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Note on the Complexity of the Mixed-Integer Hull of a Polyhedron
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Abstract

We study the complexity of computing the mixed-integer hull conv(P ∩ Zn ×Rd) of a polyhedron P . Given
an inequality description, with one integer variable, the mixed-integer hull can have exponentially many vertices
and facets in d. For n, d fixed, we give an algorithm to find the mixed integer hull in polynomial time. Given
P = conv(V ) and n fixed, we compute a vertex description of the mixed-integer hull in polynomial time and
give bounds on the number of vertices of the mixed integer hull.

Keywords— Mixed-integer hull, polyhedron, mixed-integer concave minimization

1 Introduction

Given a polyhedron P ⊆ Rn×Rd, we focus on comput-
ing the mixed-integer hull PMI = conv(P ∩ Zn × Rd).
The mixed-integer hull is a fundamental object in
mixed-integer linear programming and is well known
to be a polyhedron [12]. In 1992, Cook, Kannan, Hart-
man, and McDiarmid [5] showed that the integer hull
of PI = conv(P ∩Zn) has at most 2mn(6n2ϕ)n−1 many
vertices, where m is the number of facets of P and ϕ is
the maximum binary encoding size of a facet. Hart-
man [8] gave a polynomial time algorithm in fixed-
dimension to enumerate the vertices of the integer hull
of a polyhedron. See [14] for a survey of these results,
improvements, and lower bounds and also [4] for a dis-
cussion of implementations. As far as we know, no
similar results have been shown for the mixed-integer
hull.

We will give two algorithms to compute the mixed-
integer hull; each algorithm produces a bound for the
number of vertices of the mixed-integer hull. In Sec-
tion 2, we consider P given as an inequality description.
We show that even with one integer variable and the
restriction of small subdeterminants of the inequality

description, the mixed-integer hull can have exponen-
tially many facets and vertices if d varies. Hence, we fix
both the number of continuous and integer variables.
Through a simple scaling or decretization technique,
we can apply the results of [5] and [8] to compute the
integer hull of a scaled polyhedron. By scaling back, we
obtain the mixed-integer hull. This leads to a bound
on the number of vertices that is exponential in n+ d.

In Section 3, we consider P given by a list of ver-
tices and extreme rays. In this setting, we can allow d
to vary. We reduce the original task of computing the
mixed-integer hull of a polyhedron to the special case
of polytopes by writing an extended formulation using
a Minkowski-Weyl type decomposition of P . Hence we
can assume that P is bounded and given the vertices
of P , we show how to compute a vertex description of
PMI that runs in polynomial time in the encoding size
of the vertices provided that the number of integer vari-
ables is fixed. This algorithm implies a better bound
on the number of vertices of the mixed-integer hull that
depends on the number of vertices of the original poly-
tope and does not depend on the number of continuous
variables d. This algorithm also implies an algorithm
for concave minimization over the mixed-integer points
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in a polytope since the solution lies at an extreme point.

Theorem 1 (Mixed-integer concave minimization).
Let V ⊆ Qn+d, P = conv(V ) , and f : Rn+d → R

be concave. When n is fixed, the problem min{f(x, y) :
(x, y) ∈ P ∩Zn ×Rd} can be solved in polynomial time
in the evaluation time of f , d,|V | and ν, where ν is the
maximum binary encoding size of a point in V .

Concave minimization over polyhedra presented by
an inequality description is NP-Hard when the dimen-
sion varies, even for the case of minimizing a con-
cave quadratic function over the continuous points in
a cube. This is because every extreme point can be a
local minimum. Most exact algorithms require in the
worst case to enumerate all extreme points of the fea-
sible region [11] which can be of exponential size in the
number of inequalities. In order to cope with these
complexity results, it appears natural to assume that
the underlying polyhedron is presented by means of
its vertices. From the viewpoint of optimization, The-
orem 1 is the mixed-integer analogue of integer con-
cave minimization based on integer hull computations
in fixed dimension for which vertex complexity and in-
equality complexity of the polyhedron are polynomial
time equivalent.

Notation: For a set Q ⊆ Rn × Rd, we define Qx̂ =
{(x, y) ∈ Q : x = x̂} ⊆ Rn × Rd and projx(Q) ⊆ Rn as
the projection of Q onto the first n variables.

2 Mixed-integer hull from inequali-

ties

We study the problem of computing the mixed-integer
hull of a polyhedron P when we are given an inequal-
ity description of P . Unfortunately, in this setting, it
may be impossible to give a compact facet or vertex
representation of the mixed-integer hull if d is allowed
to vary. This is demonstrated in the following exam-
ple that has only one integer variable. Notice that in
the example, the maximum subdeterminant in absolute
value of A is two.

Figure 1: Left: The mixed integer hull of the rotated
cube in Example 2 with d+1 = 3 and bi = 2i+1. Right:
The example with bi = 3 mentioned in Remark 3. In
both cases, every vertex of P has been cut off, resulting
in exponentially many facets and vertices.

Example 2. Let P = R
∏d+1

i=1 [−bi, bi] = {x ∈ Rd+1 :
−bi ≤ Ai·x ≤ bi, ∀ i} be the linear transformation of
the hypercube with

R =

[

1
2

1
2 . . . 1

2
0 Id

]

, A =

[

2 −1 . . . −1
0 Id

]

,

where Id is the d × d identity matrix. Choosing odd
numbers bi = 2i+1, the first coordinates of neighboring
vertices of P are contained in the interiors of distinct
and separated unit intervals. It follows that the mixed-
integer hull PMI = conv(P ∩ Z×Rd) does not contain
any of the vertices of P . In particular, it can be shown
that every vertex of P violates a distinct facet defining
inequality of PMI . See Figure 1.

Remark 3. In Example 2, if we instead choose bi = 3,
the mixed integer hull PMI will still have exponentially
many vertices and facets. In this case though, the first
coordinate of all vertices is polynomially bounded by d,
which allows one to write an extended formulation of
PMI as the convex hull of the union of polynomially
many integer fibers. By [2], this leads to a polynomial
size representation. Note that it could still be possible
that for the case of bi = 2i + 1 there is a polynomial
size extended formulation for PMI .

In view of Example 2, we first restrict ourselves to
the setting where n, d are fixed. We present a scaling
algorithm that can be used to apply previous results on
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computing the integer hull. This technique is similar
to [6] where they show that the mixed-integer split clo-
sure of a polyhedron is again a polyhedron by a scaling
argument to transform the mixed-integer linear pro-
gram to an integer linear program.

Let P = {(x, y) ∈ Rn × Rd : (A1, A2)(x, y) ≤ b}
be a polyhedron with A1 ∈ Zm×n, A2 ∈ Zm×d and
b ∈ Zm. We compute the mixed-integer hull PMI =
conv(P ∩ Zn × Rd) in time polynomial in the binary
encoding size of A1, A2 and b. The output is either a
facet or a vertex description of PMI . Since n, d are both
fixed, the facet and vertex descriptions are polynomial
time equivalently computable (see, for instance, [12]).

For a polytope Q ⊆ Rn ×Rd, define Qt := {(x, ty) ∈
Rn ×Rd : (x, y) ∈ Q}. Therefore, Q1 = Q. Notice that
we can write

P t = {(x, y) ∈ Rn × Rd : (A1, A2)(x,
1
t y) ≤ b}

= {(x, y) ∈ Rn × Rd : (A1,
1
tA2)(x, y) ≤ b}.

Theorem 4 (Mixed-integer hull from inequality de-
scription). The mixed-integer hull can be computed
in time polynomial in the binary encoding size of
A1, A2, b, provided that n and d are fixed. Further-
more, let φ be the maximum binary encoding size of a
row of (A1, A2, b). Then | vert(PMI)| ≤ 2mn+d(6(n +
d)2ϕ)n+d−1 where ϕ = φ+ nφ(m+ n)n+d.

Proof. We first show that we can compute in polyno-
mial time an integer t such that P t

I = P t
MI . Let (x̂, ŷ)

be a vertex of PMI . Notice that (x̂, ŷ) is a vertex of
the d-dimensional polyhedron Px̂ = conv(P ∩ {(x, y) :
x = x̂}). We analyze the vertices of Px̂ by considering
its inequality description as Px̂ = {(x, y) : A(x, y) ≤ b̄}
where

A =





A1 A2

In Od

−In Od



 ∈ Z(m+2n)×(n+d)

and b̄ = (b, x̂,−x̂). Here Od is the d × d matrix of all
0′s. Therefore, there exists a basis B of the rows of A
of size n+ d such that (x̂, ŷ) = (AB)

−1(b, x̂,−x̂)B. By

Cramer’s rule, for any i ∈ B, we have

(x̂, ŷ)i =
det(Ai

B)

det(AB)

where Ai
B is the matrix AB where the ith column is re-

placed by the vector (b, x̂,−x̂)B. Therefore det(Ai
B) ∈

Z. Hence (x̂, ŷ)i ·det(AB) ∈ Z, that is, ŷ ·det(AB) ∈ Zd

is integral. Note that det(AB) is completely indepen-
dent of (x̂, ŷ). Now if we let

t :=
∏

B basis

det(AB),

then (x, ty) is integral for any basis B of A. There
are at most

(

m+n
n+d

)

≤ (m + n)n+d many bases B. By

Hadamard’s inequality, det(AB) ≤
∏n

i=1 2
φ = 2nφ.

Therefore, t ≤ (2nφ)(m+n)(n+d)
= 2nφ(m+n)n+d

.

Since P t
MI is the convex hull of all polyhedra P t

x̂ for
x̂ ∈ Zn, and P t

x̂ has integer vertices by our choice of
t, we have that P t

MI = P t
I . By computing the integer

hull P t
I using [8], and then scaling back by computing

(P t
I )

1/t = (P t
MI)

1/t = PMI , we find a description of
the mixed-integer hull. Note that [8] yields a vertex
description of the integer hull. This can be converted to
an inequality description in polynomial time since the
dimension is fixed. By [5], | vert(PMI)| = | vert(P t

I )| ≤
2mn+d(6(n+d)2ϕ)n+d−1 where ϕ = φ+nφ(m+n)n+d.

3 Mixed-integer hull from vertices

We now consider the case where we are given P as a
list of vertices and extreme rays and we show how to
compute a vertex and extreme ray description of the
mixed-integer hull. In this setting, we show that the
number of continuous variables d may vary, and we still
obtain a polynomial time algorithm to compute the
mixed-integer hull. We begin by reducing the problem
to finding the mixed-integer hull of a polytope.
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3.1 Reduction to bounded polyhedra

We adapt a result of Nemhauser and Wolsey [10, Sec-
tion I.4, Theorem 6.1] to the mixed-integer case. The
proof is essentially the same, but we provide it here
to obtain complexity bounds. Recall that by the
Minkowski-Weyl theorem, a polyhedron P can be rep-
resented as an inequality description or a vertex and ex-
treme ray description, that is, P = {x ∈ Rn+d : Ax ≤
b} = conv(V ) + cone(W ) for some sets V ⊆ Qn+d,
W ⊆ Zn+d. Here, rec(P ) = {x ∈ Rn+d : Ax ≤ 0} =
cone(W ). In the following, we request that P ∩Zn×Rd

is non-empty, which can be tested in polynomial time
provided that n is fixed using Lenstra’s algorithm [9].

Lemma 5 (Relevant mixed-integer points). Let P be
a rational polyhedron given by a vertex/ray representa-
tion conv(V )+ cone(W ) for V ⊆ Qn+d and W ⊆ Zn+d

(resp. an inequality description {x ∈ Rn+d : Ax ≤
b} for A ∈ Qm×(n+d) and b ∈ Qm). Suppose that
P ∩Zn ×Rd 6= ∅. In polynomial time, we can compute
a vertex description (resp. an inequality description)
of a rational polytope Q of polynomial size such that
P = Q+ rec(P ) and

PMI = conv(Q ∩ Zn × Rd) + rec(P ).

Proof. By the Minkowski-Weyl theorem, we can de-
compose P as P = conv(V ) + cone(W ) where V is the
set of vertices of P and W is the set of minimal inte-
gral extreme rays of P , and hence cone(W ) = rec(P ).
For any x ∈ P ∩ Zn × Rd, by this decomposition and
Carathéodory’s theorem we can write

x =
∑

i∈I

λivi +
∑

j∈J

µjwj

=
∑

i∈I

λivi +
∑

j∈J

(µj − ⌊µj⌋)wj +
∑

j∈J

⌊µj⌋wj ,

where λi, µj ≥ 0,
∑

i∈I λi = 1, vi ∈ V , wj ∈ W , |I| ≤
n + d + 1 and |J | ≤ n + d. Since x ∈ Zn × Rd and
∑

j∈J⌊µj⌋wj ∈ Zn×d, we have that x−
∑

j∈J⌊µj⌋wj =
∑

i∈I λivi +
∑

j∈J(µj − ⌊µj⌋)wj ∈ Zn × Rd.

Therefore, if we define T := conv(V ) + (n +
d) conv(W ∪{0}), then x−

∑

j∈J⌊µj⌋wj ∈ T ∩Zn×Rd.
It follows that

conv(P ∩ Zn × Rd) = conv(T ∩ Zn × Rd) + rec(P ).

If V and W are given as input, then we are done by
setting Q = T for which we obtain a vertex description
by taking the Minkowski sum V + (n + d)W . On the
other hand, if we are given as input an inequality de-
scription of P , then the descriptions of V and W may
be exponential in the input. In this case, we instead
determine a box that contains T and intersect that box
with P to obtain our choice of Q.

More precisely, let R ≥ 0 be a bound on the infinity
norm of the vertices V and an integral representation
of the extreme rays W . By, for instance [12], we can
choose R of polynomial encoding size. Setting R′ =
(n+ d+ 1)R, we have T ⊆ B := [−R′, R′]n×d. Setting
Q = P ∩B finishes the argument.

3.2 Mixed-integer hull for polytopes

We begin by showing how to compute the vertices of
the integer hull of a polytope Q = conv(V ) presented
by its vertex set V ⊆ Qn. To do so, we employ the
algorithm from [8] to compute integer hulls from an
inequality description, but this requires some care. If
we apply a standard transformation of Q into an in-
equality description, this description could have many
facets, causing the algorithm to require a double expo-
nential complexity in terms of n. Therefore, we instead
find a triangulation of V and then compute the inte-
ger hull of simplices, which have exactly n + 1 facets,
allowing us to procure a single exponential complexity
for the number of vertices of QI .

Lemma 6 (Integer hull from vertex description). Let
V ⊆ Qn and let Q = conv(V ). When n is fixed, we can
compute a vertex description of the integer hull QI in
polynomial time in ν and |V | where ν is the maximum
binary encoding size of a vector in V . Furthermore,
| vert(QI)| ≤

1
312

nn3n−2ϕn−1|V |n+1 where ϕ = 2(n +
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1)2(ν+log(n+1)). If |V | = n+1, we obtain the tighter
bound of | vert(QI)| ≤

2
324

nn3n−2ϕn−1.

Proof. Let n′ = dim(conv(V )). We compute a Delau-
nay triangulation of the points V , yielding a list of
n′-dimensional simplices. As is well known, this can
be done by computing the convex hull of the extended
point set V ′ = {(v, ‖v‖22) : v ∈ V } ⊆ Rn+1. Then
facets of conv(V ′) corresponds to a n′-dimensional
cells of the triangulation. The convex hull can be
computed in polynomial time using [1]. See for in-
stance, [7] for a discussion of algorithms to compute
the Delaunay triangulation. Moreover, there are at
most

( |V |
n′+1

)

≤ |V |n+1 cells. If |V | = n + 1, we can in-

stead use the bound 2n+1 for the number of cells. For
general |V |, a tighter asymptotic bound on the num-
ber of simplices is O(|V |⌈n/2⌉) [13]. For each simplex
C in the triangulation, we compute an inequality de-
scription. Since it may be lower dimensional, at most
2n inequalities are needed to describe it. These in-
equalities can be computed in polynomial time using
Gaussian elimination and have binary encoding size
bounded by ϕ = 2(n+1)2(ν+log(n+1)) which follows
from Cramer’s rule and Hadamard’s inequality.
Finally, we can apply the result of [5] to see

| vert(CI)| ≤ 2mn(6n2ϕ)n−1 where m is the number
of facets. Here m ≤ 2n, so we have | vert(CI)| ≤
2(2n)n(6n2ϕ)n−1. Finally, applying this to each
cell C, we have at most |V |n+12(2n)n(6n2ϕ)n−1 =
1
312

nn3n−2ϕn−1|V |n+1 many vertices of the integer
hull, or only 2

324
nn3n−2ϕn−1 if we choose |V | = n + 1

and use the improved bound mentioned above. By [8],
it follows that these can be computed in polynomial
time when n is fixed. This creates a superset of the
vertices of the integer hull; points that are not vertices
can be discovered using linear programming, which can
be done in polynomial time.

Although this approach may not produce a tight
bound on the number of vertices of the integer hull,
the bound in Lemma 6 is in the right order of magni-
tude in terms of ϕ. Indeed, in [3], they show that for
every dimension n ≥ 2, there exists a simplex P ⊆ Rn

given as an inequality description with encoding size ϕ
such that PI has at least cnϕ

n−1 many vertices, where
cn is a constant depending only on n. This shows that
even if P has a small number of vertices, the number
of vertices of the integer hull can be large.
Our next goal is to make use of Lemma 6 in order

to compute the mixed-integer hull. This requires one
more ingredient.

Lemma 7. Every vertex of PMI lies in a face F
of P with dim(F ) ≤ n. Furthermore, let n′ =
min(n, dim(P )) and let Fn′ denote the set of faces of
P of dimension n′. Then

vert(PMI) ⊆
⋃

F∈F
n′

⋃

x̂∈vert(projx(F )I)

vert(Fx̂). (1)

Proof. Since PMI = conv(Px̂ : x̂ ∈ Zn), every vertex
(x̄, ȳ) of PMI is a vertex of Px̄. Since Px̄ = {(x, y) :
A(x, y) ≤ b, Ix = x̄} and any vertex of Px̄ is defined
uniquely by n+ d tight inequality constraints, at least
d of those tight constraints come from the inequalities
A(x, y) ≤ b. Hence, (x̄, ȳ) satisfies at least d affinely in-
dependent tight constraints from P , i.e., it is contained
in a face F that is n+ d− d = n dimensional at most.
Since we choosing a maximal such face F , we only con-
sider F of dimension n′ = min(n, dim(P )). Furthre-
more, there exist d tight inequalities (Ā1, Ā2)(x, y) ≤ b̄
such that Ā2 is invertible.
Then, for any x̂ ∈ projx(F ), the corresponding ŷ

such that (x̂, ŷ) ∈ F is given uniquely as

ŷ = Ā−1
2 b̄− Ā−1

2 Ā1x̂.

Now let (x̄, ȳ) ∈ vert(PMI) and suppose that x̂ /∈
vert(projx(F )I). Then x̄ =

∑

µix
i for some µi > 0,

∑

µi = 1, and xi ∈ vert(projx(F )I). Then setting,
yi := Ā−1

2 b̄ − Ā−1
2 Ā1x

i it follows that yi ∈ F ∩ Zn ×
Rd and (x̄, ȳ) =

∑

µi(x
i, yi); therefore, (x̄, ȳ) is not a

vertex of PMI . This proves (1).

Theorem 8 (Mixed-integer hull from vertex descrip-
tion). Let V ⊆ Qn+d and let P = conv(V ). For fixed
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n ≥ 1 there exists an algorithm to compute vert(PMI)
that runs in polynomial time in d, ν, |V | where ν is the
maximum binary encoding size of a point in V . Fur-
thermore,

| vert(PMI)| ≤
4
348

nn3n−2ϕn−1|V |n+1

where ϕ = 2(n+ 1)2(ν + log(n+ 1)).

Proof. Let n′ = min(n, dim(P )) ≤ |V | and let (x̂, ŷ)
be a vertex of PMI . By Lemma 7, there exists a face
F of P of dimension n′ such that (x̂, ŷ) ∈ vert(Fx̂)
and x̂ ∈ vert(projx(F )I). By Carathéodory’s the-
orem, there exist n′ + 1 vertices of F such that
(x̂, ŷ) ∈ F̄ = conv(v1, . . . , vn

′+1). Since F̄ ⊆ F and
(x̂, ŷ) ∈ F̄ , it follows that x̂ ∈ vert(projx(F̄ )I) and
(x̂, ŷ) ∈ vert(F̄x̂). Indeed, if x̂ /∈ vert(projx(F̄ )I),
then it can be written as a strict convex combination
of points in vert(projx(F̄ )I) ⊆ conv(vert(projx(F )I)),
which shows that x̂ /∈ vert(projx(F )I).

Therefore, we can compute a superset of the vertices
of PMI by enumerating every (n′+1)-elementary subset

{v1, . . . , vn
′+1} of V , yielding at most

( |V |
n′+1

)

≤ |V |n
′+1

sets to consider. Fix a subset {v1, . . . , vn
′+1} and set

F̄ = conv(v1, . . . , vn
′+1). We will next find a vertex

description of conv(F̄ ∩ Zn × Rd).
To this end, let v̂i = projx(v

i). Applying Lemma 6
with Q = conv(v̂1, . . . , v̂n

′+1), we have a vertex de-

scription of QI with at most 2
324

n′

ϕn′−1n′3n
′−2 many

vertices. For each vertex x̂ of QI , we compute the
vertices of F̄x̂, which can be written as the set of
(x, y) ∈ Rn × Rd satisfying

(x, y) =

n′+1
∑

i=1

λiv
i, x = x̂,

n′+1
∑

i=1

λi = 1, λi ≥ 0.

Every vertex of this set corresponds to a unique face of
the (n′ + 1)-dimensional standard simplex. There are
2n

′+1 many faces of the n′-dimensional simplex. Hence,
this set has at most 2n

′+1 vertices, which can be enu-
merated, for instance by [1] in time polynomial in the
encoding size ϕ provided that n is fixed. This number
of enumerated points provides us with an upper bound

on the number of vertices of PMI . Since we can test
whether points are vertices of PMI using linear pro-
gramming, the proof is complete.

Combined with Lemma 5, the above theorem gives
a similar result for polyhedra.

Remark 9. Consider a polyhedron P = {(x, y) ∈
Rn+d : A(x, y) ≤ b, (x, y) ≥ 0}, where A ∈ Qm×(n+d),
b ∈ Qm. It follows that | vert(P )| ≤ (n + d)m. There-
fore, for fixed m and n, using Theorem 8, we can find
a vertex description of the mixed-integer hull in poly-
nomial time. This applies, for instance, to a mixed-
integer knapsack problem with no upper bounds on the
variables.
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