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Extracellular vesicles (EVs) are submicron vesicles released from many cell types, including adipocytes. EVs are

implicated in the pathogenesis of obesity-driven cardiovascular disease, although the characteristics of

adipocyte-derived EVs are not well described. We sought to define the characteristics of adipocyte-derived EVs

before and after adipogenesis, hypothesising that adipogenesis would affect EV structure, molecular

composition and function. Using 3T3-L1 cells, EVs were harvested at day 0 and day 15 of differentiation.

EV and cell preparations were visualised by electron microscopy and EVs quantified by nanoparticle tracking

analysis (NTA). EVs were then assessed for annexin V positivity using flow cytometry; lipid and phospholipid

composition using 2D thin layer chromatography and gas chromatography; and vesicular protein content by an

immuno-phenotyping assay. Pre-adipogenic cells are connected via a network of protrusions and EVs at both

time points display classic EV morphology. EV concentration is elevated prior to adipogenesis, particularly in

exosomes and small microvesicles. Parent cells contain higher proportions of phosphatidylserine (PS) and show

higher annexin V binding. Both cells and EVs contain an increased proportion of arachidonic acid at day 0.

PREF-1 was increased at day 0 whilst adiponectin was higher at day 15 indicating EV protein content reflects

the stage of adipogenesis of the cell. Our data suggest that EV production is higher in cells before adipogenesis,

particularly in vesicles B300 nm. Cells at this time point possess a greater proportion of PS (required for EV

generation) whilst corresponding EVs are enriched in signalling fatty acids, such as arachidonic acid, and

markers of adipogenesis, such as PREF-1 and PPARg.
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A
dipose tissue is no longer regarded as simply an

inert store of excess energy, but as an endocrine

organ that can secrete a variety of adipokines and

signalling entities that promote interaction with other cell

types proximally, such as endothelial cells and fibroblasts,

and distally, such as cells of the central nervous system (1).

In addition to these soluble factors, adipocytes have

also been shown to release extracellular vesicles (EVs)

in vitro (2�4). EVs are classically defined as submicron

vesicles released into the external environment of the cell.

This allows subsequent isolation of EVs from biological

fluids, most commonly plasma, urine and the conditioned

media of cultured cells (5). EVs are known to carry a

specific cargo of mRNA, microRNA, proteins and lipids

that may be transferred to target cells through mecha-

nisms which are not fully defined (6).

EVs comprise exosomes, microvesicles and apoptotic

bodies. The latter are typically larger (1�5 mm) vesicles

released from cells prior to apoptosis (7) and are con-

sequently excluded from the description of EVs hence-

forth. Exosomes, which typically range in size from 30 to

100 nm, are generated within multivesicular endosomal

�
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compartments.These may then fuse with the plasma

membrane to release exosomes via exocytosis as part

of the cell’s homeostatic recycling mechanism (8,9). Micro-

vesicles are formed as a consequence of localised disruption

of the cytoskeleton and normal phospholipid asymmetry,

resulting in exposure of phosphatidylserine (PS); commonly

used to identify microvesicle populations via annexin V

binding (10). Microvesicles, whose sizes range from 100 to

1 mm, bud directly from the plasma membrane and hence

often carry surface antigens from the cell of origin (11).

Despite the importance of adiposity as a major risk

factor for cardiovascular disease and the emerging evi-

dence of a pathogenic role for EVs in a number of cardio-

vascular diseases (12), very little is known about the

characteristics of adipocyte-derived EVs. Studies in rat

primary adipocyte cultures have shown these EVs can

interact locally with neighbouring adipocytes to promote

lipid esterification and that their release is upregulated by

both physiological (e.g. insulin) and pharmacological (e.g.

glimepiride) stimuli (4). The murine adipocyte cell line

3T3-L1 has also been reported to produce EVs containing

adipokines (2,3) and factors that promote angiogenesis

in vivo (13). Human adipose tissue explants have also been

shown to produce EVs that can modulate monocyte

differentiation and alter insulin signalling in adipocytes

(14) and liver cells (15). These findings suggest that EVs

may represent an additional mechanism by which adipocytes

communicate with neighbouring and distant cell types.

However, adipocyte-derived EVs are not well characterised;

hence, we sought to define EV production, structure and

content in 3T3-L1 cells, before and after adipogenesis.

Methods

Cell culture
3T3-L1 cells were cultured using T175 cm2 flasks

(Cellstar†, Greiner Bio-One, Germany) in ‘‘control media’’

containing a 1:1 ratio of DMEM (high glucose, 4.5 g/L):

F12 supplemented with 10% foetal calf serum and 1%

penicillin/streptomycin (Gibco†, Life Technologies, UK).

At confluence, serum-free control medium was added for

24 hours for subsequent EV isolation (day 0). Control

medium was then supplemented with inducers of differ-

entiation (Sigma Aldrich, UK): insulin (10 mg/mL),

indomethacin (50 mM) and dexamethasone (1 mM) and

added to cells for 2 days. Cells were then maintained in

control medium supplemented with insulin (10 mg/mL) for

the remainder of their maturation. Fourteen days after

induction of differentiation, serum-free control medium

(with 10 mg/mL insulin) was added for 24 hours for

subsequent EV isolation (day 15).

Cell counts were undertaken at both time points (day 0

and day 15) using trypan blue and a cellometer automatic

cell counter (Nexcelom Bioscience, MA, USA). Adipo-

genesis was confirmed using oil red O staining and western

blot analysis of total cell lysates (10 mg) for the preadipo-

cyte factor-1 (PREF-1) and the mature adipocyte markers

adiponectin and fatty acid binding protein 4 (FABP4)

(Supplementary Fig. 1).

EV isolation
EVs were isolated from conditioned serum-free media to

avoid EV contamination from foetal calf serum (Supple-

mentary Fig. 2). Medium was collected at day 0 and day

15 to analyse EVs from immature and mature adipocytes,

respectively.

Following collection, conditioned medium was imme-

diately centrifuged at 1,000�g for 5 minutes to remove

any cells in suspension. The supernatant was then cen-

trifuged at 15,000�g for 15 minutes at 48C to remove any

cell debris. Finally, supernatants were ultracentrifuged at

100,000�g for 1 hour at 48C to pellet EVs. EV pellets were

then resuspended in 1� sterile PBS for subsequent

analysis. EVs for flow cytometry were resuspended in

1� sterile annexin V binding buffer (BD Biosciences, CA)

to allow staining for annexin V. For all parameters, EVs

were stored at 48C and utilised within 1 week of isolation.

All buffers used to resuspend EV samples had been 0.22

mm-filtered.

Electron microscopy
Cells at both day 0 and day 15 were washed in PBS and

fixed in gluteraldehyde-PBS (1%, v/v) at room temperature

for 1 hour. Cells were then stored in PBS at 48C until

processing for scanning electron microscopy (SEM). SEM

samples were dehydrated through graded propan-1-ol (50,

70, 90, and 2�100% for 10 minutes each) followed by

three exchanges in hexamethyldisilazane. Samples were

then air dried and splutter-coated with gold and viewed at

5 kV in a JEOL 840 SEM (JEOL, Tokyo, Japan).

EVs were isolated in PBS from cells at each time point as

above and stored at 48C for transmission electron micro-

scopy (TEM). EVs were negatively stained as follows by

placing grids onto 50 mL droplet of reagent. Vesicles were

adsorbed onto formvar-carbon coated grids (20 minutes)

and fixed in glutaraldehyde (1%, v/v) for 10 minutes at

room temperature. Grids were then washed (3�1 minute

in PBS and 6�1 minute in water) before negative staining

with 2% (w/v) uranyl acetate for 10 minutes. Surplus

stain was shaken off grids and allowed to air dry before

being examined in a Philips CM12 TEM (FEI UK Ltd.)

at 80 kV.

EV size and concentration analysis
Size and concentration distributions of EVs were deter-

mined using nanoparticle tracking analysis (NTA). Briefly,

NTA uses the light scattering properties and Brownian

motion of laser-illuminated particles in suspension to de-

termine EV size and concentration. NTA was undertaken

using the NanoSight LM10 configured with a 642 nm laser

(NanoSight Ltd., UK) using NTA software version 2.3.
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Camera shutter speed was maintained at 30.01 ms and

camera gain to 500. Samples were diluted in EV-free sterile

water (Fresenius Kabi, UK) to concentrations between

2�108 and 1�109 particles/mL. Sixty-second videos were

recorded in replicates of 5 per sample with camera

sensitivity and detection threshold set to between 13�15

and 4�5, respectively. Temperature was monitored manu-

ally and ranged from 22 to 268C. EV concentrations and

distributions were then normalised to the cell count for the

respective time point and expressed as EVs/viable cell.

Annexin V positivity
Annexin V positivity is one suggested characteristic of

microvesicles, therefore we sought to characterise the

Annexin V positivity of adipocyte EVs and their cell of

origin. 3T3-L1 cells in 1�PBS (0.22-mm-filtered) were

analysed using a BD FACSCanto (BD Biosciences, CA) as

an unstained control. Cells were then pelleted and resus-

pended in 1� annexin V binding buffer and incubated in

the dark at room temperature for 15 minutes with annexin

V-FITC (Biolegend, CA). Following staining, cells were

pelleted and resuspended in 1� PBS and analysed for their

annexin V positivity.

EVs were analysed directly by flow cytometry, without

the use of beads. Unstained EVs (in 1X annexin V buffer)

were used as negative controls. EVs were then stained with

annexin V-FITC (as above) and analysed.

Data were exported from the FACSDivaTM software

(version 6) and subsequently analysed using FlowJo soft-

ware (version 10; Tree Star Inc., OR).

Analysis of fatty acids
Gas chromatography with flame ionisation detection (GC-

FID) was used to determine fatty acid concentration and

composition as previously described (16). Lipid extraction

from cells and EVs in PBS (entire amounts of cells/EVs

from T175 cm2 flasks) in replicates of 6 was undertaken

using chloroform:methanol ( 1:2, v/v) by the method of

Garbus et al. (17). Fatty acid methyl esters (FAMEs) were

then generated and analysed using GC, as previously

described (18). Fatty acid quantification was performed by

addition of a known amount of C17:0 (heptadecanoic

acid, Nu-Chek Prep Inc., Elysian, MN) as an internal

standard. FAMEs were identified by comparison of their

retention times with those of standards (N-15-A, Nu-Chek

Prep Inc., Elysian, MN; Supelco 37 Component FAME

Mix, Sigma Aldrich, UK). Total Chrom Navigator soft-

ware (Perkin Elmer) was used for data acquisition. A list

of individual fatty acids is presented in Supplementary

Table I.

Phospholipid separation and quantification
Cells and EVs from both time points were isolated and

lipids were extracted (as above) from pooled samples (from

7�T175 cm2 flasks) to ensure enough material for thin-

layer chromatography (TLC) separation. Phospholipids

were separated using two-dimensional TLC using 10�10

cm boric impregnated (1.2% boric acid in ethanol/water

1:1 (v/v)) silica gel 60 plates (Sigma Aldrich, UK). Phos-

pholipids were separated using chloroform:methanol:

ammonium hydroxide (65:35:10, v/v/v) in the first dimen-

sion and then N-butanol:acetic acid:deionised water

(90:20:20, v/v/v) in the second. The plates were then dried

completely and sprayed with a 0.05% (v/v) solution of

8-anilino-4-napthosulphonic acid in dry methanol in order

to visualise individual phospholipids under UV light. Indi-

vidual phospholipids were scraped from the plates and

their fatty acids were converted into FAMEs (as described

before) for GC analysis and phospholipid quantification.

EV protein content
EVs at day 0 and day 15 were probed for exosomal and

adipocyte markers using high protein binding ELISA

plates (Greiner Bio-One, Germany). Protein concentration

of EV samples was determined using a PierceTM BCA

Protein Assay Kit (Thermo Scientific, UK) and 1 mg of EV

sample was loaded into each well. EVs were allowed to

settle overnight before a buffer (RIPA Lysis Buffer System;

Santa Cruz, CA, USA) was added to permeabilise EVs for

analysis of intravesicular EV and adipocyte markers.

Exosomal markers included rabbit anti-mouse CD9,

CD63, tumour susceptibility gene 101 (TSG101) (Santa

Cruz) and mouse anti-mouse alix (Cell Signaling Tech-

nologies, New England BioLabs, UK). Adipocyte markers

included rabbit anti-mouse FABP4, peroxisome proliferator-

activated receptor g (PPARg), adiponectin and preadi-

pocytes factor-1 (PREF-1) (Cell Signaling Technologies).

Markers were detected using anti-mouse or anti-rabbit

biotin-labelled secondary antibodies (Perkin Elmer) and

a streptavidin�europium conjugate (Perkin Elmer) and

analysed using time resolved fluorescence (Wallac Victor2

1420 plate reader, Perkin Elmer; and FLUOstar OPTIMA

microplate reader, BMG Labtech, UK).

Statistical analysis
Data are presented as mean9SD. An unpaired Student’s

t-test or a one- or two-way ANOVA were used to analyse

differences between means. Analyses were conducted using

GraphPad Prism (version 6; GraphPad Software Inc.,

CA), p-values B0.05 were considered significant.

Results

Electron microscopy
Cells at day 0 appeared to be connected by a network of

protrusions between multiple cells whilst cells at day 15

were much larger and rounder with a number of vacuole-

like structures (Fig. 1A and B, respectively). EVs at both

time points displayed polydispersity in size and a classic

‘‘cup-like’’ morphology (Fig. 1C and D).
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EV size and concentration
Viable cell counts are shown in Supplementary Fig. 3. EV

production was higher at day 0 compared to day 15 (992.79

226.2 versus 276.59104.8 EVs/viable cell, respectively,

pB0.0001, Fig. 2A) though mode size of EVs did not

change between the two time points (135.498.9 to 137.19

7.6 nm, p�0.6), Fig. 2B). The EV size/concentration

distribution showed that this elevation at day 0 was

observable across the whole EV spectrum, particularly in

EVs B300 nm (Fig. 2C).

Cell and EV annexin V positivity
Figure 3 illustrates the gates used to analyse cells (A) and

EVs (B) for annexin V positivity. Annexin V positivity fell

in both cells (2.191.7 to 0.490.2%, p�0.04) and non-

significantly in EVs (6.396.6 to 2.992.2%, p�0.3) from

day 0 to day 15; overall, annexin V positivity was higher in

EVs than in cells (Fig. 3C/D).

Fatty acid concentration and composition of cells
and EVs
Total fatty acid concentration of cells and EVs increased

from day 0 to day 15 (cells: 0.190.04 to 0.790.2 mg/106

cells, pB0.0001, Fig. 4A and EVs: 12.291.7 to 27.39

10.1 ng/106 EVs, p�0.005, Fig. 4C). Individual fatty acid

compositions were expressed as a change from day 0 to day

15. Out of 25 fatty acids identified, 18 were different in cells

and 17 in EVs between day 0 and day 15 (Fig. 4B and D,

respectively). The majority of fatty acids reduced in

proportion (of the total) with differentiation in cells and

EVs. For example, arachidonic acid (C20:4n6) was re-

duced in both cells and EVs following differentiation.

Many fatty acids were affected by differentiation in the

same way; however, the effect was sometimes unique to the

cell or EV. For example, the amount of oleic acid (C18:1n9)

was decreased in cells but increased in EVs from day 0 to

day 15. Certain fatty acids were also unique to the stage of

differentiation, for example, eicosatrienoic acid (C20:3n3)

was only present at day 0 in cells and EVs. Compositions of

fatty acids were also different between cells and their

corresponding EVs at each time point (Supplementary

Table II).

Phospholipid composition
Proportions of phospholipids were different between cells

and EVs from day 0 to day 15 (Fig. 5). Phosphatidylcho-

line (PC) was the most abundant phospholipid present at

both time points in cells and EVs. PC content showed a

Fig. 1. Electron microscopy of 3T3-L1 cells and corresponding EVs pre- and post-differentiation. Scanning electron microscopy images

of 3T3-L1 cells at day 0 (A) and day 15 (B). Transmission electron microscopy images of 3T3-L1 EVs at day 0 (C) and day 15 (D). Note

scale bars differ between images and types of electron microscopy.
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slight increase with differentiation in cells; in contrast, PC

was higher in EVs prior to differentiation. The propor-

tion of phosphatidylethanolamine (PE) appeared to

increase with differentiation in both cells and EVs

whereas both phosphatidylinositol (PI) and sphingomye-

lin decreased with differentiation in cells, but showed an

increase over the same time in EVs. Cells and EVs had

higher proportions of PS at day 0 compared with day 15.

Cardiolipin was only present in cells and showed an

increase from day 0 to day 15.

EV protein content
No differences were observed in EVexosomal markers and

PPARg from day 0 to day 15 (Fig. 6). FABP4 and PREF-1

decreased (108,25697,460 to 93,08894,804, p�0.002 for

FABP4; and 86,958918,164 to 58,91897,485 arbitrary

TRF units, p�0.006 for PREF-1, respectively) while

adiponectin increased (76,242911,501 to 161,886930,

371 arbitrary TRF units, pB0.0001) with differentiation

in EVs.

Discussion
Adipose tissue is now known to provide more than basic

insulation, structural support and lipid storage properties.

It is recognised as an endocrine organ that can influence a

number of physiological processes through interaction

with a variety of tissues, primarily via adipokine secretion

(19). More recently adipocytes have been shown in vitro to

release EVs (2�4, 13�15), providing an additional poten-

tial mechanism of communication for adipocytes. Here we

present a detailed characterisation of adipocyte-derived

EVs with respect to: structure and morphology; size and

Fig. 2. Effect of differentiation on EV size and concentration. The effect of 3T3-L1 differentiation on: EV production per viable cell

(A); mode EV size (B); and EV size distribution (C). ****pB0.0001, n�6 (day 0) and n�5 (day 15).
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concentration; annexin V positivity; fatty acid profile;

phospholipid composition; and protein content pre- and

post-differentiation.

The evidence for adipocyte EVs acting as paracrine and

endocrine communicators is continually growing. For

example, Kranendonk et al. recently found EVs from

different adipose tissue depots enhance monocyte to

macrophage differentiation and affect insulin signalling

in hepatocytes (14,15). However, to our knowledge there

are no data which report on their size and concentration

distributions. We found that EV production per cell

was greater at the preadipocyte stage particularly in EVs

B300 nm. This may be a consequence (or a cause) of the

differentiation process such that EVs act as intercellular

communicators to promote transition to a mature adipo-

cyte. This is also supported by the scanning electron

micrograph images which show long and numerous

projections between cells at day 0, suggesting a local

communication network between cells prior to differentia-

tion. Conversely, as anticipated, mature adipocytes at day

15 were much larger and independent of each other, with

individual cells containing multiple lipid vacuoles.

Many studies support the principle that release of EVs

follows a disruption of the plasma membrane asymmetry

of the cell and subsequent exposure of PS. However, it is

debated whether this externalised PS is retained on the

EV (20,21). We sought to characterise the PS positivity of

adipocyte EVs and their corresponding cells by measur-

ing their annexin V positivity. Cells and EVs at both day

0 and day 15 showed relatively low annexin V positivity

(B10%); lower than reported for plasma-derived EVs

which typically possess between 50 and 90% annexin V

positivity (18,22,23). However, the majority of plasma

EVs are derived from platelets and can promote coagula-

tion due to their high density of PS exposure (corre-

sponding with high annexin V binding) (24). It is unlikely

that adipocyte-derived EVs would be pro-coagulant

perhaps explaining their low annexin V positivity.

Much of the research surrounding EVs focuses on the

concentration and/or surface antigens of EVs, and how

changes in these characteristics may modulate a change in

function. Little is known about the lipid composition of

EVs, despite lipids being recognised as important com-

ponents of many signalling pathways. We therefore used

Fig. 3. Cell and EV Annexin V positivity. The effect of differentiation on 3T3-L1 and EV Annexin V positivity. (A) shows the gate used

to analyse 3T3-L1 cells, (B) shows the gate used to analyse 3T3-L1-derived EVs and (C) shows the Annexin V-FITC positivity of cells

and EVs on day 0 and day 15 of differentiation (n�6, except day 15 EVs where n�5) *pB0.05.
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GC-FID to comprehensively characterise the lipid com-

position of the 3T3-L1 cells and their corresponding EVs

pre- and post-differentiation. As expected, total lipid

concentration increased with adipogenesis in cells. Inter-

estingly, this too was reflected in the EV fraction, again

highlighting a characteristic of the cell of origin that is

maintained in the EV. Proportions of individual fatty acids

were clearly altered in both cells and EVs with differentia-

tion which likely reflects the transition in function from a

preadipocyte to a mature adipocyte. For instance, we

observed a large increase in palmitic acid (C16:0), the most

abundant storage fatty acid in animals (25), with differ-

entiation of cells and hence accumulation of lipid. The

effect of differentiation was also reflected in the presence

or lack of certain fatty acids at each time point. For ex-

ample, eicosatrienoic acid (C20:3n3) was present at day 0

but not at day 15. This polyunsaturated fatty acid is found

in poorly vascularised tissues where abundance of free

fatty acids is low (26). This loss of eicosatrienoic acid may

reflect the transition to a mature adipocyte where con-

centrations of free fatty acids are higher so it is no longer

required. Additionally, the proportion of arachidonic acid

(C20:4n6), a major precursor for many cell signalling

molecules, was much higher in cells and EVs at day 0 than

those at day 15. Taken together with the elevated EV

concentration at day 0, this supports the notion that

increased EV production in preadipocytes is a conse-

quence and perhaps a communicator of increased signal-

ling in the early stages of differentiation. In keeping with

this, exosome isolates from human adipose-derived stem

cells (hASCs) undergoing adipogenic differentiation have

been reported to assist undifferentiated hASCs to transi-

tion towards a mature adipocyte (27). Furthermore, a

higher proportion of phospholipids associated with cell

signalling, such as PS and PI, were present at the day 0 time

point in cells. PS in particular is heavily implicated in EV

generation (8,28). Here EV generation was greater at day 0,

when, in cells the proportion of PS was � 3 X greater than

cells at day 15, suggesting an increased reserve of PS to

generate EVs at this time point. In the EV fraction, the

proportion of PS showed only a slight decrease with

differentiation, suggesting that cells require a higher pro-

portion of PS for the formation of EVs but that this PS is

not necessarily incorporated into the EVs. Finally, when

Fig. 4. Cell and EV fatty acid concentration and change in composition. Total fatty acid concentration of 3T3-L1 cells and EVs at day 0

and day 15 of differentiation (A and C, respectively). Changes in proportions of individual fatty acids in cells and EVs between day 0 and

day 15 of differentiation (B and D, respectively). ****pB0.0001, ***pB0.001, **pB0.01, *pB0.05, n�6 (day 0) and n�5 (day 15).
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comparing the composition of fatty acids between cells

and their corresponding EVs at each time point (Supple-

mentary Table II), EVs were shown to be enriched in

certain fatty acids that their cells were not. Future work

should look to classify these changes in more detail and to

analyse whether these differences harbour potential func-

tional implications for EVs. We have previously observed

similar differences between fatty acid compositions of

plasma and plasma-derived EVs (18,22), suggesting that

although EVs reflect their cell of origin in many aspects,

they also possess unique characteristics which may affect

how they communicate and interact with other cells.

Functional changes in protein expression can also occur

within the vesicle following stimulation or stress of the

parental cell (29). Flow cytometry is limited to analysing

surface antigens of EVs meaning these important altera-

tions are not typically identified. Moreover, due to the low

refractive index of EVs, conventional flow cytometers have

a lower detection limit of �200 nm, meaning �65% of

3T3-L1 EVs would not be detected. Here, we used an in-

house developed immuno-phenotyping assay (previously

described (30)), used successfully by others in the EV field

to analyse both membrane and intravesicular proteins

(31). Levels of typical exosomal proteins showed no

change with differentiation. Alix, a cytosolic protein

associated with endocytic membrane trafficking (32)

gave the highest signal of the exosomal markers. This

suggests that although the number of EVs is elevated at

Fig. 5. Phospholipid composition of cells and EVs following differentiation. Proportions and labelled percentages of phospholipids in:

cells at day 0 (A); and day 15 (B), and EVs at day 0 (C); and day 15 (D) n�1. PE�phosphatidylethanolamine; PC�phosphatidylcholine;

PS�phosphatidylserine; PI�phosphatidylinositol.

Fig. 6. Effect of differentiation on EV protein content. The

content of vesicular (CD9, CD63, TSG101 and Alix) and

adipocyte (FABP4, PREF-1, adiponectin and PPARg) proteins

in 3T3-L1 derived EVs before and following differentiation.

Proteins were detected using a streptavidin�europium conju-

gate and measured using TRF (arbitrary units) **pB0.01,

****pB0.0001, n�3.
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day 0, the relative expression of exosomal proteins within

each EV does not change between the time points. We

selected 4 well-established adipocyte markers known to be

prevalent at different stages of adipogenesis to analyse

within EVs (33,34). PPARg is a nuclear receptor required

for the induction (including the growth arrest of cells (33))

and maintenance of adipogenesis (34). Here, EV PPARg
content showed no difference between day 0 and day 15

suggesting that PPARg produced by cells during growth

arrest at day 0 and by cells maintaining differentiation at

day 15 is also passed into corresponding EVs. Levels of

PREF-1 and adiponectin in EVs also seem to reflect the

stage of differentiation of the cell. PREF-1 is an EGF-like

protein that represses differentiation, promoting a pre-

adipocyte phenotype (35). Here PREF-1 decreased from

day 0 to day 15, in keeping with progression to a mature

adipocyte phenotype. Conversely, adiponectin, a major

adipokine produced by mature adipocytes (36) increased

in EVs with differentiation as the cells mature and

accumulate lipid. Interestingly, FABP4, a cytoplasmic

fatty acid trafficking protein (37) decreased in EVs with

differentiation. FABP4 is a dominant protein in mature

adipocytes, accounting for �1% of the total cytosolic

fraction (38). This again indicates that EVs do not always

reflect their cell of origin.

There are currently a number of issues surrounding

standardisation of protocols in the EV field, meaning

preparatory techniques are constantly being updated.

Here differential centrifugation was employed to isolate

vesicles as described previously (13). Interim centrifuga-

tion speeds between 10,000 and 20,000�g have been

recently reported to pellet some larger microvesicles (39).

Therefore a limitation of this study may be the use of a

15,000�g spin which may have pelleted larger microvesi-

cles as well as cell debris and apoptotic bodies. However, a

range of EVs up to 1 mm are still detectable (Fig. 2C)

indicating larger microvesicles are still present. Serum-free

media was used for the conditioning time for EV isolation:

24 hours prior to day 0 and day 15 (Supplementary Fig. 2).

The requirements of the cells are different at these two

stages hence serum-free media was supplemented with

insulin prior to day 15, whereas media for day 0 was not.

This was to minimise changes to normal media at each time

point components but we do acknowledge this may have

affected EVrelease at day 15. A further limitation is the use

of a cell line for characterisation, although 3T3-L1 cells are

widely used as a reliable model to study adipocyte biology

(40). Other groups have successfully isolated EVs from

primary adipocyte sources and have similarly found the

presence of adipocyte and exosomal markers within

adipocyte EVs (14,15,41). Flow cytometry to assess EV

annexin V positivity was conducted on EVs directly. Many

conventional flow cytometers have a practical lower limit

of �200 nm, meaning many smaller microvesicles and

exosomes will not be detected by this method. Therefore,

the annexin V positivity of the EVs may have been

underestimated here, particularly if a proportion of larger

microvesicles (known to have a greater annexin V positivity)

were removed by the 15,000�g spin. To ensure capture of

the whole EV spectrum, future studies should use bead-

based capture of EVs with flow cytometry or an alternative

method to asses EV annexin V positivity.

In summary, the production of adipocyte-derived EVs is

significantly affected by differentiation. Prior to adipogen-

esis, the production of EVs enriched in pro-signalling fatty

acids is high, suggesting that EVs may aid communication

between preadipocytes to enhance the transition to a

mature adipocyte. Adipocyte-derived EVs possess many

similar characteristics of their cell of origin such as low

annexin V positivity and similar lipid content. However,

adipocyte-derived EVs may also possess unique qualities

that confer different functional properties such as a dif-

ferential fatty acid composition that change with the stage

of differentiation. Future studies will explore the func-

tional impact of adipocyte EVs on the control of adipo-

genesis and their wider implications in cardiovascular

disease.
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