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Abstract

We prove a representation theorem of projections of sets of integer
points by an integer matrix W. Our result can be seen as a polyhedral
analogue of several classical and recent results related to the Frobenius
problem.

Our result is motivated by a large class of non-linear integer opti-
mization problems in variable dimension. Concretely, we aim to optimize
f(Wz) over a set F = PNZ", where f is a non-linear function, P C R"
is a polyhedron and W € Z4*™. As a consequence of our representation
theorem, we obtain a general efficient transformation from the latter class
of problems to integer linear programming. Our bounds depends polyno-
mially on various important parameters of the input data leading, among
others, to first polynomial time algorithms for several classes of non-linear
optimization problems.

1 Introduction

Non-linear integer programming is concerned with optimizing a non-linear func-
tion over the integer points in a polyhedron. Significant effort has been made
in recent years to extend the well-established theory of linear integer program-
ming to the non-linear case. Along these lines, polynomial time algorithms for



various classes of nonlinear objective functions were developed, including con-
vex functions [10], bounded-degree polynomials [7, 6] and more. Apart from
very few exceptions [12, 5], however, all results in this vein were proved for the
fized-dimension case, namely for the case where the total number of variables
is a fixed constant. The latter fact makes these methods less practical, limiting
their potential domain of applications.

There are, of course, good reasons why positive algorithmic results in non-
linear variable-dimension integer programming are harder to come by. Firstly,
this class of problems trivially generalizes linear integer programming, which
is NP-hard in almost every variable-dimension setup. Secondly, non-linear
variable-dimension integer problems often become hard already in the fixed-
dimensional case. Finally, if the non-linear function acts directly on the variable-
dimensional space, even stronger hardness results can be proved. For example,
in the function oracle model one can prove simple information-theoretic expo-
nential lower bounds on the complexity of any algorithm approximating the
minimum of a convex function over the hypercube. If the function class is
further restricted to be convex quadratic polynomials and stronger oracles are
assumed, the latter problem becomes “merely” NP-hard to solve exactly. Worse
still, the latter example shows the large increase in complexity when a linear
objective function is replaced with a non-linear one. This means that any al-
gorithm reducing the latter problems to integer linear programming will most
likely need to replace the well-structured feasible set, namely the hypercube,
with a much more complicated one.

Still, it is meaningful to ask: Which non-linear variable-dimension integer
programming problems can be reduced to the linear case, maintaining the struc-
ture of the problem class? In the present paper we study one such class of
problems. Our class of problems contains an additional component, namely
that of a projection into a low-dimensional space. The previous discussion sug-
gests that this is, to a large extent, unavoidable when efficient reductions of the
latter type are sought. Formally, we are interested in studying problems of the
form

min{f(Wz) | z € Z" N P}, (1)

where f : R? — R is a function from our function class, P := {x € R"® | Az <b}
is a polyhedron in n-dimensional space, (with A € Z™*"™ b € Z™) and W is a
d xn integer matrix. We discuss minimization here, but our results also hold for
maximization problems. The set F := {& € Z" | x € P} is called the feasible
set, and points x € F are called feasible. Although not necessary for our main
result, we think of n as being large (variable) and of d as being small (fixed).
We note that this class of problems includes linear integer programming already
for d =1 and f-the identity.

In this paper we give a first general-purpose efficient reduction from the
latter class of problems to integer programming. The efficiency of our reduction
depends on various input parameters. We elaborate on this exact dependence
later. As a result, we obtain the first polynomial algorithms for several classes
of variable-dimension non-linear integer problems. For other problem classes,



our method provides a polynomial time reduction from the non-linear problem
to linear integer programming, maintaining the structure of the feasible set.
We assume black-box access to two oracles, namely a fiber oracle and a
d-dimensional non-linear optimization oracle (or simply, optimization oracle),
defined as follows. In what follows by “opt” we mean both “min” and “max”.

Definition 1 (fiber oracle, optimization oracle).

e The fiber oracle accepts as input a point y € Z% and either returns a
feasible point (a point x € F) such that Wx =y, or asserts that no such
point exists.

e The optimization oracle accepts descriptions of a polyhedron R C R? and
an affine sub-lattice A C Z% of the integer lattice, and returns a point y*
m

argopt{f(y) | y € AN R},

if one exists, or asserts that the latter set is empty.

We note that both oracles can be implemented in polynomial time for various
classes of input parameters. We defer a detailed discussion on this topic to a
later stage. With Definition 1 in mind, we can now state our main algorithmic
result.

Theorem 2. Let d be any fixed constant. There is an algorithm that solves the
non-linear optimization problem

opt{f(Wz) | Ax <b, x € 7"},

with input A € 7", W € Z%", b € Z™ and f : R* = R. The amount of
work and the number of oracle calls it performs (to the optimization and fiber
oracles) is polynomial in n, the mazimum sub-determinant of A and the unary
encoding length of W.

Let us now draw a road map for the proof of the latter theorem. Theorem 2
follows from a careful analysis of the set

R=WF:={y=Wz | z € F},

namely the projection of the feasible set with respect to the matrix W. Let us
first explain why understanding this set can have important algorithmic conse-
quences. Assume, for example, that R = Q N Z¢ holds, where

Q:=WP={Wz | z€ P}

In this case we can solve Problem (1) with two oracle calls as follows. First,
use the optimization oracle to obtain y* € argmin{f(y) | y € Q N Z%}. This
is possible since Z% is clearly a lattice, thus the latter problem has the required
form. Then, use the fiber oracle to obtain x* € F with Wx* = y*. The oracle is



Figure 1: An illustration of the set R and the notion of holes.

guaranteed to return a point 2* € F since we assumed that R = QNZ%, namely
that every integer point in @ has a feasible pre-image under the projection with
W. The obtained z* is clearly an optimal solution. In the following remark we
give a concrete example of a class of matrices with this property.

Remark 3. One important case in which R = Q N Z% is the case of a totally
unimodular matriz (VX) (see e.g. [18, Theorem 19.1]). In this case one can show
the inclusion QN Z% C R as follows. Let y € QN Z%. Since y € Q there exists
x € R™ such that Ax < b and Wz = y. Since (VX) is totally unimodular and
y € Z¢, the solution set to the latter system is an integral polyhedron. Thus,
there exists an integral point T € 7™ with AT < b and Wz = y. This implies
that y € R.

It is, unfortunately, rarely the case that R = Q N Z%, as typically one has
RCQNZY,

namely, the set Q N Z% contains holes, i.e., points without pre-images in F. We
illustrate this with the following simple example.

Example 4. Letn =3,d=2,P={x € R? | 0 < x; <3,i=1,2,3}, and

consider the matriz
1 21
W= < -2 0 1 > ’

Figure 1 illustrates the polyhedron @ and the set R, which corresponds to the
thick points. All other points are holes.

In this more common situation, the latter simple strategy cannot be directly
applied. One can still hope, however, to decompose the problem into sub-
problems, each solvable in this way. Ideally, this decomposition should have the
form

R=J@ nA,
il
where Q" C R? are polyhedra and A C Z¢ are affine sub-lattices, the description
of which can be efficiently computed from the input data. Then, k = 2|I|



oracle calls are sufficient to solve the problem, by simply repeating our simple
procedure for every sub-problem i € I, defined over Q*NA?, and taking the best
solution, among the |I] resulting candidates. It is hence of particular interest
to study such efficient representations, trying to minimize k, while maintaining
the property that both Q° and A’ are efficiently computable.

Our main contribution provides such a decomposition. Concretely, we show
strong existential bounds on some important parameters of such decomposi-
tions. These bounds, in turn, lead to strong bounds on efficiently computable
decompositions, which are later exploited to obtain efficient algorithms.

It is now evident that the current paper deals with a problem of repre-
sentability of sets of integer vectors. Indeed, what we seek in our decomposition
is a way to cover all points in R by “simple” sets, with the property that none
of these sets contains a hole, namely a point in (Q N Z%) \ R. One can almost
equivalently ask: How complicated can the set of holes be?

Our result can hence be seen as a polyhedral variant of the Frobenius problem,
also known as the coin problem. Given a set S = {a1,...,an} C Z+ of positive
integers with ged(S) = 1, the Frobenius problem asks to find the largest integer
k € Z, that can not be represented as a positive integer combination of numbers
in S. The Frobenius problem is known to be NP-hard [17] in all but a few special
cases [14, 13]. Several bounds on the Frobenius number were also proven [9, 3, 2].

For a positive integer s, let [s] = {1,...,s}. In higher dimensions one can
define the following generalization of the Frobenius problem, called the diagonal
Frobenius problem [1]. Given a d x n integer matrix M with the property that
cone(M) = {MX | X € R} forms a full-dimensional pointed cone, and such
that MZ" = 7%, find the smallest t € Z with the property that

(tv + cone(M))NZ* C {Mz | z €Z7},

where v = Zie[m] M, ; is the sum of the columns of M. We note that there are
several ways to define such a generalization. Intuitively, the diagonal Frobenius
number is the smallest factor by which one needs to shift the cone cone(M)
inwards (in the direction v € cone(M)), so that every integer point in it be
expressible as a positive integer combination of the columns of M. The following
result of Aliev and Henk [1] proves a strong bound on the diagonal Frobenius
number.

Theorem 5 (Aliev and Henk 2010). Let M € Z%%™, such that MZ™ = Z7¢ with
cone(M) pointed. Then the diagonal Frobenius number of M is at most

—d
(M) = w det(MMT).

Theorem 5 guarantees that the set M7’ becomes very regular in the cone
cone(M) shifted by the vector ¢(M)v. For our purposes we need a similar
result for arbitrary polyhedra, instead of cones. To this end we define a notion
of regularity, suitable for our needs.



Definition 6 (A-regular set). We call a set S C Z% A-regular, with respect to
a region B C R%, if there exists a family of full-dimensional affine sub-lattices
Ay, -+, Ay of Z% with determinants det(A;) < A such that

SnB=[JAnB. (2)

Theorem 5 can be restated in terms of our new definition as follows. For a
matrix M satisfying the conditions of Theorem 5, the set S = MZ" is 1-regular
with respect to B = ¢(M)v + cone(M). Furthermore, only the lattice A = Z¢
is needed to certify this fact.

Our main result proves a similar statement for a much more general setup.
Firstly, the matrix M satisfying the conditions of Theorem 5 is replaced with the
arbitrary matrix W. Secondly, the admissible set of positive combinations is no
longer the convenient set Z” , but rather the set . Finally, we prove regularity
with respect to a polyhedron Q' C Q. Since @ can be bounded, Q" can no longer
be a translate of Q. We use instead the notion of a-inscribed polyhedron defined
as follows. Let R C R? be a polyhedron, and let B(a) = {z € R? | ||7]|o < a}
denote the ¢, ball with radius a. Then the a-inscribed polyhedron of R is the
polyhedron

R,:={x € R | z+ B(a) C R}.

We are now ready to state our main result. We henceforth fix the notations
P,A DLW, F,R,Q,dand n to represent the input to our problem. We denote by
A and w the maximum absolute sub-determinant of A, and the largest absolute-
value of an entry in W, respectively.

Theorem 7. R is d-reqular with respect to the ~y-inscribed polyhedron Q~ of
Q, where § and v are bounded polynomially in A, w and n.

Remark 8. We remark that one can also define a clean notion of a polyhedral
Frobenius number as follows. Given two matrices A € Z™*™ and W € 7"
let the polyhedral Frobenius number of A and W be

F(A, W) =min{max{vy,d} | R is d-regular with respect to Q- Vb € Z™},

where Q, P and R are defined from A,W and b, as before. We stress that one
can define a polyhedral Frobenius number in various alternative ways. With the
latter definition, however, Theorem 7 can be restated as follows. The polyhe-
dral Frobenius number F(A, W) is polynomially bounded in A,w and n, and
exponentially by d.

The remainder of the paper is organized as follows. In Section 2 we prove
Theorem 7. In Section 3 we use Theorem 7 to prove Theorem 2, and mention a
number of concrete algorithmic consequences.



2 A proof of Theorem 7

In this section we prove Theorem 7. For that we first introduce some notation
and we prove an auxiliary lemma that adapts Theorem 5 to our needs. Then
we prove our main theorem.

We start with some notation. Let B,C C R? and let D € R™*9 be a matrix.
With B + C we denote the Minkowski sum {x € R? | 2 = b+ ¢ with b €
B and ¢ € C}. With DB we denote the set {z € R™ | x = Db with b € B}.
Further, we denote with D; , the i-th row of D and with D, ; the i-th column.
The operator |-| maps component-wise every entry to the largest integer smaller
than or equal to the corresponding entry. Finally, let ||D|;qp = max; ; |D; |
denote the maximum absolute value of an entry of D.

Lemma 9. Let M € 79", such that cone(M) = R? and let A = MZ". Let
z € A and let o := ||z| . Then z can be expressed as z = MM such that A € Z}
and || Moo < p(av,m,w), where p(a,n,w) € Ry[z1,x2, 23] is a polynomial in a,n
and w = ||M||lmaz-

Proof. To start with, we show why we may assume that A = Z%. Let B be
the Korkin-Zolotarev basis of A [15]. Then, a well known property is that the
following inequality holds || By 1]z || Bs.allz < ad®det(A) (see [16, Theorem
2.3]), where a is a universal constant. It follows that the entries of B are
bounded polynomially in det A. Therefore, there is also a polynomial bound
for the entries of its inverse matrix B~!. We can hence transform M, z and A
by B~! to arrive at a matrix M’ = B~1M, a vector 2/ = B~z and a lattice
A’ = B7'A. The entries in M’ and 2’ are polynomially bounded in the entries
in M and z, respectively. Furthermore, A’ becomes the standard lattice, that is
A = Z? We hence assume hereafter that A = Z¢.

Case 1. Assume that {M,; | j =1,....,n} ={-M,; | j =1,...,n},
i.e., the negative of every column in M is also a column in M. Let p =
(24 1wd=1 2000 T Since w = || M||mae and 2471471 > wzz.i:_g 2t it
holds that pTM*Vj #0forall j =1,...,n. Without loss of generality, we assume
that n is even, that pTM*’j >0forallj=1,...,n/2and that M, ; = —M, ;,/2¢;
for j =1,...,n/2. This implies that cone(M, 1,..., M, ;/2) is pointed.

By Caratheodory’s Theorem (see e.g. [11, Theorem 3.1]), we can express z
as a positive combination of at most d linearly independent columns of M, say
z= Z?zl Vi; My i; with 7;; € Ry. Using Cramer’s rule, the Lagrange expansion
of determinants and Hadamard’s inequality, we can compute the bound

Vi, < daw?!(d — =02 = p,.

We set v;, =0 for j=d+1,...,n.

Let ¢ = c((My1,..., M, ;/2)), defined as in Theorem 5. Note that c is
polynomially bounded by w and n. Next, define 7; := max{0,v; — c} for i =
1,...,n/2 and 74; := min{v;,¥i—ns2 —c} fori =n/2+1,... ,n. Let z:= M[7].
Then z € Z+c¢ E;fl M, j +cone(M, 1,..., M, /7). It follows from Theorem 5



that z—2 can be expressed as a positive integer combination of M, 1, ..., M, ;2.

Let z — z = nyl pi M, j, with pj € Z be such a combination.
Next, we exploit the fact that

1<p'M, ; <d2%? forall j € {1,...,n/2}.

It holds that pT (z—2) < p"((c+1) E;ﬁ M, ;) < (c+1)n/2d2%?. In particular,
this implies that
i < (c+1)n/2d2%* =: p,.

Finally, let A := [¥] + p. It holds that X € Z%, z = MX and |||«
pla,n,w) := py + py. This completes the proof for Case 1.

Case 2. In the general case {M,; | j =1,....,n} # {-M,; | j =
1,...,n}. Without loss of generality we assume that —M, 1 ¢ {M,,; | j =
1,...,n}.

Since cone(M) = R? there exists, by Caratheodory’s Theorem, a selection of
at most d linearly independent columns of M, such that —M, ; = Z;l:l &M, i,
with §; € Ry. With §; := det(M, ;,,..., M, ;,) and §; = 6:1&; € Z, it follows
that

IN

d
—M*’l = ((51 - 1)M*’1 + ZéjM*,ij and (Sj < wddd/2 =: p3 (3)

=1
for all j = 1,...,d. From this it follows that we can insert —M, ; to the set

{M,; | j =1,...,n} with the slight modification that whenever a multiplier
B for column —M, ; is used in a representation, we replace it by S times its
expression for (3). By performing the latter replacement for all n columns
independently, we obtain the general bound

[Mloe < pla,n,w) := py + py + npaps.

We are now ready to prove Theorem 7

Proof of Theorem 7. In order to distinguish between vectors in fixed dimension
d from those in variable dimension n, we denote elements in the n-dimensional
space with bold roman letters. We reserve bold greek letters to highlight poly-
nomials. Without loss of generality we assume that P is given in the form
{r € R} | Az = b}. We can do so by introducing m slack-variables and
decomposing any vector into the difference of two nonnegative vectors of the
same dimension, i.e. Ax — Ay + Iz = b with z,y € R} and z € R}. Note
that the dimension only grows linearly and that the maximum absolute sub-
determinant remains the same. For each orthant O; we define H; to be the
Hilbert basis of the cone {x € O; | Ax = 0}. Using Cramer’s rule we can
express {z € O; | Az = 0} as cone(g},...,gF) with g/ € O; N {-A,...,A}"



for j =1,...,k, i.e. the components of the cone generating vectors gz are inte-
gral and their absolute values are bounded by A. Further, it is well known that
H, C{xeO;NZ" | ||z] < nq} with

1, = dA.
This implies that for each h € H; it holds that
[Wh|eo < nwdA =: n,.

For an introduction to Hilbert bases see, e.g. [18, Section 16.4].

Let vy, v9,...,v; denote the vertices of Q). For each j = 1,...,[ there exists
a vertex v; of P such that Wwv; = v;. Assuming that F is non empty we can
conclude that for each j =1,...,[ there exists a y; € F such that

[0 -yl < nA

(see [18, Theorem 17.3]). In other words, there exists a feasible integral point
y; close to each vertex v; for j =1,...,l. Then, with y; := Wy; it follows that

[v; = Yjlloo < P°wWA =:ng.

For an illustration of the points in the d-dimensional space see Figure 2.

We will proceed from here as follows. For suitable polynomials § and ~, we
will consider the pre-image z of an arbitrary point z € @ NR, construct an
affine lattice A induced by the Hilbert basis representation of y; — 2,...,y; — 2
containing z, such that det(A) < §, and then prove that this lattice intersected
with @, is contained in R. This will then prove our theorem.

Let z € @y NR and z € F such that Wz = z. We first exhibit our
construction.

For each index j € {1,...,1} we consider the vector y; — z. Let us say that,
y,; — 2 is contained in the orthant O;;, with i; € {1,...,2"}. In view of [19],
we can express y,; — 2z as the positive integer combination of at most 2n — 2
elements of the Hilbert basis H;,, i.e.

2n—2
_ kpk
y;—z= ) Ahj,
k=1

with A¥ € 7, and h? € Hi;. Note that all points in {z + Ei’;ﬁ 'yjkhf | 7 €

Z, and 7§ < X} are feasible, i.e. they are a subset of . This follows from
the fact that h? c{xc0; | Ax =0} for every k =1,...,2n — 2.
Let
p = p((2n — 2)iny, (2n — 2)l,n,)
be the polynomial defined in Lemma 9. Letting 1, := (2n — 2)I(p + 1)n,, we

define -
A% = max{0,\¥ —n,}



and

_ Skpk

y,=z+ »_ Mhl. (4)
Notice that y; := Wy; remains close to its corresponding vertex v;. That is

||,Uj - g]”OO < T3 + (2n — 2)1’]27]4 =:7Ms5.

Choosing v > 15 we ensure that z is sufficiently far from each vertex v; so that
at least one )\? must be greater or equal than n, for each j.

For simplicity, we assume that 5\;? > 0 for all j and k. This can be assumed
without loss of generality, as if )\f = 0 we can simply modify y; and consider

a representation of it with one Hilbert basis element less. Let hf = th for
every j=1,...,2n—2and k =1,...,l. We define the affine lattice

2n—2

l
A={zeZ' |z=2+4)_ Y ~Fnk ez vjk}
j=1 k=1

We can bound the determinant of A by any determinant of any sub-lattice
induced by d linearly independent hé»—s. Hence, by Hadamard’s inequality and
since ||hf||OO < 1, it holds that det(A) < § := ndd??. Next, we define the
matrix

M=t B g P

It holds that | M||maex < M2. In order to apply Lemma 9 let us first verify
Claim 1.
Claim 1. cone(M) = R%.

Proof of Claim 1. Assume that cone(M) # R?. Then there exists a v € R? with
|lull2 = 1 defining a half-space {z € R? | uTz < 0} such that cone(M) C {z €
R? | uTz < 0}. Since z € @ it holds that z + B(v) C Q. This implies that
there exists a vertex v; such that u'v; —u'z > ~. On the one hand, it holds

that
2n—2

vy<u (v —yi+yi —2) <Ny + Z AFuThE,
k=1
On the other hand, for each k = 1,...,2n—2 it holds that uThiC < th”oo < 1n,.
It follows that for some j € {1,...,2n —2} we have that uTh! > 0 and X} > n,.

By construction, this implies that hz is a column of M, contradicting that
cone(M) C {x € R? | u"x < 0}. O

It remains to show that R is d-regular with respect to ¢). We split the
proof into Claim 2 and 3. In Claim 2 we show that for every j = 1,...,[, all
lattice points sufficiently close to ; have a feasible pre-image.

Claim 2. For every v € Zf”_z)l with ||7]ec < p+ 1 it holds that g; + M~
has a feasible pre-image, i.e. it is not a hole.

10



Proof of Claim 2. We prove the claim by showing that ¥, +(2n—2)l(p+ l)hi-c €
P for every 4,7 and k. This will then imply the slightly stronger result, that

yj + My

is feasible for any v € Z(fn_Q)l with |71 < (2n —2)i(p+1).

In order do derive a contradiction, let us assume that the latter does not hold
for j =1 and i = 2, i.e. that g, + (2n — 2)l(p+ 1)h} & P. The only constraints
defining P that can be violated by this vector are the non-negativity constraints,
thus some component of this vector must be strictly negative. Let us assume
that the first component is negative. We have an upper and a lower bound for
this component, namely

—(2n = 2)l(p+ 1)ny < (y; + (20— 2)l(p + Dhz)1 < 0.

All the vectors h,]f, k=1,...,2n — 2, lie in the same orthant, therefore for
each i all the entries (h’f)i, k=1,...,2n — 2, must either be all non-positive
or all non-negative. Since z + (2n — 2)I(p + 1)hj is feasible, it must hold that
(—hlf)l >0 for all k=1,...,2n — 2. In particular, there must be at least one
index k € {1,...,2n — 2} such that (~hY); > 1. Hence,
2n—2

0< (y;+(2n—2)l(p+1)h3 —ny Z hY), = (9, + (2n —2)l(p+1)h3), <0
We obtained a contradiction. O

We now use Claim 2 to show that all points in A N Q4 have pre-images, i.e.
they are not holes.
Claim 3. ANQ, CR.

Proof of Claim 3. Let z € ANQ~. We prove that there exists a z € PNZ" such
that 2 = WZz. Note that Q4 C conv(yi,...,%:). By Caratheodory’s theorem
there exist i1,...,iq € {1,...,1}, such that z € conv(z,¥s,,...,Ti,). Without
loss of generality we may assume that i1 = 1,...,iq = d. Let a € [0,1] and
a; € Ry forj=1,...,d,such that z = az+(1—«) Z‘;:l a;7; and Z?Zl a; =1.
Hence, using (4), Z is the image under W of a not necessarily integral point

2n—2

(1-a) Za] Z )\fhf,
7j=1

which is included in P. We can approximate this point by

2n—2

2:z+z Z [(1—a)a;A ]hi
j=1 k=1
Clearly, 2:=W2 € A. Let I := ZJ,I (I a)a A — (1= a)a; A Rk
Since z +1 € P and y; +1 € P holds for all j = 1,...,d (see Claim 2), 2

11
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Figure 2: An illustration of the notation in the proof of Theorem 7.

must be feasible. From Claim 2 it follows again that Z + M~ is feasible for any
v € 73" with [|7]|sc < p. It holds that ||Z — 2[|ec < (2n — 2)In;. Finally, we
can apply Lemma 9 to guarantee the existence of z € F such that z=Wz. O

This completes the proof of the theorem. O

3 Applications to non-linear integer optimiza-
tion

We describe next a general algorithmic framework that allows us to apply The-
orem 7 to solve variable-dimension non-linear integer optimization problems.
More precisely, we show a general purpose algorithm that solves Problem (1)
with a number of oracle calls that is polynomial in the input size, A,n and w,
thus proving Theorem 2. For brevity, we will henceforth say “in polynomial
time” to imply a running time of the latter type. We recall that the oracles
available to our algorithm are an optimization oracle and a fiber oracle (see
Definition 1). We stress that the dependence on d can be exponential. We
assume in this section that d is an arbitrary fixed constant. We later mention
a number of concrete examples of problem classes, for which, using polynomial-
time implementations of the oracles, our algorithm runs in polynomial time in
the encoding length of the input.

To simplify notation, we will henceforth restrict our attention to minimiza-
tion problems. We stress that Theorem 2 works also for maximization problems.
Our algorithm works with an inequality description of the polyhedra @ and Q.
Since the input only provides implicit representations of these polyhedra, we
need the following lemma, which also states a useful connection between the
two descriptions.

Lemma 10. One can compute in polynomial time a matric F € Z7¢ and
vectors g,g' € 79 such that Q ={z € R | Fx < g} and Q4 ={z € R? | Fx <
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g}, with |Flmae < (nwA)41(d —1)4=D/2 gnd

19 — gil < Y[ Fielloo
for every i € [q].

Proof. We start with some notation. Let v; and vy denote two adjacent vertices
of Q. Together they define the edge conv(vy, v2) of Q. In the following we call
a vector e an edge-direction of an edge conv(vy, vs), if e € lin(vy — vy).

To prove the lemma, we exploit that each edge-direction of () is the image
(under the linear mapping W) of an edge-direction of P. An edge-direction
FE of P, which corresponds to an edge-direction of ), can be expressed as the
intersection of n — 1 linearly independent facets. Let us assume without loss
of generality that these are A; ,,..., Ap—1 . Applying Cramer’s rule we know
that there exists a non-trivial solution £ € Z" such that A; ,E = 0 for all
ie{l,...,n—1} and |E|lcc < A. Let e := WE. It follows that, |le]jc < nwA.

A facet of @ is defined by d — 1 linear independent edge-directions, say
e1,...,eq—1. Then, a facet defining vector F; , is defined by a non-trivial solution
to ez = 0. Using Cramer’s rule and Hadamard’s inequality we can choose
F;. € 7% such that [|F], [ < (nwA)?=1(d —1)(@=D/2_ Tt remains to note that
there is only a polynomial number of possible F; .. Hence, one can compute F'
and g by brute force with linear programming [18].

We can now find an inequality description of ¢} as follows. First, by nor-
malizing the inequalities defining @, i.e., by setting F;, = mF@* and

Ji = ﬁ gi, one easily verifies that
A description with integral coefficients is hence given by
¥y = {ZL’ € [Rd | Fi—!—*x < gi 77||Fl,*||00 Vi € [q}},

so we can set g} = ¢; —Y||Fi x|l for all i € [g]. The bound |g; — g}| < Y| Fi«ll
immediately follows. O

As was discussed in the introduction, our algorithmic approach relies on a
decomposition of the problem into “sufficiently regular” sub-problems. Each
sub-problem corresponds to a projected feasible set RN A C Z¢ containing no
holes, where R is a polyhedron and A is a lattice. Then, the optimization oracle
is invoked to obtain a point y* € RN A attaining

min {f(y) | y € RNA},

and a point z* € F is computed with Wz* = y* using the fiber oracle. The
best solution across all sub-problems is then an optimal solution.

We distinguish between two types of sub-problems. The first type is con-
cerned with the polyhedron @), i.e., such sub-problems optimize over the re-
stricted feasible region

Fi={xeF | WzeQy}.
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In the following lemma we prove, using Theorem 7, that the optimal point in
this region can be found efficiently.

Lemma 11. The problem
min{f(Wz) | z € F'}

can be solved with a polynomial number of calls to the optimization and fiber
oracles.

Proof. As guaranteed by Theorem 7, for every point 2 € F’ there is a lattice A,
with determinant at most & such that € A, and A, N Q4 C R, e, Ay NQy
contains no holes. Consider an optimal solution y* to the problem

min{f(y) | y € Az NQ~},

obtainable by a single oracle call to the optimization oracle. Since Ay N Q-
contains no holes, one can obtain, using a call to the fiber oracle, a pre-image
z* € F' of y*. Furthermore, due to € A;NQ~ we also know that f(z*) < f(x).
Consequently, to minimize over F’ it suffices to consider the problem

min{f(y) | y € AN Q4},

for every affine lattice A with determinant bounded by &. Next, we bound the
number of such lattices.

An affine lattice can be represented by a basis B C Z¢*? and a translation
vector t € {BA | A € [0,1)?}NZ? as

A={t+v|3zec7%v=DBz}.

We can assume that B comprises the columns of a matrix in Hermite Normal
Form. The bound on the determinant of the lattice now translates to a bound
on the maximum absolute value of an entry in B. We can thus roughly estimate
the number of affine lattices by gt rdgd,

It follows that, by considering every bounded-determinant lattice, as de-
scribed before, one can obtain the best solution z € F’ with at most 964" +dgd

oracle calls. O

To treat the region F \ F' we use a recursive decomposition into lower-
dimensional problems. To control the number of such problems we use the fact
that all points y = Wz for points x € F \ F’ fall close to the boundary of Q.
This fact is used in the following lemma to prove a bound on the number of
hyperplanes needed to cover all integer points in @ \ Q.

Lemma 12. There is a polynomial time procedure that computes a set H of
hyperplanes parallel to the facets of Q, with the property that all integer points
in Q\ Q~ lie on at least one hyperplane in H, i.e.,

@\Qynzic |J B

HeH

In particular, H has polynomial size.
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Proof. Lemma 10 asserts that @ and (- admit inequality descriptions @ =
{reR?| Fr < g} and

Q"/ = {1’ € [Rd | FZ'T*I. < gi _‘Y”FL*HOO Vi € [q]}?

with || F; .|| polynomially bounded for all ¢ € [g]. We can now use this description
to cover all integer points in @ \ @ with a polynomial number of hyperplanes
parallel to the facets of Q. More precisely, for i € [g] let H; denote the set of
hyperplanes of the form

Hi(s)={z € R¢ | FJ*:E = s},

where s € {g; — Y| Fixlloos 95 — Y| Fixlloo + 1,---,g;} ranges over all integer
right-hand sides between g; — ¥||F; «||co and g;. Note that, by Lemma 10, the
number of such hyperplanes is indeed polynomially bounded. We can now take
the union over all facets of @ of the sets H;, i.e.

H=|J M

i€lq]

to arrive at the desired set of hyperplanes. Since the number of facets of @ is
polynomially bounded, the lemma is proved.
O

We now have almost all ingredients for the proof of Theorem 2. The following
remark states that the constraint matrix of sub-problems arising by restricting
the feasible set to the pre-image of an arbitrary face of @ has a determinant
that is polynomially bounded.

Remark 13. Let I C R? denote an i-face of Q. Let Fy, ..., Fi, .+ € Z% be
the facets defining the face Q, i.e. I ={z € Q | FJﬁ*x =g, Vj € [d—i]}. Then
WL, the pre-image of I under W, can be expressed as {x € R | Az < b}

with
A= [AT7 (Fi1,*W)T7 _(Fih*W)Tv B (Fidfrn*W)Tv _(Fid—iy*W)T]T

and B

b= [bT7 Givy =Givy -5 Gig_y>» _gid,i]T
In particular, note that the mazimum absolute sub-determinant of A is polyno-
mially bounded.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The algorithm starts by computing the inequality descrip-
tions of ) and ()4, as in Lemma 10. Then, the algorithm proceeds by solving
the problem

min{f(Wz) | z € F'}

15



b2 JF*,l v

Figure 3: An illustration of the algorithm.

by invoking the procedure in Lemma 11. To treat the region F \ F’, the algo-
rithm obtains first the polynomially-bounded set of hyperplanes H, using the
procedure in Lemma 12. For every hyperplane H € H, the algorithm recursively
solves the (d — 1)-dimensional problem

min{f(Wz) | z € F(H)},

where F(H) := {x € F | Wa € HNQ}. Each such sub-problem admits the
same form as the original one. Additionally, Remark 13 implies that the matrix
corresponding to the inequality description of P’ := {z € R? | Wz € HNQ}
has determinant that is polynomially bounded, as well. See Figure 3 for an
illustration of the algorithm.

Finally, since d is fixed, so is the depth of the recursion, implying that the
algorithm performs, in total, a polynomial number of oracle calls, and additional
polynomial work. O

Theorem 2 achieves our main algorithmic goal, namely a general-purpose ef-
ficient reduction from non-linear integer programming to linear integer program-
ming. The linear integer programs that arise correspond to the fiber problem,
implying that their feasible set is defined from the matrices given in the input
data. This property is desirable, since our algorithm does not require solving
linear integer programs with a feasible set, whose structure dramatically differs
from that of the original non-linear problem. Consequently, our reduction makes
it possible to solve a large class of non-linear integer problems using well-known
techniques for linear integer programming, such as cutting planes methods etc.

We conclude the paper by mentioning some concrete class of problems solved
by our algorithm. Unless stated otherwise, no polynomial time algorithms were
known for these problems. To arrive at the desired polynomial algorithms we
need to present polynomial implementations of the optimization and fiber or-
acles. Let us first list a number classes of non-linear functions for which the
optimization oracle can be implemented in polynomial time. We stress that
the latter results hold in fixed dimension, i.e., whenever d is an arbitrary, but
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fixed constant. In all cases the feasible set comprises an arbitrary intersection
of a polyhedron and an affine lattice, whose descriptions are provided in the
input, and the functions are presented with evaluation oracles. We stress that
any combination of implementable oracles from the lists below lead to a class
of optimization problems solvable by our algorithm.

e Minimization of convex functions. Grétschel, Lovész and Schrijer [10]
presented an algorithm for the minimization of a convex function presented
by evaluation oracles.

e Minimization of bounded degree polynomials. Del Pia and Weis-
mantel [7] presented an algorithm for minimizing arbitrary degree-two
polynomials with integer coeflicients in the plane. This result was re-
cently extended by Del Pia, Hildebrand, Weismantel and Zemmer [6] to
cubic polynomials in two variables, in the case of a bounded polyhedron.
With the same restriction on the feasible set, the authors also present a
polynomial algorithm for minimizing a homogeneous polynomial with two
variables and an arbitrary fixed degree.

e Approximate maximization of non-negative polynomials. De Lo-
era, Hemmecke, Koppe and Weismantel [4] showed that a polynomial
in fixed dimension can be approximately maximized in polynomial time
over the integer points in a polyherdon, provided that the polynomial is
non-negative over the polyhedron. Concretely, the authors show a fully
polynomial-time approximation scheme (FPTAS) for the problem.

We stress that the latter list gives a few prominent examples of classes for
which the optimization oracle can be implemented efficiently, but it is far from
being a complete list. We remark that in order to obtain an approximate solution
to Problem (1) it suffices to employ an approximate implementation of the
optimization oracle.

We turn to implementations of the fiber oracle. Recall that the fiber oracle
is required to provide a point in {z € Z" : Ax < b, Wz = y} for an arbitrary
y € Z%, if one exists, or correctly report that the latter set is empty.

e A Constant number of constraints. Eisenbrand, Vempala and Weis-
mantel [8] recently showed that an integer program with a fixed number
of rows can be solved in time polynomial in the dimension and the max-
imum sub-determinant of the constraint matrix, and independent of the
right-hand side. This result implies that when (VX) has a constant number
of rows, and the entries in this matrix are polynomially bounded in the
input length, the fiber oracle can be implemented in polynomial time.

e N-fold systems. It is well-known that if A is an N-fold matrix then the
matrix (VX) can be transformed to an equivalent N-fold matrix, provided
that all entries in W form a set K C Z of fixed size. As was shown by De
Loera, Hemmecke, Koppe and Weismantel [5], integer programs with an
N-fold constraint matrix admit polynomial-time algorithms.
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We note that there are several other interesting classes of matrices that admit
polynomial algorithms. One obvious example is when (VX) is totally unimodular.
In such cases, however, one has R = Q N Z¢, so the Problem (1) can in these
cases be solved with two oracle calls (see Remark 3).

As a final note let us state one concrete new implication of Theorem 2.

Corollary 14. Let m,d be some fized positive integers, and let f : R? — R
be a convex function presented by an evaluation oracle. There is a polynomial
algorithm that accepts the unary representation of two matrices A € Z™*™,
W € Z%" and the binary representation of a vector b € Z™ and solves the
problem

min{f(Wz) | Az <b, z € Z"}.

Proof. Since the number of rows in A is fixed, the maximum sub-determinant
of A is bounded by a polynomial in the maximum entry in A which, due to the
unary encoding of A, is polynomially bounded by the input length. Furthermore,
the maximum entry in W is polynomially bounded by the input length.

The result now immediately follows from Theorem 2 and the aforementioned
results of Grotschel, Lovdsz and Schrijer [10] and Eisenbrand, Vempala and
Weismantel [8]. O
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