
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/86 7 6 5/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Ba es,  Mich el, Oe r t el, Tim m  , Wagn er, Ch ris ti an  a n d  Weis m a n t el, Rob e r t  2 0 1 3.

Mi r ro r-d e sc e n t  m e t ho ds  in mixe d-in t e g e r  convex op timiza tion.  Jung er, Mich a el a n d

Rein el t ,  Ge r h a r d,  e d s.  Fac e t s  of Co m bin a to ri al  Opti miza tion: Fes t sc h rif t  for  M a r tin

Grö t sch el, S p ring er, p p .  1 0 1-1 3 1.  (10.10 0 7/97 8-3-6 4 2-3 8 1 8 9-8_5) 

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 0 7/97 8-3-6 4 2-3 8 1 8 9-8_5 

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



Mirror-Descent Methods in Mixed-Integer
Convex Optimization

Michel Baes, Timm Oertel, Christian Wagner, and Robert Weismantel

Abstract In this paper, we address the problem of minimizing a convex function

f over a convex set, with the extra constraint that some variables must be integer.

This problem, even when f is a piecewise linear function, is NP-hard. We study

an algorithmic approach to this problem, postponing its hardness to the realization

of an oracle. If this oracle can be realized in polynomial time, then the problem

can be solved in polynomial time as well. For problems with two integer variables,

we show with a novel geometric construction how to implemented the oracle ef-

ficiently, that is, in O(ln(B)) approximate minimizations of f over the continuous

variables, where B is a known bound on the absolute value of the integer variables.

Our algorithm can be adapted to find the second best point of a purely integer con-

vex optimization problem in two dimensions, and more generally its k-th best point.

This observation allows us to formulate a finite-time algorithm for mixed-integer

convex optimization.

1 Introduction

One of the highlights in the list of publications of Martin Grötschel is his joint book

with László Lovász and Alexander Schrijver on Geometric Algorithms and Combi-

natorial Optimization [GLS88]. This book develops a beautiful and general theory

of optimization over (integer) points in convex sets. The generality comes from the

fact that the convex sets under consideration are presented by oracles (membership,

separation in different variations, optimization). The algorithms and their efficiency

typically depend on the oracle presentation of the underlying convex set. This is

precisely the theme of this paper as well: we present an algorithmic framework

for solving mixed-integer convex optimization problems that is based on an oracle.
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Whenever the oracle can be realized efficiently, then the overall running time of the

optimization algorithm is efficient as well.

One of the results from the book [GLS88] that is perhaps closest to our results is

the following. By B(p,r) we denote a ball of radius r with center p.

Theorem 1. [GLS88, Theorem 6.7.10] Let n be a fixed integer and K ⊆ R
n be any

convex set given by a weak separation oracle and for which there exist r,R > 0 and

p∈K with B(p,r)⊆K ⊆ B(0,R). There exists an oracle-polynomial algorithm that,

for every fixed ε > 0, either finds an integral point in K +B(0,ε) or concludes that

K ∩Z
n = /0.

The main distinction between results presented here and results from [GLS88]

of such flavor as Theorem 1 is the way in which the statements are proven. Proofs

of similar results in [GLS88] basically use a combination of the ellipsoid algorithm

[Kha79] and a Lenstra-type algorithm [Len83]. Our proof techniques rather rely on

methods from convex optimization.

Let us now make precise our assumptions. We study a general mixed-integer

convex optimization problem of the kind

min{ f (x̂,y) : (x̂,y) ∈ S∩ (Zn ×R
d)}, (1)

where the function f :Rn+d →R+∪{+∞} is a nonnegative proper convex function,

i.e., there is a point z ∈ R
n+d with f (z) < +∞. Moreover, S ⊆ R

n+d is a convex

set that is defined by a finite number of convex functional constraints, i.e., S :=
{(x,y) ∈ R

n+d : gi(x,y) ≤ 0 for 1 ≤ i ≤ m}. We denote by 〈·, ·〉 a scalar product.

The functions gi : Rn+d → R are differentiable convex functions and encoded by

a so-called first-order oracle. Given any point (x0,y0) ∈ R
n+d , this oracle returns,

for every i ∈ {1, . . . ,m}, the function value gi(x0,y0) together with a subgradient

g′i(x0,y0), that is, a vector satisfying:

gi(x,y)−gi(x0,y0)≥ 〈g′i(x0,y0),(x− x0,y− y0)〉

for all (x,y) ∈ R
n+d .

In this general setting, very few algorithmic frameworks exist. The most com-

monly used one is “outer approximation”, originally proposed in [DG86] and later

on refined in [VI90, FL94, BBC+08]. This scheme is known to be finitely con-

verging, yet there is no analysis regarding the number of iterations it takes to solve

problem (1) up to a certain given accuracy.

In this paper we present oracle-polynomial algorithmic schemes that are (i)

amenable to an analysis and (ii) finite for any mixed-integer convex optimization

problem. Our schemes also give rise to the fastest algorithm so far for solving

mixed-integer convex optimization problems in variable dimension with at most

two integer variables.
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2 An algorithm based on an “improvement oracle”

We study in this paper an algorithmic approach to solve (1), postponing its hardness

to the realization of an improvement oracle defined below. If this oracle can be

realized in polynomial time, then the problem can be solved in polynomial time as

well. An oracle of this type has already been used in a number of algorithms in other

contexts, such as in [AK07] for semidefinite problems.

Definition 1 (Improvement Oracle). Let α,δ ≥ 0. For every z ∈ S, the oracle

a. returns ẑ ∈ S∩ (Zn ×R
d) such that f (ẑ)≤ (1+α) f (z)+δ , and/or

b. asserts correctly that there is no point ẑ ∈ S∩ (Zn ×R
d) for which f (ẑ)≤ f (z).

We denote the query to this oracle at z by Oα,δ (z).

As stressed in the above definition, the oracle might content itself with a feasible

point ẑ satisfying the inequality in a without addressing the problem in b. However,

we do not exclude the possibility of having an oracle that can occasionally report

both facts. In that case, the point ẑ that it outputs for the input point z ∈ S must

satisfy:

f (ẑ)− f̂ ∗ ≤ α f (z)+δ +( f (z)− f̂ ∗)≤ α f (z)+δ ≤ α f̂ ∗+δ ,

where f̂ ∗ is the optimal objective value of (1). Thus f (ẑ) ≤ (1+α) f (z)+ δ , and

it is not possible to hope for a better point of S from the oracle. We can therefore

interrupt the computations and output ẑ as the final result of our method.

In the case where f̂ ∗ > 0 and δ = 0, the improvement oracle might be realized by

a relaxation of the problem of finding a suitable ẑ: in numerous cases, these relax-

ations come with a guaranteed value of α . In general, the realization of this oracle

might need to solve a problem as difficult as the original mixed-integer convex in-

stance, especially when α = δ = 0. Nevertheless, we will point out several situations

where this oracle can actually be realized quite efficiently, even with α = 0.

The domain of f , denoted by dom f , is the set of all the points z ∈ R
n+d with

f (z)<+∞. For all z ∈ dom f , we denote by f ′(z) an element of the subdifferential

∂ f (z) of f . We represent by ẑ∗ = (x̂∗,y∗) a minimizer of (1), and set f̂ ∗ := f (ẑ∗);
more generally, we use a hat (·̂) to designate vectors that have their n first compo-

nents integral by definition or by construction.

Let us describe an elementary method for solving Lipschitz continuous convex

problems on S approximately. Lipschitz continuity of f on S, an assumption we

make from now on, entails that, given a norm || · || on R
n+d , there exists a constant

L > 0 for which:

| f (z1)− f (z2)| ≤ L||z1 − z2||
for every z1,z2 ∈ S. Equivalently, if || · ||∗ is the dual norm of || · ||, we have

|| f ′(z)||∗ ≤ L for every f ′(z) ∈ ∂ f (z) and every z ∈ dom f .

Our first algorithm is a variant of the well-known Mirror-Descent Method (see

Chapter 3 of [NDY83]). It requires a termination procedure, which used alone con-

stitutes our second algorithm as a minimization algorithm on its own. However, the
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second algorithm requires as input an information that is a priori not obvious to get:

a point z ∈ S for which f (z) is a (strictly) positive lower bound of f̂ ∗.

Let V : Rn+d → R+ be a differentiable σ -strongly convex function with respect

to the norm || · ||, i.e., there exists a σ > 0 for which, for every z1,z2 ∈ R
n+d , we

have:

V (z2)−V (z1)−〈V ′(z1),z2 − z1〉 ≥
σ

2
||z2 − z1||2.

We also use the conjugate V∗ of V defined by V∗(s) := sup{〈s,z〉−V (z) : z ∈R
n+d}

for every s∈R
n+d . We fix z0 ∈ S as the starting point of our algorithm and denote by

M an upper bound of V (ẑ∗). We assume that the solution of the problem sup{〈s,z〉−
V (z) : z ∈R

n+d} exists and can be computed easily, as well as the function ρ(w) :=
min{||w− z|| : z ∈ S} for every w ∈ R

n+d , its subgradient, and the minimizer π(w).
In an alternative version of the algorithm we are about to describe, we can merely

assume that the problem max{〈s,z〉−V (z) : z ∈ S} can be solved efficiently.

A possible building block for constructing an algorithm to solve (1) is the con-

tinuous optimum of the problem, that is, the minimizer of (1) without the integrality

constraints. The following algorithm is essentially a standard procedure meant to

compute an approximation of this continuous minimizer, lined with our oracle that

constructs simultaneously a sequence of mixed-integer feasible points following the

decrease of f . Except in the rare case when we produce a provably suitable solution

to our problem, this algorithm provides a point z ∈ S such that f (z) is a lower bound

of f̂ ∗. Would this lower bound be readily available, we can jump immediately to the

termination procedure (see Algorithm 2).

The following proposition is an extension of the standard proof of convergence

of Mirror-Descent Methods. We include it here for the sake of completeness.

Proposition 1. Suppose that the oracle reports a for k = 0, . . . ,N in Algorithm 1,

that is, it delivers an output ẑk for every iteration k = 0, . . . ,N. Then:

1

∑
N
k=0 hk

N

∑
k=0

hk f (ẑk)

1+αk

− f (ẑ∗)≤ M

∑
N
k=0 hk

+
2L2

σ
· ∑

N
k=0 h2

k

∑
N
k=0 hk

+
1

∑
N
k=0 hk

N

∑
k=0

hkδk

1+αk

.

Proof. Since V is σ -strongly convex with respect to the norm || · ||, its conjugate

V∗ is differentiable and has a Lipschitz continuous gradient of constant 1/σ for the

norm || · ||∗, i.e., V∗(y)−V∗(x) ≤ 〈V ′
∗(x),y− x〉+ 1

2σ ‖y− x‖2
∗ (see [HUL93, Chap-

ter X]). Also wk = V ′
∗(sk), in view of [Roc81, Theorem 23.5]. Finally, for every

z ∈ S, we can write ρ(wk)+ 〈ρ ′(wk),z−wk〉 ≤ ρ(z) = 0. Thus:

〈ρ ′(wk),wk − ẑ∗〉 ≥ ρ(wk) = ||π(wk)−wk||= ||zk −wk||. (2)

Also, ||ρ ′(wk)||∗ ≤ 1, because for every z ∈ R
n+d :

〈ρ ′(wk),z−wk〉 ≤ ρ(z)−ρ(wk) = ||z−π(z)||− ||wk −π(wk)||
≤ ||z−π(wk)||− ||wk −π(wk)|| ≤ ||z−wk||. (3)

By setting φk :=V∗(sk)−〈sk, ẑ
∗〉, we can write successively for all k ≥ 0:
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Data: z0 ∈ S.

Set ẑ0 := z0, w0 := z0, s0 := 0, and f̂0 := f (ẑ0).
Select sequences {hk}k≥0, {αk}k≥0, {δk}k≥0.

for k = 0, . . . ,N do

Compute f ′(zk) ∈ ∂ f (zk) and ρ ′(wk) ∈ ∂ρ(wk).
Set sk+1 := sk −hk f ′(zk)−hk|| f ′(zk)||∗ρ ′(wk).

Set wk+1 := argmax{〈sk+1,z〉−V (z) : z ∈ R
n+d}.

Set zk+1 := argmin{||wk+1 − z|| : z ∈ S}.

Compute f (zk+1).

if f (zk+1)≥ f̂k then ẑk+1 := ẑk, f̂k+1 := f̂k.

else

Run Oαk+1,δk+1
(zk+1).

if the oracle reports a and b then

Terminate the algorithm and return the oracle output from a.

else if the oracle reports a but not b then

Set ẑk+1 as the oracle output and f̂k+1 := min{ f (ẑk+1), f̂k}.

else

Run the termination procedure with z0 := zk+1, ẑ0 := ẑk+1,

return its output, and terminate the algorithm.

end

end

end

Algorithm 1: Mirror-Descent Method.

Data: z0 ∈ S with f (z0)≤ f̂ ∗, ẑ0 ∈ S∩ (Zn ×R
d).

Set l0 := f (z0), u0 := f (ẑ0).
Choose α,δ ≥ 0. Choose a subproblem accuracy ε ′ > 0.

for k ≥ 0 do

Compute using a bisection method a point zk+1 = λ zk +(1−λ )ẑk

for 0 ≤ λ ≤ 1, for which f (zk+1)− (lk(α +1)+uk)/(α +2) ∈ [−ε ′,ε ′].
Run Oα,δ (zk+1).
if the oracle reports a and b then

Terminate the algorithm and return the oracle output from a.

else if the oracle reports a but not b then

Set ẑk+1 as the oracle output, lk+1 := lk, uk+1 := min{ f (ẑk+1),uk}.

else

Set ẑk+1 := ẑk, lk+1 := f (zk+1), uk+1 := uk.

end

end

Algorithm 2: Termination procedure.

φk+1 = V∗(sk+1)−〈sk+1, ẑ
∗〉

≤ V∗(sk)+ 〈V ′
∗(sk),sk+1 − sk〉+

1

2σ
‖sk+1 − sk‖2

∗−〈sk+1, ẑ
∗〉.

= (V∗(sk)−〈sk, ẑ
∗〉)+

〈

V ′
∗(sk)− ẑ∗,sk+1 − sk

〉

+
1

2σ
‖sk+1 − sk‖2

∗

= φk −hk

〈

wk − zk, f ′(zk)
〉

+hk

〈

ẑ∗− zk, f ′(zk)
〉
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−hk|| f ′(zk)||∗
〈

wk − ẑ∗,ρ ′(wk)
〉

+
h2

k‖ f ′(zk)‖2
∗

2σ

∥

∥

∥

∥

f ′(zk)

‖ f ′(zk)‖∗
+ρ ′(wk)

∥

∥

∥

∥

2

∗
,

where the inequality follows from the Lipschitz continuity of the gradient of V∗,

and the last equality from the identities V ′
∗(sk) = wk, sk+1 − sk = −hk f ′(zk)−

hk‖ f ′(zk)‖∗ρ ′(wk), and V∗(sk)−〈sk, ẑ
∗〉 = φk. By the definition of the dual norm,

it holds −hk〈wk − zk, f ′(zk)〉 ≤ hk‖ f ′(zk)‖∗‖wk − zk‖. Moreover, convexity of f im-

plies hk〈ẑ∗− zk, f ′(zk)〉 ≤ f (ẑ∗)− f (zk). Using this in the above expression we get:

φk+1 ≤ φk +hk|| f ′(zk)||∗
(

||wk − zk||−
〈

wk − ẑ∗,ρ ′(wk)
〉)

+hk( f (ẑ∗)− f (zk))+
h2

k || f ′(zk)||2∗
2σ

(∥

∥

∥

∥

f ′(zk)

|| f ′(zk)||∗

∥

∥

∥

∥

∗
+
∥

∥ρ ′(wk)
∥

∥

∗

)2

≤ φk +hk( f (ẑ∗)− f (zk))+
2h2

k || f ′(zk)||2∗
σ

≤ φk +hk

(

f (ẑ∗)− f (ẑk)−δk

1+αk

)

+
2h2

k || f ′(zk)||2∗
σ

,

where the second inequality follows from (2) and ‖ρ ′(wk)‖∗ ≤ 1, and the third in-

equality from the fact that the oracle reports a. Summing up the above inequalities

from k := 0 to k := N and rearranging, it follows:

1

∑
N
k=0 hk

N

∑
k=0

hk( f (ẑk)−δk)

1+αk

− f (ẑ∗)≤ φ0 −φN+1

∑
N
k=0 hk

+
2∑

N
k=0 h2

k || f ′(zk)||2∗
σ ∑

N
k=0 hk

.

Note that || f ′(zk)||∗ ≤ L, φ0 = sup{−V (z) : z ∈ R
n+d} ≤ 0, and φN+1 ≥ −V (ẑ∗) ≥

−M, yielding the desired result. ⊓⊔

In the special case when αk = α and δk = δ for every k ≥ 0, we can significantly

simplify the above results. According to the previous proposition, we know that:

(

N

∑
k=0

hk

)

(

f̂N −δ

1+α
− f̂ ∗

)

=

(

N

∑
k=0

hk

)

(

min1≤i≤N f (ẑi)−δ

1+α
− f̂ ∗

)

≤
N

∑
k=0

hk( f (ẑk)−δ )

1+α
−
(

N

∑
k=0

hk

)

f̂ ∗ ≤ M+
2L2

σ

N

∑
k=0

h2
k . (4)

We can divide both sides of the above inequality by ∑
N
k=0 hk, then determine the

step-sizes {hk : 0 ≤ k ≤ N} for which the right-hand side is minimized. However,

with this strategy, h0 would depend on N, which is a priori unknown at the first

iteration. Instead, as in [Nes04], we use a step-size of the form hk = c/
√

k+1 for

an appropriate constant c > 0, independent of N. Note that:

N

∑
k=0

1

k+1
=

N+1

∑
k=1

1

k
≤
∫ N+1

1

dt

t
+1 = ln(N +1)+1.
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If we choose c :=
√

σM
2L2 , the right-hand side of (4) can be upper-bounded by

M ln(N +1)+2M. Finally, since

1

c

N

∑
k=0

hk =
N

∑
k=0

1√
k+1

=
N+1

∑
k=1

1√
k
≥
∫ N+2

1

dt√
t
= 2

√
N +2−2,

we can thereby conclude that:

f̂N − (1+α) f̂ ∗−δ

1+α
≤ L

√

M

2σ
· ln(N +1)+2√

N +2−1
. (5)

As the right-hand side converges to 0 when N goes to infinity, Algorithm 1 converges

to an acceptable approximate solution or calls the termination procedure.

Let us now turn our attention to the termination procedure. We assume here that

the oracle achieves a constant quality, that is, that there exists α,δ ≥ 0 for which

αk = α and δk = δ for every k ≥ 0.

Proposition 2. Assume that f (ẑ0) ≥ f (z0) > 0, and that there is no point ẑ ∈ S∩
(Zn ×R

d) for which f (z0)> f (ẑ).

(a) The termination procedure cannot guarantee an accuracy better than:

f (ẑ)≤ f̂ ∗+(2+α)
(

α f̂ ∗+(1+α)ε ′+δ
)

. (6)

(b) For every ε > 0, the termination procedure finds a point ẑ ∈ S∩ (Zn ×R
d) sat-

isfying:

f (ẑ)− f̂ ∗ ≤ ε f̂ ∗+(2+α)
(

α f̂ ∗+(1+α)ε ′+δ
)

within

max

{⌈

ln

(

f (ẑ0)− f (z0)

f (z0)ε

)/

ln

(

2+α

1+α

)⌉

,0

}

iterations.

Proof. Part (a). At every iteration k, there is by construction no ẑ∈ S∩(Zn×R
d) for

which lk > f (ẑ). Also, f (ẑk)≥ uk ≥ f̂ ∗. For convenience, we denote (1+α)/(2+α)
by λ in this proof, and we set ∆k := uk − lk for every k ≥ 0.

Suppose first that the oracle finds a new point ẑk+1 ∈ S∩ (Zn ×R
d) at iteration k.

Then:

f (ẑk+1)≤ (1+α) f (zk+1)+δ ≤ (1+α)
(

λ lk +(1−λ )uk + ε ′
)

+δ ,

where the first inequality is due to the definition of our oracle and the second one

comes from the accuracy by which our bisection procedure computes zk+1. Observe

that the oracle might return a point ẑk such that f (ẑk) is smaller than the above

right-hand side. In this case, no progress is done. As uk ≤ f (ẑk), this implies:

(λ +λα)lk +(1+α)ε ′+δ ≥ (λ +λα −α) f (ẑk). (7)
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Using that f̂ ∗ ≥ lk we get an upper bound of the left-hand side. Rearranging the

terms and replacing λ by its value, we get:

f̂ ∗+(2+α)(α f̂ ∗+(1+α)ε ′+δ )≥ f (ẑk).

Since all the inequalities in the above derivation can be tight, a better accuracy

cannot be guaranteed with our strategy. Thus, we can output ẑk.

Part (b). Note that we can assume
f (ẑ0)− f (z0)

f (z0)ε
> 1, for otherwise the point ẑ0 already

satisfies our stopping criterion.

In order to assess the progress of the algorithm, we can assume that the stopping

criterion (7) is not satisfied. As lk+1 = lk in our case where the oracle gives an output,

we get:

∆k+1 = uk+1 − lk ≤ f (ẑk+1)− lk

≤ (1+α)
(

λ lk +(1−λ )uk + ε ′
)

+δ − lk

=
α2 +α −1

2+α
lk +

1+α

2+α
uk +(1+α)ε ′+δ

=
1+α

2+α
(uk − lk)+αlk +(1+α)ε ′+δ

≤ 1+α

2+α
∆k +α f̂ ∗+(1+α)ε ′+δ .

Suppose now that the oracle informs us that there is no mixed-integral point with

a value smaller than f (zk+1)≥ λ lk +(1−λ )uk − ε ′. Then ẑk+1 = ẑk and uk+1 = uk.

We have:

∆k+1 = uk+1 − lk+1 = f (ẑk)− f (zk+1)

≤ uk −
(

λ lk +(1−λ )uk − ε ′
)

= λ∆k + ε ′

≤ 1+α

2+α
∆k +α f̂ ∗+(1+α)ε ′+δ .

The above inequality is valid for every k that does not comply with the stopping

criterion, whatever the oracle detects. Therefore, we get:

∆N ≤
(

1+α

2+α

)N

∆0 +(2+α)
(

α f̂ ∗+(1+α)ε ′+δ
)

,

and the proposition is proved because f (ẑN)− f̂ ∗ ≤ ∆N . ⊓⊔
In the remainder of this paper, we elaborate on possible realizations of our hard

oracle.

We proceed as follows. In Section 3, we focus on the special case when n = 2

and d = 0. We present a geometric construction that enables us to implement the

improvement oracle in polynomial time. With the help of this oracle we then solve

the problem (1) with n = 2 and d = 0 and obtain a “best point”, i.e., an optimal

point. An adaptation of this construction can also be used to determine a second
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and, more generally, a “k-th best point”. These results will be extended in Section 4

to the mixed-integer case with two integer variables and d continuous variables. The

latter extensions are then used as a subroutine to solve the general problem (1) with

arbitrary n and d in finite time.

3 Two-dimensional integer convex optimization

If n = 1 and d = 0, an improvement oracle can be trivially realized for α = δ = 0.

Queried on a point z ∈ R the oracle returns ẑ := argmin{ f (⌊z⌋), f (⌈z⌉)} if one of

these numbers is smaller or equal to f (z), or returns b otherwise. The first non-

trivial case arises when n = 2 and d = 0. This is the topic of this section.

3.1 Minimizing a convex function in two integer variables

In this section we discuss a new geometric construction that enables us to implement

efficiently the oracle Oα,δ with α = δ = 0, provided that the feasible set is contained

in a known finite box [−B,B]2.

Theorem 2. Let f : R2 → R and gi : R2 → R with i = 1, . . . ,m be convex functions.

Let B ∈ N and let x ∈ [−B,B]2 such that gi(x) ≤ 0 for all i = 1, . . . ,m. Then, in a

number of evaluations of f and g1, . . . ,gm that is polynomial in ln(B), one can either

(a) find an x̂ ∈ [−B,B]2 ∩Z
2 with f (x̂)≤ f (x) and gi(x̂)≤ 0 for all i = 1, . . . ,m or

(b) show that there is no such point.

Note that we do not allow for the function f to take infinite values, in order

to ensure that we can minimize f over the integers of any segment of [−B,B]2 in

O(ln(B)) evaluations of f using a bisection method. Indeed, if a convex function

takes infinite values, it can cost up to O(B) evaluations of f to minimize it on a

segment containing O(B) integer points, as there could be only one of those points

on its domain.

The algorithm that achieves the performance claimed in Theorem 2 is described

in the proof of the theorem. That proof requires two lemmata. We use the following

notation. Let Q ⊂R
2. We denote by vol(Q) the volume of Q, i.e., its Lebesgue mea-

sure. By aff{Q} we denote the smallest affine space containing Q and by conv{Q}
the convex hull of Q. The dimension dim(Q) of Q is the dimension of aff{Q}. The

scalar product we use in this section is exclusively the standard dot product.

Lemma 1. Let K ⊂R
2 be a polytope with vol(K)< 1

2
. Then dim(conv(K∩Z

2))≤ 1.

Proof. For the purpose of deriving a contradiction, assume that there exist three

affinely independent points x̂, ŷ, ẑ ∈ K ∩Z
2. Then vol(K) ≥ vol(conv({x̂, ŷ, ẑ})) =

1
2
|det(x̂− ẑ, ŷ− ẑ)| ≥ 1

2
. ⊓⊔
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Lemma 2. Let u,v,w ∈ R
2 be affinely independent. If

(

conv{u,u+ v,u+ v+w}\ (conv{u+ v,u+ v+w}∪{u})
)

∩Z
2 = /0,

then the lattice points conv{u,u+ v,u+ v−w}∩Z
2 lie on at most three lines.

Proof. We partition conv{u,u+ v,u+ v−w} into three regions. Then we show that

in each region the integer points must lie on a single line using a lattice covering

argument.

We define the parallelogram P := conv{0, 1
2
v, 1

2
w, 1

2
v+ 1

2
w}. Further, we set

A1 := u− 1

2
w+P, A2 := u+

1

2
v−w+P, and A3 := u+

1

2
v− 1

2
w+P.

Note that conv{u,u + v,u + v − w} ⊂ A1 ∪ A2 ∪ A3 (see Fig. 1). Our assumption

implies that the set u+ 1
2
v+P does not contain any integer point except possibly

on the segment u+ v+ conv{0,w}. Therefore, for a sufficiently small ε > 0, the set

(u+ 1
2
v− ε(v+w)+P)∩Z

2 is empty.

Assume now that one of the three regions, say A1, contains three affinely inde-

pendent integer points x̂, ŷ, ẑ. We show below that A1 +Z
2 = R

2, i.e., that P defines

a lattice covering, or equivalently that the set t+P contains at least one integer point

for every t ∈R
2. This fact will contradict that (u+ 1

2
v−ε(v+w)+P)∩Z

2 = /0 and

thereby prove the lemma.

u

u+ v−w

u+ v

u+ v+w

A1

A3A2

Fig. 1 Partitioning the triangle in regions.

Clearly, the parallelogram Q := conv{x̂, ŷ, ẑ, x̂− ŷ+ ẑ} defines a lattice covering,

as it is full-dimensional and its vertices are integral. We transform Q into a set Q′ ⊆
A1 for which a∈Q′ iff there exists b∈Q such that a−b∈Z

2. Specifically, we define

a mapping T such that Q′ = T (Q)⊂ A1 and T (Q)+Z
2 =R

2. Let v⊥ := (−v2,v1)
⊤

and w⊥ :=(−w2,w1)
⊤, i.e., vectors orthogonal to v and w. Without loss of generality

(up to a permutation of the names x̂, ŷ, ẑ), we can assume that 〈x̂,w⊥〉 ≤ 〈ŷ,w⊥〉 ≤
〈ẑ,w⊥〉. If x̂− ŷ+ ẑ ∈ A1 there is nothing to show, so we suppose that x̂− ŷ+ ẑ /∈ A1.

Note that 〈x̂,w⊥〉 ≤ 〈x̂− ŷ+ ẑ,w⊥〉 ≤ 〈ẑ,w⊥〉. Assume first that 〈x̂− ŷ+ ẑ,v⊥〉<
〈ẑ,v⊥〉≤ 〈x̂,v⊥〉,〈ŷ,v⊥〉 — the strict inequality resulting from the fact that x̂− ŷ+ ẑ /∈
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x̂

ẑ

ŷ

x̂− ŷ+ ẑ

A1

w⊥

v⊥

x̂

ẑ

ŷ

A1

w⊥

v⊥

Fig. 2 Mapping T .

A1. We define the mapping T : Q → A1 as follows,

T (l) =











l + ŷ− ẑ, if 〈l,v⊥〉< 〈ẑ,v⊥〉 and 〈l,w⊥〉> 〈x̂− ŷ+ ẑ,w⊥〉,
l − x̂+ ŷ, if 〈l,v⊥〉< 〈ẑ,v⊥〉 and 〈l,w⊥〉 ≤ 〈x̂− ŷ+ ẑ,w⊥〉,
l, otherwise

(see Fig. 2). It is straightforward to show that T (Q) ⊂ A1 and T (Q)+Z
2 = R

2. A

similar construction can easily be defined for any possible ordering of 〈x̂− ŷ+ ẑ,v⊥〉,
〈ẑ,v⊥〉, 〈x̂,v⊥〉, and 〈ŷ,v⊥〉. ⊓⊔

Remark 1. In each region Ai, the line containing Ai∩Z
2, if it exists, can be computed

by the minimization of an arbitrary linear function x 7→ 〈c,x〉 over Ai ∩Z
2, with

c 6= 0, and the maximization of the same function with the fast algorithm described

in [EL05]. If these problems are feasible and yield two distinct solutions, the line we

are looking for is the one joining these two solutions. If the two solutions coincide,

that line is the one orthogonal to c passing through that point.

The algorithm in [EL05] is applicable to integer linear programs with two vari-

ables and m constraints. The data of the problem should be integral. This algorithm

runs in O(m+φ), where φ is the binary encoding length of the data. ⋄

Proof (of Theorem 2). As described at the beginning of this subsection, a one-

dimensional integer minimization problem can be solved polynomially with respect

to the logarithm of the length of the segment that the function is optimized over. In

the following we explain how to reduce the implementation of the two-dimensional

oracle to the task of solving one-dimensional integer minimization problems. For

notational convenience, we define g(y) := maxi=1...m gi(y) for y ∈R
2 which is again

a convex function.

Let F1, . . . ,F4 be the facets of [−B,B]2. Then [−B,B]2 =
⋃4

j=1 conv{x,Fj}. The

procedure we are about to describe has to be applied to every facet F1, . . . ,F4 succes-

sively, until a suitable point x̂ is found. Let us only consider one facet F . We define

the triangle T0 := conv{x,F}, whose area is smaller than 2B2.
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To find an improving point within T0, we construct a sequence T0 ⊃ T1 ⊃ T2 ⊃ . . .
of triangles that all have x as vertex, with vol(Tk+1)≤ 2

3
vol(Tk), and such that f (ŷ)>

f (x) or g(ŷ) > 0 for all ŷ ∈ (T0 \Tk)∩Z
2. We stop our search if we have found an

x̂ ∈ [−B,B]2 ∩Z
2 such that f (x̂)≤ f (x) and g(x̂)≤ 0, or if the volume of one of the

triangles Tk is smaller than 1
2
. The latter happens after at most k = ⌈ln(4B2)/ ln( 3

2
)⌉

steps. Then, Lemma 1 ensures that the integral points of Tk are on a line, and we

need at most O(ln(B)) iterations to solve the resulting one-dimensional problem.

The iterative construction is as follows. Let Tk = conv{x,v0,v1} be given. We

write vλ := (1− λ )v0 + λv1 for λ ∈ R and we define the auxiliary triangle T̄k :=
conv{x,v1/3,v2/3}. Consider the integer linear program

min{〈h, ŷ〉 : ŷ ∈ T̄k ∩Z
2} (8)

where h is the normal vector to conv{v0,v1} such that 〈h,x〉< 〈h,y〉 for every y ∈ F .

We distinguish two cases.

Case 1. The integer linear program (8) is infeasible. Then T̄k ∩Z
2 = /0. It remains

to check for an improving point within (Tk \ T̄k)∩Z
2. By construction, we can apply

Lemma 2 twice (with (u,u+ v−w,u+ v+w) equal to (x,v0,v2/3) and (x,v1/3,v1),

respectively) to determine whether there exists an x̂ ∈ (Tk \ T̄k)∩Z
2 such that f (x̂)≤

f (x) and g(x̂)≤ 0. This requires to solve at most six one-dimensional subproblems.

Case 2. The integer linear program (8) has an optimal solution ẑ. If f (ẑ)≤ f (x)
and g(ẑ) ≤ 0, we are done. So we assume that f (ẑ) > f (x) or g(ẑ) > 0. Define

H := {y ∈ R
2 | 〈h,y〉 = 〈h, ẑ〉}, that is, the line containing ẑ that is parallel to

conv{v0,v1}, and denote by H+ the closed half-space with boundary H that contains

x. By definition of ẑ, there is no integer point in T̄k∩ intH+. Further, let L := aff{x, ẑ}.

x

v0

v1/3 v2/3

v1

z1/3 z1ẑ

Tk T̄k

L+

H+

Fig. 3 Illustration of Case 2.

Due to the convexity of the set {y ∈R
2 | f (y)≤ f (x), g(y)≤ 0} and the fact that

f (ẑ)> f (x) or g(ẑ)> 0, there exists a half-space L+ with boundary L such that the
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possibly empty segment {y ∈ H | f (y)≤ f (x), g(y)≤ 0} lies in L+ (see Fig. 3). By

convexity of f and g, the set ((Tk \H+)\L+) (the lightgray region in Fig. 3) contains

no point y for which f (y)≤ f (x) and g(y)≤ 0. It remains to check for an improving

point within ((Tk ∩H+)\L+)∩Z
2. For that we apply again Lemma 2 on the triangle

conv{z1/3,z1,x} (the darkgray region in Fig. 3), with z1/3 = H ∩ aff{x,v1/3} and

z1 = H ∩ aff{x,v1}. If none of the corresponding subproblems returns a suitable

point x̂ ∈ Z
2, we know that Tk \L+ contains no improving integer point. Defining

Tk+1 := Tk ∩L+, we have by construction f (ŷ) > f (x) or g(ŷ) > 0 for all ŷ ∈ (Tk \
Tk+1)∩Z

2 and vol(Tk+1)≤ 2
3
vol(Tk).

It remains to determine the half-space L+. If g(ẑ)> 0 we just need to find a point

y ∈ H such that g(y)< g(ẑ), or if f (ẑ)> f (x), it suffices to find a point y ∈ H such

that f (y) < f (ẑ). Finally, if we cannot find such a point y in either case, convexity

implies that there is no suitable point in Tk \H+; another application of Lemma 2

then suffices to determine whether there is a suitable x̂ in Tk ∩H+∩Z
2. ⊓⊔

The algorithm presented in the proof of Theorem 2 can be adapted to output a

minimizer x̂∗ of f over S∩ [−B,B]2∩Z
2, provided that we know in advance that the

input point x satisfies f (x)≤ f̂ ∗: it suffices to store and update the best value of f on

integer points found so far. In this case the termination procedure is not necessary.

Corollary 1. Let f : R2 →R and gi : R2 →R with i = 1, . . . ,m be convex functions.

Let B ∈ N and let x ∈ [−B,B]2 such that gi(x)≤ 0 for all i = 1, . . . ,m. If f (x)≤ f̂ ∗,

then, in a number of evaluations of f and g1, . . . ,gm that is polynomial in ln(B), one

can either

(a) find an x̂ ∈ [−B,B]2 ∩Z
2 with f (x̂) = f̂ ∗ and gi(x̂)≤ 0 for all i = 1, . . . ,m or

(b) show that there is no such point.

Note that line 33 in Algorithm 3 requires the application of Lemma 1. Lines 11,

21 and 26 require the application of Lemma 2.

Remark 2 (Complexity). The following subroutines are used in Algorithm 3.

Line 9 and applications of Lemma 2. A two-dimensional integer linear program

solver for problems having at most four constraints, such as the one described in

[EL05]. The size of the data describing each of these constraints is in the order

of the representation of the vector x as a rational number, which, in its standard

truncated decimal representation, is in O(ln(B)).
Line 33 and applications of Lemma 2. A solver for one-dimensional integer con-

vex optimization problems. At every iteration, we need to perform at most seven

of them, for a cost of O(ln(B)) at each time.

Lines 19 and 20. Given a segment [a,b] and one of its points z, we need a device

to determine which of the two regions [a,z] or [z,b] intersects a level set defined

by f and g that does not contain z. This procedure has a complexity of O(ln(B))
and only occurs in Case 2 above. ⋄
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Data: x ∈ [−B,B]2 with f (x)≤ f̂ ∗ and gi(x)≤ 0 for all i = 1, . . . ,m.

1 Let F1, . . . ,F4 be the facets of [−B,B]2.

2 Set x̂∗ := 0 and f̂ ∗ :=+∞.

3 for t = 1, . . . ,4 do

4 Set F := Ft and define v0,v1 ∈ R
n such that F := conv{v0,v1}.

5 Write h for the vector normal to F pointing outwards [−B,B]2.

6 Set T0 := conv{x,F} and k := 0.

7 while vol(Tk)≥ 1
2

do

8 Set T̄k := conv{x,v1/3,v2/3}, with vλ := (1−λ )v0 +λv1.

9 Solve (P) : min{〈h, ŷ〉 : ŷ ∈ T̄k ∩Z
2}.

10 if (Case 1) (P) is infeasible, then

11 Determine x̂ := argmin{ f (ŷ) | ŷ ∈ (Tk \ T̄k)∩Z
2 with g(ŷ)≤ 0}.

12 if x̂ exists and f (x̂)< f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
13

14 else

15 (Case 2) Let ẑ be an optimal solution of (P).

16 Set H+ := {y ∈ R
2 : 〈h,y〉 ≤ 〈h, ẑ〉} and H := ∂H+.

17 Define the points v := aff{x, ẑ}∩F and zi = H ∩ conv{x,vi} for i = 0,1.

18 Denote zλ := (1−λ )z0 +λ z1 for λ ∈ (0,1).
19 if g(ẑ)≤ 0 and there is a y ∈ conv{z0, ẑ} for which f (y)< f (ẑ) or

20 g(ẑ)> 0 and there is a y ∈ conv{z0, ẑ} for which g(y)< g(ẑ) then

21 Determine x̂ := argmin{ f (ŷ) | ŷ ∈ conv{x,z1/3,z1}∩Z
2 with g(ŷ)≤ 0}.

22 if x̂ exists and f (x̂)< f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
23

24 Set v1 := v, Tk+1 := conv{x,v0,v}, and k := k+1.

25 else

26 Determine x̂ := argmin{ f (ŷ) | ŷ ∈ conv{x,z0,z2/3}∩Z
2 with g(ŷ)≤ 0}.

27 if x̂ exists and f (x̂)< f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
28

29 Set v0 := v, Tk+1 := conv{x,v,v1}, and k := k+1.

30 end

31 end

32 end

33 Determine x̂ := argmin{ f (ŷ) | ŷ ∈ Tk ∩Z
2 with g(ŷ)≤ 0}.

34 if x̂ exists and f (x̂)< f̂ ∗ then Set x̂∗ := x̂ and f̂ ∗ := f (x̂).
35

36 end

37 if f̂ ∗ <+∞ then Return x̂∗.

38

39 else Return “the problem is unfeasible”.

Algorithm 3: Minimization algorithm for 2D problems.
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3.2 Finding the k-th best point

In this subsection we want to show how to find the k-th best point, provided that

the k − 1 best points are known. A slight variant of this problem will be used in

Subsection 4.3 as a subroutine for the general mixed-integer convex problem. In the

following, we describe the necessary extensions of the previous Algorithm 3. Let

x̂∗1 := x̂∗ and define for k ≥ 2:

x̂∗k := argmin
{

f (x̂) | x̂ ∈ (S∩ [−B,B]2 ∩Z
2)\{x̂∗1, . . . , x̂

∗
k−1}

}

to be the k-th best point. Observe that, due to the convexity of f and g1, . . . ,gm,

we can always assume that conv{x̂∗1, . . . , x̂
∗
k−1}∩Z

2 = {x̂∗1, . . . , x̂
∗
k−1} for all k ≥ 2.

Although this observation appears plausible it is not completely trivial to achieve

this algorithmically.

Lemma 3. Let Π j := {x̂∗1, . . . , x̂
∗
j} be the ordered j best points of our problem and Pj

be the convex hull of Π j. Suppose that, for a given k ≥ 2, we have Pk−1∩Z
2 = Πk−1.

Let x̂∗k be a k-th best point.

(a) If f (x̂∗k) > f̂ ∗, we can replace the point x̂∗k by a feasible k-th best point ẑ∗k such

that conv{Πk−1, ẑ
∗
k}∩Z

2 = Πk−1 ∪{ẑ∗k} in O(1) operations.

(b) If f (x̂∗k) = f̂ ∗, and if we have at our disposal the ν vertices of Pk−1 ordered

counterclockwise, we can construct such a point ẑ∗k in O(ν ln(B)) operations.

Proof. Part (a). Suppose first that f (x̂∗k)> f̂ ∗, and assume that we cannot set ẑ∗k :=

x̂∗k , that is, that there exists x̂ ∈ (Pk ∩Z
2) \Πk. Then x̂ = ∑

k
i=1 λix̂

∗
i for some λi ≥ 0

that sum up to 1. Note that 0 < λk < 1, because x̂ /∈ Pk−1 ∪{x̂∗k} by assumption, and

that f (x̂)≥ f (x̂∗k). We deduce:

0 ≤ f (x̂)− f (x̂∗k)≤
k

∑
i=1

λi( f (x̂∗i )− f (x̂∗k))≤ 0.

Thus f (x̂) = f (x̂∗k). Let I := {i : λi > 0} and QI := conv{x̂∗i : i ∈ I}, so that x̂ ∈
relint QI . Observe that |I| ≥ 2 and that f is constant on QI . Necessarily, QI is a

segment. Indeed, if it were a two-dimensional set, we could consider the restriction

of f on the line ℓ := aff{x̂∗1, x̂}: it is constant on the open interval ℓ∩ intQI , but does

not attain its minimum on it, contradicting the convexity of f . Let us now construct

the point ẑ∗k : it suffices to consider the closest point to x̂∗k in aff{QI}∩Pk−1, say x̂∗j ,
and to take the integer point ẑ∗k 6= x̂∗j of conv{x̂∗j , x̂

∗
k} that is the closest to x̂∗j (see

Fig. 4).

Part (b). Suppose now that f (x̂∗i ) = f̂ ∗ for every 1 ≤ i ≤ k, and define

{ŷ∗0 ≡ ŷ∗ν , ŷ
∗
1, . . . , ŷ

∗
ν−1} ⊆ Πk−1

as the vertices of Pk−1, labeled counterclockwise. It is well-known that determining

the convex hull of Pk−1 ∪{x̂∗k} costs O(ln(ν)) operations. From these vertices, we
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x̂∗j x̂∗kẑ∗kQI

Pk−1

Fig. 4 Illustration of Part (a).

Data: x̂∗k , ŷ
∗
0, ŷ

∗
1, . . . , ŷ

∗
j .

Set i := 0 and x∗k(0) := x∗k .

while det(x̂∗k(i)− ŷ∗i , ŷ
∗
i+1 − ŷ∗i )≥ 0 do

Set ∆i := conv{x̂∗k(i), ŷ
∗
i , ŷ

∗
i+1}\ aff{ŷ∗i , ŷ

∗
i+1}.

Set hi a vector orthogonal to aff{ŷ∗i , ŷ
∗
i+1} such that 〈hi, x̂

∗
k(i)− ŷ∗i 〉> 0.

Set x̂∗k(i+1) := argmin{〈hi, x̂〉 : x̂ ∈ ∆i ∩Z
2}.

Set i := i+1.

end

Set ẑ∗k := x̂∗k(i).

Algorithm 4: Constructing a point ẑ∗k with conv{Πk−1, ẑ
∗
k}∩Z

2 = Πk−1 ∪{ẑ∗k}.

deduce the set {ŷ∗i : i ∈ J} of those points that are in the relative interior of that

convex hull. Up to a renumbering of the ŷ∗l ’s, we have J = {1,2, . . . , j − 1}. We

show below that Algorithm 4 constructs a satisfactory point ẑ∗k .

We follow here the notation used in Algorithm 4. At every iteration i, the al-

gorithm constructs from an integer point x̂∗k(i) an integer point x̂∗k(i+ 1), possibly

identical to x̂∗k(i). When the algorithm stops, after at most j ≤ ν iterations, the point

ẑ∗k we are looking for is, as we prove it below, the last x̂∗k(i) we have constructed.

Define Tl(i) := conv{x̂∗k(i), ŷ
∗
l , ŷ

∗
l+1}\Pk−1 for 0 ≤ l < j (see Fig. 5); the triangle

∆i in Algorithm 4 corresponds to Ti(i). Also, the vector hi is orthogonal to the side

aff{ŷ∗i , ŷ
∗
i+1} of the triangle Ti(i).

At iteration i, the algorithm considers the triangle Ti(i) if its signed area

1

2
det(x̂∗k(i)− ŷ∗i , ŷ

∗
i+1 − ŷ∗i )

is nonnegative, and finds a point x̂∗k(i+1)∈ Ti(i) such that Ti(i+1) has only x̂∗k(i+1)
as integer point.

We prove by induction on i ≥ 1 that Tl(i) contains only x̂∗k(i) as integer point

whenever l < i. Consider the base case i = 1. By construction, the triangle T0(1)
contains only x∗k(1) as integer point, for otherwise x∗k(1) would not minimize 〈h0, x̂〉
over T0(0)∩Z

2.

Suppose now that the statement is true for i and let l ≤ i. Let us verify that

x̂∗k(i+1) is the only integer in Tl(i+1). We have:

x̂∗k(i+1) ∈ Ti(i)⊆ conv{x̂∗k(i), ŷ
∗
0, . . . , ŷ

∗
i+1}\Pk−1 = Ti(i)∪

i−1
⋃

l=0

Tl(i).
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This last equality represents a triangulation of the possibly non-convex polygon

conv{x̂∗k(i), ŷ
∗
0, . . . , ŷ

∗
i+1}\Pk−1. From the above inclusion, we deduce:

K := conv{x̂∗k(i+1), ŷ∗0, . . . , ŷ
∗
i+1}\Pk−1 ⊆ conv{x̂∗k(i), ŷ

∗
0, . . . , ŷ

∗
i+1}\Pk−1.

As Tl(i+ 1) ⊆ K for all l ≤ i, the integers of Tl(i+ 1) are either in
⋃i−1

l=0 Tl(i)∩Z
2,

which reduces to {x̂∗k(i)} by induction hypothesis, or in Ti(i). Since x̂∗k(i) ∈ Ti(i), all

the integers in Tl(i+1) must be in Ti(i). But Tl(i+1)∩Ti(i)∩Z
2 = {x̂∗k(i+1)} by

construction of x̂∗k(i+1). The induction step is proved.

It remains to take the largest value that i attains in the course of Algorithm 4

to finish the proof. We need to solve at most ν − 1 two-dimensional integer linear

problems over triangles to compute x̂∗k . As the data of these problems are integers

bounded by B, the complexity of the minimization solver used to compute x∗k(i+1)
at every step is bounded by O(ln(B)). The overall complexity of Algorithm 4 is thus

bounded by O(ν ln(B)). ⊓⊔
By Lemma 3, the k-th best point x̂∗k can be assumed to be contained within

[−B,B]2 \ conv{x̂∗1, . . . , x̂
∗
k−1}. This property allows us to design a straightforward

algorithm to compute this point. We first construct an inequality description of

conv{x̂∗1, . . . , x̂
∗
k−1}, say 〈ai,x〉 ≤ bi for i ∈ I with |I|<+∞. Then

[−B,B]2 \ conv{x̂∗1, . . . , x̂
∗
k−1}=

⋃

i∈I

{x ∈ [−B,B]2 | 〈ai,x〉> bi}.

As the feasible set is described as a union of simple convex sets, we could apply Al-

gorithm 1 once for each of them. However, instead of choosing this straightforward

approach one can do better: one can avoid treating each element of this disjunction

separately by modifying Algorithm 3 appropriately.

Suppose first that k = 2. To find the second best point, we apply Algorithm 3

to the point x̂∗1 with the following minor modification: in Line 9, we replace (P)
with the integer linear problem (P ′) : min{〈h, ŷ〉 : ŷ ∈ T̄k ∩Z

2, 〈h, ŷ〉 ≥ 〈h, x̂1〉+1},

where h ∈ Z
2 such that gcd(h1,h2) = 1. This prevents the algorithm from returning

x̂∗1 again.

Let k ≥ 3. Let ŷ∗0, . . . , ŷ
∗
ν−1, ŷ

∗
ν ≡ ŷ∗0 denote the vertices of Pk−1, ordered counter-

clockwise (they can be determined in O(k ln(k)) operations using the Graham Scan

[Gra72]). Recall that the point we are looking for is not in Pk−1.

Let us call a triangle with a point ŷ∗i as vertex and with a segment of the boundary

of [−B,B]2 as opposite side a search triangle (see Fig. 7: every white triangle is a

search triangle). The idea is to decompose [−B,B]2 \Pk−1 into search triangles, then

to apply Algorithm 3 to these triangles instead of (conv{x,Ft})4
t=1.

For each 0 ≤ i < ν , we define Hi := {y ∈ R
2 : det(y− ŷ∗i , ŷ

∗
i+1 − ŷ∗i )≥ 0}, so that

Hi ∩ Pk−1 = conv{ŷ∗i , ŷ
∗
i+1}. Consider the regions Ri := ([−B,B]2 ∩Hi) \ intHi−1.

Note that Ri contains only ŷ∗i and ŷ∗i+1 as vertices of Pk−1. Also, at most four of the

Ri’s are no search triangles. If Ri is such, we triangulate it into (at least two) search

triangles by inserting chords from ŷ∗i to the appropriate vertices of [−B,B]2.

Note that a search triangle can contain two or more integer points of Pk−1. In

order to prevent us from outputting one of those, we need to perturb the search
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x̂∗k(0)

ŷ∗0

ŷ∗1

ŷ∗2
ŷ∗j

Pk−1

T1(0)

T0(0)

T2(0)

Beginning of iteration i = 0

x̂∗k(0)≡ x̂∗k(1)

ŷ∗0

ŷ∗1

ŷ∗2
ŷ∗j

Pk−1

T1(1)

T0(1)

T2(1)

Beginning of iteration i = 1

x̂∗k(0)≡ x̂∗k(1)

x̂∗k(2)

ŷ∗0

ŷ∗1

ŷ∗2
ŷ∗j

Pk−1

T1(2)

T0(2)

T2(2)

Beginning of iteration i = 2

Fig. 5 Constructing Pk from Pk−1: first iterations of Algorithm 4. The point x̂∗k(1) is the same as

x̂∗k(0) because T0(0) has no other integer point than x̂∗k(0). The gray areas are, as the algorithm

progresses, regions where we have established that they do not contain any integer point.

triangles slightly before using them in Algorithm 3. Let T = conv{ŷ∗i ,b1,b2} be one

of the search triangles, with b1,b2 being points of the boundary of [−B,B]2. The

triangle T might contain ŷ∗i+1, say ŷ∗i+1 ∈ conv{ŷ∗i ,b1}, a point we need to exclude

from T . We modify b1 slightly by replacing it with (1−ε)b1+εb2 for an appropriate

positive ε > 0 whose encoding length is O(ln(B)).
So, we apply Algorithm 3 with all these modified search triangles instead of

conv{x,F1}, . . . ,conv{x,F4}. A simple modification of Line 9 allows us to avoid

the point ŷ∗i for ẑ: we just need to replace the linear integer problem (P) with

min{〈h, ŷ〉 : ŷ∈ T̄k∩Z
2, 〈h, ŷ〉 ≥ 〈h, ŷ∗i 〉+1}, where h∈Z

2 such that gcd(h1,h2) = 1.

Then, among the feasible integer points found, we return the point with smallest

objective value.
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Pk−1

ŷ∗0

ŷ∗1
ŷ∗2

H1

R1

Fig. 6 Triangulation step 1.

Pk−1

ŷ∗0

ŷ∗1
ŷ∗2

Fig. 7 Triangulation step 2.

Corollary 2. Let f : R2 →R and gi : R2 →R with i = 1, . . . ,m be convex functions.

Let x̂∗1, . . . , x̂
∗
k−1 be the k−1 best points for min{ f (x̂) : x̂ ∈ S∩ [−B,B]2 ∩Z

2}. Then,

in a number of evaluations of f and g1, . . . ,gm that is polynomial in ln(B) and in k,

one can either find

(a) a k-th best point, x̂∗k , or

(b) show that there is no such point.

4 Extensions and applications to the general setting

In this section, we extend our algorithm for solving two-dimensional integer convex

optimization problems in order to solve more general mixed-integer convex prob-

lems. The first extension concerns mixed-integer convex problems with two integer

variables and d continuous variables. For those, we first need results about problems

with only one integer variable. We derive these results in Subsection 4.1 where we

propose a variant of the well-known golden search method that deals with convex

functions whose value is only known approximately. To the best of our knowledge,

this variant is new.

In Subsection 4.2, we build an efficient method for solving mixed-integer convex

problems with two integer and d continuous variables and propose an extension

of Corollary 2. This result itself will be used as a subroutine to design a finite-time

algorithm for mixed-integer convex problems in n integer and d continuous variables

in Subsection 4.3.

In this section, the problem of interest is (1):

min{ f (x̂,y) : gi(x̂,y)≤ 0 for 1 ≤ i ≤ m,(x̂,y) ∈ Z
n ×R

d}

with a few mild simplifying assumptions. We define the function

g : Rn → R, x 7→ g(x) := min
y∈Rd

max
1≤i≤m

gi(x,y).
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We assume that this minimization in y has a solution for every x ∈R
n, so as to make

the function g convex. Let S := {(x,y) ∈ R
n+d : gi(x,y) ≤ 0 for 1 ≤ i ≤ m}. We

assume that the function f has a finite spread max{ f (x,y)− f (x′,y′) : (x,y),(x′,y′)∈
S} on S and that we know an upper bound Vf on that spread. Observe that, by

Lipschitz continuity of f and the assumption that we optimize over [−B,B]n, it

follows Vf ≤ 2
√

nBL. Finally, we assume that the partial minimization function:

φ : Rn → R∪{+∞}, x 7→ φ(x) := min{ f (x,y) : (x,y) ∈ S}

is convex. As for the function g, this property can be achieved e.g. if for every x∈R
n

for which g(x)≤ 0 there exists a point y such that (x,y) ∈ S and φ(x) = f (x,y).
Our approach is based on the following well-known identity:

min{ f (x̂,y) : (x̂,y) ∈ S∩ (Zn ×R
d)}= min{φ(x̂) : g(x̂)≤ 0, x̂ ∈ Z

n}.

For instance, when n = 2, we can use the techniques developed in the previous sec-

tion on φ to implement the improvement oracle for f . However, we cannot presume

to know exactly the value of φ , as it results from a minimization problem. We merely

assume that, for a known accuracy γ > 0 and for every x ∈ domφ we can determine

a point yx such that (x,yx)∈ S and f (x,yx)−γ ≤ φ(x)≤ f (x,yx). Determining yx can

be, on its own, a non-trivial optimization problem. Nevertheless, it is a convex prob-

lem for which we can use the whole machinery of standard Convex Programming

(see e.g. [?, ?, Nes04] and references therein.).

Since we do not have access to exact values of φ , we cannot hope for an exact or-

acle for the function φ , let alone for f . The impact of the accuracy γ on the accuracy

of the oracle is analyzed in the next subsections.

4.1 Mixed-integer convex problems with one integer variable

The Algorithm 3 uses as indispensable tools the bisection method for solving two

types of problems: minimizing a convex function over the integers of an interval, and

finding, in a given interval, a point that belongs to a level set of a convex function.

In this subsection, we show how to adapt the bisection methods for mixed-integer

problems. It is well-known that the bisection method is the fastest for minimizing

univariate convex functions over a finite segment ([?, Chapter 1]).

Let a,b ∈ R, a < b, and ϕ : [a,b] → R be a convex function to minimize on

[a,b] and/or on the integers of [a,b], such as the function φ in the preamble of

this Section 4 when n = 1. Assume that, for every t ∈ [a,b], we know a number

ϕ̃(t) ∈ [ϕ(t),ϕ(t)+ γ]. In order to simplify the notation, we scale the problem so

that [a,b] ≡ [0,1]. The integers of aff{a,b} are scaled to a set of points of the form

t0 + τZ for a τ > 0. Of course, the spread of the function ϕ does not change, but

its Lipschitz constant does, and achieving the accuracy γ in its evaluation must be

reinterpreted accordingly.

In the sequel of this section, we fix 0 ≤ λ0 < λ1 ≤ 1.
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Lemma 4. Under our assumptions, the following statements hold.

(a) If ϕ̃(λ0)≤ ϕ̃(λ1)− γ , then ϕ(λ )≥ ϕ̃(λ0) for all λ ∈ [λ1,1].
(b) If ϕ̃(λ0)≥ ϕ̃(λ1)+ γ , then ϕ(λ )≥ ϕ̃(λ1) for all λ ∈ [0,λ0].

Proof. We only prove Part (a) as the proof of Part (b) is symmetric. Thus, let us

assume that ϕ̃(λ0)≤ ϕ̃(λ1)− γ . Then there exists 0 < µ ≤ 1 for which λ1 = µλ +
(1−µ)λ0. Convexity of ϕ allows us to write:

ϕ̃(λ0)≤ ϕ̃(λ1)− γ ≤ ϕ(λ1)≤ µϕ(λ )+(1−µ)ϕ(λ0)≤ µϕ(λ )+(1−µ)ϕ̃(λ0),

implying ϕ̃(λ0)≤ ϕ(λ ) as µ > 0. Fig. 8 illustrates the proof graphically. ⊓⊔

0 1λ1λ0

ϕ̃(λ0)

ϕ̃(λ1) γ

Fig. 8 Lemma 4: the bold line represents a lower bound on ϕ in Part (a).

If one of the conditions in Lemma 4 is satisfied, we can remove from the interval

[0,1] either [0,λ0[ or ]λ1,1]. To have a symmetric effect of the algorithm in either

case, we set λ1 := 1−λ0, forcing λ0 to be smaller than 1
2
. In order to recycle our

work from iteration to iteration, we choose λ1 := 1
2
(
√

5−1), as in the golden search

method: if we can eliminate, say, the interval ]λ1,1] from [0,1], we will have to

compute in the next iteration step an approximate value of the objective function at

λ0λ1 and λ 2
1 . The latter happens to equal λ0 when λ1 =

1
2
(
√

5−1).
It remains to define a strategy when neither of the conditions in Lemma 4 is

satisfied. In the lemma below, we use the values for λ0,λ1 chosen above.

Lemma 5. Assume that ϕ̃(λ1)− γ < ϕ̃(λ0)< ϕ̃(λ1)+ γ . We define:

λ0+ := (1−λ0) ·λ0 +λ0 ·λ1 = 2λ0λ1,

λ1+ := (1−λ1) ·λ0 +λ1 ·λ1 = 1−2λ0λ1.

If min{ϕ̃(λ0+), ϕ̃(λ1+)} ≤ min{ϕ̃(λ0)− γ, ϕ̃(λ1)− γ}, then ϕ(t) ≥ min{ϕ̃(λ0+),
ϕ̃(λ1+)} for all t ∈ [0,1] \ [λ0,λ1]. Otherwise, it holds that min{ϕ̃(λ0), ϕ̃(λ1)} ≤
min{ϕ(t) : t ∈ [0,1]}+(κ −1)γ , where κ := 2

λ0
≈ 5.236.

Proof. The first conclusion follows immediately from Lemma 4. The second situa-

tion involves a tedious enumeration, summarized in Fig. 9. We assume, without loss

of generality, that ϕ̃(λ0)≤ ϕ̃(λ1). The bold lines in Fig. 9 represent a lower bound

on the value of the function ϕ . We show below how this lower bound is constructed

and determine its lowest point. In fact, this lower bound results from six applications
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0 1λ1λ0
λ1+λ0+

m1 m2
m3

m4 m5

ϕ̃(λ0) γ
γ

γ

Fig. 9 Approximate bisection: bold lines represent a lower bound on ϕ in the termination case.

of a simple generic inequality (9) that we establish below, before showing how we

can particularize it to different segments of the interval [0,1].
Let 0 < t < 1 and let u,v ∈ {λ0,λ0+,λ1+,λ1}. Suppose that we can write v =

µt +(1−µ)u for a µ ∈ ]µ0,1] with µ0 > 0. If we can find constants γ−,γ+ ≥ 0 that

satisfy

ϕ(v)+ γ+ ≥ ϕ̃(λ0)≥ ϕ(u)− γ−

then we can infer:

µϕ(t)+(1−µ)(ϕ̃(λ0)+ γ−)≥ µϕ(t)+(1−µ)ϕ(u)≥ ϕ(v)≥ ϕ̃(λ0)− γ+,

and thus:

ϕ(t)− ϕ̃(λ0)≥ γ−− γ++ γ−
µ

≥ γ−− γ++ γ−
µ0

. (9)

1. If t ∈ ]0,λ0], we can take u := λ1 and v := λ0, giving µ0 = 1− λ0

λ1
= λ0. Then

γ− = γ+ = γ , and ϕ(t)− ϕ̃(λ0)≥−γ( 2
λ0

−1).

2. If t ∈ ]λ1,1[, we choose u := λ0 and v := λ1, and by symmetry with the previous

case we obtain µ0 = λ0. Now, γ− = 0 and γ+ = γ , yielding a higher bound than

in the previous case.

3. Suppose t ∈ ]λ0,λ0+]. Then with u := λ1 and v := λ0+, we get µ0 =
λ1−λ0+
λ1−λ0

= λ1,

γ− = γ , γ+ = 2γ , giving as lower bound −γ( 3
λ1

− 1), which is higher than the

first one we have obtained.

4. Symmetrically, let us consider t ∈ ]λ1+,λ1]. With u := λ0 and v := λ1+, we

obtain also µ0 = λ1. As γ− = 0 and γ+ = 2γ , the lower bound we get is larger

than the one in the previous item.

5. Set λ ′ := 1
5
(2λ0++ 3λ1+). If t ∈ ]λ0+,λ

′], we can use u := λ0 and v := λ0+,

so that µ0 =
λ0+−λ0

λ ′−λ0
= 5λ 2

0 , γ− = 0, and γ+ = 2γ . Thus, the lower bound is

evaluated as − 2γ

5λ 2
0

, which is higher than any of the bounds we have obtained so

far.

6. Finally, if t ∈ ]λ ′,λ1+], we take u := λ1 and v := λ1+, so that γ− = γ , γ+ = 2γ ,

and µ0 =
λ1−λ1+
λ1−λ ′ = 5λ0

2+λ0
. Hence, we get −γ( 3(2+λ0)

5λ0
−1) =− 2γ

5λ 2
0

for the lower

bound, just as in the previous item.

So, the lower bound for ϕ(t)− ϕ̃(λ0) on [0,1] can be estimated as −γ( 2
λ0

− 1) ≈
−4.236γ . ⊓⊔
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In the proof of the following proposition, we present an algorithm that returns a

point x ∈ [0,1] whose function value ϕ(x) is close to min{ϕ(t) : t ∈ [0,1]}.

Proposition 3. There exists an algorithm that finds a point x ∈ [0,1] for which

ϕ̃(x)−(κ−1)γ ≤min{ϕ(t) : t ∈ [0,1]}≤ϕ(x) in at most 2+
⌈

ln
(

(κ−1)γ
Vϕ

)

/ ln(λ1)
⌉

evaluations of ϕ̃ , where Vϕ is the spread of ϕ on [0,1].

Proof. We start with the interval [0,1] and by evaluating ϕ̃ at λ0 and λ1. If one of

the two conditions in Lemma 4 is satisfied, we can shrink the interval by a factor of

λ0 ≈ 38% since it suffices to continue either with the interval [0,λ1] or with [λ0,1].
If not, then Lemma 5 applies: if the first condition stated in Lemma 5 is met, then

it suffices to continue with the interval [λ0,λ1] so as to shrink the starting interval

by a factor of 2λ0 ≈ 76%. Otherwise, any x ∈ [λ0,λ1] satisfies the requirement of

the lemma and we can stop the algorithm. Therefore, either the algorithm stops or

we shrink the starting interval by a factor of at least λ0. Iterating this procedure,

it follows that — if the algorithm does not stop — at every step the length of the

remaining interval is at most λ1 times the length of the previous interval. Moreover,

by the choice of λ0, the function ϕ̃ is evaluated in two points at the first step, and in

only one point as from the second step in the algorithm. So, at iteration k, we have

performed at most 2+ k evaluations of ϕ̃ .

By construction, the minimum t∗ of ϕ lies in the remaining interval Ik of iteration

k. Also, the value of ϕ outside Ik is higher than the best value found so far, say

ϕ̃(t̄k). Finally, the size of Ik is bounded from above by λ k
1 . Consider now the segment

I(λ ) := (1−λ )t∗+λ [0,1], of size λ . Observe that for every λ such that 1≥ λ > λ k
1 ,

the interval I(λ ) contains a point that is not in Ik. Therefore,

ϕ̃(t̄k)≤ max{ϕ(t) : t ∈ I(λ )} ≤ (1−λ )ϕ(t∗)+λ max{ϕ(t) : t ∈ [0,1]}
≤ (1−λ )ϕ(t∗)+λ (Vϕ +ϕ(t∗)).

Hence ϕ̃(t̄k)− ϕ(t∗) ≤ λVϕ , and, by taking λ arbitrarily close to λ k
1 , we get

ϕ̃(t̄k)−ϕ(t∗) ≤ λ k
1Vϕ . If the algorithm does not end prematurely, we need at most

⌈

ln
(

(κ−1)γ
Vϕ

)

/ ln(λ1)
⌉

iterations to make λ k
1Vϕ smaller than (κ −1)γ . ⊓⊔

Remark 3. If we content ourselves with a coarser precision η ≥ (κ −1)γ , we merely

need O(ln(Vϕ/η)) evaluations of ϕ̃ . ⋄

It is now easy to extend this procedure to minimize a convex function approxi-

mately over the integers of an interval [a,b], or, using our simplifying scaling, over

(t0 + τZ)∩ [0,1] for given t0 ∈ R and τ > 0.

Proposition 4. There exists an algorithm that finds a point x̂ ∈ (t0 + τZ)∩ [0,1] for

which:

ϕ̃(x̂)−κγ ≤ min{ϕ(t̂) : t̂ ∈ (t0 + τZ)∩ [0,1]} ≤ ϕ(x̂)

in less than

min

{

4+

⌈

ln((κ −1)γ/Vϕ)

ln(λ1)

⌉

,5+

⌈

ln(τ)

ln(λ1)

⌉}
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evaluations of ϕ̃ , where Vϕ is the spread of ϕ on [0,1].

Proof. We denote in this proof the points in (t0 +τZ) as scaled integers. To avoid a

trivial situation, we assume that [0,1] contains at least two such scaled integers.

Let us use the approximate bisection method described in the proof of Proposi-

tion 3 until the remaining interval has a size smaller than τ , so that it contains at

most one scaled integer. Two possibilities arise: either the algorithm indeed finds

such a small interval Ik, or it finishes prematurely, with a remaining interval Ik larger

than τ .

In the first case, which requires at most 2+ ⌈ln(τ)/ ln(λ1)⌉ evaluations of ϕ̃ , we

know that Ik contains the continuous minimizer of ϕ . Hence, the actual minimizer of

ϕ over (t0 + τZ)∩ [0,1] is among at most three scaled integers, namely the possible

scaled integer in Ik, and, at each side of Ik, the possible scaled integers that are

the closest to Ik. By convexity of ϕ , the best of these three points, say x̂, satisfies

ϕ̃(x̂)− γ ≤ ϕ(x̂) = min{ϕ(t̂) : t̂ ∈ (t0 + τZ)∩ [0,1]}.

In the second case, we have an interval Ik ⊆ [0,1] and a point t̄k that fulfill

ϕ̃(t̄k) ≤ min{ϕ(t) : t ∈ [0,1]}+ (κ − 1)γ , which was determined within at most

2+
⌈

ln((κ−1)γ/Vϕ )
ln(λ1)

⌉

evaluations of ϕ̃ . Consider the two scaled integers t̂− and t̂+ that

are the closest from t̄k. One of these two points constitutes an acceptable output for

our algorithm. Indeed, suppose first that min{ϕ̃(t̂−), ϕ̃(t̂+)} ≤ ϕ̃(t̄k)+ γ . Then:

min{ϕ̃(t̂−), ϕ̃(t̂+)} ≤ ϕ̃(t̄k)+ γ ≤ min{ϕ(t) : t ∈ [0,1]}+κγ,

and we are done. Suppose that min{ϕ̃(t̂−), ϕ̃(t̂+)}> ϕ̃(t̄k)+ γ and that there exists

a scaled integer t̂ with ϕ(t̂) < min{ϕ(t̂−),ϕ(t̂+)}. Without loss of generality, let

t̂− ∈ conv{t̂, t̄k}, that is t̂− = λ t̂ +(1−λ )t̄k, with 0 ≤ λ < 1. We have by convexity

of ϕ:

ϕ(t̂−)≤ λϕ(t̂)+(1−λ )ϕ(t̄k)< λϕ(t̂−)+(1−λ )(ϕ̃(t̂−)− γ),

which is a contradiction because λ < 1 and ϕ̃(t̂−)− γ ≤ ϕ(t̂−). So, it follows that

ϕ(t̂)≥min{ϕ(t̂−),ϕ(t̂+)} for every t̂ ∈ (t0+τZ)∩ [0,1], proving the statement. ⊓⊔

In the the following we extend the above results to the problem min{ϕ(t) : t ∈
[0,1], g(t)≤ 0}, where g : [0,1]→ R is a convex function with a known spread Vg.

In the case that we have access to exact values of g, an approach for attacking the

problem would be the following: we first determine whether there exists an element

t̄ ∈ [0,1] with g(t̄) ≤ 0. If t̄ exists, we determine the exact bounds t− and t+ of the

interval {t ∈ [0,1],g(t)≤ 0}. Then we minimize the function f over [t−, t+].
The situation where we do not have access to exact values of g or where we

cannot determine the feasible interval [t−, t+] induces some technical complications.

We shall not investigate them in this paper, except in the remaining of this subsection

in order to appreciate the modification our method needs in that situation: let us

assume, that we have only access to a value g̃(t) ∈ [g(t),g(t)+γ]. In order to ensure

that the constraint g is well-posed we make an additional assumption: either {t ∈
[0,1] : |g(t)| ≤ γ} is empty, or the quantity min{|g′(t)| : g′(t) ∈ ∂g(t), |g(t)| ≤ γ} is
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non-zero, and even reasonably large. This ensures that the (possibly empty) 0-level

set of g is known with enough accuracy. We denote by θ > 0 a lower bound on this

minimum, and for simplicity assume that θ = 2Nγ for a suitable N ∈ N.

Our strategy proceeds as follows. First we determine whether there exists a point

t̄ ∈ [0,1] for which g(t̄) < 0 by applying the minimization procedure described in

Proposition 3. If this procedure only returns nonnegative values, we can conclude

after at most 2+ ⌈ln((κ −1)γ/Vg)/ ln(λ1)⌉ evaluations of g̃ that g(t)≥−(κ −1)γ ,

in which case we declare that we could not locate any feasible point in [0,1].
Otherwise, if we find a point t̄ ∈ [0,1] with g̃(t̄) < 0, we continue and compute

approximate bounds t− and t+ of the interval {t ∈ [0,1],g(t) ≤ 0}. For that, we

assume g̃(0), g̃(1) ≥ 0. By symmetry, we only describe how to construct t− such

that g̃(t−)≤ 0 and g(t−−η)≥ 0 for an η > 0 reasonably small. Note that g(t)≤ 0

on [t−, t̄] by convexity of g.

In order to compute t−, we adapt the standard bisection method for finding a

root of a function. Note that the function g̃ might not have any root as it might not

be continuous. Our adapted method constructs a decreasing sequence of intervals

[ak,bk] such that g̃(ak) > 0, g̃(bk) ≤ 0, and bk+1 −ak+1 =
1
2
(bk −ak). If g̃(ak) > γ ,

we know that g is positive on [0,ak], and we know that there is a root of g on

[ak,bk]. Otherwise, if 0 < g̃(ak)≤ γ and that the interval [ak,bk] has a length larger

or equal to
γ
θ . Given the form of θ , we know that k ≤ N. We claim that for every

0 ≤ t ≤ min{0,ak − γ
θ } we have g(t)≥ 0, so that we can take η := 2

γ
θ and t− := bN .

Indeed, assume that g′(ak)≥ θ , then

g̃(bk)≥ g(bk)≥ g(ak)+g′(ak)(bk −ak)>−γ +θ · γ

θ
≥ 0

giving a contradiction, so we must have g′(ak)≤−θ . We can exclude the case where

t can only be 0. As claimed, we have

g(t)≥ g(ak)+g′(ak)(t −ak)≥−γ +θ(ak − t)≥ 0

as
γ
θ ≤ ak − t. This takes

⌈

ln( γ
θ )/ ln( 1

2
)
⌉

evaluations of g̃.

Summarizing this, we just sketched the proof of the following corollary.

Corollary 3. There exists an algorithm that solves approximately min{ϕ(t) : t ∈
[0,1],g(t)≤ 0}, in the sense that it finds, if they exist, three points 0 ≤ t− ≤ x ≤ t+ ≤
1 with:

(a) g(t)≤ g̃(t)≤ 0 for every t ∈ [t−, t+],
(b) if t− ≥ 2

γ
θ , then g(t)≥ 0 for every t ∈ [0, t−−2

γ
θ ],

(c) if t+ ≤ 1−2
γ
θ , then g(t)≥ 0 for every t ∈ [t++2

γ
θ ,1],

(d) ϕ̃(x)≤ min{ϕ(t) : t ∈ [t−, t+], g(t)≤ 0}+(κ −1)γ

within at most 3+
⌈

ln((κ−1)γ/Vg)
ln(λ1)

⌉

+ 2
⌈

ln(γ/θ)
ln(1/2)

⌉

evaluations of g̃ and at most 2+
⌈

ln((κ−1)γ/Vϕ )
ln(λ1)

⌉

evaluations of ϕ̃ .
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As stressed before above, we assume from now on that we can compute exactly

the roots of the function g on a given interval, so that the segment [t−, t+] in Corol-

lary 3 is precisely our feasible set. This situation occurs e.g. in mixed-integer convex

optimization with one integer variable when the feasible set S ⊂ R×R
d is a poly-

tope.

Remark 4. In order to solve problem (1) with one integer variable, we can extend

Proposition 4 to implement the improvement oracle O0,κγ . We need three assump-

tions: first, S ⊆ [a,b]×R
d with a < b; second, f has a finite spread on the fea-

sible set; and third we can minimize f (x,y) with (x,y) ∈ S and x fixed up to

an accuracy γ . That is, we have access to a value ϕ̃(x) ∈ [ϕ(x),ϕ(x) + γ] with

ϕ(x) := min{ f (x,y) : (x,y) ∈ S} being convex.

Given a feasible query point (x,y) ∈ [a,b]×R
d , we can determine correctly that

there is no point (x̂, ȳ) ∈ ((t0 + τZ)∩ [0,1])×R
d for which f (x̂, ȳ) ≤ f (x,y), pro-

vided that the output x̂ of our approximate bisection method for integers given in

Proposition 4 satisfies ϕ̃(x̂)− κγ > f (x,y). Otherwise, we can determine a point

(x̂, ȳ) for which f (x̂, ȳ) ≤ f (x,y)+κγ . Note that this oracle cannot report a and b

simultaneously. ⋄

4.2 Mixed-integer convex problems with two integer variables

We could use the Mirror-Descent Method in Algorithm 1 to solve the generic prob-

lem (1) when n= 2 with z 7→ 1
2
||z||22 as function V , so that σ = 1 and M = 1

2
diam(S)2,

where diam(S) = max{||z− z′||2 : z,z′ ∈ S}. According to (5), the worst-case num-

ber of iterations is bounded by a multiple of L
√

M/σ = O(Ldiam(S)), where L is

the Lipschitz constant of f . As Vf ≤ Ldiam(S), the resulting algorithm would have

a worst-case complexity of Ω(Vf ).
We improve this straightforward approach with a variant of Algorithm 3, whose

complexity is polynomial in ln(Vf ). This variant takes into account the fact that we

do not have access to exact values of the partial minimization function φ defined in

the preamble of this section.

Proposition 5. Suppose that we can determine, for every x ∈ R
n with g(x) ≤ 0, a

point yx ∈R
d satisfying f (x,yx)− γ ≤ min{ f (x,y) : (x,y) ∈ S}. Then we can imple-

ment the oracle O0,κγ such that for every (x,y) ∈ S it takes a number of evaluations

of f that is polynomial in ln(Vf /γ).

Proof. We adapt the algorithm described in the proof of Theorem 2 for the function

φ(x) := min{ f (x,y) : (x,y) ∈ S}, which we only know approximately. Its available

approximation is denoted by φ̃(x) := f (x,yx) ∈ [φ(x),φ(x)+ γ].
Let (x,y)∈ S be the query point and let us describe the changes that the algorithm

in Theorem 2 requires. We borrow the notation from the proof of Theorem 2.

The one-dimensional integer minimization problems which arise in the course

of the algorithm require the use of our approximate bisection method for integers
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in Proposition 4. This bisection procedure detects, if it exists, a point x̂ on the line

of interest for which φ̃(x̂) = f (x̂,yx̂) ≤ f (x,y)+κγ and we are done. Or it reports

correctly that there is no integer x̂ on the line of interest with φ(x̂)≤ f (x,y).
In Case 2, we would need to check whether φ(ẑ)≤ f (x,y). In view of our accu-

racy requirement, we only need to check φ̃(ẑ)≤ f (x,y)+κγ .

We also need to verify whether the line H intersects the level set {x ∈R
2 | φ(x)≤

f (x,y)}. We use the following approximate version:

“check whether there is a v ∈ conv{z0, ẑ} for which φ̃(v)< f (x,y)+(κ −1)γ”,

which can be verified using Proposition 3. If such a point v exists, the convexity of

φ forbids any w ∈ conv{ẑ,z1} to satisfy φ(w)≤ f (x,y), for otherwise:

φ̃(ẑ)≤ φ(ẑ)+ γ ≤ max{φ(v),φ(w)}+ γ ≤ max{φ̃(v), φ̃(w)}+ γ < f (x,y)+κγ,

a contradiction. Now, if such a point v does not exist, we perform the same test on

conv{ẑ,z1}. We can thereby determine correctly which side of ẑ on H has an empty

intersection with the level set. ⊓⊔

Similarly as in Corollary 1, we can extend this oracle into an approximate min-

imization procedure, which solves our optimization problem up to an accuracy of

κγ , provided that we have at our disposal a point (x,y) ∈ S such that f (x,y) is a

lower bound on the mixed-integer optimal value.

Let us now modify our method for finding the k-th best point for two-dimensional

problems to problems with two integer and d continuous variables. Here, we aim at

finding — at least approximately — the k-th best fiber x̂∗k ∈ [−B,B]2, so that:

(x̂∗k ,y
∗
k) ∈ argmin{ f (x,y) : (x,y) ∈ S∩ ((Z2 \{x̂∗1, . . . , x̂

∗
k−1})×R

d)}

for a y∗k ∈ R
d . We set f̂ ∗[k] := f (x̂∗k ,y

∗
k). The following proposition summarizes the

necessary extensions of Subsection 3.2.

Proposition 6. Let k ≥ 2 and let Πk−1 := {ẑ∗1, . . . , ẑ
∗
k−1} ⊆ [−B,B]2 ∩Z

2 be points

for which φ(ẑ∗i )≤ f̂ ∗i + iκγ , g(ẑ∗i )≤ 0 when 1 ≤ i < k and such that conv{Πk−1}∩
Z

2 = Πk−1. In a number of approximate evaluations of f and g1, . . . ,gm that is

polynomial in ln(Vf /γ) and k, one can either

(a) find an integral point ẑ∗k ∈ [−B,B]2 for which φ(ẑ∗k)≤ f̂ ∗[k]+ kκγ , g(ẑ∗k)≤ 0 and

conv{Πk−1, ẑ
∗
k}∩Z

2 = Πk−1 ∪{ẑ∗k}, or

(b) show that there is no integral point ẑ∗k ∈ [−B,B]2 for which g(ẑ∗k)≤ 0.

Proof. If k = 2, we run Algorithm 3 applied to ẑ∗1 with Line 9 replaced by solving

min{〈h, ŷ〉 : ŷ∈ T̄k∩Z
2, 〈h, ŷ〉 ≥ 〈h, ẑ∗1〉+1}, where h∈Z

2 such that gcd(h1,h2) = 1.

We also need to use approximate bisection methods instead of exact ones. Following

the proof of Proposition 5, the oracle finds, if it exists, a feasible point ẑ∗2. Either

φ̃(ẑ∗2)≤ φ̃(ẑ∗1)+κγ ≤ f̂ ∗[1]+2κγ ≤ f̂ ∗[2]+2κγ , or φ̃(ẑ∗2)> φ̃(ẑ∗1)+κγ , then φ(ẑ∗2)≤
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φ̃(ẑ∗2) ≤ f̂ ∗[2] + κγ . Note that, if φ(ẑ∗2) > φ(ẑ∗1)+ κγ , we can conclude a posteriori

that z∗1 corresponds precisely to f ∗[1].
For k ≥ 3, we can define the same triangulation as in Figure 7. Replicating

the observation sketched above, we generate indeed a feasible point ẑ∗k for which

φ̃(ẑ∗k)≤ f̂ ∗[k]+ kκγ .

Lemma 3 is extended as follows. Suppose that there is an integer point x̂ in

conv{Πk−1, ẑ
∗
k} \ (Πk−1 ∪{ẑ∗k}). Since φ(x) ≤ φ̃(x) ≤ f̂ ∗[k] + kκγ and g(x) ≤ 0 for

every x ∈ Πk−1 ∪{ẑ∗k}, we have φ(x̂)≤ f̂ ∗[k]+ kκγ and g(x̂)≤ 0 by convexity. Thus,

we can apply Algorithm 4 to find a suitable point ẑ∗k in conv{Πk−1, ẑ
∗
k}. ⊓⊔

4.3 A finite-time algorithm for mixed-integer convex optimization

In this subsection, we explain how to use the results of the previous subsection in

order to realize the oracle Oα,δ for α ≥ 0, δ > 0 in the general case, i.e., with n ≥ 3

integer and d continuous variables as in (1).

Let z ∈ S ⊆ [−B,B]n ×R
d be the query point of the oracle. The oracle needs to

find a point ẑ∈ S∩(Zn×R
d) for which f (ẑ)≤ (1+α) f (z)+δ (so as to report a), or

to certify that f (z)< f (ẑ) for every ẑ ∈ S∩ (Zn ×R
d) (so as to report b). To design

such an oracle we have at our disposal a procedure to realize the oracle Oα,δ for any

mixed-integer convex minimization problem of the kind (1) with n = 2. We propose

a finite-time implementation of Oα,δ with α = 0 and δ = κγ . The main idea is to

solve the n-dimensional case iteratively through the fixing of integer variables. This

works as follows. We start by solving approximately the relaxation:

f̂ ∗12 := min{ f (x,y) : (x,y) ∈ S∩ (Z2 ×R
(n−2)+d)}

with the techniques developed in the previous subsection. If we can solve the

partial minimization problems up to an accuracy of γ ≤ δ/κ , we obtain a point

(û∗1, û
∗
2,x

∗
3, . . . ,x

∗
n,y

∗) ∈ S with û∗1, û
∗
2 ∈ Z and for which:

f̃ ∗12 := f (û∗1, û
∗
2,x

∗
3, . . . ,x

∗
n,y

∗)≤ f̂ ∗12 +κγ

As f̂ ∗12 is a lower bound on the mixed-integer optimal value f̂ ∗, we can make our

oracle output b if f̃ ∗12 −κγ > f (z). So, assume that f̃ ∗12 −κγ ≤ f (z).
Then we fix x̂i := û∗i for i = 1,2 and solve (if k ≥ 4; if k = 3, the necessary

modifications are straightforward)

f̂ ∗1234 := min{ f (x,y) : (x,y) ∈ S∩ ((û∗1, û
∗
2)×Z

2 ×R
(n−4)+d)}.

We obtain a point (û∗1, . . . , û
∗
4,x

∗
5, . . . ,x

∗
n,y

∗) ∈ S with û∗i ∈ Z for 1 ≤ i ≤ 4 and for

which:

f̃ ∗1234 := f (û∗1, . . . , û
∗
4,x

∗
5, . . . ,x

∗
n,y

∗)≤ f̂ ∗1234 +κγ ≤ f̂ ∗+κγ.
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Now, if f̃ ∗1234 −κγ > f (z), we can make our oracle output b. Thus, we assume that

f̃ ∗1234 −κγ ≤ f (z) and fix x̂i := û∗i for 1 ≤ i ≤ 4. Iterating this procedure we arrive at

the subproblem (again, the procedure can easily be modified if n is odd):

min{ f (x,y) : (x,y) ∈ S∩ ((û∗1, . . . , û
∗
n−2)×Z

2 ×R
d)}.

Let (û∗1, . . . , û
∗
n,y

∗) ∈ Z
n ×R

d be an approximate optimal solution. If we cannot

interrupt the algorithm, i.e., if f (û∗1, . . . , û
∗
n,y

∗) 6≤ (1 + α) f (z) + κγ , we replace

(û∗n−3, û
∗
n−2) by the second best point for the corresponding mixed-integer convex

minimization problem. In view of Proposition 6, the accuracy that we can guarantee

on the solution is only 2κγ , so the criterion to output b must be adapted accordingly.

Then we proceed with the computation of (û∗n−1, û
∗
n) and so on.

It is straightforward to verify that this approach results in a finite-time algorithm

for the general case. In the worst case the procedure forces us to visit all integral

points in [−B,B]n. However, in the course of this procedure we always have a fea-

sible solution and a lower bound at our disposal. Once the lower bound exceeds the

value of a feasible solution we can stop the procedure. It is precisely the availability

of both, primal and dual information, that makes us believe that the entire algorithm

is typically much faster than enumerating all the integer points in [−B,B]n.
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A. Lodi, F. Margot, N. Sawaya, and A. Wächter, An algorithmic framework for con-
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[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms.

II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Math-

ematical Sciences], vol. 306, Springer-Verlag, Berlin, 1993, Advanced Theory and Bun-

dle Methods. MR 95m:90002

[Kha79] L. Khachiyan, A polynomial algorithm in linear programming, Doklady Akademii

Nauk SSSR 244 (1979), 1093–1096.



30 Michel Baes, Timm Oertel, Christian Wagner, and Robert Weismantel

[Len83] H. Lenstra, Jr., Integer programming with a fixed number of variables, Mathematics of

Operations Research 8 (1983), no. 4, 538–548. MR 86f:90106

[NDY83] A. Nemirovski and D. D. Yudin, Problem Complexity and Method Efficiency in Opti-

mization, John Wiley, 1983.

[Nes04] Y. Nesterov, Introductory Lectures on Convex Optimization, Applied Optimization,

vol. 87, Kluwer Academic Publishers, Boston, 2004. MR 2005k:90001

[Roc81] R. Rockafellar, The Theory of Subgradients and its Applications to Problems of Op-

timization, R & E, vol. 1, Heldermann Verlag, Berlin, 1981, Convex and Nonconvex

Functions. MR 83b:90126

[VI90] J. Viswanathan and Grossmann I., A combined penalty function and outer-

approximation method for MINLP optimization, Computers & Chemical Engineering

14 (1990), no. 7, 769–782.


