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Abstract

A novel method for extracting linear streets from a street network is proposed

where a linear street is defined as a sequence of connected street segments

having a shape similar to a straight line segment. Specifically a given street

network is modeled as a Conditional Random Field (CRF) where the task

of extracting linear streets corresponds to performing learning and inference

with respect to this model. The energy function of the proposed CRF model

is submodular and consequently exact inference can be performed in poly-

nomial time. This contrasts with traditional solutions to the problem of

extracting linear streets which employ heuristic search procedures and can-

not guarantee that the optimal solution will be found. The performance

of the proposed method is quantified in terms of identifying those types or

classes of streets which generally exhibit the characteristic of being linear.

Results achieved on a large evaluation dataset demonstrate that the proposed

method greatly outperforms the aforementioned traditional solutions.
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Extraction

1. Introduction

The automated extraction of geometrical patterns from street networks

represents an important component in many geo-spatial applications (Yang

et al., 2010). For example, Weiss and Weibel (2014) used a measure of

street network centrality to determine the most significant subset of a street

network to be represented when reforming map generalization. Porta et al.

(2006) extracted connected groups of street segments and used this as a plat-

form for performing network analysis. In order to align two different street

network representations of a common area, Koukoletsos et al. (2012) first

extracted geometrical patterns from both representations and subsequently

aligned these patterns.

A street network can exhibit a wide spectrum of geometrical patterns, a

taxonomy of which was proposed by Marshall (2004). In this work we focus

on the extraction of the geometrical pattern of linear streets which may be

defined as sequences of street segments which have a shape similar to that of a

straight line segment. Linear streets are also commonly referred to as strokes

(Thomson, 2006; Heinzle et al., 2005; Touya, 2010). Some authors define

strokes to be sequences of street segments which exhibit good continiuty, that

is where the turning angle between adjacent segments is small (Yang et al.,

2011), as opposed to sequences of streets segments which have shape similar

to that of a line segment. For the purposes of this paper we consider linear

and stroke patterns to be equivalent and adopt the latter, as opposed to the

former, definition. The extraction of linear streets represents a challenging
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task for the following reason. Being a linear street is a characteristic of

a sequence of street segments. The set of all street segments in a given

street network are however interconnected. Therefore in order to extract

linear streets, the tasks of segmenting and labelling streets with respect to

the characteristic of being linear must be solved simultaneously. This is

commonly refereed to as the task of semantic segmentation in the domains

of computer vision and robotics (Anand et al., 2012).

Existing methods for extracting linear streets generally employ heuristic

search procedures where individual street segments are iteratively expanded

or grown to form linear streets. These methods do not guarantee that the

optimal solution will be found and no statements regarding the distance from

the solution obtained to the optimal solution can be made. In this paper we

propose a novel method for extracting linear streets which overcomes these

limitations. Specifically we formulate the problem in terms of performing

learning and inference with respect to a Conditional Random Field (CRF)

which is a type of undirected probabilistic graphical model (Koller and Fried-

man, 2009). We demonstrate that performing inference with respect to this

model corresponds to minimizing a submodular energy function. As a con-

sequence of this fact, the optimal solution can be computed in polynomial

time.

The remainder of this paper is structured as follows. In section 2 we

review related works on the extraction of geometrical patterns from spatial

data. In section 3 the proposed model is described. Finally, in sections 4 and

5 we present results and draw conclusions respectively.
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2. Related Works

Existing techniques for extracting geometrical patterns from spatial data

generally fall into two broad categories corresponding to those which extract

patterns relating to buildings and those which extract patterns relating to

street networks. We only considered those techniques in the latter category;

the interested reader is directed to the following works in the former category

(Lüscher et al., 2009; Zhang et al., 2013). A street network can exhibit a

wide spectrum of patterns, a taxonomy of which was proposed by Marshall

(2004). Ultimately the actual patterns one attempts to extract depends on

the intended application. Some of the most common applications are network

analysis (Porta et al., 2006), map generalization (Zhou and Li, 2012) and

network matching (Koukoletsos et al., 2012).

Existing approaches to the extraction of linear streets employ heuristic

search procedures. We now review these methods. Luan and Yang (2010)

and Thomson (2006) describe a simple search procedures which iteratively

expands a linear street to contain adjacent street segments. Liu et al. (2010)

describes a similar search procedure which is initialized using a single street

segment and terminates when the linear street in question cannot be ex-

panded any further. The procedure is initialized using every segment in

the street network and a set of criterion is used to evaluate if and how an

expansion is performed. Yang et al. (2011) and Luan and Yang (2010) pro-

pose search procedures for extracting linear streets which are integrated with

methods for extracting dual carriageways and complex junctions. This inte-

grations allows the extraction of linear streets across such features. Zhou and

Li (2012) present a comparison of different search procedures which differ in
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the criterion used to determine if and how an expansion is performed. The

range of criterion consider includes both geometric and semantic attributes

of street segments.

A fundamental limitation of the above search procedures is that the re-

sult achieved is very dependent on the initialization of the search in question.

Given the fact that the initialization is generally done manually or in an au-

tomated manner which is heuristic in nature, these methods do not guarantee

that the optimal solution will be found. Also no statements regarding the

distance from the solution obtained to the optimal solution can be made.

A number of methods have been developed to detect geometrical patterns

other than linear streets. The detection of grid patterns has been considered

in Heinzle et al. (2005); Yang et al. (2010); Tian et al. (2012). Heinzle

et al. (2005, 2006) proposed methods for detecting ring and star patterns.

Zhou and Li (2015) proposed a method for detecting interchanges in street

networks. Several methods for detecting dual-lane patterns have also been

proposed (Yang et al., 2011, 2013; Li et al., 2014).

To date many solutions to the problem of extracting streets from re-

motely sensed data have been proposed (Barzohar and Coope, 1996; Geman

and Jedynak, 1996; Lacoste et al., 2010). This problem is fundamental dif-

ferent from that which is consider in this paper. Despite this fact, similar

to the solution proposed in this paper, many of these solutions are also for-

mulated in terms of doing learning and inference respect to an undirected

probabilistic graphical model. For example the solution proposed by Tupin

et al. (1998) involves performing inference with respect to an undirected

probabilistic graphical model using Markov Chain Monte Carlo (MCMC).
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3. Methodology

In this section we describe the proposed methodology for extracting linear

streets. As discussed in section 1, in order to extract linear streets, the tasks

of segmenting and labelling streets with respect to the characteristic of being

linear must be solved simultaneously. To overcome this challenge we pose

the problem of extracting linear streets in terms of performing learning and

inference with respect to a Conditional Random Field (CRF). A CRF is

a type of undirected probabilistic graphical model or Markov random field

which encodes the conditional dependencies between random variables using

a graph (Li, 2009; Koller and Friedman, 2009; Sørbye and Rue, 2014; Law

et al., 2014).

The consideration of a CRF model is motivated by the fact that a street

network will exhibit conditional dependencies between connected street seg-

ments; for example, the probability of two connected street segments both

being linear is higher than two unconnected segments. Also, this model

has previously been successfully applied in the domain of image analysis

to simultaneously solve the problems of image segmentation and labelling

where such conditional dependencies are also evident (Li, 2009; Koller and

Friedman, 2009). To the author’s knowledge, this work represents the first

application of a CRF model to the problem of extracting linear streets from

a street network. In this section we only describe the specifics of the CRF

model implemented. For a broader overview of background material, the in-

terested reader is directed to the following publications (Bishop, 2006; Koller

and Friedman, 2009; Wang et al., 2013).

The remainder of this section is structured as follows. Section 3.1 presents
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Figure 1: An example of the street network representation Gs = (V s, Es) is illustrated.

Elements of the sets V s and Es are represented by red circles and black lines respectively.

the street network representation used. Section 3.2 describes how the prob-

lems of extracting linear streets from this representation is formulated in

terms of performing inference with respect to a CRF model. Finally Sec-

tion 3.3 describes how learning and inference with respect to this model is

performed.

3.1. Street Network Representation

We represent a given street network using a graph Gs = (V s, Es) where

the set of vertices V s correspond to street intersections and deadends, while

the set of edges Es correspond to street segments connecting these vertices.

An example of this representation is illustrated in Figure 1. This is a com-

monly used street network representation and is known as a primary repre-

sentation (Porta et al., 2006; Corcoran et al., 2013; Corcoran and Mooney,

2013). A UTM coordinate system, where distances measured are in meters,

was used to represent the spatial locations of all vertices and edges in Gs.
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3.2. Conditional Random Field (CRF) Model

In this section we describe how the task of extracting linear streets is

formulated in terms of performing inference with respect to a CRF model.

Let y be a random variable we wish to predict given another random

variable x. A CRF is a discriminative model which directly models the

probability of y given x, denoted P (y|x). This contrasts with a generative

model which models the joint probability of y and x and uses Bayes rule to

infer the probability of y given x (Ng and Jordan, 2002; Koller and Friedman,

2009). Unlike generative models, discriminative models do not assume the set

of random variables x are independent and therefore generally offers superior

performance with respect to modeling P (y|x) (see section 16.3.2 Koller and

Friedman (2009)).

Toward defining the proposed CRF model for extracting linear streets,

let x correspond to a set of random variables corresponding to the set of

street segments described in the previous section. Let y correspond to a

set of binary random variables such that a bijection exists between y and

x. Each element of y indicates if the corresponding street segment belongs

to a linear street. Let Y be the space of all realizations of y. P (y|x) is

subsequently modeled using a CRF as follows. Let Gc = (V c, Ec) be a

graph where a bijection exists between the set of vertices V c and the set

x. An edge is constructed between two vertices in Gc if the corresponding

street segments are adjacent (share an end point). A Markov property with

respect to Gc is assumed which states that each vertex in Gc is independent

of all other vertices given its neighbouring vertices. Given this assumption,

by the Hammersley and Clifford theorem (Koller and Friedman, 2009; Li,
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2009; Sutton and McCallum, 2011), a conditional probability distribution

of y given x is defined by Equation 1 where E(y|x) and Z are defined by

Equations 2 and 3 respectively. In Equation 2, yv denotes the element of

y corresponding to v and ∼ denotes adjacency between vertices. The term

E(y|x) is known as the energy function. The variable Z is a normalizing

constant which is known as the partition function.

p(y|x) = Z−1 exp (−E(y|x)) (1)

E(y|x) =
∑
v∈V c

ED(yv, x) +
∑

v,w∈V c;w∼v

ES(yv, yw, x) (2)

Z =
∑
y∈Y

E(y|x) (3)

The term ED(yv, x) in Equation 2 is commonly referred to as the data

term (Boykov and Kolmogorov, 2004). It is designed to measure the utility

of assigning the binary label yv to the street segment corresponding to the

vertex v in Gc. The term ES(yv, yw, x) in Equation 2 is commonly referred

to as the boundary term (Boykov and Kolmogorov, 2004). It is designed to

measure the utility of assigning the labels yv and yw to the adjacent street

segments corresponding to the vertices v and w in Gc respectively. The max-

imum a posteriori (MAP) solution of Equation 1, that is the most probable

binary labelling of the street segments with respect to being linear streets,

corresponds to the minimization of the energy defined in Equation 2. In other

words, determining the most probable binary labeling of the street segments

with respect to belonging to linear streets corresponds to finding a global
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minimum of this function.

Minimization of the energy with respect to the data term can be consid-

ered as solving the labelling problem. On the other hand, minimization of

the energy with respect to the boundary term can be considered as solving

the segmentation problem. Therefore minimization of the energy function

with respect to both the data and boundary terms can be considered as si-

multaneously solving the labeling and segmentation problems. Computation

of the data and boundary terms is described in the following two subsections.

3.2.1. Data Term

In the context of extracting linear streets, the binary label yv indicates

if the corresponding street segment belongs to a linear street. The term

ED(yv, x) is designed such that it measures the cost of assigning the label yv

to the corresponding street segment and is computed as follows.

Let S be a sequence of street segments which initially only contains the

segment for which the term ED(yv, x) is being computed. S is iteratively

expanded such that at each iteration that segment adjacent to the first or last

segments in S which results in the most linear sequence of segments is added

to start or end of S respectively. Using a simple street network, two iterations

of this procedure are illustrated in Figure 3. The search is terminated when

the length of the sequence of segments in S exceeds a threshold t. Setting the

threshold t to a particular value has the effect of encouraging the extraction

of linear streets of a length greater than or equal to that value.

The linearity of a sequence of segments S is measured as follows. We

first measure the distance d in terms of shape between S and a line segment

using the metric of (Arkin et al., 1990). This metric represents each of the
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(a) (b)

Figure 2: For a given shape represented in (a) the corresponding turning function Θ(s) is

represented in (b).

shapes in question by a turning function Θ which measures tangent angle as

a function of s the distance along the shape in question. The concept of a

turning function is illustrated in Figure 2. The distance d is subsequently

determined to be the minimum area between both turning functions as a

function of scalar addition to a single turning function. The linearity of S

is then determined by passing d through a non-linear function as defined in

Equation 4 where αl and βl are model parameters which are subsequently

learned. This process of passing the metric distance through a non-linear

function is necessary calibration with respect to the CRF model in question

(Platt, 1999).

Following termination of the above search, the terms ED(1, x) andED(0, x)

are computed using Equations 5 and 6 respectively where lv is the linearity

of the sequence S. The term ED(1, x) has a range (0, 1] and approaches a

value of 0 if the street segment in question belongs to a street which has

shape similar to a line segment. The converse of this statement is true for

the term ED(0, x).
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Figure 3: A simple street network is illustrated where each street segment is represented

by a line segment and assigned a unique label. In the case of computing the data term

for the street segment a, the sequence S initially contains a single element of a; that is

S = {a}. In the first iteration of the search procedure the street segment b is added to the

start of S; that is S = {b, a}. In the second iteration of the search procedure the street

segment c is added to the end of S; that is S = {b, a, c}.

lv =
1

1 + exp(αld+ βl)
(4)

ED(1, x) = lv (5)

ED(0, x) = 1− lv (6)

3.2.2. Boundary Term

The boundary term ES(yv, yw, x) measures the cost of assigning the la-

bels yv and yw to the adjacent street segments v and w respectively. It is

important that Es does not over penalize labellings corresponding to bound-

aries between linear streets and other street segments. This requires that the

term Es be discontinuity preserving. In order to achieve this, a Potts model
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Figure 4: The turning angle tv,w between street segments v and w is illustrated.

for the boundary term was used and is defined in Equation 7 (Boykov and

Kolmogorov, 2004).

ES(yv, yw, x) = K(v,w)T (yv 6= yw) (7)

The term Kv,w is defined in Equation 8 where tv,w is the turning angle

between the line segments formed by joining the first and last points of the

street segments v and w. The concept of turning angle is illustrated in Figure

4. The parameters αt and βt which are subsequently learned, determine how

severely a small turning angle between pairs of segments which do not have

the same label are penalized. The function T (.) is 1 if the condition inside

the parentheses is true and 0 otherwise.

Kv,w =
1

1 + exp(αtd+ βt)
(8)

The use of the above boundary term is motivated by the following fact.

The corresponding turning angle between adjacent street segments will be

relatively small when both segments belong to linear streets. On the other

hand the corresponding turning angle between adjacent street segments will

be relatively large when one segment belongs to a linear street and the other

does not. It is worth noting that such a smoothness term would not be
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appropriate in the context of extracting other patterns such as grid patterns

where corresponding adjacent street segments can naturally have a large

turning angle between them.

3.3. Model Learning and Inference

Learning corresponds to the task of determining the optimal parameter

values for the CRF model from data. Specifically the CRF model has the

five parameters of αl and βl (see Equation 4), αt and βt (see Equation 8)

and t (see section 3.2.1) which must be learned. Learning was performed

by optimizing the classification accuracy through cross validation using a

grid search over the parameter space which may be defined as the set of all

possible combinations of different parameter values.

Inference with respect to the CRF model corresponds to determining the

MAP solution to Equation 1. Since the terms ES(0, 0, x) and ES(1, 1, x)

are uniformly zero, the function ES satisfies the inequality of Equation 9.

Any function which satisfies this inequality is sub-modular (Boykov and Kol-

mogorov, 2004). Sub-modularity in discrete optimization plays a similar role

to convexity in continuous optimization (Lovász, 1983; Stobbe and Krause,

2010). That is, sub-modularity allows one can efficiently find provably opti-

mal solutions for large problems. Although other inference techniques such as

MCMC also find provably optimal solutions they may not converge quickly

and therefore are not considered efficient (Geman and Geman, 1984). In

this work we employ the sub-modularity optimization technique of graph-

cuts which computes the optimal solution in polynomial time (Boykov and

Kolmogorov, 2004; Prince, 2012). We only briefly describe this optimization

technique but direct the interested reader to the text-book of Prince (2012)

14



which contains an in-depth description. This optimization technique first

constructs a single-source, single-sink flow network where each s-t cut corre-

sponds to a particular solution to the optimization problem in question. The

minimum s-t cut corresponds to the optimal solution to the optimization

problem in question. There exists a number of different algorithms for com-

puting the minimum s-t cut; in the work we employed the method of Boykov

and Kolmogorov (2004) which computes the solution in polynomial time. It

should also be noted that this optimization technique is a direct technique as

opposed to an iterative technique. The proposed solution to the problem of

extracting linear streets contrasts with existing heuristic search procedures

which typically return a local, as opposed to global, optimal solution (Yang

et al., 2011; Zhou and Li, 2012; Li et al., 2014).

ES(0, 0, x) + ES(1, 1, x) ≤ ES(0, 1, x) + ES(1, 0, x) (9)

4. Results and Discussion

This section is structured as follows. Section 4.1 describes the data used

for evaluation. Section 4.2 describes the evaluation methodology employed.

Finally in section 4.3 we present results.

4.1. Data

Two street network representations obtained from OpenStreetMap(OSM)

were used in our analysis (Goodchild and Li, 2012). These correspond to

non-intersecting sections of the street network representation for the cities

of Boston and Cambridge in Massachusetts. One of these street network

representations was used for evaluation and is visualized in Figure 5. This
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Figure 5: The OpenStreetMap street network representation for the city of Boston is

displayed.

network has a corresponding primal representation containing 22, 458 vertices

and 32, 412 edges. As such, it represents an extremely large dataset. The

other street network representation was used for model learning, and contains

16, 368 vertices and 25, 215 edges.

4.2. Evaluation Methodology

A number of different approaches for evaluating linear street extraction

methods have been considered. Jiang et al. (2008) proposed to use the degree

of correlation between extracted linear streets and GPS tracks as a measure

of correctness. A convincing justification for this approach is not provided.

Liu et al. (2010) and Yang et al. (2011) proposed to use a comparison be-

tween manually created ground truth data. The creation of large ground
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truth dataset is not feasible and has the potential of introducing bias. To

overcome these limitations we employed the following approach for evalua-

tion. Through a visual examination of OSM data we observed that the set

of streets with types primary, secondary, motorway and trunk tend to ex-

hibit the characteristic of being linear streets. A description of the meaning

for each of these types can be found on the OSM wiki 1. All other street

types tend to exhibit the characteristic of not being linear street. This ob-

servation is illustrated in Figure 6. As consequence we chose to evaluate a

linear street extraction method in terms of its ability to discriminate between

street segments belonging to the above set of street types and its comple-

ment. That is, perform a binary classification of the street segments where

positive indicates a linear street while negative indicates a non-linear street.

Corresponding classification results are represented using confusion matrices.

To allow a direct comparison of results obtained by different methods, the

confusion matrices statistics of classification accuracy, error rate, sensitivity

and specificity are computed (Han et al., 2006).

As described in section 2, existing methods for extracting linear streets

employ heuristic search procedures which perform region growing from ar-

bitrarily chooses seeds. Implementations of these methods are however not

available. Therefore in order to perform a comparative evaluation of the

proposed method for extracting linear streets, the authors implemented a

method which is very similar to the above heuristic search methods. This

method first randomly samples k street segments without replacement from

1http://wiki.openstreetmap.org/wiki/Key:highway
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Figure 6: The set of streets with types primary, secondary, motorway and trunk are rep-

resented by the colour red. It is evident that these street tend to exhibit the characteristic

of being linear streets.

the street network. Each of these segments is then iteratively expanded

through the addition of those adjacent street segments which result in a se-

quence of segments most similar in shape to a line segment. Shape similarity

is measured using the approach described in section 3.2.1. This iterative

expansion terminates when the similarity falls below a threshold h or no ad-

jacent segments exist. The parameters for this method are k and h, and these

are learned by optimizing the classification accuracy through cross validation

using a grid search over the parameter space.

4.3. Results

Figures 7 and 8 display the linear streets extracted by the heuristic search

procedure and CRF model respectively for a subset of the Boston street

network. A visual inspection of these results relative to the ground truth data
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Figure 7: Linear streets extracted by the proposed heuristic search procedure are repre-

sented by the colour red.

Linear Non-Linear

Linear 3901 3014

Non-Linear 4450 19429

Table 1: Confusion Matrix for the Heuristic search procedure.

of Figure 6 suggests that the proposed CRF model performs considerably

better. This is reflected in the corresponding confusion matrices for the

entire Boston network which are displayed in Tables 1 and 2 respectively.

The classification accuracy for CRF model is 0.84 with an error rate of 0.16.

The corresponding sensitivity and specificity are 0.84 and 0.83 respectively.

On the other hand, the classification accuracy for heuristic search procedure

is 0.76 with an error rate of 0.24. The corresponding sensitivity and specificity

are 0.56 and 0.81 respectively.

The relative poor performance of the heuristic search procedure can be
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Figure 8: Linear streets extracted by the proposed CRF model are represented by the

colour red.

Linear Non-Linear

Linear 5816 1099

Non-Linear 4100 20679

Table 2: Confusion Matrix for the CRF model.
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attributed to the fact that the k street segments randomly sampled with-

out replacement are not necessarily the most appropriate. To illustrate this

point consider Figure 9(a) which displays ground truth for a small subset of

the evaluation network where two regions have been highlighed. The corre-

sponding results achieved by the proposed CRF model and heuristic search

procedure for this subset are displayed in Figures 9(b) and 9(c) respectively.

The heuristic search procedure selects segments to expand which are located

in the highlighed region in the center. These segments do not correspond to

linear streets and as a consequence a number of false positives occur. On the

other hand, it fails to select any segments to expand which correspond to the

linear street located in the highlighed region on the right. As a consequence

of this fact a number of false negatives occur. The proposed CRF model does

not require the specification of segments to expand and therefore does not

suffer from these issues.

Although the proposed CRF model performed better overall than the

heuristic search procedure, in some subsets of the street network the heuristic

search procedure performed the best. Figure 10 illustrates this point for

one such subset where it is evident that the proposed CRF model returns a

number of additional false positives relative to the heuristic search procedure.

We qualify this result with the fact that if the heuristic search procedure was

rerun, it could potentially also return similar false positives if seeds were

chosen within this subset.

In order to gain a greater insight into the terms in the CRF model we

consider the performance of the model when the boundary term is uniformly

set to zero. In this case the model does not consider the relationships between
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(a) (b)

(c)

Figure 9: Ground truth for a small subset of the evaluation network along with corre-

sponding results achieved by the proposed CRF model and heuristic search procedure and

displayed in (a), (b) and (c) respectively. Two regions of (a), one in the center and one

on the right, have been highlighted for discussion.
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(a) (b)

(c)

Figure 10: Ground truth for a small subset of the evaluation network along with corre-

sponding results achieved by the proposed CRF model and heuristic search procedure and

displayed in (a), (b) and (c) respectively.
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Figure 11: Linear streets extracted by the complete CRF model are represented by the

colour red.

those yv and yw where the corresponding vertices are adjacent (see Equations

1 and 2). We refer to this model as the reduced CRF model. Figures 11 and

12 display the linear street extracted using the complete CRF model and

the reduced CRF model respectively. A visual comparison of these results

suggests that the complete CRF model performs considerably better. The

confusion matrix corresponding to the reduced CRF model for the entire

Boston network is displayed in Table 3. The corresponding classification

accuracy is 0.80 with an error rate of 0.20. Comparing these statistics to

those of the complete CRF model and the heuristic search procedure we see

that the reduced CRF model outperforms the heuristic search procedure but

fails to outperform the complete CRF model.
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Figure 12: Linear streets extracted by the reduced CRF model are represented by the

colour red.

Linear Non-Linear

Linear 5615 1300

Non-Linear 5015 19764

Table 3: Confusion Matrix for the reduced CRF model.
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5. Conclusions

The extraction of geometrical patterns from street networks represents a

first step in many geo-spatial applications such as map generalization and

network analysis. In this paper we consider the problem of extracting linear

streets which represent one of the most fundamental and commonly consid-

ered patterns. A novel methodology is proposed in which a street network is

modelled as a Conditional Random Field (CRF) where the task of extracting

linear streets corresponds to performing learning and inference with respect

to this model. The energy function of the proposed CRF model is submodular

which allows exact inference to be performed in polynomial time. This con-

trasts with the traditional solution to the problem of extracting linear streets

which employs a heuristic search procedure and cannot make any guarantees

regarding the solution found. Results achieved on a large evaluation street

network demonstrate the superior performance of the proposed method.

There exists a number of possibilities to further develop the CRF model

presented in this paper. In this work we have chosen to model the street net-

work using a CRF where the corresponding energy function is sub-modular.

The advantage of using such a function is that it allows exact inference to be

performed in polynomial time. The use of a non-sub-modular energy could

increase the modelling capacity of the CRF model but would result in an

inference problem which could only be solved approximately as opposed to

exactly. As such, there exists a trade off between the capacity to model effec-

tively and perform inference efficiently. In future work we hope to investigate

this trade off. In this paper we have considered the application of a CRF to

the extraction of the single geometrical pattern of linear streets. In future

26



work we plan to investigate if this model can be adopted to the extraction

of other patterns.
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