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Abstract

A unique constitutive model for fibre reinforced concrete (FRC) is presented, which
combines a number of mechanics-based sub models for the simulation of directional cracking,
rough crack contact and the crack-bridging action of fibres. The model also contains a plasticity
component to simulate compressive behaviour. The plasticity component employs a frictional
hardening/softening function which considers the variation of compressive strength and strain at
peak stress with fibre content. Numerical results from a range of single-point and finite element
simulations of experimental tests show that the model captures the characteristic behaviour of
conventional fibre reinforced concrete with good accuracy.

1. Introduction

The addition of randomly distributed short fibres in a cementitious matrix can significantly
improve the fracture properties of these fibre reinforced cementitious composites (FRCC). For the
moderate fibre percentages used in many commercial mixes (0.5-2% by volume), the uniaxial
tensile and compressive strengths are only increased by a relatively small amount, but it is the
overall toughness, energy absorption and crack width control characteristics that can be
dramatically improved by the introduction of these fibres. The degree of this enhancement
depends mainly on the content and geometry of the fibres as well as upon the fibre-concrete
matrix bond properties. This substantial increase in toughness and fracture resistance derives
from the debonding and pull-out of fibres from the cementitious matrix. The underlying failure
mechanism of cementitious composites, reinforced with randomly oriented discontinuous fibres,
is also largely governed by fibre pull-out. This may or may not be accompanied by fibre rupture,
depending on the fibre geometry and fibre-cement matrix interface properties [1-3]. When a crack
opens, the fibres crossing the crack plane begin to debond and are subsequently pulled out (i.e.
the fibres slide relative to the concrete matrix). In this process, they can be considered to apply
closure tractions to the crack faces thus stabilising the crack growth. Via these crack-bridging
mechanisms, the fibres continue to transfer stresses between the two crack faces until their
complete pull-out.

Several models that describe the pull-out of randomly distributed short fibres from a
cementitious matrix have been proposed [1,2,4-7]. Naaman et al. [4,5] investigated the influence
of fibre-matrix bond properties on the behaviour of FRCCs using an analytical model, since it had
become apparent from experimental investigations that the behaviour of FRC, particularly in the
post-cracking stage, was strongly influenced by the interfacial bond-slip response. Assuming a
linear-elastic — constant frictional bond-slip relationship they formulated a model that describes
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the whole pull-out process of a single fibre aligned with the pull-out force. Li et al. [1], Li [2] and
Lin and Li [7] derived a series of closed form analytical solutions that describe the pull-out of fibres
that have 3-D uniform random distributions in location and orientation relative to the matrix crack
plane. In these contributions, Li and co-workers considered a number of assumptions for the fibre-
matrix bond model, including constant interface shear stress (pure frictional behaviour) [2] or slip-
weakening [1] and slip-hardening behaviour [1,7]. The pull-out behaviour of steel hooked-end
fibres has been addressed by Zhan and Meschke [8] who proposed an analytical model in which
the anchorage effects induced by the hooks are evaluated at key pull-out stages. At each of these
key stages, which depend on the geometrical configuration of the hooks, the resulting anchorage
force was determined from equilibrium of forces and moments and taking into account the
damage of concrete and the yielding steel.

Since the addition of fibres has a direct impact on cracking processes, their influence is more
significant in tension than compression. Li and Li [9] proposed a model based on continuum
damage mechanics for the tensile behaviour of fibre reinforced concrete. Lange-Kornback and
Karihaloo [10] proposed a model which combined fracture mechanics and a statistical based fibre
bridging approach to represent the softening tensile behaviour of FRC.

A number of macroscopic models have been proposed for simulating the compressive
behaviour of FRCs; Bencardino et al. [11] provides a review of four empirical models for the stress-
strain behaviour of steel fibre-reinforced concrete in compression [12-15] and compares their
performance against several sets of experimental data. The study concludes that each of the
models studied agrees well with the experimental data from which the model relations were
derived but that the models do not show the same level of agreement when compared with other
experimental data.

Macroscopic models often originate from models for plain concrete that have been modified
or extended to describe FRC behaviour. They tend to make use of continuum damage and or
plasticity theories and have an additional component that addresses the crack-bridging effect of
fibres. Fanella and Krajcinovic [16] formulated a continuum damage model to simulate the
compressive and tensile behaviour of FRC in which the damage functions for the cementitious
matrix were coupled with those of the fibres in an equilibrium equation based on a parallel
arrangement of the composite. Peng and Meyer [17] presented a continuum damage based model
for FRC in which the influence of fibres was taken into account phenomenologically by modifying
the damage evolution functions to account for the presence of fibres. Luccioni et al. [18] proposed
a homogenization approach using a modified mixture theory to model steel fibre reinforced
concrete (SFRC) as a composite material comprising a concrete matrix and fibres. The concrete
matrix is characterised by a plasticity model whereas the steel fibres are modelled as orthotropic
elasto-plastic inclusions that can debond and pull-out from the matrix. Fibre debonding and
slipping relative to the matrix is addressed through a fibre pull-out model component based on
the work on Naaman et al [4,5] and Chanvillard [19]. Hameed et al. [20] combined an anisotropic
damage-plasticity model for plain concrete with a constitutive law that modelled the damage of
the fibre-matrix bond. In this formulation the damage of the fibre-matrix bond was described by a
Weibull-type function.

The series of microplane models for plain concrete, developed since the mid 80s by Bazant
and co-workers, has more recently been extended by Beghini et al. [21] and Caner et al. [22] for
the case of fibre reinforced concrete. To include the effect of fibres bridging an open crack, the
softening function of the concrete matrix was coupled in parallel with another cohesive
relationship based on the load resistance model for steel fibre reinforced concrete of Kholmyansky
[23] to give the evolution of the normal component of the microplane stress.



Formulations that model the fibres in a discrete manner have also been proposed. Radtke et
al. [24] presented a framework that combined a damage model with a component that simulated
fibre bridging forces. In this approach the matrix material was characterized by a regularised
damage model and represented by a background mesh. Fibres are then considered as discrete
entities, however they are not explicitly discretized; instead, reaction forces from the fibres to the
matrix, named fibre-forces, are applied to the background mesh, at the points representing the
ends of the fibres. The fibre-matrix interface behaviour obtained from experimental tests is used
directly by assuming the fibre pull-out forces to be equal to the fibre forces applied on the
background mesh.

A number of lattice models for fibre reinforced concrete have been proposed in recent years
[25-28]. These models are successful at capturing both the complex mesostructure and the
physical mechanisms that occur in such a composite as well as the overall macroscopic behaviour.
However, the high computational cost of such models is still one of the major obstacles to them
being applied extensively in the analysis of large scale structural elements. However, such models
are very useful for enhancing our understanding of the mechanisms that govern FRC behaviour.

A rather different approach was more recently adopted by Oliver et al. [29] who proposed a
micromorphic model that describes FRC as a combination of three constitutive domains: the
concrete matrix, the fibres and the fibre-matrix interface. The model is formulated in the general
framework of multifield theory and uses a morphological kinematic descriptor that directly
characterizes the fibre-matrix bond slip mechanism. Micromorphic models can be generally
classed as macroscopic models but enhanced with information coming from particle interactions
occurring at lower scales.

In the present work a novel model for fibre reinforced concrete is presented that builds on
an existing damage-plasticity-contact model for plain concrete proposed by Jefferson [30-31]. This
model employs a number of mechanics-based sub models for the simulation of directional
cracking, rough crack contact and the crack-bridging action of fibres. There was considerable new
work involved in (i) adapting a scalar crack-bridging model to make it compatible with the damage-
contact crack plane model; (ii) developing new expressions for the compressive behaviour of FRC
for use in the plasticity model component; (iii) developing a robust consistent algorithmic tangent
and stress-recovery approach for the combined plastic-damage-contact- fibre-bridging model; (iv)
implementing the model in a finite element code in a computationally robust manner and; (v)
validating the model using a range of experimental data. The result of this work is a new finite
element material model that is applicable to a wide range of FRC problems and allows the
effective simulation of a wide range of FRC characteristic behaviour.

The remainder of the paper is arranged as follows:

Section 2 presents a crack plane sub-model for the crack-bridging action of short fibres
embedded in a concrete matrix and describes how this is included in a damage-
contact crack plane formulation;

Section 3 provides details of how the combined crack plane sub-model is implemented in
the model of Jefferson [30] that considers cracks that can form and grow in
multiple directions;

Section 4 describes the plasticity component of the model that simulates the variation of
compressive behaviour with fibre content;

Section 5 presents the consistent tangent matrix / stress recovery algorithm and describes
how the model was implemented in a finite element code;

In Section 6 a set of single-point simulations of uniaxial tension and compression
experiments is presented followed by results from finite element simulations of
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experimental tests on steel fibre reinforced concrete beams with and without
additional longitudinal reinforcement.

2. Description of the model
2.1. Preliminaries and problem statement

Conventional FRC normally has a volume fraction of fibres in the range 0.5-2%, although mixes
with up to 6% have been used. FRC specimens subjected to tensile loading typically show an
increase in the tensile strength and toughness (generally measured as fracture energy) of the
composite with increasing fibre content [32,33]. The mechanical properties of the composite also
depend on the properties of the matrix, on the properties and geometry of the fibres and upon
the characteristics of the fibre-matrix interface and the methods of processing.

The aim of the present work was to develop a robust and accurate constitutive model which is
able to represent the characteristic behaviour of cementitious composites reinforced with
randomly distributed short fibres — in particular steel fibres — and which is suitable for
implementation in a commercial finite element code. The robustness, accuracy and ease of use of
the model are considered to be equally important.

The constitutive model is developed in the plastic-damage-contact (p-d-c) framework
previously proposed by Jefferson [30,31] in the Craft model for plain concrete which is extended
here to address FRC behaviour. A particular aspect of the original Craft model is its ability to
simulate multiple embedded cracks with various orientations, also referred to as crack planes.
Such a feature proves to be advantageous when modelling fibre reinforced concrete since the
bridging action of fibres across a crack plane has a major influence on the cracking behaviour and
enhances overall ductility. Therefore it is the crack plane behaviour that drives the overall
behaviour of the composite.

2.2. Crack plane formulation

In this work, a crack plane is defined as the mid surface of a narrow band of material of
width % containing a crack (or micro-cracks). The orientation of the plane is defined by axes r; (i=1
to 3), with unit vector r; being the normal to the crack plane and r; and r; being orthogonal in-
plane unit vectors (Figure 1). The components of the crack plane tractions (6 ) and relative-
displacement vector (u ) are as follows:

6=[6,, 6, 65| and i=[a, @, @] (1)

Crack plane quantities are also referred to as local quantities, such that the subscripts 1 to 3
in equation 1 relate to the directions r; to r3. The width of the crack band may be associated with
the width of a fracture process zone [34]. The inelastic components of the crack-plane-relative-

displacements and crack-plane-strains are related by the equation £ =%ﬁ and the elastic crack
plane constitutive relationship is given by:

6=D & =D (§-¢%) (2)
in which &= elastic crack-band strain vector, u = inelastic component of the relative-

displacement vector, € = inelastic or ‘fracture’ strain vector, that is related to the deformations
due to cracking. The inelastic strain tensor in Cartesian coordinates is often expressed in the form
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sz}éh[r@)“er“m@r]' which is equivalent to our transformed inelastic strain vector

S N' &. N is a stress transformation matrix relating local to Cartesian stresses, N gives the

required strain transformation and u,,, is a Cartesian vector of inelastic relative displacements. It

will be seen later on in this paper (in equation 19) that the sum of the inelastic strains of all cracks
at a point form the summed fracture strain vector. The scalar magnitude of the inelastic relative-
displacement is denoted u and the associated strain measure ¢ .

1 0 0
D=E is the elasticity tensor of the crack plane, where E and v are
2(1+v)
1
i 2(1+v) |

Young’s modulus and Poisson’s ratio of the FRC respectively. It is assumed that Poisson’s ratio of
the composite is the same as that of the plain concrete matrix, i.e. v = v,,.

When the model is applied to continuum elements, % is not used directly to relate relative
displacements to strains. Instead, the crack-band model of Bazant and Oh [34] is used in which the
inelastic local strains depend upon the element characteristic length (7, ) and the fracture

energy parameter (Gj).

The effect of fibres on the (effective) elastic modulus of the composite is taken into account
according to the law of mixtures, with the fibre component being derived from a three-
dimensional random fibre network as presented in Garg et al. [35]:

EV v
E:%g+gﬂ~é) (3)

in which Erand E, are the Young’'s moduli of the fibre and the cementitious matrix respectively
and Vris the volume fraction of the fibres. It is noted that the addition of fibres in relatively limited
amounts, as is the case for conventional FRC, has a second order effect on the effective elastic
properties. This has been demonstrated in a study on the effective elastic properties of fibre
reinforced cementitious composites that used continuum micromechanics and finite element
predictions [36].

The degree of damage on the crack plane is characterised by a damage variable, o < [0,1].
Making use of this damage variable, Eq. 2 can be written as:

6 =(-w)DE (4)



Narrow band of partially or fully cracked
material with normal and tangential local
2 unitvectors ry, 1y, r; respectively

X2 r

3 X1

Figure 1. Schematic representation of the crack plane

Cracks are initiated when the macroscopic major principal stress exceeds the tensile strength
of the matrix. Once formed, the fibres that cross the crack start to exert a crack bridging action as
they pull out from the matrix. Tensile and/or shear stresses are transferred across the crack plane

through

the intact material and through the bridging action of the fibres. The model makes use of

the following assumptions in characterising the crack plane behaviour.

1.
2.

Fibre bridging becomes active once damage is initiated (i.e. when w>0).

The bridging action of fibres is active only on the damaged proportion of a crack plane
(i.e.on w) asillustrated in Figure 2.

Fibre rupture is not taken into account, since it is rarely relevant for steel-fibre
cementitious composites.

The bending stiffness or dowel action of fibres is negligible.

Bridging fibres are assumed to deform in accordance with the relative crack
displacements, as illustrated in Figure 3.

Crack bridging via fibres Undamaged material

(1-w)

Figure 2. Stress transfer across crack plane assumption




N
N

Figure 3. Schematic illustration of Assumption 4

The bridging action of fibres crossing a crack plane is interpreted in a classical damage form
and the crack-bridging stress takes the form given in Eq. (5):

65=>1-0,)D & (5)
where wris a fibre effective damage parameter.

Based on assumptions 4 and 5 D, can be written as D sf = Egp -1, where l'is the

second order identity matrix and Eyrepresents the effective elastic stiffness of the fibres crossing
a crack plane before significant debonding occurs.

According to the first two assumptions, the stresses transferred across the crack plane
through the intact material and through the bridging action of the fibres can then be expressed as:

6=(-0)Di+o(l-w,)D & (6)

The evolution of wy is based on the crack-bridging model of Lin and Li [7] in which the
debonding phase is assumed to be linear elastic. The expression of the fibre effective damage
parameter wyis evaluated using the 1D form of Eq. (5):

Op
EyCy

in which {ris an effective crack opening parameter that takes into account normal and shear crack
opening components as follows:

- =%(511+\/5112+4(5122+5132)) (8)

The fibre crack-bridging stress (s,) is based on the model of Li et al. [1] in which &, is

(7)

obtained by integrating the individual pull-out contributions of fibres crossing the crack plane:
.y _
Gu@) ==L [ P p(p)- p(2)dpdz (9)
Ay ooz

where A4, is the area of the fibre cross-section, Py is the pull-out force carried by a single
fibre, u denotes the crack opening, ¢ is the orientation angle of the fibre relative to the crack
plane and z is the distance between the centroid of a fibre and the crack plane. p(p) and p(z)
denote probability density functions of the fibre orientation angle and centroidal distance to the
crack plane respectively. It can be noted from Egs. (4)-(8) that the bridging action of fibres given by
the integration of the contributions of fibres from all possible orientations (Eg. 9) contributes to
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both normal and shear components of the crack plane stress. A further point regarding Eq. (9) is
that it places no restriction on the form of the probability functions and therefore the expression
can accommodate non-uniform fibre distributions. In such cases, the resulting double integral can
be solved numerically if a tractable analytical solution to (9) is not available. A similar procedure is
employed by Soroushian and Lee [37] to derive a theoretical expression for the number of fibres
per unit cross-sectional area. Assuming a linear hardening relationship between the fibre-matrix
interfacial shear stress () and interfacial slip (S) respectively, Lin and Li [7] derived the pull-out
force carried by a single fibre.

S
7:T0[1+ﬂf_J (10)
where dyis the diameter of the fibre and 7) and frare material parameters that characterize
the fibre-matrix interface; the former being the frictional sliding shear stress at the end of
debonding stage and the latter a non-dimensional frictional sliding hardening parameter.

Considering the particular case of uniform random fibre distributions (i.e. p(p) = sin ¢ and
p(z)= 2/Ly), and by taking into account the snubbing effect of fibres, Lin and Li obtained the
following analytical expression for 5, ;

6-B = O-O(l+cf775)(1_775)2 (11)
_ 5;' —€od

L.
.:ﬂf—f and 5 =-1—". L; is the fibre length,

. . L,
in which o, =gr,V, (1+n)ﬁ, ¢,
P

g= 2 fz (1+€0'5ﬁf) is a factor that accounts for the snubbing effect with f being the snubbing
_|_
V,E i i i
coefficient and p=—/"/ . _Hud 4pq &y, =, Where uy,and 3, are the crack
n (-V,)E, 0d =7 P h 0d Uop
openings at the end of debonding and pull-out stage respectively, as given by Egs. (12a,b):
2d g L
ZZOd:_f/i and uopzap—f (12a,b)
By 2
U,
where A =cosh 7. -1 and Q:\/4(1+77)/5’fz-0/Ef . 0, in Eq. (12b) is a reduction coefficient
S

that accounts for the fact that, for inclined fibres, the final pull-out distance is less than the
embedment length, as reported by Naaman and Shah [38]. According to their experimental
results, the final pull-out distance — defined as the total amount of observed slip at which the pull-
out load drops to zero — decreases by approximately 20% relative to the embedment length, as
the inclination angle increases. a, is therefore taken as 0.8. The effective elastic stiffness of the
fibres crossing the crack plane is then evaluated as Ey = gy/eoa. The fibre end slip (S) in Eq. (10) is
directly related to {rand therefore does not appear in the final Eq. (11).

The damage function that governs the crack plane cement-matrix damage parameter w in
Eq. (6), taken directly from [30], is written in terms of a crack plane effective damage strain
parameter £ and takes into account the normal and shear components of &. Full details of the
damage function are given in Appendix A for completeness. We note that the length (%) used to
relate the crack openings to their counterpart strain parameters is replaced by the element
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characteristic length (¢, ) when the model is implemented in a finite element program via the
crack-band approach [34], as in the present work. To clarify the definition of £, we note that {is a
function of €, €=&_,+¢ and Ez%ﬁ (or E=% uin the FE code). Thus, { depends on a local

ch

strain vector that includes both elastic and inelastic components, whereas it is only the inelastic
strain that is scaled by the element characteristic length. The advantage of this approach is that
our damage function is not of zero size (with undefined gradients) at damage initiation, which
would be the case if it were defined in terms of the inelastic strain components alone.

2.3. Modelling different types of fibres

Various types of fibres, including steel, glass, synthetic and natural fibres are used in fibre
reinforced cementitious composites. Regarding the geometry, the most commonly used fibres are
straight, hooked and crimped. By calibrating the bond parameters of the model using the pull-out
properties of single fibres, it was found that the behaviour of both types of fibre could be
reasonably represented.

3. Embedded fibre bridged crack planes in a 3D constitutive model

The fibre-bridging crack plane model presented in Section 2 could be readily adapted for an
interface element or an element with embedded strong discontinuities by replacing the local
strains in Eq. (6) with relative displacements and the elastic constitutive tensor to that applicable
to the interface under consideration. In the present work, this model is implemented in a 3D
constitutive model with embedded directional crack planes and applied to continuum finite
elements. Details of how the crack plane fibre-bridging model is incorporated in the 3D
constitutive model for plain concrete [30,31], are presented below. It is noted that the authors
also applied the crack plane formulation to a 3D micromechanics-based constitutive model which
will be described in a forthcoming publication. The crack plane model described here has a normal
and two orthogonal in-plane shear components, as required for the representation of a crack in a
three dimensional setting. The basic finite element implementation of the model is therefore 3D
but we have also implemented the model for a range of 2D finite element elements, and in this
case, the crack plane has only one shear component. Our approach may be described as an
embedded smeared crack-band model, which employs fracture energy regularisation with a
directionally dependent element characteristic length, for both 2D and 3D finite elements.

3.1. Contact model

Experiments in which cracks are opened under normal loading and which are subsequently
subjected to shear deformation [39] show a definite point at which contact is regained. The work
described in reference [40] demonstrated that the locus of these contact points could reasonably
be represented by a conical shaped ‘contact function’ @ in u space. Furthermore, by assigning a
normal and shear stiffness to the interface, the stress developed after contact could be based on
the embedment displacement, defined as the nearest distance to the contact surface in u space.
In this paper, the approach is developed in terms of the crack plane strains € (Eq. 4) rather than
relative-displacements since the model is to be applied to a smeared crack-band. A recent further
development of this type of contact model [41] involved representing a crack surface with a range



of cones of different slopes and heights according to an experimentally established statistical
distribution function.

[z 2, = 2
&2 T é3 =

\ €
. N -
s . >
I ®:..{ €)=0 -
pl€)=0 N Pt ot
\ Interlock ¢ _ -~ mg
. -~ - 1
c \‘ _- - No contact
ontact "\ S 5
e >

Figure 4. Contact function

A contact model similar to the one described in [30] was employed in this work. Two
different contact surfaces, represented in Figure 4, are defined in the local strain space; an
interlock contact surface (¢;,) and a closed contact surface (¢.). The contact surfaces bound three
regions corresponding to three contact states as follows:

pm(€)200r 5,27, Open contact state (13a)
9l €) <0and p(€) >0 Interlock contact state (13b)
o(€) <0 Closed contact state (13¢c)

where & fur in (13a) denotes the crack opening beyond which no further contact can be gained in

shear. The value of the limiting opening strain € fur is taken from [30] where &y = ug/h

v € =M g8
and uy is the relative displacement at the effective end of the uniaxial tensile softening curve (1o~
0.2 for normal concrete). my,; € [10,20] for concrete with relatively coarse aggregate particles, i.e.
20-30 mm and my;,; € [3,5] for concrete with relatively small coarse aggregate particles, i.e. 5-8 mm.
Parameter my,; was set to 5 for all numerical simulations presented here.

The interlock and closed surfaces delimitating the three contact regions are:

(14a)

- 1 ~ <~ 2 =2
¢int(8)=—2(mg'gll_ (812 +é13 )jZO
J1+m
g
- 1 ~ (=2 =2
(oc(s)=—2(811+mg (812 +&13 )j=0 (14b)
,/l+mg

where m, defines the slope of the interlock surface, as illustrated in Figure 4.

The two contact functions (¢ , (€ ) ) have the following properties:

op,
&

=1 (15a)
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gp*(ﬁ) Py =§_§cont (15b)

where §_ is the local strain on the contact surface nearest to €, in local strain space (Figure 4).

cont
The latter two properties are those of a signed distance function although here the
properties are expressed in local strain rather than Cartesian space.

Considering the contact assumptions from [40], the stress transferred across the crack plane
due to the crack faces regaining contact (s ) depends upon the contact state as follows:

é.=Dg¢, (16a)
€, =0 V (o ®20) or (&,28,) (16b)
é, = Hcgoim(ﬁ)% V. (pimi(8)<0) and (p.(8)>0) (16¢)
e =¢ vV (p.(8)<0) (16d)

where €. is the local embedment strain and H. in (16c) is a function that accounts for the fact that

the contact potential reduces with crack opening. The reduction function derived by Mihai and
Jefferson [42] from geometrical considerations was employed here:

£11—-¢
_3f11=¢

H =e % (17)

c

Including contact, the crack plane or local constitutive equation, Eq. (6) can be expressed as:

§=(1-0)Di+w(l-0,)DE+0DE, (18)

The overall stress—strain relationship may be written as follows:

"p
6 = D,|e->N"g (19)
e J:l J j

where g; denotes the fracture strains for crack j and n, = number of crack planes at the current
point (i.e. at a finite element integration point).

The crack plane model relationship in Eq. (18) is now written in the form of Eqg. (20a), in
which the crack-plane index (j) and all dependencies are omitted for clarity:

6=D(ME+& )+DM;& (20a)
or
6 = Dypé+ DE, (20b)

where M = (1-w)I ,M; = (1-wg)I, Dggg =DM + DMy, &, = wé, and | = identity matrix.
From Egs. (2) and (20b) it may be deduced that the fracture strains are given by:
g=£-C& = Cyp, (6 - D& ) - Cé = (Cy — C)6 - Cyp D, (21)

in which C=D"! and Cass =(l~)MS —ﬁfo)_l :ﬁdfs_l
Using Eq. (21) in Eq. (19) and noting that 6 =N &, gives:
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1
¢ = (I+DeziNjT(édfsj—éj)Nj] De[(a—sp)+z”leédf5jf)§%] (22)
j= j=

An expression for the fracture strains may be derived by introducing Eq. (20b) into Eq. (21)
which leads to:

€= (Cdfs _é)(f)dfs§ + ﬁgc)_édfsﬁéc (23)
Rearranging Eq. (23) gives:
g =(1-CDyp )£, (23a)

The expression in (23a) can then be used in Eq. (19) to calculate the global stress.

4. Compressive behaviour. Plasticity component

A plasticity component based on that presented in [30] is included in the present work to
describe the characteristics of FRC behaviour in compression. The original plasticity component
employed a simplified version of the Willam and Warnke [43] smooth triaxial yield surface and
frictional work-hardening/softening functions. This model provided an effective characterisation
of the compressive behaviour of plain concrete which included; significant pre-peak non-linearity
and post-peak softening, increased strength and ductility with triaxial confinement. A full
description of the plasticity component is given in [30,31]; however, key equations are given in
Appendix B for completeness. In the present work, the original plasticity model was adopted and
modified to account for the changes in the characteristic compressive behaviour that occur with
the addition of fibres, in particular steel fibres. Experiments on steel fibre reinforced concrete
specimens subjected to uniaxial compression [15,44] indicate several characteristic features such
as:

e Increased toughness or ductility with increased fibre content

e Increased compressive strength with increased fibre content

e Increased strain at peak stress with fibre content

e Decreased slope of the post-peak part of the stress-strain curve with increased fibre
content at a constant aspect ratio of fibres

e Decreased slope of the post-peak part of the stress-strain curve with increased fibre
aspect ratio for constant fibre content

The key equations for the plasticity component are given in Table 1 with the terms being
fully explained in Appendix B:

Table 1. Plasticity component

F(0,Z(K)) =[5 -AT(9)+(0:+§)-11 Z—f,-Z-(1-a) Yield function (24)

G(0,Z(x)) =+/J, AT(0)+(a+%j LZy—fZy(-a) Plastic potential (25)

£, = a—G/ipl Flow rule (26)
06

K= X(G)GTép Hardening rule (27)
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The original friction hardening/softening function for Z employed in [30] is calibrated against
a uniaxial compression stress-strain curve, which is controlled by the uniaxial compressive strength
(f.) and the strain at peak uniaxial compression (g.). This function for Z gives a smooth transition
from pre to post peak behaviour, was modified in this work as follows:

J = ZO +|:w e'ccﬂk’ _Zoi|(]_e'cc277c’) (28)
a.

where 1.=K/K;; &, = value of k at the peak yield surface position given by:
I
K, = fc(o.ngc _ﬁj (29)

To ensure that the peak occurs at Z = 1, the constants must satisfy the following
relationships:

C 2 6_662 I_ZO
— —Cc2
1-Zye ™

C
l—e 2 1-Zje 2

and a.=e (1_8—%2 ) (30a,b)

cl

Parameter c., controls the slope of the descending branch of the stress-strain curve. As
mentioned above, in the case of steel fibre reinforced concrete, the post-peak slope of the
compressive stress-strain curve decreases with increasing fibre content. To reflect this, ¢, is
assumed to have the following nonlinear variation with respect to the volume fractions of fibres
Vi

Ca =01~ 'Uv(Vf)a3 (32)

V

with n, = f , where ¥y, represents the upper limit of the volume fraction of fibres taken
f lim

here as 8%. It was found that values of a; = a3 = 0.1 and a, = 0.08 provided a good match to the

experimental data of Marar et al. [44].

It is further assumed that the compressive strength (f.) and the strain at peak stress (&) in
Eq. (29) are functions of fibre content and aspect ratio [15,44]. The variations of both f: and &, with
the volume fraction (¥)), and aspect ratio (ar = L/d)) of the fibres are governed by Egs. (32) and
(33) respectively and illustrated in Figures 5a and 5b:

[ Wpap) = fo [ 14 4,(V)- Ay (ap) | (32)
e(Vy,ar)=éq '[1+/1vg(Vf)'/1ag(af)] (33)

in which f. is the uniaxial compressive strength of the unreinforced matrix (i.e. when V; = 0%),

ey (V)
ﬂv(Vf) =
CV

¢ Ay —dprg
) T Alay)=n,(ap) and na(af)=m-flfo and ayiim are
the lower and upper limits of the fibre aspect ratio. For steel fibres, ap and ariim are taken as 20
and 100 respectively. Moreover, ¢, is the uniaxial compressive strain at peak stress of the
ecvgl‘ﬂv(Vf) 1

unreinforced matrix, 4, (V) =c,; TN and 4,.(a,) :na(af)casl )
Cpp €S G+
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The set of parameters given in Table 2 were found to provide a good match to experimental

results.

Table 2. Plasticity parameters

Cyl Cy2 Cal Cyel Cye2 Cye3 Cacl
10 15 0.5 18 100 10
(a) Variation of f, with V;
1.4 : 1 1 : V4
® Exp:af=60 i E E ’
1.35 |-~ i R Sy~ LS
Num: af=60 | |
13 [--- B Exp:af=75 "___"':'""""""':'"""'7" """""""
: : g
195 |--- Num: af=75 J: _____________ Ii ______________
...\_% Lo A bBe:afss 4: iy i _____________
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R e . ro-mmmomooee-
N e s 55 e RS
105 |-~ -- --"--"--"---""""""""---i- -------------
1 .
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() Variation of €, with V;
3 r T 7
' i i /.
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K] === Num: af=83 ! Pid :

Figure 5. Variation of (a) the uniaxial compressive strength, /. and of (b) the uniaxial compressive strain at

peak stress, ¢. with fibre content, 1.
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5. Consistent tangent matrix

The derivation of the consistent tangent is given first for the case in which the plasticity
component is not active.

The incremental crack plane relationships may be derived from Eq. (20a) to be:

S Og‘i‘aasfjé‘é-f-ﬁf(Mf-‘raM
&

56=ﬁ[Ms+aM f o§j5§=(ﬁMs'+ﬁfo')5§ (34)

in which° denotes a third-order-matrix vector contraction. This can be re-written as:

56 = Dy 0% (35)
where b ;' =DM + DM ¢

The incremental fracture strains are then given by Eq. (36):

55 =55 C56 :(f)df"l —f:) 56 :(édf' —C) 56=C'56 (36)

The incremental form of the constitutive relationship (19) (with g,= 0) is given by:

56 =D, [58 > (N'og; + 5NjT§j)J (37)
j=1
Using (36) in (37) and rearranging gives the following consistent incremental stress—strain
relationship:

-1
50‘:[I+De(f NJ.TC'J.NJ.D D J¢ (38)
j=1

When the plasticity component is added, the consistent tangent matrix follows the same
derivation as given in [30] and is included in Appendix C for completeness.

6. Numerical results

Numerical predictions from a range of single point and FE simulations are presented here to
assess the performance of the proposed model.

A relatively small number of parameters are required by the model; apart from the
parameters that are related to the behaviour of plain concrete, all of which are detailed in [30],
the addition of fibres introduces a further seven parameters as follows:

e The modulus of elasticity for the fibre material £,

e Fibre content, Vrand parameters relating to the geometry of fibres, Lrand dy
e Parameters describing the fibre-matrix interface: frand 7y

e Snubbing parameter f;.»

Ej;, Lrand dr can be obtained directly from material data sheets supplied by fibre manufacturers
and JVris specified in the mix design. The fibre-matrix interface parameters can be obtained from
single fibre pull-out tests [7] whereas the snubbing parameter can be determined as proposed by
Li et al. [45]. The parameters related to the plasticity component were fixed at the values given in
Table 2 for all examples.
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The sensitivity of the predicted response to variations in the fibre-matrix interface
parameters is explored in the first example. No such study is performed for the other fibre
parameters because these are based solely on the basic geometric and physical properties of the
fibres themselves.

6.1. Single point simulations. Uniaxial tension test of Li et al. [33]

Numerical results for a uniaxial tension strain path obtained with the proposed constitutive
model are compared with the experimental data of Li et al. [33] and presented in Figures 7a, b.
Simulations for mixes with fibre volume fractions of 2%, 3% and 6% respectively were carried out
for two different types of steel fibres, namely Dramix fibres— which have a circular cross-section
and hooked ends — and Harex fibres — which have an arc cross-section and straight ends.

In the experimental tests, different concrete mixes were used for each fibre volume fraction
in order to achieve sufficient workability: mix A was used for 2%, mix B for 3% and mix C for 6%
fibre volume fraction respectively. Separate experimental tension tests were conducted on plain
concrete specimens for all three plain mixes as well as on the associated FRC specimens. Therefore
the numerical simulations were conducted in two stages as follows:

e Stage 1 comprised simulations of the uniaxial tension tests for the three plain concrete
specimens, employing the material properties in Table 3. Comparisons between the
numerical and experimental results are presented in Figure 6.

e Stage 2 simulations considered the fibre reinforced concrete specimens, using the material
properties given in Tables 3 and 4. The predictive results for FRC using Dramix fibres are
shown in Figure 7a and the results for FRC using Harex fibres are presented in Figure 7b.

Table 3. Material properties for plain concrete

Mix type | E, [MPa] | v | foo [MPa] | fio [MPa] | & | Gy [N/mm]

A 35000 | 0.18 46.3 3.6 0.003 0.08
B 32000 | 018 52.4 3.7 0.003 0.075
C 28000 | 0.18 52.2 3.9 0.003 0.065

fio —tensile strength of plain concrete (see Appendix A)

Table 4. Fibre properties

Fibre type | V;(%) | Matrix type | L;(mm) | dr(mm) | E;(MPa) Br 79 (MPa) | fomub
2 A 0.85

Dramix 3 B 30 0.5 200000 | 0.17 1.55 0.8
6 C 0.7

2 A 0.85

Harex 3 B 32 0.8 200000 | 0.105 2 0.8

6 C 0.7
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Figure 6. Numerical predictions for plain matrix. Uniaxial tension.
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Figure 7a. Uniaxial tension predictions. Concrete reinforced with Dramix fibres
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Figure 7b. Uniaxial tension predictions. Concrete reinforced with Harex fibres

It can be seen from Figures 7a and 7b that the model predicts well the characteristic increase
of tensile strength and toughness with increasing fibre content. It is noted that only one
experimental curve for each FRC mix was presented in Li et al. [33]. However, following an
extensive experimental study on the behaviour of fibre reinforced concrete beams tested in 3-
point bending, Parmentier et al. [46] reported a considerable variation of the mechanical
performance, with experimental results from sets of tests with the same parameters having
coefficients of variation greater than 20%. This level of experimental scatter was attributed to the
heterogeneous nature of the material and was thought to depend mainly on variations in the
distribution and orientation of fibres. Therefore, the apparent difference between the numerical
predictions obtained with the proposed model and the experimental results is likely to be due to
this inherent variability of FRC behaviour.

The sensitivity of the model to the fibre-matrix interface parameters 7y and fris shown in
Figures 8a and 8b respectively for numerical simulations of uniaxial tensile tests using Dramix
fibres with a volume fraction of 2%. In these simulations, the values used for 7y and fy were varied
by + 20% relative to the nominal values from Table 4. The values of 7y and S, employed for the
sensitivity studies and the predicted strength values (f;), as well as those of the stress
corresponding to a uniaxial tensile strain of 0.003 (0o003), are given in Table 5. Values of the
remaining parameters are those given in Table 4.

79 has a moderate influence over the predicted values of strength, with a variation of under
5% between the strength values from simulation S1 and simulation S3 respectively. The influence
of 7y is significantly stronger in the post peak region; the predicted values of g3 increase by
approximately 35% as 7 increases from 1.25in $3 to 1.85 in S1.

The model sensitivity to the variation of fris altogether more limited; the predicted strength
values remain unchanged whereas the predicted values of gy g3 increase by approximately 11% as
Princreases from 0.14 in S6 to 0.2 in 54.
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It is noted that values for the fibre-matrix interface parameters 7, and f;can be obtained for
single fibre pull-out tests [7].

Table 5. Sensitivity study. Fibre-matrix interface parameters

79 sensitivity Vf (%) | 79 [MPa] ﬂf ﬁf [MPa] | 0¢.003 [MPa]

S1 1.85 4.18 3.18
S2 2 1.55 0.17 | 4.16 2.70
S3 1.25 4.10 2.20

,Bf sensitivity Vf(%) 79 [MPa] ﬁf ﬁf [MPa] | 0¢.003 [MPa]

54 0.2 4.16 2.84
S5 2 1.55 0.17 | 4.16 2.70
S6 0.14 | 4.16 2.55

Model sensitivitytozo, Vr=2%

45
4
35
T 3
S
*a-' 2.5
£ 2
g 15 | ——51-10=1.85
1 r ——S2-10=1.55
0.5 | —a—53-10=1.25
O 1
0 0.001 0.002 0.003 0.004
xx-strain

Figure 8a. Sensitivity of 7. Uniaxial tensile predictions
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Figure 8b. Sensitivity of ;. Uniaxial tensile predictions

6.2. Single point simulation. Uniaxial compression tests of Marar et al. [44]

In this example, results from single-point numerical predictions of uniaxial compression tests
are compared with the experimental results of Marar et al. [44]. The experimental tests were
performed on standard cylindrical specimens (150x300 mm) made of normal strength concrete
reinforced with various volume fractions of hooked-end steel fibres of different aspect ratios.
Simulations were carried out for two types of Dramix steel fibres; (i) Ly= 30 mm & dr= 0.5 mm (i.e.
aspect ratio of 60) and (ii) Lr= 50 mm & dy= 0.6 mm (i.e. aspect ratio of 83). For each case, four
different fibre volume fractions were considered; 0.5, 1.0, 1.5 and 2% respectively.

The values of the model parameters used in the numerical simulations are given in Table 6,
and the predicted and experimental results are compared in Figures 9a and 9b.

Table 6. Material properties. Uniaxial compression simulations

E,MPal | v |fw[MPa]|fi[MPa] | &o |Gy [N/mm]| Ef[MPa] | B | 7o (MPa) | fiu
28000 0.18 52.2 3.9 0.002 0.065 200000 | 0.17 1.55 0.7
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Figure 9b. Uniaxial compression predictions. (ii) Fibre aspect ratio = 83
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Numerical predictions obtained for a substantial set of FRC mixes are in good agreement
with experimental data; the model captures the increase of ductility in compression with
increasing fibre content.

6.3. FE simulation. 3 point bend test of Bencardino et al. [47]

Both FE simulations were undertaken with the finite element program LUSAS in which the
current model has been implemented. 4-noded linear quadrilateral elements with a 2x2 Gauss-
Legendre integration rule were used throughout. The nonlinear solutions were undertaken with an
incremental-iterative Newton solution scheme. The number of load/displacement increments for
each solution varies from 30 to 70 and the convergence tolerance used was 0.01% for both the
iterative displacement and out of balance force L2 norms.

In the first FE example, simulations of a series of 3-point bend tests by Bencardino et al. [47]
are presented. The experimental tests were carried out on notched prismatic specimens made
from plain concrete (PC) and steel fibre reinforced concrete (SFRC). Hooked-end Dramix steel
fibres with volume fractions of 1% (DS1%) and 2% (DS2%) respectively were used. A schematic
representation of the experimental set up as well as the specimen geometry and dimensions (in
mm) are presented in Figure 10. Three specimens were tested in each set of experiments;
however a single representative load-deflection curve per set was presented.

‘F

I T 125,
0 250 250 ‘50 | 150 |
600

150

Figure 10. Bencardino et al. [47] experimental setup

The finite element mesh with the boundary conditions used for the numerical analysis is
shown in Figure 11. The material parameters employed are given in Tables 7a and 7b. For each set
of tests, finite element predictions of the load-central deflection curves (F-6) are compared with
the experimental curves (Figure 12). Plots of the major principal strains showing the regions of
localised strains are presented on deformed meshes in Figures 13a,b. For convenience, the same
strain range was used for all strain profiles in Figures 13a and b. The proposed model is able to
capture the increase in strength and ductility of the composite as the fibre content increases. It is
noted that significant scatter of the experimental post peak response has been reported by
Bencardino et al. [47]. For instance, a coefficient of variation of the peak load of approximately
18% was obtained from the responses of the three specimens tested in the DS1% case. The scatter
in the experimental results was attributed to an uneven fibre distribution. It can be observed from
the FE strain profiles that damage is more localised for lower fibre volume content, as may be
expected.
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Centre line

Figure 11. Finite element mesh and boundary conditions. Simulation of Bencardino et al. [47] experiment

Table 7a. Material properties for plain concrete

Case | E,, [MPa] Jfeo [MPa] | fio [MPa] | & | Gf [N/mm]
PC 40000 | 0.2 68 2.5 0.002 0.07
Table 7b. Material properties for fibres
Case | Vy(%) | Ly(mm) | dr(mm) | E,(MPa) | Sy | to(MPa) | fsun
DS1% 1 0.85
.62 21 . 1.
DS2% 5 50 0.625 0000 | 0.06 9 0.75
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Figure 12. Load-displacement predictions from FE simulations of Bencardino et al. [47]
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Figure 13a. Major principal strain profile from FE simulations. V;= 1%
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Figure 13b. Major principal strain from FE simulations. V= 2%

6.4. FE simulation. 4 point bend test of an FRC beam with additional conventional
reinforcement. Flakk and Tordall [48]

The final example is the analysis of a fibre reinforced concrete beam with and without
additional flexural reinforcement tested by Flakk and Tordall [48]. Rectangular beams with
different amounts of flexural reinforcement, in addition to the 1% volume fraction of Dramix
65/60 fibres in the concrete mix, were tested in 4-point bending. Three series of tests, in which the
quantity of flexural reinforcement varied, were carried out and in each of these series two beams
were cast and tested. The concrete used was a self compacting concrete designed as a C30. The
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test setup is presented in Figure 14 and details of both types of reinforcement are given in Table 8,
noting that ¢12 denotes a standard (high yield, high bond) 12 mm diameter reinforcing bar.

. 200 ,
P/2 P/2 =] M1
_______ l /\(\ L « QL P 3¢12
2l
o
Nl
M2
300 1300 800 1300 300 O 1612
4000
M3
Figure 14. Flakk and Tordall [48] experimental setup
A y
£ ¢ =y
Figure 15. FE mesh and boundary conditions. Flakk and Tordall [48] simulation
Table 8. Material details for series of 4-point bending tests.
Test case Vi (%) Ly (mm) dr (mm) Flexural reinforcement
Ml 1 60 0.9 3912
M2 1 60 0.9 112
M3 1 60 0.9 -

The finite element mesh used is presented in Figure 15 and the material properties used are
given in Tables 9a-c. The reinforcement is modelled with 2D linear bar elements, using a hardening
plasticity model for steel with the material properties given in Table 9c.

Finite element predictions of the load — mid-span deflection curves are compared with the
experimental curves for the three sets of tests in Figure 16. Plots of the major principal strains
showing the regions of localised strains are presented in Figures 17a-c.
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Table 9a. Material properties for plain concrete matrix

Case E, [MPa] | v | foo [MPa] | fio [MPa] &o | Gr [N/mm]
Concrete matrix 25000 0.2 43 32 0.0022 0.1

Table 9b. Material properties for fibres

Case Vf(%) Lf(mm) df(mm) Ef(MPa) ﬁf‘ T0 (MPa) f:mub
Fibres 1 60 0.9 210000 | 0.03 | 2.75 0.8

Table 9c. Material properties for steel reinforcement

Case Eg[MPa] | v, | fy [MPa] | H'[MPa] | g,
Steel rebars 205000 | 0.3 580 1000 0.011
fy=yield stress, H’ =hardening modulus, &,=the strain limit for hardening

4 point bend test - Vf=1% +RC
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Figure 16. Load-displacement predictions. FE simulations of Flakk and Tordall [48] test
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Figure 17a. Principal strain profiles from FE simulations. Set M1
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Figure 17b. Strain profiles from FE simulations. Set M2
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Figure 17c. Strain profiles from FE simulations. Set M3

FE simulations using the proposed model capture well the increase of the peak load and
ductility with increasing amount of longitudinal reinforcement. The strain profiles obtained from
the simulations of the three tests show that the damage tends to be more distributed the more
flexural reinforcement is used which is consistent with experimental observations.

Additionally, load — deflection FE predictions are presented in Figure 18 for the case of a
plain concrete beam with conventional flexural reinforcement (RC) and that of an FRC beam with
conventional flexural reinforcement (R/FRC) respectively, noting that no such comparisons were
provided in the experimental study of Flakk and Tordall [48]. Beam dimensions, FE meshes,
boundary conditions and material properties used are those in example M1 (Table 8, 9 and Figures
14, 15), with the exception that V; = 0% for the RC case. Comparative plots of the major principal
strains for a mid-span deflection of 35 mm are presented in Figure 19 for the two cases.

It can be observed that the addition of fibres to concrete reinforced with conventional
reinforcing bars increases the amount of tension-stiffening and the flexural capacity of the

31



material compared to plain RC. Moreover, the comparative strain profiles in Figure 19 show that
cracking is more extended and crack localization is more pronounced in the absence of fibres,
suggesting that the cracking characteristics are improved in the case of R/FRC. The qualitative
observations drawn from the comparative numerical study are in agreement with the
experimental observations of Deluce and Vecchio [49].

When fibres and conventional reinforcing bars are both present, the effect of the fibres can
be minimal after the reinforcement has yielded and the crack widths have become sufficiently
large for the fibres to fully (or almost fully) pull out. It is noted that, the model automatically
accounts for this behaviour as a result of the mechanics based pull-out model. This is apparent in

Figure 18 where softening appears soon after the conventional reinforcement yields.

4 point bend test - FE predictions

120
PRy et Y
100 \s
\‘ -
2
= 2
2 0 === FE-R/FRC |
0
0 10 20 30 40
Mid-span deflection (mm)
Figure 18. FE predictions for RC and R/FRC beams under 4 point bending

32



FE - RC

0.0

0.125E-3

0.25E-3

0.37T5E-3 .

0.5E3 Strain range

0.625E-3

0.75E-3

0.875E-3
. 1.0E-3

Figure 19. Comparative study. Strain profiles from FE simulations

6.5. Discussion

In general, experimental studies on fibre reinforced cementitious composites show a
considerable variability in the behaviour and this is largely attributed to a poor control of the fibre
distribution which results in uneven orientations of fibres in different specimens [11, 46].
Significant effort has been directed towards engineering the mix and casting processes for such
composites in order to obtain uniform distributions and orientations of fibres [50-52]. However,
this statistical variation remains an important factor that should be taken into account when
assessing modelling capabilities. Considering the above, a strong correlation between the
numerical predictions and experimental results can be observed. This indicates that the proposed
model captures correctly key characteristics of the overall macroscopic mechanical behaviour of
fibre reinforced cement based composites, such as the increase of ductility and overall toughness
of the fibre reinforced composite relative to plain concrete.

No significant numerical instabilities were encountered during the finite element simulations
and convergence was achieved for all numerical simulations. The example presented in section 6.3
is used for a convergence study in which the effect of varying the fibre content on the solution
convergence history is evaluated. The convergence history for the range of increments that
require the largest number of iterations to achieve convergence is presented in Table 10 for V=
0% (i.e. plain concrete) and for V; = 2% respectively. In both cases and the same fixed
displacement increment is prescribed. It was found that fewer iterations are required to achieve
convergence in the case of fibre reinforced concrete than in the case of plain concrete and
therefore the fibre bridging component has a stabilising influence on the model.
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Table 10. Convergence history for selected increments

Plain concrete (V;= 0%)

FRC (¥} =2%)

Increment Iteration ¥ (%) Increment  Iteration ¥ (%)
3 1 5.09E+00 3 1 3.68E+00
3 2 4.54E+00 3 2 2.57E+00
3 3 4.92E+00 3 3 1.72E+00
3 4 4.17E+00 3 4 7.62E-01
3 5 3.67E+00 3 5 4.53E-01
3 6 3.65E+00 3 6 2.91E-01
3 7 3.31E+00 3 7 1.93E-01
3 8 2.47E+00 3 8 3.18E-03
3 9 8.60E-02
3 10 7.55E-04
4 1 5.54E+00 4 1 2.62E+00
4 2 6.19E+00 4 2 2.57E+00
4 3 5.30E+00 4 3 1.67E+00
4 4 4.89E+00 4 4 9.73E-01
4 5 4.55E+00 4 5 4.93E-01
4 6 4.06E+00 4 6 2.87E-01
4 7 3.82E+00 4 7 1.82E-01
4 8 3.11E+00 4 8 3.31E-03
4 9 8.16E-02
4 10 7.64E-04
5 1 5.54E+00 5 1 1.92E+00
5 2 5.82E+00 5 2 2.94E+00
5 3 5.22E+00 5 3 3.00E+00
5 4 4.76E+00 5 4 1.68E+00
5 5 3.96E+00 5 5 1.23E+00
5 6 3.50E+00 5 6 9.57E-01
5 7 2.98E+00 5 7 3.13E-01
5 8 2.10E+00 5 8 8.66E-03
5 9 5.03E-02
5 10 3.13E-04

A mesh convergence study was carried out for the three-point bending example in Section
6.3. A coarse and a fine mesh, with element sizes of 10mm and 5mm respectively, were employed
for this purpose (Figure 20). The predicted FE load-deflection responses obtained with the two
meshes for V;= 2% are shown in Figure 21, noting that the parameters in Tables 7a and 7b, case
DS2%, were employed in both simulations.
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Figure 21. Force — displacement numerical predictions
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7. Conclusions

The plastic-damage-contact constitutive model presented is able to simulate directional
cracking, rough crack contact and the crack-bridging action of fibres, as well as the increase in
fracture toughness and tensile strength that occurs with increasing fibre content. The variation of
compressive strength and strain at peak stress with fibre dosage can be modelled using a frictional
hardening plasticity component with fibre-content dependent evolution functions.

Numerical predictions, obtained in a range of single-point simulations, show that the
proposed model is able to represent well the complex characteristic behaviour of FRC in both
tension and compression.

Results from a series of analyses of experimental FRC beams, with and without conventional
reinforcement, demonstrate that the constitutive model, when implemented in an FE code, is able
to reproduce the experimentally observed behaviour with good accuracy.
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Appendix A. Damage function

The evolution of the damage parameter w is governed by an effective damage strain
parameter ' and is based on a standard exponential tensile softening function given by:

o({) 1—%eq[§g‘)§t}

where {; = fw/E.n and fyy is the uniaxial tensile strength of plain concrete. g is the strain at the
effective end of the uniaxial tensile softening curve and ¢; =5.

(A1)

The evolution of the effective strain parameter { is governed by the following damage function,
which is taken from Reference [30];

- 2 )
Cog(:5)= %{”[fj }2%\/@2 ) it (87 + 557 (A2)
V4

$a (86 )=Ceq(85)-C (A3)

with the standard loading/unloading conditions ¢ >0, ¢, <0; ¢-¢,=0; Cdy =0 V ¢, =0
Also, §=ft§;a?; in which the superior dot denotes the time derivative and ¢ represents time.

The constants ¥ and u are the strain equivalents of the shear stress intercept and the
asymptotic shear friction factor respectively of the damage surface in strain space. These are
computed from the relative shear stress intercept (r,=c/fy) and the asymptotic friction factor (u);
i.e. =(E/G)-rs and u=(E/G)-ls noting that c is the shear stress intercept. R, and u, are set to
1.25 and 8 respectively.

If applied to an interface, damage is initiated when (, first exceeds ¢. In a continuum model
(Section 5), cracks are initiated using a principal stress criterion and the crack plane first forms in
the major principal stress plane.
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Appendix B. Details of the plasticity model

The yield function F' and the plastic potential function G were kept unchanged from the
original plasticity model [30]

F(o,Z(K)):\/Jj-Ar(Q)+(a+§j-ll Z—f-Z-(1-a) (B1)
G(G,Z(K)):@Ar(9)+(a+§j LZy—f Zy(1-a) (B2)
whereA ) =p 2 cos(0)* +b* . I, = 1°" stress invariant, J, = 2" deviatoric stress

' ‘ cos(0)+b\/2 cos(8) +c

invariant, @is the Lode angle (with range 0 to 60°) and Zis a friction hardening factor, which is in
turn a function of the work hardening parameter x. Z varies from a possible value of 0, at which
the yield surface degenerates to a line on the hydrostatic axis, up to 1 at the peak surface position.
The initial position of the yield surface is governed by the initial value of Z=2, which was set to
0.85 for all examples presented here. f. in Eqgs. (B1) and (B2) is the compressive strength that
varies with the volume fraction of fibres, as presented in Section 4.

The material parameters required to define the constants are discussed in [30]:
b -1 5 3(1-p) 4
e T R N e RN s
25, -1 2 P YT e NE

in which b, is the ratio between the uniaxial and biaxial strengths for plain concrete, generally in
the range 1.05-1.3 [53,54]. For all examples presented here b, was set to 1.15.

The plastic potential function G has the same form as the yield function with the exception
of the addition of the dilatancy term, y. yis a material parameter which normally set to -0.1 (See
Reference [30] for thermodynamic restrictions).

The flow rule is derived from the plastic potential in the standard way as follows

oG ;
% =6

(B3)
Apiis the plastic multiplier, which obeys the condition 20 and gpis the plastic strain rate.
The work hardening parameter, expressed in rate form, is given by:
k:X(G)GTép (B4)
in which X{o) is ductility parameter which depends upon the first stress invariant as follows:

X =e’+e' + X,
(B5)

where y = d +0.55 and X, =0.0022
£%0.9
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Appendix C. Consistent tangent matrix with plasticity component active

The consistent tangent matrix with the plasticity component active takes the following form:

T
So=| A, _M Se
f Ag. —h

in which:

-1
A, = (1 +D, (MGM +3NTEN, D D,
=1

f = oF L oF, a ALk,
06 Ok
oG o°G
g, = +AA a,cC,
66 060K
h. = 6—Fa «Cr
oK

where A is the increment of the plastic multiplier and:

2 2
sz(a G, oG

5 a KAﬂk UT
06~ 060K

P -1
=[1—MXGT 0°G J

o6odk
C, —XGTa—G
06
2
k, =X @+a—?c
06 Oo

(C1)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)
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List of symbols

Symbol Meaning Symbol Meaning
a e e Constant in hardening plasticity a0 Pe Yield function constants (App B)
o Tel Te2 function
0 dr d Aspect ratio of fibres and upper & ap Pull-out reduction coefficient (Eq.
o 5 lim lower limits of this ratio 10b)
L L . Fibre-matrix interface parameter.
Function in plastic yield function b .. . p'
A6 Frictional sliding hardening
(App B)
parameter
. . Strain at the effective end of
b,c Yield function constants (App B) & .
softening curve
b Biaxial to uniaxial compressive &0, E Strain at uniaxial peak compression
g strength ratio for plain concrete and FRC
E0q-€ i h f i
‘ Shear stress intercept (App A) 0d>€0p Strains at the end. of debonding
and pull-out respectively
. €,€0,E Cartesian total strain, elastic strain
Softening curve constant (App A TeTP ’
¢ ing curv (App A) and plastic strain vectors (6x1)
€. & Crack plane total strain, crack plane
Constants in the crack-bridging &e. & . P . " . P .
g . elastic strain, crack plane inelastic
stress function .
(or fracture) strain vectors (3x1)
Cvb 62 CalCrcl. | plasticity parameters (Table 2) Ee @€
cvs:Z, cvs3, Cael
¢ Elastic crack-band compliance 4 Effective damage strain parameter
matrix
~ . Effective crack opening strain
C s Local crack compliance o P &
parameter
dy Diameter of fibres & f/E. (tensile strain measure)
~ . N . Zy Initial value of fraction hardening
D Local elastic constitutive matrix
parameter (App B)
Friction hardening/softenin
D, Elasticity tensor matrix (%) ! I. ing/ ing
function (App B)
- Constant in the crack-bridgin
€, Local embedment strain 71 G0 I dging
stress function
Young’s modulus of FRC, of fibres e Normalised plastic work hardening
E E; E, and of plain concrete matrix function
respectively
E Effective elastic stiffness of the Mar My Normalised fibre aspect ratio and
4 fibres crossing a crack plane fibre volume fraction
feo fe Uniaxial compressive strength of 0 Lode angle (App B)
plain concrete and of FRC
fo Uniaxial tensile strength of plain K Work hardening parameter (App B)
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concrete

Sfomup Snubbing coefficient K, K at peak of control function
F(o,Z) Yield function (App B) A, Q Constant in the crack-bridging
stress function
G Shear modulus (App A) i Plastic parameter (App B)
G(g,Z) Plastic potential (App B) A(Vy, 4V | Functions describing the variation
ff.and ¢. with Vyand a,
(@), Funf@) of f. and ¢. with Vyand g
Gy Fracture energy 7, Asymptotic shear strain friction
factor (App A)
Hs
Asymptotic shear stress friction
factor (App A)
h Physical crack-band thickness, 1% Poisson’s ratio
which equals the width of the
fracture process zone
H. Contact reduction function P Pe Yield function constants (App B)
1 Identity matrix o) Constant in the crack-bridging
stress function
1; 1% stress invariant (App B) o Stress vector (6x1)
Jo 2" deviatoric stress invariant (App c Crack plane stress vector (3x1)
B)
len Element characteristic length G, Contact crack plane stress vector
Ly Length of fibres Ty Fibre-matrix interface parameter.
Shear stress at the end of
debonding
Mg Slope of conical part of contact Oini(€), Interlock and closed contact
function functions
(/76(5)
My Multiplier on &g which controls the ey, Damage function (surface in local
effective end of a shear contact strain space)
region
N Stress transformation matrix x{d) Mean stress function used in
computing X (App B)
Iy, I3 Crack plane coordinate unit Xy Confinement ductility function
vectors (App B)
. Relative shear stress (App A) 7 Dilatancy constant
Ugg -ty Crack-openings at the end of 0] Damage parameter (0 < w< 1)
debonding and pull-out stage
respectively
u Crack plane displacement vector [on Fibre effective damage parameter
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u Inelastic component of the crack
plane displacement vector
Ve Volume fraction of fibres
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