phase I study was a single center, randomized, placebo controlled, dose escalation study to test the *in vivo* safety and tolerability of OligoG CF-5/20 in humans (www.clinicaltrials.gov, Identifier: NCT00970346).

Healthy male subjects (28 in total) aged 18 to 65 years were assigned randomly to an intervention group (single- or multiple-dose) or control group (Supporting Information Table 13). Randomization was computer-generated and testing done by aerosol delivery system (Sidestream Plus/Portaneb, Phillips Respironics). OligoG CF-5/20 (6% solution) was prepared by spray drying and provided in 1.5 ml vials and inhaled at doses of 1.5 ml (90 mg/day) QD, 4.5 ml (270 mg/day) QD and 4.5 ml BID (540 mg/day), respectively for the three dosing cohorts. The medication was poured into the nebulizer cup for nebulization using the Sidestream-Plus and Portaneb (Phillips Respironics) aerosol delivery system. Matching placebo of saline (0.9% NaCl) was inhaled after nebulizing in the Sidestream Plus and Portaneb device. For each dose cohort, the same volume of active and placebo solution was indistinguishable to active OligoG CF-5/20.

Safety was monitored during the study, through pulmonary function tests, physical examination, vital signs, ECG, hematology and clinical chemistry. All adverse events reported by the subjects or observed by clinic staff were recorded in the Case Report Form (CRF). The treatment groups were compared with respect to the proportion of subjects experiencing one or more adverse events by the Fisher's exact test.

Clinical scintigraphy studies investigating lung deposition of radiolabelled OligoG. The scintigraphy study (Phase IIa) was an open label two-way randomized crossover study in 10 cystic fibrosis patients. Subjects received a single dose of OligoG CF-5/20 (dry powder for inhalation, DPI: 96 mg produced by spray drying) delivered by three

22

capsules via the Miat Monodose Dry Powder Inhaler, and a single dose of 1.5 mL (90 mg) aerosolized OligoG CF-5/20 (6% solution) delivered via the Sidestream-Plus nebulizer, separated by a 2-14 day washout period. Each treatment was radiolabelled with 10 MBq of ^{99m}Tc in total. The OligoG CF-5/20 was administered through a mouthpiece while the subject was tidal breathing in the upright position. Subjects were instructed to inhale to total lung capacity and hold for 5 to 10 seconds.

Sequential anterior and posterior images of the thorax/abdomen and lateral images of the head/neck were acquired. Images of the device hardware were acquired pre- and postdose, using a Siemens E-Cam gamma camera with a 53.3 cm field of view and fitted with a low energy high-resolution collimator. Image analysis was performed using the WebLink software. Lung and extra-pulmonary deposition of radiolabel, including retention in the equipment, were characterized and assessed using paired t-tests (Supporting Information Table 13).

Rheological analysis of cystic fibrosis sputum. Samples of CF sputum (n=3) were divided and treated with 10% (v/v) distilled water (control) or 2% OligoG (incubated at 37°C for 4 h) to assess the extensional thinning behavior. A capillary break-up extensional rheometer was employed using two aligned 7 mm plates. Live recording was taken of a "step-strain" and the specimen fell at a time-lag. The extensional rheometer was manufactured 'in house' and the recording device was a FASTCAM ultima APX I2 (Photon Europe Ltd).

Further experiments were conducted employing shear rheology. Each sputum sample (n=23; from 7 patients) was divided into a control and 2% OligoG CF-5/20 treated experiment (Supporting Information Fig. 3a; see patient details in Supporting Information Table 13). Further analysis entailed collecting (n=9) samples longitudinally from a single patient (patient 1) and treating them with six treatment modalities: (i) distilled water control; (ii) 100 nM rhDNase I; (iii) 0.2% OligoG CF-5/20; (iv) 2% OligoG CF-5/20; (v) 100 nM rhDNase I and 0.2% OligoG CF-5/20; (vi) 100 nM rhDNase I and 2% OligoG CF-5/20. The final concentration of 2.5 µg ml⁻¹ rhDNase I (equivalent to 100 nM) was based on previous published experiments.⁶

23

Treated samples were inverted gently (X 4) and incubated statically for 4 h at 37°C, prior to rheological analysis.

Samples were analyzed using an AR-G2 controlled stress rheometer (TA instruments, UK) fitted with a low inertia parallel-plate system (aluminium; 60 mm diameter) and peltier control (37°C) with a gap distance (400-1000 μ m) as dictated by the volume of sample available. Values for overall resistance to deformation (complex modulus, *G**) were obtained by measuring the strain response to imposed oscillatory stress over 0.1 to 10 Hz, covering frequencies relevant to mucociliary clearance and ciliary beat.^{7, 8} Analysis of the components of *G** provided values of the elastic and viscous response to imposed stress (*G*' and *G*'', respectively). The level of strain was set at a maximum of 2% (within the linear viscoelastic range of sputum). Control and 2% OligoG CF-5/20-treated samples were compared using Wilcoxon matched-pairs signed-ranks test and the longitudinal study analyzed using Dunnett multiple comparisons test in conjunction with analysis of variance (ANOVA) to compare the means (GraphPad Prism[®] Software, La Jolla, USA).

References

- 1. Hamby, S. E.; Hirst, J. D. Prediction of glycosylation sites using random forests. *Bmc Bioinformatics* **2008**, *9*.
- Case, D. A.; Babin, V.; Berryman, J. T.; Betz, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham, T. E.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A. AMBER 14. *University of California, San Francisco* 2014.
- Xia, B. Y.; Royall, J. A.; Damera, G.; Sachdev, G. P.; Cummings, R. D. Altered Oglycosylation and sulfation of airway mucins associated with cystic fibrosis. *Glycobiology* 2005, 15, (8), 747-775.
- Mishima, Y.; Momma, K.; Hashimoto, W.; Mikami, B.; Murata, K. Crystal structure of AlgQ2, a macromolecule (alginate)-binding protein of *Sphingomonas* sp A1, complexed with an alginate tetrasaccharide at 1.6-A resolution. *J. Biol. Chem.* **2003**, *278*, (8), 6552-6559.

- Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. *Bioinformatics* 2013, 29, (7), 845-854.
- King, M.; Dasgupta, B.; Tomkiewicz, R. P.; Brown, N. E. Rheology of cystic fibrosis sputum after in vitro treatment with hypertonic saline alone and in combination with recombinant human deoxyribonuclease I. *Am. J. Respir. Crit. Care Med.* **1997**, *156*, (1), 173-177.
- 7. King, M. Relationship between mucus viscoelasticity and ciliary transport in guaran gelfrog palate model system. *Biorheology* **1980**, *17*, (3), 249-254.
- Puchelle, E.; Zahm, J. M.; Duvivier, C.; Didelon, J.; Jacquot, J.; Quemada, D.
 Elastothixotropic properties of bronchial mucus and polymer analogs: I. Experimental results. *Biorheology* 1985, *22*, (5), 415-423.