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Thesis summary 
 
This thesis demonstrates the relationship between depression symptomatology and 

white matter microstructure. 

 

Chapter 1 provides a systematic literature overview on white matter microstructure 

alterations of the reward system in depression. Findings suggest that localization 

and extent of white matter microstructure alterations in depression is highly 

dependent on the state (depression vs. remission) and the clinical subtype.  

 

Using a novel tractography algorithm, Chapter 2 provides a comprehensive 

instruction on how to delineate the two different branches of the MFB (supero-lateral 

medial forebrain bundle (slMFB) and infero-medial medial forebrain bundle 

(imMFB)), the main pathway of the reward system. An association between 

fractional anisotropy (FA), a diffusion tensor imaging (DTI)-based measure that is 

supposed to reflect white matter microstructure and hedonic tone, the capacity to 

derive pleasure from rewarding experiences is identified across a group of remitted 

depressed (RD) and never depressed (ND) young women.  

 

Chapter 3 uses a longitudinal design to investigate white matter microstructural 

changes of different pathways of the reward system from depression to remission. A 

distinct pattern of changes that depends on both the tract and the age is identified.  

 

Chapter 4 investigates the structural correlates of physical activity (PA). PA is 

reduced in depression and its benefit for depression symptomatology is well known. 

Using an MRI-sequence that has been shown to be specific to myelination we 

identify a positive correlation between PA and myelination of the right 

parahippocampal cingulum (PHC).  

 

This thesis contributes to the identification of structure-function associations related 

to the reward system in both patients with major depressive disorder (MDD) and 

healthy controls (HC). Results call for a careful stratification of clinically meaningful 

homogeneous subgroups if investigating participants with depression. Further the 

benefit of novel imaging methods for reconstruction of specific pathways and for a 

neurobiologically meaningful interpretation of the data is clearly shown.  
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1 A review of white matter microstructure alterations of 
pathways of the reward circuit in depression 

 

 

 

The work presented in this chapter has been published:  

 

 

Bracht, T., Linden, D.E., Keedwell, P.A., accepted. A review of white matter 

microstructure alterations of pathways of the reward circuit in depression. 

Journal of affective disorders. 

 

 

The published article has been edited for this chapter. This review article includes 

results of experimental Chapters 2 and 3, which are essential contributions 

regarding this topic. Thus, in this chapter I also refer to results that will be described 

in depth in Chapters 2 and 3. 
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1.1 Summary 

 

Depressed mood, anhedonia, psychomotor retardation and alterations of circadian 

rhythm are core features of the depressive syndrome. Its neural correlates can be 

located within a frontal-striatal-tegmental neural network, commonly referred to as 

the reward circuit. It is the aim of this chapter to review the literature on white matter 

microstructure alterations of the reward system in depression. A systematic 

PUBMED-based search strategy was used. Diffusion tensor imaging (DTI)-studies 

that have explored neural deficits within the cingulum bundle, the uncinate 

fasciculus and the supero-lateral medial forebrain bundle/ anterior thalamic radiation 

- in adolescent and adult depression (acute and remitted), melancholic depression, 

treatment-resistant depression and those at familial risk of depression -were 

identified. Thirty-five studies were included. In people at familial risk for depression 

the main finding was reduced fractional anisotropy (FA) - a putative marker of white 

matter microstructure - in the cingulum bundle. Both increases and decreases of FA 

have been reported in the uncinate fasciculus in adolescents. Reductions of FA in 

the uncinate fasciculus and the anterior thalamic radiation/ supero-lateral medial 

forebrain bundle during acute depressive episodes in adults were most consistently 

reported. In conclusion altered cingulum bundle microstructure in unaffected 

relatives may either indicate resilience or vulnerability to depression. Uncinate 

fasciculus and supero-lateral medial forebrain bundle microstructure may be altered 

during depressive episodes in adult MDD. Future studies call for a careful clinical 

stratification of clinically meaningful subgroups.  
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1.2 Introduction 

1.2.1 Reward system, depression and anhedonia 

 

The reward circuit is central to the experience of pleasure (Haber and Knutson, 

2010; Nestler and Carlezon, 2006; Russo and Nestler, 2013). Reward also drives 

incentive-based learning, appropriate responses to stimuli and goal-directed 

behaviour (Berridge and Kringelbach, 2008; Grabenhorst and Rolls, 2011; 

Rushworth et al., 2007). Thus, functionally the reward system is not restricted to 

hedonic responses but also mediates cognitive planning and motor control. 

Anatomically, the ventral tegmental area (VTA) and the nucleus accumbens (NAcc) 

are at the core of the reward circuit. Further key structures include the orbitofrontal 

cortex (OFC), the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex 

(dlPFC), the hypothalamus, the thalamus, the amygdala and the hippocampus (Der-

Avakian and Markou, 2012; Haber and Knutson, 2010).  

 

The idea of an anatomically defined reward circuit was based on the finding of Olds 

and Milner who demonstrated that rats would work to induce electrical stimulation of 

specific brain regions (Olds and Milner, 1954). Self-stimulation and pharmacological 

studies have shown that the VTA and the NAcc are the most prominent regions for 

mediating incentive-based learning (Kelley and Berridge, 2002; Schultz et al., 1997). 

Further, phylogenetically older structures such as the hypothalamus are crucial for 

reward-seeking behaviour such as feeding and sexual behaviour (Hikosaka et al., 

2008; Nestler and Carlezon, 2006). Reward signals also reliably activate the OFC 

(Kringelbach and Rolls, 2004; O'Doherty et al., 2001) while the amygdala is 

essential for the learning of stimulus-reward associations (Baxter and Murray, 2002; 

Russo and Nestler, 2013). Furthermore, amygdala and hippocampus (via the fornix) 

project to the NAcc hereby providing important emotional and motivational 

information (Haber and Knutson, 2010). The hippocampus is thought to play a 

pivotal role for memory encoding based on the valence of a stimulus (Russo and 

Nestler, 2013). The dorsal ACC (dACC) and the dlPFC are crucial if working 

memory is required to evaluate multiple choices of action and to select and initiate 

the most valuable option (Fletcher and Henson, 2001; MacDonald et al., 2000; 

Ridderinkhof et al., 2004). We can thus define a core reward circuit, consisting of 

VTA, NAcc and OFC, and a wider system, incorporating amygdala, hippocampus, 

dlPFC and dACC which provide crucial functions of memory and evaluation. 
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The importance of the reward circuit in mediating pleasure has also been clearly 

demonstrated in positron emission tomography (PET) and functional magnetic 

resonance imaging (fMRI) studies in humans. For instance, responses in the reward 

circuit have been evoked following pleasurable experiences such as eating 

chocolate (Small et al., 2001), listening to music (Blood and Zatorre, 2001; Menon 

and Levitin, 2005), application of cocaine (Breiter et al., 1997) and sexual 

stimulation and orgasm (Holstege et al., 2003; Huynh et al., 2013). 

 

These core regions of the reward circuit function as a complex network and cannot 

work in isolation (Haber and Knutson, 2010). Failure to successfully involve distinct 

key regions of the reward circuit may be associated with depressive symptoms in 

major depressive disorder (MDD) (Nestler and Carlezon, 2006). For instance, 

depressed mood and anhedonia, the reduced capacity to derive pleasure from 

previously rewarding experiences may be linked to deficits in reward processing in 

the VTA-NAcc pathways (Russo and Nestler, 2013; Stoy et al., 2012). Psychomotor 

retardation could stem from a disturbed interplay in the reward system leading to 

deficits in appropriate goal-directed behaviour (Bracht et al., 2012a; Der-Avakian 

and Markou, 2012; Walther et al., 2012b), while extensive ruminating may reflect 

cognitive deficits to inhibit inappropriate processes based on earlier experiences 

(Siegle et al., 2002) or intensified expectations of negative outcomes (Rosenblau et 

al., 2012). Further, disturbances of sleep, appetite, energy levels and circadian 

rhythms may be related to deficits in the hypothalamus (Hikosaka et al., 2008; 

Nestler and Carlezon, 2006).  

 

1.2.2 Reward circuitry in depression: cingulum bundle, uncinate fasciculus 
and medial forebrain bundle 

 

These associations between symptoms of depression and dysfunctions of the 

reward system have given rise to pathophysiological models implicating functional 

and structural alterations in the reward circuitry. Indeed, fMRI-studies in depression 

have demonstrated decreases of subcortical and limbic brain areas of the reward 

system following pleasant stimuli, while increased activation in cortical areas has 

been reported (Epstein et al., 2006; Keedwell et al., 2005; Smoski et al., 2009; 

Zhang et al., 2013). Furthermore, voxel-based morphometry (VBM)-studies indicate 

grey matter loss in MDD in dlPFC, ACC, OFC and amygdala (Bora et al., 2012; Du 

et al., 2012; Lai, 2013). Therefore, the search for neurobiological underpinnings of 
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depressive symptoms such as anhedonia has shifted towards core regions of the 

reward system such as the VTA and the NAcc e.g. (Blood et al., 2010b; Bracht et 

al., 2014).   

 

This chapter focuses on the role of the major reward system pathways in 

depression: the cingulum bundle (CB), the uncinate fasciculus (UF) and the supero-

lateral medial forebrain bundle (slMFB). Typical reconstructions of these tracts are 

shown in Figure 1.1.  

 

 CB and UF are the main pathways linking the ventromedial frontal cortex (ACC and 

OFC) to anterior temporal structures, including the amygdala (UF) and to posterior 

parietal and temporal cortices (CB) (Bracht et al., 2009; Catani et al., 2002; 

Keedwell et al., 2012). These pathways are thus important components of the 

reward system.  The role for the ventromedial frontal cortex in processing of diverse 

and abstract rewards (Gottfried et al., 2003; Kringelbach and Rolls, 2004) and for 

anhedonia have been clearly demonstrated in structural and functional 

neuroimaging studies in both healthy controls and in MDD (Harvey et al., 2007; 

Keedwell et al., 2012; Pizzagalli et al., 2004; Wacker et al., 2009). UF projections 

from the ventromedial frontal cortex to the amygdala may also play a role in reward-

based learning (Baxter and Murray, 2002; Gottfried et al., 2003) and in rumination in 

MDD (Rosenblau et al., 2012; Siegle et al., 2002). 

 

The MFB is at the core of the reward system, directly connecting the most prominent 

regions of the reward circuitry, namely VTA, NAcc, OFC and hypothalamus. It has 

been described extensively in tract-tracing studies in  rodents (Geeraedts et al., 

1990a, b; Nieuwenhuys et al., 1982; Veening et al., 1982) and in human post-

mortem studies (Nieuwenhuys et al., 2008a). It has two branches, the infero-medial 

MFB (imMFB) and the slMFB. While the imMFB projects from the VTA to the lateral 

hypothalamus the slMFB travels through the anterior limb of the internal capsule 

(ALIC) and reaches frontal brain regions (Coenen et al., 2009; Coenen et al., 2012). 

The slMFB is essential for behaviour that drives activities, supports exploration and 

mediates emotions like curiosity, excitement and desire (Coenen et al., 2011; 

Dobrossy et al., 2014). This ensures positive emotional behaviour and has been 

conceptualized as the SEEKING system within the framework of affective 

neuroscience (Panksepp, 1998, 2011). The anterior thalamic radiation (ATR) 

connects the thalamus with prefrontal brain regions. The ATR is located medially to 

the slMFB; however within the ALIC there is some spatial overlap with the slMFB 
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that cannot be resolved with currently available resolutions of MRI techniques. In 

contrast to the slMFB the ATR may rather mediate distress and sadness, 

conceptualized as the GRIEF system in terms of affective neuroscience (Coenen et 

al., 2012; Coenen et al., 2011; Panksepp, 2011).  

 

1.2.3 Diffusion Tensor Imaging (DTI) 
 

Diffusion Tensor Imaging (DTI) enables inferences to be made on tissue 

microstructure in vivo. If water diffuses freely in all directions this is called isotropic 

diffusion. However in the white matter of the brain a series of tissue components 

such as axons, myelin, glia cells and their respective arrangement amongst each 

other pose barriers to the mobility of water molecules leading to hindered/ restricted 

diffusion. In white matter (as opposed to grey matter) there is an orientational 

difference in the hindrance/ restriction which is described as anisotropic diffusion. 

The three dimensional diffusivity of water molecules can be modelled using DTI 

(Basser et al., 1994). Based on the eigenvalue of the diffusion tensor different 

diffusion properties can be calculated including fractional anisotropy (FA), mean 

diffusivity (MD), axial and radial diffusivity (AD and RaD). The most common 

diffusion MRI-based measure for characterization of white matter microstructure is 

fractional anisotropy (FA). FA-values range between 0 and 1. Zero indicates 

perfectly isotropic diffusion and 1 indicates perfectly anisotropic diffusion (Basser 

and Pierpaoli, 1996; Beaulieu, 2002).  Although much less frequently reported MD, 

AD and RaD may complement findings of FA and in conjunction help to interpret 

potentially underlying tissue microstructure alterations. For instance, studies in 

dysmyelinated shiverer mice and studies investigating axonal degeneration in both 

humans and animals (Concha et al., 2006; Song et al., 2003; Song et al., 2002)  

suggest that AD may be sensitive to axonal pathologies, while RaD may be 

sensitive to myelination. Thus, these diffusion properties reflect white matter tissue 

microstructure which in turn could affect functional connectivity within a neural 

circuit. Nevertheless, given the complexity of brain architecture and the multiple 

influencing factors on each of the diffusion metrics (e.g. myelination,  packing 

density, axonal diameter, membrane permeability, crossing of fibres or the curvature 

of the tract of interest), it is currently impossible to draw definite conclusion on 

specific biological brain alterations using DTI (Jones et al., 2013b).  
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1.2.4 Tractography vs. whole brain approaches 
 

The analysis of DTI data can be performed for the whole-brain or confined to 

specific anatomical regions or tracts. Voxel-based analyses (VBA) and tract based 

spatial statistics (TBSS) (Smith et al., 2006) are automated approaches, comparing 

diffusion properties such as FA on a voxel-by-voxel level of the whole brain, 

following spatial normalization of FA images. While VBA compares whole voxels 

between groups, TBSS confines its analyses to a thinned white matter skeleton. 

Many researchers favor TBSS approaches over VBA approaches due to the more 

accurate spatial alignment of the voxels of the brain and the somewhat arbitrary filter 

size of smoothing applied in VBA-studies (Abe et al., 2010; Jones et al., 2005). 

Conversely, region of interest (ROI)-approaches and tractography studies 

investigate anatomically pre-defined brain regions. Tractography studies allow for an 

in vivo reconstruction of specific pathways of the brain and provide a greater degree 

of tract-specific anatomical validity than ROI-approaches (Kanaan et al., 2006) 

because individual differences of fibre pathways can be taken into account by 

manual delineation of seed regions (Catani et al., 2002). Further, tractography 

studies enable a more reliable allocation of findings of group differences to specific 

pathways than voxel-based approaches. This must be the case because there is 

crossing of fibre populations in about 90% of the voxels (Jeurissen et al., 2013). 

Therefore allocation of isolated voxels to specific pathways can be highly 

speculative using whole brain voxel-based analyses (Frodl et al., 2012; Keedwell et 

al., 2012). 

  

1.2.5 Previous reviews and conceptual considerations  
 

Previous reviews and meta-analyses of diffusion-MRI studies point to reduced FA in 

the left superior longitudinal fasciculus (Murphy and Frodl, 2011), the genu of the 

corpus callosum (Wise et al., 2015), bilateral frontal lobe, right fusiform gyrus and 

right occipital lobe (Liao et al., 2013) and frontal and temporal lobes (Sexton et al., 

2009). However, crucial difficulties of meta-analyses include the grouping of 

heterogeneous populations (which may anatomically differ from each other) and 

application of different data acquisition schemes and imaging analyses methods 

(which may lead to different results) (Sexton et al., 2009). With a recent increase of 

tractography studies showing different results than voxel-based approaches (Bracht 

et al., 2015a; Frodl et al., 2012; Keedwell et al., 2012) the latter point becomes in 

particular important.  
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A further source of heterogeneity in neuroimaging findings in depression may be 

due to differences in clinical presentations. In the search for trait biomarkers of 

MDD, diffusion MRI studies have not only included acutely ill MDD patients, but also 

patients in remission and individuals at risk of depression by virtue of their family 

history. Furthermore, some studies have explored the influence of treatment-

resistance and severity (Serafini et al., 2014). For example, melancholic depression, 

which is  characterized by severe anhedonia, a different quality of sadness and 

marked vegetative symptoms (Rush and Weissenburger, 1994), may be associated 

with pathology localized in different or additional brain regions when compared to 

non-melancholic depression (Bracht et al., 2014; Korgaonkar et al., 2011; Pizzagalli 

et al., 2004).  

 

Therefore, in this chapter DTI-findings in the core pathways of the reward system 

are separately discussed for those at familial risk for depression, patients with 

adolescent depression and patients with adult depression (depressed, remitted, 

treatment-resistant, melancholic and non-melancholic). We include tractography 

studies that investigated the CB, UF or slMFB. We also report findings of whole 

brain voxel-based analyses (VBA and TBSS-studies) and ROI-studies provided that 

the identified alterations in voxels, being localized along the anatomical course of 

CB, UF or slMFB.  

 

1.3 Method 

1.3.1 Search strategy 

 

The relevant diffusion MRI literature was identified using PUBMED 

(http://www.ncbi.nlm.nih.gov/pubmed) in March 2015. The database was searched 

using the following Boolean strategy: (DTI OR diffusion tensor imaging OR white 

matter OR tractography OR fibre tracking) AND (depression OR depressive OR 

remission OR remitted OR unipolar) AND (orbitofrontal OR dorsolateral prefrontal 

OR amygdala OR hippocampus OR brain stem OR midbrain OR ventral tegmental 

area OR nucleus accumbens OR ventral striatum OR thalamus OR limbic OR 

reward OR anterior limb OR uncinate OR medial forebrain bundle OR anterior 

thalamic radiation OR fornix OR parahippocampal OR cingulum).  
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Reference lists of PUBMED-identified studies were then searched for additional 

relevant studies. Studies were included if they used DTI-based diffusion indices (FA, 

MD, AD or RaD) to compare major depressive disorder (MDD) with healthy control 

subjects. We also included studies focusing on subjects at risk for developing MDD. 

Studies of bipolar disorder and late life depression were excluded because these 

disorders differ in clinical presentation and presumably pathophysiology from major 

depression. Further, studies investigating depression as comorbidity of other 

disorders (e.g. AIDS, Parkinson’s disease) were excluded. Further exclusion criteria 

were comorbid substance abuse and neurological disorders (including mild cognitive 

impairment and dementia).  

 

 

1.4 Results 

 

A total of 35 publications were in included (see table 1.1). The results are organized 

according to subgroups of individuals with familial risk of MDD, adolescents with 

acute depression, adults with MDD (acute and remitted), treatment-resistant 

depression and melancholic-MDD.  

 

Further, we display results of tractography studies comparing diffusion properties of 

MDD-patients with healthy controls for the main reward system tracts: CB, UF and 

slMFB (Table 1.2, Figure 1.1). In Table 1.2 we also include VBA, TBSS and ROI-

studies that identified alterations of diffusion properties in the ALIC, because this 

region likely incorporates slMFB/ ATR fibre tracts (Figure 1.1). We further include 

findings of VBA and TBSS studies being localized within the CB and the UF. 
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Study Methods Participants Results 
At familial risk for depression 
(Frodl et al., 
2012) 

3 Tesla 
61 directions 
TBSS 
Tractography 
(UF, fornix) 

21 HR (38.1 ± 
14.5) 
24 HC (34.7 ± 
11.0) 

Increased FA in the right 
fornix in HR.  
Negative finding for UF. 
MD, RaD and AD did not 
differ between groups. 

(Huang et al., 
2011)  

3 Tesla 
30 directions 
TBSS (voxel-
wise and tract-
level analysis) 

18 HR (15.7 ± 2.3) 
13 HC (15.5 ± 3.0) 

Decreased FA in the left 
CB and left and right UF 

(Keedwell et al., 
2012) 

3 Tesla 
30 directions 
Tractography 
(UF, CB) 
TBSS 

18 HR (22.2) 
15 HC (22.1) 

Decreased FA in left and 
right CB. No differences of 
AD. RaD was significantly 
higher in HR in the CB. 
Negative finding for UF. 
Negative finding with 
TBSS 

Adolescent depression 
(Aghajani et al., 
2013)  

3 Tesla 
32 directions 
TBSS 
Region of 
interest 

25 MDD (15.6 ± 
1.4) 
21 HC (14.7 ± 1.6) 

Increased FA in the UF. 
Higher AD, lower RaD and 
preserved MD 

(Bessette et al., 
2014) 

3 Tesla 
12 directions 
TBSS 

31 MDD (17.1 ± 
2.4) 
31 HC (17.0 ± 2.4) 

Decreased FA in bilateral 
frontal lobe, bilateral ALIC, 
bilateral midbrain, 
right ATR 

(Cullen et al., 
2010) 

3 Tesla 
30 directions 
TBSS 
Tractography  

14 MDD (16.8 ± 
1.3) 
14 HC (16.8 ± 1.5) 

Decreased FA in the right 
UF 
Negative finding for CB 
 

(Henderson et 
al., 2013) 

3 Tesla 
12 directions 
TBSS 

17 MDD (16.8 ± 
2.2) 
16 HC (16.4 ± 1.4) 

Decreased FA in the right 
CB (posterior parts near 
the precuneus) 

(LeWinn et al., 
2014) 

3 Tesla 
30 directions 
Tractography 
TBSS 

52 MDD (16 ± 0.2) 
42 HC (16 ± 0.2) 

Decreased FA in bilateral 
UF. Higher RaD in 
bilateral UF. No changes 
of AD. 
No significant differences 
in CB 

Remitted depression 
(Arnold et al., 
2012) 

1.5 Tesla 
30 directions 
VBA 
ROI approach 
Probabilistic 
fibre tracking 

17 RD (30.4 ± 1.4) 
21 HC (26.9 ± 7.8) 

Increased FA and 
decreased MD in the left 
amygdala (grey matter). 
Increased MD in the PFC. 
No significant whole brain 
differences of VBA-
analyses. 

(Bracht et al., 
2015) 

3 Tesla 
60 Directions 
Tractography  

18 RD (22.4 ± 3.6) 
22 HC (22.5 ± 4.5) 

No group differences with 
either tractography or 
TBSS. 
Association between 
hedonic tone and FA of 
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the left slMFB 
(de Diego-
Adelino et al., 
2014) 

3 Tesla 
15 directions 
TBSS 

15 RD (47  ± 9.4) 
17 HC (43.4 ± 
11.4) 

No group differences 
between RaD and HC. 
 

Depressed 
(Abe et al., 
2010) 

1.5 Tesla 
Number of 
directions not 
stated 
VBA 

21 MDD (48 ± 
13.5) 
42 HC (48 ± 13.2) 
 

Increased MD in bilateral 
parahippocampal gyri, 
hippocampus,  
left temporal lobe, bilateral 
frontal lobe 

(Blood et al., 
2010) 

3 Tesla 
6 directions 
ROI 

MDD (36.3 ± 12) 
HC (35.3 ± 11) 

Increased FA in the right 
VTA 
Decreased FA in the 
dlPFC 

(Carballedo et 
al., 2012) 

3 Tesla 
61 directions 
Fibre tracking 
(UF, Fornix, 
CB) 

37 MDD (40.4 ± 
10) 
42 HC (36.3 ± 13) 

Patients carrying the 
BDNF-met-allele had 
decreased FA in the UF 
compared to those 
patients homozygous for 
val-allele and compared to 
healthy subjects carrying 
the met-allele. 

(Guo et al., 
2012b) 

1.5 Tesla 
13 directions 
TBSS 

22 MDD (28.1 ± 
9.9) 
19 HC (24.4 ± 4.2) 

Decreased FA in bilateral 
ALIC and frontal lobe 

(Jia et al., 2014) 3 Tesla 
15 directions 
Tractography  

63 MDD 
46 HC 

Decreased FA in MDD in 
the ATR, more 
pronounced in MDD 
patients with suicide 
attempt 

(de Kwaasteniet 
et al., 2013) 

3 Tesla 
32 directions 
Tractography 

18 MDD (44.6 ± 
10.4) 
24 HC (40.2 ± 
13.1) 

Decreased FA in bilateral 
UF 

(Lai and Wu, 
2014) 

3 Tesla 
30 directions 
TBSS 

44 MDD (36.9 ± 
5.3) 
27 HC (38.3 ± 
11.8) 

Decreased FA and 
decreased AD in the right 
ATR 
 

(Li et al., 2007) 1.5 Tesla 
13 Directions 
ROI 

19 MDD (28.1 ± 
7.4) 
20 HC (26.7 ± 6.9) 

Decreased FA in the 
frontal cortex 

(Ma et al., 
2007) 

1.5 Tesla 
13 Directions 
VBA 

14 MDD (28.9 ± 
8.0) 
14 HC (27.1 ± 6.7) 

Decreased FA in right 
middle frontal gyrus 

(Murphy et al., 
2012) 

3 Tesla 
61 directions 
TBSS 

45 MDD 
45 HC (37 ± 12.8) 

Decreased FA in the CB, 
left and right UF 

(Seok et al. 
2013) 

20 directions 
TBSS 

86 MDD (44) 
62 HC (42) 

Decreased FA in the left 
CB and bilateral frontal 
white matter 

(Song et al., 
2014) 

3 Tesla 
42 directions 
Tractography  

95 MDD (31.5) 
34 HC (33.8) 

Decreased FA in the right 
solitary tract (amygdala, 
brain stem). No significant 
differences for MD, AD, 
RaD. No differences in the 
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nigrostriatal tract and the 
CST. 

(Steele et al., 
2005) 

1.5 Tesla  
6 Directions 
VBA 

15 MDD (46) 
14 HC (43) 

Decreased FA in the right 
temporal lobe 
Decreased FA in UF 

(Ouyang et al., 
2011) 

1.5 Tesla 
13 directions 
VBA 

18 MDD (27.4 ± 
6.4) 
18 HC (27.0 ± 6.0) 

Decreased FA in frontal, 
temporal lobe and 
cingulum 

(Tha et al., 
2013) 

1.5 Tesla 
12 directions 
VBA 

19 MDD (38.6 ± 
13) 
19 HC (36.5 ± 
12.5) 

Decreased FA in bilateral 
frontal white matter, ALIC. 
No differences in MD.  

(Walther et al., 
2012) 

3 Tesla 
42 directions 
VBA 

21 MDD (41 ± 
13.7) 
21 HC (45 ± 13.7) 

Decreased FA in left ATR 

(Wu et al., 
2011) 

1.5 Tesla 
13 directions 
VBA 

23 MDD (31.4 ± 
8.8) 
21 HC (30.4 ± 8.2) 

Decreased FA in the right 
frontal lobe. Increased 
apparent diffusion 
coefficient (ADC) 

(Zhang et al., 
2012) 

3 Tesla 
32 Directions 
Tractography  

21 MDD (47.7 ± 
10.15) 
21 HC (48.3 ± 
14.3) 

Decreased FA and 
increased RaD in the right 
UF 
Negative finding for the 
CB 

(Zhu et al., 
2011) 

1.5 Tesla 
13 directions 
TBSS 

25 MDD (20.5 ± 
1.86) 
25 HC (20.33 ± 
1.68) 

Decreased FA in the left 
ALIC and right PHC 
 

(Zou et al., 
2008) 

3 Tesla 
15 directions 
VBA 

45 MDD (33.2 ± 
8.9) 
45 HC (31.0 ± 
10.3) 

Decreased FA in the left 
ALIC 

Treatment-resistant 
(de Diego-
Adelino et al., 
2014) 

3 Tesla 
15 directions 
TBSS 

18 TRD (48.5 ± 
7.3) 
17 HC (43.4 ± 
11.4) 

Decreased FA in 
treatment-resistant MDD 
in the bilateral cingulum 
and the left VMPFC 
compared to HC, first-
episode and to RD 

(Guo et al., 
2012a) 

TBSS 23 TRD (27.4 ± 
7.7) 
19 HC (24.4 ± 4.2) 

Decreased FA in the right 
ALIC 

(Peng et al., 
2013) 

3 Tesla 
30 directions 
VBA 

30 TRD (26.8 ± 
5.2) 
25 HC (28.2 ± 4.9) 

Decreased FA in the left 
middle frontal gyrus 
Left temporal lobe 

Melancholic depression 
(Bracht et al., 
2014) 

3 Tesla 
42 directions 
Fibre tracking 
(infero-medial 
MFB, supero-
lateral MFB) 

22 MDD (44.8 ± 
14) 
21 HC (41.4 ± 14) 

No difference between all 
MDD and HC 
Decreased FA in right 
slMFB (VTA-OFC and 
VTA-dlPFC connections) 
in the melancholic 
subgroup 

(Korgaonkar et 
al., 2011) 

3 Tesla 
42 directions 

29 MDD (40.5 ± 
15.8) 

No group difference 
comparing all MDD 
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TBSS 39 HC (29.6 ± 
12.7) 

patients with HC. 
Decreased FA in the 
fornix/ stria terminalis, 
dlPFC, frontal, temporal 
regions in the melancholic 
subgroup  

 

Table 1.1 Overview of included studies  

Abbreviations: HR, healthy relatives; HC, healthy controls; MDD, major depressive disorder 
(acute depression); RD, remitted depressed; TRD, treatment-resistant depression; TBSS, 
tract based spatial statistics; VBA, voxel-based analyses; ROI, region of interest; FA, 
fractional anisotropy; MD, mean diffusivity; RaD, radial diffusivity; AD, axial diffusivity; UF, 
uncinate fasciculus; CB, cingulum bundle; slMFB, supero-lateral medial forebrain bundle; 
ATR, anterior thalamic radiation; ALIC, anterior limb of the internal capsule; ACC, anterior 
cingulate cortex; VTA, ventral tegmental area; OFC, orbitofrontal cortex; PFC, prefrontal 
cortex; dlPFC, dorsolateral prefrontal cortex; VMPFC, ventromedial prefrontal cortex, BDNF, 
brain-derived neurotrophic factor. 
 
 
 

 
Figure 1.1 Typical reconstructions of CB, UF and slMFB 

Typical reconstructions of the cingulum bundle (CB, red), uncinate fasciculus (UF, yellow) 
and supero-lateral medial forebrain bundle (slMFB, white) are shown, 
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At familial risk for 
depression 

Adolescent depression Adult depression 

Cingulum Bundle 
Group 
differences 

No group 
differences 

Group 
differences 

No group 
differences 

Group 
differences 

No group 
differences  

(Huang et 
al. 2011 ; 
Keedwell et 
al. 2012) 

 (Henderson 
et al. 2013) 

(Cullen et 
al. 2010 ; 
LeWinn et 
al. 2014) 

(de Diego-
Adelino et 
al. 2014; 
Murphy et 
al. 2012; 
Ouyang et 
al. 2011; 
Seok et al. 
2013) 

(Carballedo 
et al. 2012; 
Zhang et al. 
2012) 

Uncinate Fasciculus 
Group 
differences 

No group 
differences 

Group 
differences 

No group 
differences 

Group 
differences 

No group 
differences  

(Huang et 
al. 2011) 

(Frodl et al. 
2012 ; 
Keedwell et 
al. 2012) 

(Aghajani et 
al. 2013 ; 
Cullen et al. 
2010; 
LeWinn et 
al. 2014) 

 (Carballedo 
et al. 2012; 
de 
Kwaasteniet 
et al. 2013; 
Murphy et 
al. 2012; 
Steele et al. 
2005; 
Zhang et al. 
2012) 

 

Supero-lateral medial forebrain bundle/ anterior thalamic radiation/ anterior 
limb of the internal capsule 
Group 
differences 

No group 
differences 

Group 
differences 

No group 
differences 

Group 
differences 

No group 
differences  

  (Bessette et 
al. 2014) 

 (Bracht et 
al. 2014; 
Guo et al. 
2012a; Guo 
et al. 2012b; 
Jia et al. 
2014; Lai 
and Wu 
2014; Tha 
et al. 2013; 
Walther et 
al. 2012 ; 
Zhu et al. 
2011; Zou 
et al. 2008;) 

(Bracht et 
al. 2015a; 
Song et al. 
2014) 

 

Table 1.2 Results of findings of the CB, UF and slMFB 

Findings of tractography studies of the cingulum bundle (CB), uncinate fasciculus (UF) and 
supero-lateral medial forebrain bundle (slMFB) stratified according to the presence of group 
differences of diffusion properties between MDD and a healthy control group. VBA and 
TBSS studies with findings along the anatomical course of these tracts are also displayed. 
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1.5 Discussion 

 

Overall, findings of CB, UF and slMFB microstructural alterations suggest a distinct 

pattern of pathways that may serve as state or trait marker for depression. Reduced 

FA in the CB has been reported in unaffected relatives (Huang et al., 2011; 

Keedwell et al., 2012). However, reports of CB microstructure alterations are 

inconclusive during acute depression in both adolescent and adult MDD (Carballedo 

et al., 2012; Cullen et al., 2010; de Diego-Adelino et al., 2014; Henderson et al., 

2013; LeWinn et al., 2014; Murphy et al., 2012; Ouyang et al., 2011; Seok et al., 

2013; Zhang et al., 2012). There is compelling evidence for reduced FA in the UF in 

acute depression in adults (Carballedo et al., 2012; de Kwaasteniet et al., 2013; 

Murphy et al., 2012; Steele et al., 2005; Zhang et al., 2012); evidence in adolescents 

is emerging as well, although fewer studies and FA changes in opposing directions 

have been published (Aghajani et al., 2013; Cullen et al., 2010; LeWinn et al., 2014). 

First results indicate slMFB microstructure alterations in melancholic MDD (Bracht et 

al., 2014), but not in remitted MDD/ non-melancholic MDD (Bracht et al., 2015a; 

Bracht et al., 2014; Song et al., 2014). A series of VBA and TBSS studies have 

reported reduced FA in the ALIC and in the frontal lobe in acute depression, regions 

that may be in incorporated in UF and slMFB/ ATR.  

 

1.5.1 Cingulum Bundle 

 

Two family history studies suggest that reduced FA of the CB may represent a 

biomarker of vulnerability in MDD (Huang et al., 2011; Keedwell et al., 2012). 

Furthermore, FA was negatively related to trait anhedonia (Keedwell et al., 2012). If 

reductions in CB FA truly represent a marker of vulnerability for depression, one 

would expect to observe such changes in acute MDD as well.  

 

In adolescent depression one group indeed reported decreased FA in posterior 

parts of the cingulum (Henderson et al., 2013). However, results were not corrected 

for multiple comparisons. In contrast two tractography studies have reported 

negative findings in acute adolescent depression (Cullen et al., 2010; LeWinn et al., 

2014). Therefore, to date there is no conclusive evidence for cingulum bundle 

microstructural alterations in adolescents during depressive episodes. 
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Similarly, results for acute MDD in adults are inconsistent. Reduced FA was found in 

the CB in treatment-naïve adult MDD (Ouyang et al., 2011) and acute depression 

(Seok et al., 2013). Further, reductions of FA in bilateral cinguli were reported in 

treatment-resistant MDD (de Diego-Adelino et al., 2014). However, no changes in 

FA were demonstrated in the whole CB in adults (Zhang et al., 2012), or its sub-

regions (Carballedo et al., 2012).  

 

So far three studies have investigated effects of specific genetic variants on 

cingulum microstructure in depression. In a genetic imaging study, FA reductions in 

the cingulum in adult MDD were found to be driven by a subgroup homozygous for 

the A allele of a common single-nucleotide polymorphism (SNP) at position 

(rs11140714) of the neurotrophic tyrosine kinase gene (Murphy et al., 2012). 

Increased FA was observed in carriers of the met-allele of the SNP at position 

(rs6265) of the brain-derived neurotrophic factor (BDNF) gene  in the left rostral 

cingulum compared to those homozygous for the val-allele, although this finding was 

not specific for MDD-patients (Carballedo et al., 2012). (Seok et al., 2013) identified 

lower FA in the right parahippocampal cingulum in a depressed group homozygous 

for the valine COMT val158met polymorphism compared to a depressed group of 

methionine carrier subjects.  

 

Thus, based on findings in unaffected relatives, reduced FA in the CB may indicate 

genetic vulnerability for depression (Huang et al., 2011; Keedwell et al., 2012). 

However, given that in acute depressive episodes in both adolescents and adults 

several studies did not report any FA changes an alternative explanation for reduced 

FA in unaffected relatives may be that CB microstructure represents a structural 

correlate of resilience. In that case remodeling of CB microstructure may lead to a 

loss of resilience and in fact increase the risk for developing depression.  

 

Divergent findings in the cinguli within and across subgroups of patients with 

depression may also be owed to variations in the degree of treatment naivety 

between and within studies (Ouyang et al., 2011) and treatment-resistance (de 

Diego-Adelino et al., 2014). It is possible, that CB microstructure alterations are only 

present in those specific subgroups. In addition, studies suggest that genetic factors 

(Carballedo et al., 2012; Murphy et al., 2012; Seok et al., 2013) may be associated 

with specific changes in the cingulum. These are crucial factors to take into account 

in future studies. Further, it seems prudent to use tractography to disentangle 

different sub-compartments of the CB (e.g. the subgenual CB or the 
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parahippocampal cingulum) since white matter microstructure alterations may only 

be present and detectable in sub-compartments of this large fibre bundle (Bracht et 

al., 2015b; Carballedo et al., 2012; Jones et al., 2013a). The acute or chronic effects 

of treatment on CB-FA are not known. It is possible that subtle changes in the CB 

are remediated by antidepressant treatment in the short and long term. Longitudinal 

treatment studies would therefore be informative. First studies point to plastic white 

matter changes of the CB during the time course of clinical remission (Bracht et al., 

2015b). Further studies of the relationship between cingulum microstructure and 

clinical states may also shed light on the mechanism behind the well-documented 

antidepressant effect of surgical cingulotomy (Ballantine et al., 1987; Linden, 2014).  

 

1.5.2 Uncinate Fasciculus 

 
In adolescents both increases (Aghajani et al., 2013) and decreases (Cullen et al., 

2010; LeWinn et al., 2014) in uncinate FA have been reported. Decreases in FA 

have been consistently found in depressed adults (Carballedo et al., 2012; de 

Kwaasteniet et al., 2013; Murphy et al., 2012; Steele et al., 2005; Zhang et al., 

2012), but not in young people at risk of depression (Frodl et al., 2012; Keedwell et 

al., 2012). Thus, based on the finding of increased FA in the UF in adolescents 

(Aghajani et al., 2013) it is possible, that microstructural alterations in acute 

adolescent depression differ from those in adults. This difference may be owed to an 

age-dependency of neuroplastic processes (Blumenfeld-Katzir et al., 2011; Bracht et 

al., 2015b). However, decreases in FA have also been reported (Cullen et al., 2010; 

LeWinn et al., 2014). Therefore, reliable conclusions regarding the directionality of 

FA changes in adolescents cannot be drawn. Replication studies stratifying patients 

according to clinical presentation, medication status and comorbidities may shed 

further light on factors associated with microstructural UF alterations in adolescents. 

 

Further support for microstructural alterations of the UF in MDD arises from VBA 

and TBSS-based observations of reduced FA in frontal and temporal brain regions, 

likely incorporating the UF (Sexton et al., 2009). Reduced FA in frontal regions has 

been reported during depressive episodes in adolescents (Bessette et al., 2014) and 

in adults (Ouyang et al., 2011; Tha et al., 2013; Wu et al., 2011), in first episode 

treatment-naïve MDD patients (Li et al., 2007; Ma et al., 2007), melancholic-MDD 

patients (Korgaonkar et al., 2011) and treatment resistant MDD-patients (de Diego-

Adelino et al., 2014; Peng et al., 2013). Similarly, decreases of FA were found in the 

temporal lobe in adult MDD (Ouyang et al., 2011; Steele et al., 2005; Zhu et al., 
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2011), melancholic-MDD (Korgaonkar et al., 2011) and treatment resistant MDD 

(Peng et al., 2013).  

 

In summary, a number of independent studies suggest that FA in the UF is reduced 

in adult depression, while in adolescent depression both increases and decreases 

have been reported. There is a lack of convincing evidence that UF microstructure is 

altered in at risk populations. Hence, the current data suggest that this disturbance 

is state dependent. 

 

1.5.3 Supero-lateral medial forebrain bundle 

 

One tractography study has reported reduced FA in the slMFB in melancholic but 

not in non-melancholic MDD-patients or in all MDD-patients (Bracht et al., 2014). In 

line with this finding a further tractography study of a large sample of acutely 

depressed MDD patients did not find alterations of FA in VTA-NAcc connection 

pathways (Song et al., 2014). It would be of great interest to investigate if group 

differences in this large sample might emerge in a comparison of healthy 

participants with a subset of those MDD-patients meeting criteria for melancholic 

depression  (Bracht et al., 2014; Korgaonkar et al., 2011).  

 

Besides a distinct quality of depressed mood melancholic depression is 

characterized by psychomotor retardation, reduced appetite and worsening of mood 

typically in the morning (Rush and Weissenburger, 1994). While the latter may be 

linked to slMFB projections from the VTA to the hypothalamus which is essential for 

feeding behaviour and circadian rhythm (Hikosaka et al., 2008; Nestler and 

Carlezon, 2006), the former may well be conceptualized within the framework of 

affective neuroscience (Panksepp, 1998). According to this concept the slMFB is 

essential for the SEEKING system that mediates exploring behaviour (Coenen et al., 

2011; Dobrossy et al., 2014). Therefore, deficits in exploring behaviour captured as 

psychomotor retardation in melancholic depression may well underlie alterations in 

structural connectivity of slMFB pathways (Bracht et al., 2014).  

 

No changes in FA were found in the sole tractography study investigating imMFB/ 

slMFB microstructure in remitted depression (Bracht et al., 2015a). In the same 

study, a negative correlation between FA and hedonic tone was identified across all 

participants (Bracht et al., 2015a).  This finding in humans is supported by 

compelling evidence in rodents that clearly indicate the relevance of the slMFB for 
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reward SEEKING behaviour (Olds and Milner, 1954; Russo and Nestler, 2013; 

Schultz et al., 1997).  

 

Further indirect support for an involvement of the slMFB in severe/ treatment-

resistant depression is provided by invasive therapeutic trials targeting the slMFB: 

Tractography guided deep brain stimulation (DBS) of the slMFB led to rapid 

symptomatic improvements in treatment-resistant depression (Schlaepfer et al., 

2014; Schlaepfer et al., 2013a). High response rates and improvements in 

functioning in the absence of significant side effects were reported (Galvez et al., 

2015). Moreover, anterior capsulotomy, a surgical approach that places lesions in 

the ALIC, in completely treatment-refractory patients led to convincing 

improvements in a majority of patients (Christmas et al., 2011). Further indirect 

evidence for a role of the slMFB in depression stems from research in 

neurodegenerative disorders such as Parkinson’s disease (PD). Comparing a group 

of depressed PD with non-depressed PD-patients reductions of FA were found in 

regions incorporating the slMFB in the depressed PD-patient group (Huang et al., 

2014). Thus neurodegenerative processes of the slMFB may be associated with 

depressive symptoms. 

 

In addition, a series of voxel based studies have reported reduced FA in acute 

depressive episodes, in first-episode, treatment resistant and melancholic 

depression in both the ALIC and in frontal brain regions (de Diego-Adelino et al., 

2014; Guo et al., 2012; Korgaonkar et al., 2011; Peng et al., 2013; Tha et al., 2013; 

Walther et al., 2012b; Zhu et al., 2011; Zou et al., 2008). These findings may well 

reflect white matter microstructure alterations of the slMFB However, due to 

substantial crossing of different fibre populations, allocation of isolated voxels to 

specific fibre tracts can be highly speculative. For instance, the ATR is localized 

medially albeit spatially overlapping with the slMFB (Coenen et al., 2012). These two 

pathways thus cannot be reliably disentangled with voxel-based approaches. One 

tractography study of the ATR has reported reduced FA in depression (Jia et al., 

2014). Further tractography studies are called for to explore the differential role of 

ATR/ slMFB in depression symptomatology. Ideally, novel fibre tracking techniques 

e.g. (Dell'acqua et al., 2010; Jeurissen et al., 2013) should be applied because 

these methods are more accurate in regions of crossing fibres (Jeurissen et al., 

2013). 
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In summary, one tractography study points to microstructural alterations of the 

slMFB in melancholic depression (Bracht et al., 2014). Based on findings localized 

along the anatomical course of the slMFB, VBA and TBSS studies are suggestive 

for slMFB alterations in acute (Tha et al., 2013; Walther et al., 2012b; Zhu et al., 

2011; Zou et al., 2008) and treatment-resistant depression (de Diego-Adelino et al., 

2014; Guo et al., 2012; Peng et al., 2013) as well. So far, there is no evidence for 

microstructural alterations of the slMFB during remitted depression (Bracht et al., 

2015a). Given the negative finding in remitted depression, slMFB microstructure 

may undergo neuroplastic processes during remission and therefore serve as a 

state rather than as a trait marker. Longitudinal studies are required to explore this 

possibility. Another explanation is that medication effects may induce structural 

changes in the slMFB and remediate structural alterations that can be observed in 

severe depression. 

 

1.5.4 The effect of medication 

 

Out of the 35 studies included in the review, 19 investigated unmedicated or 

treatment-naïve patients and have reported significant group differences.  This 

strongly supports the assumption that brain changes of white matter identified in 

depression are associated with the disease process rather than being mere effects 

of medication. Bessette et al. compared medicated with unmedicated patients and 

found no group differences of FA between the two groups (Bessette et al., 2014). De 

Diego-Adelino and colleagues controlled for medication effects that did not alter the 

results (de Diego-Adelino et al., 2014). Some of the tractography studies 

investigating medicated patients used comparison tracts or investigated multiple 

tracts and identified FA-changes localized in specific tracts that contradict the 

assumption of a global effect of medication on brain structure e.g.(Bracht et al., 

2014; Cullen et al., 2010). On the other hand, successful anti-depressive treatment 

may reverse changes in FA (Bracht et al., 2015b). In bipolar disorder one study 

suggested that lithium is associated with increased FA (Benedetti et al., 2011), while 

another study points to mood stabilizers reducing FA (Versace et al., 2008). 

However, based on cross-sectional approaches the question of medication effects 

on white matter microstructure cannot be addressed. Longitudinal interventional 

studies including both medicated and unmedicated patients are required to more 

reliably address this issue.  
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1.5.5 Implications of differences in methodological approaches  
 

Six studies in this review have used both tractography and whole brain voxel-based 

approaches. Four out of these six studies found significant group differences or 

correlations using tractography while significance was not reached using whole 

brain voxel-based approaches (Bracht et al., 2015a; Bracht et al., 2014; Cullen et 

al., 2010; Keedwell et al., 2012). Therefore, tractography studies may be more 

sensitive than voxel-based studies in terms of identifying tract specific group 

differences. However, one tractography study found overlapping results in some of 

the tracts investigated (Frodl et al., 2012) and a further study found perfectly 

corresponding results using tractography and TBSS (LeWinn et al., 2014). On the 

other hand whole-brain voxel-based approaches may detect group differences in 

additional, unexpected anatomical brain regions and therefore provide important 

additional information (Cullen et al., 2010; Frodl et al., 2012; LeWinn et al., 2014). 

Thus, tractography and whole brain approaches may successfully complement each 

other. Ideally future studies should incorporate both kinds of approaches for 

analyses of their data. Twelve out of the 35 studies did not only report changes of 

FA but also of AD, RaD and MD which may further corroborate the presence of 

putative white matter microstructure alterations.   

 

1.5.6 Limitations 
 

Firstly, a selective overview of white matter changes in reward system pathways is 

provided. Alterations in other tracts have been observed in MDD (e.g. the superior 

longitudinal fasciculus and likely contribute to depression symptomatology as well 

(Murphy and Frodl, 2011). Moreover, fronto-limbic pathways such as the UF and CB 

are implicated in further processes of relevance to depression such as regulation of 

negative emotion and cognitive control. It is beyond the scope of this chapter to 

cover these clinically very relevant issues. Secondly, owing to the small numbers of 

studies in most of the clinical subgroups, a quantitative meta-analysis has not been 

conducted. It is a central goal of this review to stratify findings according to clinically 

meaningful homogeneous subgroups (e.g. (Bracht et al., 2014; de Diego-Adelino et 

al., 2014; Korgaonkar et al., 2011)). We report both results of tractography studies 

and whole brain voxel-based approaches, which have been shown repeatedly to 

yield different results (Abe et al., 2010; Bracht et al., 2014; Cullen et al., 2010; 

Kanaan et al., 2006; Keedwell et al., 2012). Given the sparse current literature of 

tractography studies in depression and the diverse clinical subgroups it is currently 
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not possible to conduct a meaningful meta-analysis.  However, this seems prudent 

once more clinically and methodologically comparable tractography studies have 

been published.  Thirdly, a publication bias towards positive findings cannot be ruled 

out and more replication studies are required using consistent methods and similar 

study populations. It is possible that publication bias has exaggerated the relative 

importance of white matter microstructure in the pathogenesis of MDD.  

 

1.5.7 Summary and future directions   

 

This review focused on diffusion MRI studies investigating white matter 

microstructure of the reward system. Reduced CB FA may represent a state marker 

for MDD (Huang et al., 2011; Keedwell et al., 2012), but further investigation is 

required in medication naïve adults with MDD: changes in the CB might be reversed 

by treatment (Bracht et al., 2015b). UF (Carballedo et al., 2012; de Kwaasteniet et 

al., 2013; Murphy et al., 2012; Steele et al., 2005; Zhang et al., 2012) and slMFB 

microstructure (Bracht et al., 2014) may be altered during depressive episodes in 

adult MDD, while the latter might be particularly affected in severe depression 

(Bracht et al., 2014; de Diego-Adelino et al., 2014; Guo et al., 2012; Peng et al., 

2013).  

 

Associations between microstructural changes in the major tracts of the reward 

system and MDD do not, in themselves, prove a functional contribution towards the 

development of depression’s core symptoms. The functional significance of these 

findings needs further investigation by exploring correlations with reward processing 

performance and symptom profiles (including anhedonia, psychomotor retardation) 

(Bracht et al., 2015a; Keedwell et al., 2012; Walther et al., 2012b). 

 

Heterogeneity in reported results highlights the importance to carefully select 

clinically well-defined subgroups of depression (e.g. adolescent depression, 

melancholic depression, treatment-resistant depression). Further, due to spatial 

overlap of various pathways within a single voxel, tractography approaches are 

required to link findings to specific pathways of interest. Ideally, tractography 

methods that are partly able to resolve “crossing fibres” should be applied 

(Dell'acqua et al., 2010; Jeurissen et al., 2013). The difficulty of disentangling ATR 

and slMFB fibres in the ALIC is just one example where such approaches should be 

beneficial. 
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More research is also needed for a more precise histological interpretation of DTI 

parameters. Alterations of FA are generally interpreted as indicating microstructural 

changes of white matter. Histological post-mortem studies of patients with 

depression suggest reduced glial cell density, reduced dendritic branching and 

reduced white matter volume (Russo and Nestler, 2013). However, DTI-based 

measures are unspecific regarding the underlying neurobiology of white matter 

changes (Jones et al., 2013b). Emerging sub-compartment specific white matter 

mapping techniques (e.g. methods assessing myelination and axonal diameter) are 

required to further elucidate the nature of these changes (Assaf and Basser, 2005; 

Deoni et al., 2008a) and may open exciting new possibilities for an in vivo 

assessment of specific neurobiological changes in depression.  
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2 Hedonic tone is associated with left supero-lateral medial 

forebrain bundle microstructure 
 

 

The work presented in this chapter has been published: 

 

 

 

Bracht, T., Doidge, A.N., Keedwell, P.A., Jones, D.K., 2015. Hedonic tone is 

associated with left supero-lateral medial forebrain bundle microstructure. 

Psychological medicine 45, 865-874. 

 

 

 

The published article has been edited for this chapter in order to include additional 

results and to avoid repetition across Chapter 1. However, this chapter partly covers 

background information already dealt with in Chapter 1. 

 

 

 

I acknowledge Amie Doidge for recruiting, testing and scanning participants. 
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2.1 Summary 

 

The medial forebrain bundle (MFB) is an important pathway of the reward system. 

Two branches have been described using diffusion magnetic resonance imaging 

(MRI)-based tractography: the infero-medial MFB (imMFB) and the supero-lateral 

MFB (slMFB). Previous studies point to white matter microstructural alterations of 

the slMFB in major depressive disorder (MDD) during depressive episodes. To 

extend this finding, this study investigates whether white matter microstructure is 

also altered in MDD patients that are in remission. Further, we explore associations 

between diffusion MRI-based metrics of white matter microstructure of imMFB, 

slMFB and hedonic tone, the ability to derive pleasure. Eighteen remitted depressed 

(RD) and 22 never depressed (ND) participants underwent high angular resolution 

diffusion weighted imaging (HARDI) scans. Using the damped Richardson Lucy 

(dRL) algorithm for the first time the two segments of the two pathways of the MFB 

(imMFB and slMFB) are reconstructed separately. Mean fractional anisotropy (FA) 

was sampled along the tracts. Mean-FA of imMFB, slMFB and a comparison tract 

(the middle cerebellar peduncle) did not differ between ND and RD. Hedonic 

capacity correlated negatively with mean-FA of the left slMFB, explaining 21% of the 

variance in mean-FA. Diffusion MRI-based metrics of white matter microstructure of 

the MFB in RD do not differ from ND. Hedonic capacity is associated with altered 

white matter microstructure of the slMFB.   
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2.2 Introduction 

 

The MFB is the central pathway of the reward system and mediates feelings and 

expectations of pleasure (Coenen et al., 2011; Schultz et al., 1997). Traditionally the 

MFB was described as an assembly of loosely arranged, thin fibres extending from 

the septal area. Fibres traverse the lateral preoptico-hypothalamic area and proceed 

to the tegmentum of the midbrain (Nieuwenhuys et al., 2008b). Coenen et al. were 

the first to reconstruct the MFB using diffusion MRI-based fibre tracking (Coenen et 

al., 2009). In addition to this infero-medial MFB (imMFB) branch, the researchers 

described a supero-lateral branch (slMFB) proceeding from the VTA to the forebrain 

and the frontal lobe (Coenen et al., 2009; Coenen et al., 2012).  

 

Anhedonia, the reduced capacity to derive pleasure from previously rewarding 

experiences, is a core feature of MDD. Given its prominent role in the reward 

system (Nestler and Carlezon, 2006; Schultz et al., 1997), the MFB has become a 

major focus in the search for the neurobiological underpinnings of MDD (Blood et 

al., 2010a; Bracht et al., 2014).  

 

Diffusion MRI allows white matter microstructure to be probed by indirectly 

measuring the hindrance of diffusion of water molecules (Basser et al., 1994). The 

most commonly used diffusion MRI-based measure in clinical studies is FA (Basser 

and Pierpaoli, 1996). Reductions in FA indicate differences in barriers to diffusion of 

water molecules. This may reflect altered white matter microstructure, which in turn 

could have functional significance in the mediation of hedonic responses to positive 

events (Keedwell et al., 2012).  

 

Two studies have used diffusion MRI in order to specifically assess white matter 

microstructure of the MFB. One ROI-study demonstrated a trend towards reduced 

FA in the imMFB in currently depressed patients (Blood et al., 2010a). A recent 

diffusion MRI- based fibre tracking approach identified reduced FA in severely 

depressed melancholic MDD patients in segments of the slMFB connecting the VTA 

with the medial orbitofrontal cortex (OFC) and the dorsolateral prefrontal cortex 

(dlPFC) (Bracht et al., 2014). Lower FA was associated with more pronounced 

anhedonia and depression severity (Bracht et al., 2014). Moreover, diffusion MRI 

voxel-based (Liao et al., 2013; Zou et al., 2008), ROI (Bae et al., 2006; Blood et al., 

2010a) and tract based spatial statistics (TBSS)(Korgaonkar et al., 2011; Zhu et al., 

2011) studies have demonstrated reductions of FA in acute depression in the ALIC 
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and in prefrontal brain regions that likely incorporate segments of the slMFB (see 

Chapter 1). 

 

However, it has not been determined whether white matter changes in these reward 

tracts are state-dependent or trait markers of vulnerability to depression. To date, no 

studies have examined if changes in FA in the MFB persist into remission. 

 

While there is increasing evidence for white matter microstructure alterations during 

acute depression, less is known about white matter in remission (see Chapter 1). 

One tractography study found white matter microstructure alterations in fronto-limbic 

pathways in individuals with unmedicated remitted depression (RD) (Arnold et al., 

2012). On the other hand, a ROI study found decreases of FA in the ventromedial 

prefrontal cortex, a region adjacent to the slMFB in treatment resistant depressed 

MDD but not in RD (de Diego-Adelino et al., 2013). One possible explanation for the 

absence of findings in RD is that remodeling of white matter microstructure occurs 

during remission. A one-year follow up longitudinal study in late life depression is 

consistent with this explanation (Taylor et al., 2011). Furthermore, FA of limbic 

pathways may differ between treatment responders and non-responders (Delorenzo 

et al., 2013; Taylor et al., 2008), which is also suggestive of white matter remodeling 

during recovery.  

 

Based on previous work, the present study was designed to test the following 

hypotheses: Firstly, that FA would be reduced in the MFB in RD compared with ND 

individuals, consistent with the proposition that this represents a trait marker of 

MDD. Secondly, that, consistent with findings in acute MDD, FA in the slMFB tract 

would correlate positively with a measure of hedonic tone (or higher FA = lower 

anhedonia).   

 

In accordance with previous approaches dividing tracts into subdivisions (Jones et 

al., 2013a) we reconstructed the two branches of the MFB (imMFB, slMFB) and 

analyzed them separately. As a methodological refinement of previous studies, we 

employed the damped Richardson Lucy algorithm (dRL) (Dell'acqua et al., 2010), 

which in contrast to DTI estimates multiple directions within a single voxel, and is 

therefore capable of improving the accuracy of tract reconstruction through regions 

of complex fibre architecture. Due to the particular importance of the VTA for the 

experience of pleasure (Nestler and Carlezon, 2006; Schultz et al., 1997), we 

included dorsal segments of the VTA projecting to the nucleus accumbens (NAcc) 
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and the prefrontal cortex (Bracht et al., 2014; Nieuwenhuys et al., 2008b). Second, 

we explored associations between hedonic tone and white matter microstructure of 

the imMFB and slMFB. To establish the specificity of potential findings we 

reconstructed the middle cerebellar peduncle (MCP) as a comparison tract (as we 

did not hypothesize, a priori, the MCP to be affected in RD). We also performed a 

whole brain group comparison of FA to complement the tract reconstruction 

approach.  

 

2.3 Methods 

2.3.1 Sample and measures 
 

Eighteen RD, unmedicated women with a history of major depressive disorder 

(MDD) and 22 healthy controls without a history of MDD (ND, never depressed) 

were recruited from the staff and student body of the School of Psychology, Cardiff 

(recruitment was performed by Amie Doidge). Individuals were recruited from the 

same gender to reduce the potential effect of gender based variability of brain 

structure (Kanaan et al., 2014), thereby increasing the power to detect group 

differences. Females were specifically chosen because they have a higher 

incidence of depression than men, attributable to a greater incidence of first onset 

as opposed to chronicity or recurrence (Kessler et al., 1993). Controls were matched 

for age, gender and pre-morbid intelligence. Inclusion criteria for all participants 

were right-handedness and fluency in English. Exclusion criteria were 

contraindications for magnetic resonance imaging (MRI)-scans, a diagnosis of Axis I 

disorder, a current episode of depression, substance dependence and psychotropic 

medication. The Mini International Neuropsychiatric Inventory (MINI) (Sheehan et 

al., 1998) was used to exclude a current episode of depression in all participants. 

Further, the MINI was used to confirm a history of a depressive episode in RD and 

the absence of a history of depression in ND. Results of the MINI were corroborated 

by a medical history. The MINI was also used to screen participants for a history of 

psychiatric disorders and drug or alcohol dependence. Additional questions were 

employed (regarding hospitalization, treatments, suicidal behaviour and psychosis) 

in order to rate RD participants on the  Bipolar Affective Disorder Dimension Scale 

(BADDS) – a dimensional scale for rating lifetime psychopathology in bipolar and 

unipolar disorders, taking in to account the number and severity of episodes 

(Craddock et al., 2004). All participants completed the Beck Depression Inventory 

(BDI-II) (Beck et al., 1996), the Fawcett Clark Pleasure Scale (FCPS) (Fawcett et 
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al., 1983) for assessment of hedonic tone and the National Adult Reading Test 

(NART) (Nelson and Willison, 1992), an assessment of pre-morbid intelligence. The 

cut-off score for moderate depression according to the BDI-II is 14. Higher scores on 

the FCPS indicate more pronounced capacity to derive pleasure.  All questionnaires 

were completed in the presence of a psychologist who ensured that questionnaires 

were filled out correctly and to ensure that no misunderstandings occurred. All 

participants provided written informed consent. The study was approved by the 

School of Psychology Research Ethics committee.   

 

2.3.2 Diffusion MRI scanning 

 

Diffusion weighted MRI data were acquired on a 3T GE Signa HDx system (General 

Electric Healthcare) using a peripherally gated twice-refocused pulse-gradient spin-

echo echo-planar imaging sequence providing whole oblique axial (parallel to the 

commissural plane) brain coverage. Data were acquired from 60 slices of 2.4 mm 

thickness, with a field of view 23 cm, and an acquisition matrix of 96 x 96 (yielding 

isotropic voxels of 2.4 x 2.4 x 2.4 mm, reconstructed to a resolution of 1.9 x 1.9 x 2.4 

mm). Echo time (TE) was 87 ms and parallel imaging (ASSET factor = 2) was used. 

Diffusion encoding gradients (b = 1200 s/mm2) were applied along 60 isotropically-

distributed directions (Jones et al., 1999). Six additional non-diffusion weighted 

scans were collected. The acquisition time was approximately 26 minutes. 

 

2.3.3 Structural MRI scanning 

 

T1-weighted structural scans were acquired using an oblique-axial, 3D fast spoiled 

gradient recalled sequence (FSPGR) with the following parameters: Repetition time 

(TR)=7.9ms; TE=3.0 ms, inversion time=450ms, flip angle = 20º, 1mm isotropic 

resolution, with total acquisition time of approximately 7 minutes. 

 

 

2.3.4 Diffusion MRI data pre-processing 

 

The data were corrected for distortions and subject motion using an affine 

registration to the non-diffusion-weighted images, with appropriate re-orienting of the 

encoding vectors (Leemans and Jones, 2009). A single diffusion tensor model was 

fitted (Basser et al., 1994) to the data in order to compute quantitative parameters 
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such as FA. The Damped Richardson-Lucy Algorithm (dRL) was used to estimate 

the fibre orientation density function (fODF) in each voxel (Dell'acqua et al., 2010). 

Following the method of Pasternak et al. (Pasternak et al., 2009; Metzler-Baddeley 

et al., 2012), a correction for free water contamination of the diffusion tensor based 

estimates was applied. 

 

2.3.5 Tractography 
 

Deterministic tractography was performed using ExploreDTI Version 4.8.2 (Leemans 

et al., 2009) following peaks in the fODF reconstructed from dRL (Dell'acqua et al., 

2010; Jeurissen et al., 2013). For each voxel in the data set, streamlines were 

initiated along any peak in the fODF that exceeded an amplitude of 0.05. Thus (in 

contrast to DTI-based methods), multiple fibre pathways could be generated from 

any voxel. Each streamline continued in 0.5 mm steps following the peak in the ODF 

that subtended the smallest angle to the incoming trajectory. The termination 

criterion was an angle threshold > 45 degrees.  

 

2.3.6 Tract reconstruction 

 

The FA images of each subject were warped to their respective FSPGR image using 

the linear registration tool FLIRT (Jenkinson et al., 2002). Inverse parameters were 

applied to transform the FSPGR image to the FA image. Afterwards, FSPGR 

images were used as a template to draw regions of interest (ROI) for virtual 

dissection of the different branches of the MFB. Seed regions were drawn by one 

experimenter (T.B.) who was blind to the diagnosis of participants. For both the 

imMFB and slMFB a ROI surrounding the VTA was drawn in the horizontal section. 

Anatomical borders were laterally the substantia nigra, anteriorly the mammillary 

bodies and posteriorly the red nucleus. For reconstruction of the imMFB a second 

ROI surrounding the hypothalamus was drawn on a horizontal section one section 

above the VTA ROI (see figure 2.1). For reconstruction of the slMFB a second ROI 

was drawn surrounding caudate and putamen on a coronal section at the height of 

the NAcc (see figure 2.2). The anatomical course of each tract was carefully 

checked for each subject. Due to the particular interest in the role of the MFB in 

reward processing, the focus was placed on segments of the MFB dorsal to the VTA 

including projections from the VTA to NAcc, hypothalamus and the OFC, core 

regions of reward processing (Haber and Knutson, 2010). Seed regions for the 
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comparison tract (MCP) were drawn on a coronal section, where left and right MCP 

can be clearly identified. The MCP was chosen because it can be reliably isolated 

but is not predicted a priori to be affected in RD. Because of the spatial overlap of 

left and right MCP in regions of the pontine nuclei (Nieuwenhuys et al., 2008), the 

MCP was treated as a sole ROI. Mean-FA was derived for each reconstructed tract 

for each subject. In addition, the average MD and AD, RaD were computed, to 

facilitate follow up of any group differences seen in FA, our primary outcome 

measure.  

 

 
Figure 2.1 Seed regions for reconstruction of the imMFB 

Seed regions (green) for the reconstruction of the infero-medial medial forebrain bundle 
(imMFB) are shown surrounding the ventral tegmental area (VTA (1)) and the hypothalamus 
(2). 
 
 
 

 
Figure 2.2 Seed regions for reconstruction of the slMFB 

Seed regions (green) for the reconstruction of the supero-lateral medial forebrain bundle 
(slMFB) are shown surrounding the ventral tegmental area (VTA, (1)) and the anterior limb of 
the internal capsule at the height of the nucleus accumbens (NAcc (2)). 
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Figure 2.3 Anatomical borders of the medial forebrain bundle 

The medial forebrain bundle (yellow arrow, 8) and its anatomical borders are illustrated 
based on a modified picture from (Nieuwenhuys et al., 2008). The medial forebrain bundle ist 
located laterally and anterior of the red nucleus (red arrow) and medially of the substantia 
niga (black arrow). The nucleus accumbens is a medial expansion of the the head of the 
caudate nucleus (green arrow). 
 

2.3.7 Statistical analysis 
 

Statistical analyses were performed using SPSS (SPSS, Inc., Chicago, Illinois). A 

MANCOVA was used to explore main effects of group (ND versus ND) and hedonic 

tone (FCPS-score), and their interactions on mean-FA of the four respective tracts. 

To follow up any significant main effects of group, hedonic tone or group x hedonic 

tone interactions, four separate ANCOVAs were calculated (one ANCOVA for each 

tract, fixed factor group (ND, RD), covariate hedonic tone). The critical p-value 

threshold was adjusted using a Bonferroni correction for multiple comparisons (p = 
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0.05 / 4 = 0.0125). Where significant effects on mean FA were found, the effects on 

additional metrics (MD, RaD, and AD) were explored. 

 

2.3.8 Whole brain Voxel-Wise Analysis 
 

Voxel-wise statistical analysis of FA data was carried out using FSL tract based 

spatial statistics (TBSS) software (Smith et al., 2004; Smith et al., 2006). FA data 

were projected onto a mean FA tract skeleton, before applying voxelwise cross-

subjects statistics. The tract skeleton was thinned using an FA threshold > 0.2. 

Group comparisons between RD and ND of FA on this fibre skeleton were then 

performed using threshold free cluster-enhancement (TFCE). Group comparisons 

were deemed to be significant at a cluster threshold of p < 0.05.  Correlations 

between FCPS score and FA across the skeleton were also examined.  

 

2.4 Results 

2.4.1 Sample characteristics 
 

Groups did not differ regarding age, gender, pre-morbid intelligence, hedonic tone 

(FCPS score) or handedness. None of the participants met criteria for MDD 

according to the Mini International Neuropsychiatric Interview. RD patients had 

significantly higher BDI scores (for details see Table 2.1).  

Our participants had a mean score of 65 ± 10 on the BADDS, indicating a moderate 

to severe history of depression. Seven RD had a history of treatment with 

antidepressive medication, while eleven were medication-naïve, and four had a 

history of treatment with psychotherapy.  None had a history of psychotic depression 

or had been hospitalized for treatment. Fifteen patients had a history of depressive 

episodes that met DSM-IV criteria for melancholic depression, as defined by the 

MINI and four had a history of a suicide attempt. 
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 RD (n = 18) ND (n = 22) P 
Age 22.4 ± 3.6 22.5 ± 4.5 0.933 
Female gender (%) 100 100  
Right Handedness 
(%) 

100 100  

Premorbid 
Intelligence 

113 ± 5 112 ± 5 0.647 

Fawcett score 120 ± 11 122 ± 11 0.687 
BDI score 11.4 ± 10.4 2.7 ± 4 0.001* 
Number of episodes 2.22 ± 3.6 0 <0.001* 
 

Table 2.1 Demographics 

Demographics are shown for remitted depressed (RD) and never depressed (ND) 
participants. Abbreviations: RD, remitted depressed; ND never depressed; BDI, Beck-
Depression-Inventory. Significant at p < 0.05. 
 
 

2.4.2 Tract specific measurements 

 

The MANCOVA revealed a main effect of hedonic tone (FCPS-score) on mean-FA 

across the four tracts (F (4, 33) = 4.112, p = 0.008), but no main effect of group (F 

(4, 33) = 0.522, p = 0.720) or significant group x hedonic tone interaction (F (4, 33) = 

0.454, p = 0.769). This main effect was followed up using four separate ANCOVAs. 

There was only a significant main effect of hedonic tone on mean-FA for the left 

slMFB (F (1, 36) = 10.712, p = 0.002), but not for left imMFB (F (1, 36) = 1.812, p = 

0.185), right imMFB (F (1, 36) = 2.501, p = 0.344) or right slMFB (F (1, 36) = 0.920, 

p = 0.344). 

  

 
Figure 2.4 Reconstruction pipeline of the imMFB 

The reconstruction pipeline of the reconstruction of the infero-medial medial forebrain bundle 
(imMFB) is shown before (left side) and after (right side) using the splitter tool to extract 
segments of the imMFB being localized dorsal of the ventral tegmental area (VTA). 
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Figure 2.5 Reconstruction pipeline of the slMFB 

The reconstruction pipeline of the reconstruction of the infero-medial medial forebrain bundle 
(imMFB) is shown before (left side) and after (right side) using the splitter tool to extract 
segments of the imMFB being localized dorsal of the ventral tegmental area (VTA). 
 
 
 
 

 
Figure 2.6 Correlation between FA and hedonic tone 

The negative correlation across the whole sample between fractional anisotropy (FA) of the 
left supero-lateral medial forebrain bundle (slMFB) and hedonic tone is displayed (never 
depressed, ND blue; remitted depressed, RD orange). 
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In accordance with these findings there was a sole negative correlation between 

FCPS-scores and mean-FA of the left slMFB (r = -0.48, p = 0.002) across all 

individuals (Figure 2), explaining 20.6% of the variance. FA of right slMFB (r = -

0.146, p = 0.369), left imMFB (r = -0.232, p = 0.150) and right imMFB (r = -0.247, p 

= 0.125) did not correlate with FCPS scores. Mean-FA of none of the tracts 

correlated with BDI-scores. 

 

Secondary correlational analyses with diffusion properties demonstrated that the 

negative correlation between FCPS scores and FA mainly reflected changes in RaD 

(RaD: r = 0.460, p = 0.003; MD:  r = 0.337, p = 0.033; AD: r = -0.281, p = 0.079).  

 

FA in the comparison tract (MCP) did not differ between groups (mean-FA RD = 

0.46 ± 0.03, mean-FA ND= 0.47 ± 0.03, T = 1.215, df = 38, p = 0.236). There was 

no significant correlation between FCPS and MCP FA (r = -0.32, p = 0.842).  

 

2.4.3 Voxel-Wise whole brain analysis 

 

For the TBSS results there were no significant group differences in FA and no 

significant correlations between FCPS scores and FA in any brain region.  

 

2.5 Discussion 

 

Our study has two main findings. First, we found no differences in FA for any MFB 

region between unmedicated RD and ND individuals, suggesting that microstructural 

abnormalities of the MFB are not present in individuals with remitted depression. 

Second, we have demonstrated a negative correlation between the capacity to 

derive pleasure and mean-FA of the left slMFB in all individuals, irrespective of 

depression history. Mean-FA explained 21% of the variance of hedonic tone. 

Decreases of FA were mainly driven by decreases of RaD. Hedonic tone did not 

correlate with FA in the control tract or the imMFB.  

 

The absence of group differences in FA in our study leads us to reject our first 

hypothesis. However, this complements findings of reduced FA of the slMFB in 

severely melancholic but not in moderately depressed patients (Bracht et al., 2014). 

Alike, in another study whole brain FA reductions were observed in chronic 

treatment resistant patients but not in remitted, unmedicated patients (de Diego-
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Adelino et al., 2013). Therefore, whilst previous research points to white matter 

microstructure alterations of the slMFB in severely depressed patients (Bracht et al., 

2014), to date there is no evidence for altered structural connectivity in remission.  

 

Collectively, these results suggest that reductions in FA in the MFB are state-

dependent effects and not trait markers of vulnerability, and only appear in 

melancholic depression. It follows that neuroplastic changes could occur upon 

recovery, reversing changes observed during the acute illness. White matter 

microstructure may change even within very short time scales (Sagi et al., 2012), 

including after moderate interventions such as learning how to juggle (Scholz et al., 

2009) or half an hour of aerobic exercise per day (Erickson et al., 2011). Consistent 

with this explanation a one-year follow up longitudinal study in late life depression 

demonstrated normalization of FA in other white matter tracts upon recovery (Taylor 

et al., 2011). Furthermore, FA of limbic pathways may differ between treatment 

responders and non-responders (Taylor et al., 2008; Delorenzo et al., 2013), which 

is also suggestive of white matter remodeling during recovery. Longitudinal studies 

of changes in MFB FA in response to treatment are indicated to further explore the 

neuroplasticity of these tracts in relation to recovery.  

 

A further explanation is that, while some of the RD individuals in this study might go 

on to develop a more severe or treatment resistant course, any abnormalities of 

white matter microstructure in this group could be masked by those RD individuals 

with a putatively better prognosis. Longitudinal studies would also inform this 

research question. 

 

Our results suggest that lower FA in the left slMFB is associated with more 

pronounced capacity to derive pleasure in RD and ND. Hence, the correlation is in 

the opposite direction to that hypothesized, and previously demonstrated in acute 

depression, where slMFB FA correlated negatively with anhedonia scores (Bracht et 

al., 2014).  

However, different microstructural changes could be occurring in the different 

populations while still having similar effects on hedonic processing. For example, 

greater myelination and larger axonal diameter both increase conduction velocity in 

a tract but have opposite effects on FA, all other factors being constant. Therefore, 

changes in FA alone cannot define any particular change in “fibre integrity” (Jones et 

al., 2013b). Novel white matter mapping techniques such as the composite hindered 

and restricted model of diffusion (CHARMED) (De Santis et al., 2013) or 
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multicomponent driven equilibrium pulse observation of T1 and T2 (McDESPOT) 

(Deoni et al., 2005) provide sub-compartment specific measures (e.g. on axonal 

diameter or myelination) and could lead to a better understanding of the 

neurobiological underpinnings of these findings.  

 

The associations identified between individual differences in the white matter 

microstructure of the slMFB and the capacity to derive pleasure are indirectly 

supported by animal research and by fMRI and PET studies in humans. Research in 

animals convincingly demonstrates a key role of the VTA, NAcc and OFC in reward 

processing (Schultz et al., 1997; Haber and Knutson, 2010). Furthermore, fMRI and 

PET studies in humans demonstrate activations of NAcc, VTA and OFC when 

perceiving pleasure (Drevets et al., 2001; Kringelbach, 2005). Individuals with more 

pronounced hedonic responses experience relatively greater activations in these 

areas to the same pleasurable stimulus (Breiter et al., 1997; Blood and Zatorre, 

2001; O'Doherty et al., 2001). This also appears to be true in depression, although 

the evidence in MDD is less consistent (Keedwell et al., 2005; Smoski et al., 2009; 

Zhang et al., 2013). The slMFB structurally connects these core regions of the 

reward system (Nieuwenhuys et al., 2008), and may therefore play an essential role 

in integrating information leading to the perception of pleasure. Therefore, our 

finding of an association between hedonic tone and microstructure of the slMFB is 

consistent with this body of literature. However, one obvious caveat is that our study 

design does not allow us to establish the direction of causality.  

 

MFB microstructure could mediate individual differences in both subclinical (trait) 

anhedonia, as in this study, and clinical (depressive) anhedonia. The central 

importance of MFB function in depression is supported by Deep Brain Stimulation 

(DBS) research: DBS targeting the ventral striatum/MFB provides some relief of 

depression in a subset of treatment resistant patients (Malone et al., 2009; 

Bewernick et al., 2010; Schlaepfer et al., 2013).  

 

The lack of any significant findings for our TBSS analyses is consistent with 

increasing evidence (Kanaan et al., 2006; Keedwell et al., 2012) that tract averaging 

approaches are more sensitive than voxel-based approaches; possibly because 

subtle microstructural differences only reach significance if averaged over the whole 

tract, but not if compared on a voxel by voxel basis.  
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This study has some limitations. First, although none of the RD met criteria for 

diagnoses of a current episode for depression, groups differed with regard to 

depressive symptomatology. However, scores on the BDI-II did not correlate with FA 

of imMFB and slMFB which though may be as a result of small variance in BDI-

scores. Also, groups did not differ regarding hedonic tone, and there was no group x 

hedonic tone interaction. Second, our young sample, who remained well while 

unmedicated, with relatively few previous episodes, may not be representative of the 

majority of patients with MDD seen in clinical practice. However, including 

medicated individuals would have made any results difficult to interpret. Future 

studies could include older patients, while attempting to control for the independent 

effect of age on white matter microstructure per se. Third, since we aimed to 

investigate remitted, fully recovered participants our participants did not receive 

ongoing treatment. Therefore we did not have access to clinical files for validation of 

previous diagnoses. Fourth, we did not have information on the menstrual cycle of 

participants which may influence white matter microstructure (De Bondt et al., 2013).  

 

In summary, we linked the capacity to derive pleasure to white matter microstructure 

of specific sub-compartments of the MFB. We found a negative association between 

hedonic tone and mean-FA of the slMFB in a non-clinical group. Our findings 

corroborate the important role of the slMFB in reward processing and its potential 

role in depression. Longitudinal studies are needed to assess the prognostic value 

of slMFB microstructure in MDD, and to investigate if white matter changes occur in 

tandem with clinical recovery. Finally, advanced white matter mapping techniques 

such as CHARMED (De Santis et al., 2013) or McDESPOT (Deoni et al., 2005) 

provide promise in clarifying the microstructural changes that underlie changes in 

FA. 
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3 Limbic White Matter Microstructure Plasticity Reflects Recovery from 
Depression 

 

 

The work presented in this chapter has been published: 

Bracht, T., Jones, D.K., Muller, T.J., Wiest, R., Walther, S., 2015. Limbic white 

matter microstructure plasticity reflects recovery from depression. Journal of 

affective disorders 170, 143-149. 

 

 

 

The published article has been edited for this chapter in order to include additional 

results and to avoid repetition across Chapters 1 and 2. However, this chapter partly 

covers background information already dealt with in the previous chapters. 

 

 

 

I acknowledge Oliver Höfle for recruitment, testing and scanning of participants.   
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3.1 Summary  

 

White matter microstructure alterations of limbic and reward pathways have been 

reported repeatedly for depressive episodes in major depressive disorder (MDD) 

and bipolar disorder (BD). However, findings during remission are equivocal. It was 

the aim of this study to investigate if white matter microstructure changes during the 

time course of clinical remission. Fifteen depressed patients (11 MDD, 4 BD) 

underwent diffusion-weighted MRI both during depression, and during remission 

following successful antidepressive treatment (average time interval between scans 

= 6 months). Fractional anisotropy (FA) was sampled along reconstructions of the 

supero-lateral medial forebrain bundle (slMFB), the cingulum bundle (CB), the 

uncinate fasciculus (UF), the parahippocampal cingulum (PHC) and the fornix. 

Repeated measures ANCOVAs controlling for the effect of age were calculated for 

each tract. There was a significant main effect of time (inter-scan interval) for mean-

FA for the right CB and for the left PHC. For both pathways there was a significant 

time x age interaction. In the right CB, FA increased in younger patients, while FA 

decreased in older patients. In the left PHC, a reverse pattern was seen. FA 

changes in the right CB correlated positively with symptom reductions. Mean-FA of 

UF, slMFB and fornix did not change between the two time points. In conclusion 

right CB and left PHC undergo age-dependent plastic changes during the course of 

remission and may serve as a state marker in depression. UF, slMFB and FO 

microstructure remains stable. 

 

3.2 Introduction 

 

Alterations of white matter pathways connecting important brain regions of the limbic 

and the reward system may be associated with major depressive disorder 

(MDD)(Aghajani et al., 2013; Blood et al., 2010a; Bracht et al., 2014; de Diego-

Adelino et al., 2013). Diffusion weighted magnetic resonance imaging (DW-MRI) 

enables white matter microstructure of the brain to be quantified non-invasively 

(Basser et al., 1994). DW-MRI-based indices such as FA characterize the extent to 

which water molecules are hindered by the tissue microstructure (Basser and 

Pierpaoli, 1996) and are commonly used for an in vivo assessment of 

microstructural changes in depressive disorders (Liao et al., 2013; Sexton et al., 

2009).   
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Previous publications reported DW-MRI based alterations of limbic and reward 

pathways in MDD during depressive episodes (for review and meta-analyses see 

(Liao et al., 2013; Sexton et al., 2009)). For instance, both increases (Aghajani et al., 

2013) and decreases (Zhang et al., 2012) of FA were found in the UF during 

depression. Further, FA reductions in the slMFB in melancholic depression were 

associated with depression severity and anhedonia (Bracht et al., 2014).  

 

In contrast, there is much less evidence for white matter microstructural alterations 

in remitted depression (de Diego-Adelino et al., 2013). Whilst some studies have 

reported differences in fronto-limbic pathways in remitted MDD and remitted bipolar 

disorder (BD) (Arnold et al., 2012; Houenou et al., 2007), we (Chapter 2) and others 

did not detect any group differences between remitted MDD and healthy controls (de 

Diego-Adelino et al., 2013). Given that depression is an episodic disorder with 

remitting-relapsing course, these findings lead to the question whether remission is 

accompanied by neuroplastic changes. Indirect evidence in support of 

neuroplasticity comes from findings that FA predicts treatment response (Delorenzo 

et al., 2013; Hoogenboom et al., 2014; Taylor et al., 2008). Longitudinal studies 

enable this question to be addressed directly. Previous research both in humans 

and animals strongly supports the hypothesis that white matter microstructure is 

highly plastic (Blumenfeld-Katzir et al., 2011; Sagi et al., 2012; Scholz et al., 2009). 

Changes of white matter microstructure could be demonstrated following moderate 

interventions such as learning to juggle (Scholz et al., 2009) or training on a spatial 

navigation task (Sagi et al., 2012). One longitudinal study in old age depression 

found FA changes in the cingulum bundle (CB) in remitters but not in non-remitters 

(Taylor et al., 2011). 

 

It was the aim of this study to investigate if white matter microstructure of important 

pathways of the limbic and the reward system changes during the course of 

remission. Therefore, patients with a diagnosis of MDD or BD underwent diffusion 

MRI scans during depressive episodes and were scanned again when being 

remitted. We investigated the slMFB, CB, UF, parahippocampal cingulum (PHC) 

and the fornix. In all of these pathways white matter microstructure alterations have 

been reported during depressive episodes (Aghajani et al., 2013; Bracht et al., 2014; 

Charlton et al., 2013; Kieseppa et al., 2010; Korgaonkar et al., 2011; Zhang et al., 

2012; Zhu et al., 2011). White matter microstructure of the slMFB and the CB may 

be related to hedonic tone and to anhedonia in depression (Bracht et al., 2015a; 

Bracht et al., 2014; Coenen et al., 2012; Keedwell et al., 2012; Schlaepfer et al., 
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2013b), while the UF microstructure may mediate impaired emotion regulation in 

depression (Aghajani et al., 2013; Zhang et al., 2012). Hippocampal pathways 

(fornix and PHC) play a core role for reward processing (Haber and Knutson, 2010). 

In addition, the hippocampus is the only region in the human brain with evidence for 

neurogenesis, and therefore of particular importance when investigating 

neuroplasticity (Rakic, 2002).  We hypothesized that plastic changes of white matter 

microstructure in these pathways occur during the longitudinal course of remission. 

In keeping with previous reports, we chose mean-FA of these tracts as the primary 

outcome measure.  

 

3.3 Methods 

 

A total of 15 (11 MDD, 4 BD) patients were recruited from the inpatient department 

of the University Hospital of Psychiatry, Bern, Switzerland (recruitment has been 

performed by Oliver Höfle). Diagnoses were given according to DSM-IV by 

experienced psychiatrists using clinical interviews, rating scales and review of all 

case files. The structured clinical interview for DSM-IV part II (SCID-II) was used to 

exclude co-morbid personality disorders. Further exclusion criteria were a history of 

significant head trauma, electroconvulsive therapy, substance abuse or dependence 

other than nicotine. If meeting criteria for a depressive episode, the first MRI scan 

was performed (see below). Further clinical assessments were performed every four 

weeks. When criteria for remission were met (as defined by a Hamilton Depression 

Rating Scale (HAMD) (Beck et al., 1961; Hamilton, 1967) < 8 and Beck Depression 

Inventory (BDI) < 10), the second MRI scan was performed. Following the two 

respective MRI-scans physical activity of participants was assessed using 24-hour 

actigraphy (details of actigraphy recordings are described in Chapter 4 which 

explicitly focuses on the white matter correlates of motor activity). Detailed 

demographics of our sample are given in Table 3.1. Data derived from the first MRI 

scan of MDD patients were used for group comparisons with healthy controls from 

previous studies that used an identical acquisition protocol (Bracht et al., 2012a; 

Bracht et al., 2014; Walther et al., 2012b). The study was approved by the local 

ethics committee (KEK-BE 196/09) and in accordance with the Declaration of 

Helsinki. All participants provided informed written consent. 
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 Depressed Remitted Analyses 
Number of episodes 6.6 ± 6.2   
Duration of illness (years) 6.9 ± 6.5   
Duration of current episode (months) 4.9 ± 5.2   
Duration between scans (months) 6.1 ± 2.7   
BDI 26 ± 9 6 ± 5 P < 0.001* 
HAMD 24 ± 5 5 ± 4 P < 0.001* 
MADRS 24 ± 4 4 ± 4 P < 0.001* 
Antidepressants    
SSRI 2 4  
Venlafaxine 1 3  
Mirtazapine 5 2  
Venlafaxine and Mirtazapine 3 2  
TCA 4 6  
Lithium 2 4  
Mianserin 0 1  
Atypical antipsychotics 9 6  
Zolpidem 7 1  
Age (years) 45 ± 12   
Gender (women %) 66.7%   
Duration of education (years) 13.7 ± 2.6   
Activity level (counts/ day) 12944 ± 4623 19726 ± 7804 P=0.015* 
Smokers (%) 33   
 

Table 3.1 Demographics 

Abbreviations: BDI, Beck Depression Inventory; HAMD, Hamilton Depression Rating Scale; 
Montgomery-Asberg Depression Rating Scale; SSRI, Selective Serotonin Reuptake Inhibitor; 
TCA, Tricyclic Antidepressants 
 
 

3.3.1 Structural MRI scanning 
 

All data were acquired on a 3T Siemens MR scanner (Siemens Magnetom Trio, 

Erlangen, Germany, 12-channel head coil). High-resolution T1-weighted data were 

obtained with the MDEFT sequence (Deichmann et al., 2004), with parameters as 

follows: 176 sagittal slices, 256 × 224 matrix , isotropic resolution of 1 mm3, TR/TE  

= 7.92 ms/2.48ms, 16° flip angle, inversion time 910 ms, and fat saturation (total 

acquisition time = 12 minutes). Identical prescription of MR images was achieved 

using the Siemens Autoalign sequence, which automatically sets up consistent slice 

orientation based on a standard MRI atlas. 
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3.3.2 Diffusion MRI scanning 
 
For diffusion MRI measurements, we used a spin-echo EPI sequence (55 slices, 

FOV = 256 × 256 mm2, sampled on a 128 × 128 matrix resulting in 2 mm3 voxel 

size, TR/TE = 6000/78 ms) covering the whole brain (40 mT/m gradient, 5/8 partial 

Fourier, no acceleration factor). Diffusion-weighted images were positioned in the 

axial plane parallel to the AC-PC line and measured along 42 directions with a b-

value = 1300 s/mm2. The sequence included four B0 images without diffusion 

weighting (the first and every subsequent 12th image). We used a balanced and 

rotationally invariant diffusion-encoding scheme over the unit sphere to generate the 

DTI data (Hasan et al., 2001). 

 

3.3.3 Diffusion MRI data pre-processing 

 

Data analyses was performed using ExploreDTI  (Leemans et al., 2009b). The data 

were corrected for distortions and subject motion using an affine registration to the 

non-diffusion-weighted images, with appropriate re-orienting of the encoding vectors 

(Leemans and Jones, 2009). Further, an echo planar imaging (EPI) correction was 

performed warping the diffusion images to the MDEFT images resulting in a 1x1x1 

mm resolution for further processing. A single diffusion tensor model was fitted 

(Basser et al., 1994) to the diffusion data in order to compute quantitative 

parameters such as FA. Following the method of Pasternak et al. (Pasternak et al., 

2009; Metzler-Baddeley et al., 2012), a correction for free water contamination of the 

diffusion tensor based estimates was applied. 

3.3.4 Tractography  

 

Whole brain tractography was performed using an algorithm similar to that described 

by (Basser et al., 1994). Termination criteria were an angle threshold > 45 degrees 

and FA < 0.2.  Tracts were reconstructed using anatomically defined regions of 

interest (ROI). The slMFB has been reconstructed as described in detail in Chapter 

2. One horizontal ROI was placed surrounding the ventral tegmental area (VTA). 

Anatomical borders were laterally the substantia nigra, anteriorly the mammillary 

bodies and posteriorly the red nucleus (Nieuwenhuys et al., 2008b). A second ROI 

was drawn surrounding caudate and putamen on a coronal section at the height of 

the nucleus accumbens (NAcc). Due to the particular interest in the role of the MFB 

in reward processing, the focus was placed on segments of the MFB dorsal to the 

VTA including projections from the VTA to NAcc, hypothalamus and the OFC, core 
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regions of reward processing.  For reconstruction of the UF two coronal ROIs were 

placed approximately at the height of the NAcc surrounding the emerging temporal 

lobe and the region lateral to caudate and putamen. The CB and the PHC have 

been reconstructed according to (Jones et al., 2013a). For the CB two coronal ROIs 

were placed five slices anterior and five slices posterior to the rostro-caudal midpoint 

of the body of the corpus callosum (Jones et al., 2013a).  For reconstruction of the 

PHC one horizontal ROI was placed at the height of the most ventral point of the 

splenium, and a second ROI was place four slices above (Jones et al., 2013a). For 

reconstruction of the fornix a coronal ROI was placed around the columns of the 

fornix (Metzler-Baddeley et al., 2013). Seed regions are visualized in figure 3.1, 

resulting tracts in figure 3.2. For reconstruction of the slMFB please refer to Chapter 

2. The anatomical course of each tract was carefully checked for each subject, and 

mean-FA was derived for each reconstructed tract. In addition, the average MD, AD 

and RaD were computed, to facilitate follow up of any group differences seen in FA, 

our primary outcome measure.  

 

 

 
Figure 3.1 Visualization of seed regions of the UF, CB, PHC and fornix 

Seed regions (green) and NOT-gates (red) of the uncinate fasciculus (UF), cingulum bundle 
(CB), parahippocampal cingulum (PHC) and the fornix are shown from left to right and top to 
bottom. 
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3.3.5 Statistical analysis 

 

Statistical analyses were performed using SPSS (SPSS, Inc., Chicago, Illinois). 

Repeated measures ANCOVAs controlling for the effect of age have been 

calculated for each of the four bilateral tracts (slMFB, UF, CB, PHC) and the fornix. 

Age was entered as a covariate. The p-value was adjusted using a Bonferroni 

correction for multiple comparisons resulting in a level of significance of p < 0.0056 

(0.05 / 9 = 0.0056).  

Where significant effects on mean FA were found, analyses of the effects on 

additional metrics (MD, RaD, and AD) were explored. Further, where significant FA 

changes were found, we calculated correlations between the percentage of the 

absolute change of FA and reductions in HAMD overall depression scale ratings 

scores. We expected that more pronounced clinical improvements would be 

associated with more marked FA changes. 

  

3.4 Results 

 

There was a significant main effect of time (inter-scan interval, 1st MRI scan during 

depression, 2nd MRI-scan during remission) for mean-FA for the right CB and for the 

left PHC (see Table 3.2). Main effects of age were not significant for any of the 

tracts. For both pathways with significant main effect of time (right CB and left PHC) 

there was a significant time x age interaction. This interaction was reflected by a 

pattern of both increases and decreases in FA that depended on age, and also on 

the tract in which the measurements were made (see Figure 3.3). 
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Figure 3.2 Typical reconstructions of CB, PHC, UF and fornix 

Reconstructed fibre tracts are displayed for an individual subject. In the first row fibre tracts 
with significant fractional anisotropy (FA)-changes during remission are displayed (from left 
to right cingulum bundle, parahippocampal cingulum). In the second row fibre tracts with no 
significant FA-changes during remission are shown (from left to right uncinate fasciculus, 
supero-lateral medial forebrain bundle and fornix). Images are overlaid on a structural (T1-
weighted) image. FA-metrics are superimposed on the reconstructed pathways. 
 
 

 

Main effect time  Main effect age Time x Age 

Supero-lateral medial forebrain bundle (left) 

F(1,13) = 0.007, p = 0.935 F(1,13) = 1.515, p = 

0.240 

F(1,13) = 1.628, p = 

0.224 

Supero-lateral medial forebrain bundle (right) 

F(1,13) = 0.925, p = 0.354 F(1,13) = 0.004, p = 0.952 F(1,13) = 1.202, p = 0.293 

Cingulum bundle (left) 

F(1,13) = 0.001, p = 0.980 F(1,13) = 0.237, p = 0.635 F(1,13) = 0.030, p = 0.866 

Cingulum bundle (right) 

F(1,13) = 12.092, p = 

0.004* 

F(1,13) = 0.775, p = 0.395 F(1,13) = 14.222, p = 

0.002* 

Uncinate fasciculus (left) 

F(1,13) = 0.896, p = 0.361 F(1,13) = 0.686, p = 0.422 F(1,13) = 1.628, p = 0.224 

Uncinate fasciculus (right) 

F(1,13) = 0.046, p = 0.834 F(1,13) = 0.372, p = 0.553 F(1,13) < 0.001, p = 0.993 

Parahippocampal cingulum (left) 

F(1,13) = 13.828, p = F(1,13) = 2.148, p = 0.166 F(1,13) = 10.078, p = 
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0.003* 0.007* 

Parahippocampal cingulum (right) 

F (1,13) = 1.871, p = 

0.195 

F(1,13) = 3.037, p = 0.105 F(1,13) = 2.049, p = 0.176 

Fornix 

F(1,13) = 0.734, p = 0.407 F(1,13) = 5.234, p = 0.040 F(1,13) = 1.061, p = 0.322 
 

Table 3.2 Repeated measures ANCOVAs for fractional anisotropy 

 

There was a positive correlation of age and relative FA-changes (FA-remitted (2nd 

MRI scan) divided by FA-depressed (1st MRI scan)) for the left PHC (r = 0.671, p = 

0.006) and a negative correlation of age and relative FA-changes for the right CB (r 

= -0.737, p = 0.002) (see Figure 3.2).  

 

 
Figure 3.3 Age-dependent FA-changes in the right CB and the left PHC 

Age-dependent fractional anisotropy (FA) changes during remission in the right CB (left) and 
the left PHC (right). Points localized above the dotted line indicate increases in FA, points 
below the dotted line indicate decreases in FA. In the right cingulum bundle, FA increases 
are seen in younger patients, while decreases are seen in older patients. In the left 
parahippocampal cingulum, the reverse is true (i.e., FA decreases in younger patients, and 
increases in older patients).  
 

 

Secondary analyses for the left PHC demonstrated that changes in FA were mainly 

driven by RaD (main effect time: F (1, 13) = 15.067, p = 0.002, time x age 

interaction: F (1, 13) = 14.148, p = 0.002). There were neither significant main 

effects of MD and AD for the left PHC, nor significant main effects of RaD, MD and 

AD for the right CB. 

Main effects of time for mean-FA remained significant when excluding the four 

bipolar patients (right CB: main effect time: F (1, 9) = 9.106, p =0.015, left PHC: 
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main effect time: F (1, 9) = 10.448, p =0.01). Further, results remained significant 

when (in addition to age) we controlled for HAMD-scores at baseline (right CB: F (1, 

12) = 13.645, p = 0.003 ; left PHC: F (1, 12) = 7.944, p = 0.016), number of episodes 

(right CB: F (1, 12) = 11.373, p = 0.006; left PHC: F (1, 12) = 12.73, p = 0.004), 

duration of illness (right CB: F (1, 12) = 7.282 , p = 0.019; left PHC: F (1, 12) = 

10.135, p = 0.008) duration of current episode (right CB: F (1, 12) = 9.765, p = 

0.009; left PHC: F (1, 12) = 16.986, p = 0.001) and number of days between the 

scans (right CB: F (1, 12) = 6.410 , p = 0.026 ; left PHC: F (1, 12) = 19.379, p = 

0.001). 

 

There was a positive correlation between percentage of absolute FA-changes and 

reductions in HAMD scores for the right CB (r = 0.532, p = 0.041, see figure 3.4), but 

not for the left PHC (r = -0.169, p = 0.548). 

 

 

 
Figure 3.4 Correlation between FA changes and clinical improvement 

Positive correlation between absolute fractional anisotropy (FA)-changes (%) and reductions 
in HAMD-scores for the right CB. 
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3.5 Discussion 

 

This is the first tract specific longitudinal assessment comparing white matter 

microstructure between depression and remission. We found a differential age-

dependent pattern of mean-FA changes occurring during remission for the right CB 

and the left PHC. In the right CB, FA increases are seen in younger patients, while 

decreases are seen in older patients. In the left PHC, the reverse is true. More 

marked FA-changes in the right CB were associated with more pronounced 

reductions in HAMD-scores. No FA-changes were found in bilateral UF, slMFB and 

the fornix, suggesting that these pathways might not undergo remodeling during 

remission.  

 

We found increases and decreases of FA that depended on age and also on the 

tract (see pattern of green circles below and above the dotted line for the left PHC 

and the right CB, figure 3.3). There is accumulating evidence that white matter 

plasticity extends into old age (Engvig et al., 2012; Lovden et al., 2010). However, at 

the same time, animal literature suggests that neuroplasticity decreases with age 

(Blumenfeld-Katzir et al., 2011). Therefore, if some neuroplastic processes 

decrease, whilst others persist, age-dependent differences of simultaneously 

occurring neuroplastic processes (e.g. changes in axonal diameter, myelination, and 

proliferation of glia cells) may in aggregate have had an opposing effect on FA in 

younger and in older depressed patients of our sample.  

During the time interval from depression to clinical remission, we observed 

decreases of FA in the left PHC in younger patients, but only in a proportion of older 

patients. One possible explanation is that decreases of mean-FA for the left PHC 

during remission stem from a more complex fibre orientation due to new sprouting of 

hippocampal axons. This is indirectly supported by animal literature demonstrating 

increases of sprouting of hippocampal axons following the administration of 

electroconvulsive shocks, which are used for electroconvulsive therapy (ECT) 

(Madhav et al., 2000). ECT is amongst the most effective treatments for severely 

depressed patients and may lead to remission when other approaches fail (Fink and 

Taylor, 2007). Therefore, if ECT induces hippocampal sprouting, this neuroplastic 

process may indeed be associated with or even be directly relevant to the recovery 

from depression (Madhav et al., 2000). However, hippocampal sprouting of axons 

decreases with age (Kuhn et al., 1996; Leuner et al., 2007). This may explain why 

decreases of FA were only consistently observed in the younger patients, while in 
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older patients FA changes may have been driven by other neuroplastic processes 

as well. 

In the right CB there was a distinctive pattern of FA increases in younger, and FA 

decreases in older patients, which again may stem from differences in 

neuroplasticity depending on age (Blumenfeld-Katzir et al., 2011). The percentage 

of absolute FA-changes in the right CB was positively related to reductions in overall 

HAMD-scores. This suggests that successful anti-depressive treatment is 

associated with white matter remodeling of the right CB. Our finding in the CB is 

also supported by a one-year follow up longitudinal DTI-study that reported FA 

changes in the ACC in remitters but not in non-remitters (Taylor et al., 2011). 

The physiological state between depression and remission differs substantially. 

Amongst other, lower serum levels of BDNF have been reported consistently during 

depressive episodes (Karege et al., 2005). This may be associated with impaired 

neuroplasticity (Duman and Monteggia, 2006). Interestingly, those patients with 

higher baseline levels of BDNF during depression show a better treatment response 

(Mikoteit et al., 2014). Therefore, one may speculate whether BDNF may play a role 

to facilitate white matter remodeling as suggested by our findings of FA changes in 

the right CB and the left PHC. This assumption is also indirectly supported by 

findings that BDNF-recpetor polymorphisms increase the risk of white matter 

microstructure alterations in MDD (Murphy et al., 2012). 

 

A series of imaging studies investigated brain states that distinguish responders 

from non-responders. In particular the structure and function of the ACC may be 

predictive of symptomatic improvement during antidepressive therapy (Fu et al., 

2004; Keedwell et al., 2009; Mayberg et al., 2000; McGrath et al., 2013; Taylor et 

al., 2008). Further, one DTI-study found reduced FA in the hippocampus comparing 

non-responders with responders (Zhou et al., 2011), while others found reduced FA 

in the cingulum bundle comparing non-remitters with remitters (Korgaonkar et al., 

2014). While it is possible that the brain of non-responders differs from the brain of 

responders, an alternative explanation is that remission is accompanied by 

neuroplasticity as suggested by our data.  

 

Reduced FA in the slMFB has been reported in melancholic (Bracht et al., 2014) but 

not in non-melancholic (Bracht et al., 2014) and in remitted MDD patients (Bracht et 

al., 2015a) (Chapter 2). In our study we did not identify any changes of FA occurring 

from during the time-span of remitting in the slMFB. This may be due to the fact that 

most of our MDD-patients did not meet criteria for melancholic depression and 



53 
 

therefore there may not have been any structural changes at baseline. Furthermore, 

the sample size has been small and there was substantial clinical heterogeneity. 

Future studies may address this question by selectively investigating a more 

homogeneous subgroup (e.g. melancholic MDD-patients). 

 

Our data provide further support for the hypothesis that experience and white matter 

microstructure mutually influence each other (Sagi et al., 2012; Scholz et al., 2009; 

Zatorre et al., 2012). Accordingly, white matter microstructure may serve as a state 

marker reflecting the current state of clinical improvement. However, DTI is 

unspecific for alterations of different sub-compartments of white matter and 

therefore also lacks sensitivity (Jones et al., 2013b). Therefore, we cannot provide 

ultimate and entirely conclusive answers regarding the underlying neurobiology of 

neuroplastic processes. Advanced white matter mapping techniques provide 

information on some of these measures and therefore offer promise in elucidating 

the neurobiological underpinnings of our findings (De Santis et al., 2013; Deoni et 

al., 2008a). 

 

This study is limited by sample size, and a heterogeneous pattern of age and clinical 

presentations. Therefore, all analyses were controlled for age. Including number of 

episodes, duration of the disease, depression severity at baseline and number of 

days between the two scans as additional covariate as well as excluding the four BD 

patients from the analyses did not alter the results. Further, all patients were on 

medication. We cannot rule out that medication caused the observed changes in 

mean-FA. However, the severity of depression symptomatology of our sample 

necessitated a treatment with medication. Also, the specificity of our finding for the 

left PHC and the right CB in the absence of any changes for the UF, the slMFB and 

the fornix contradicts the assumption of global white matter changes being caused 

by medication as shown in previous studies (Benedetti et al., 2011; de Diego-

Adelino et al., 2013). A further tract of interest to look at in future studies is the 

infero-medial MFB (imMFB). However, the quality of the data was not sufficient to 

apply the damped Richardson-Lucy algorithm (Dell'acqua et al., 2010) for 

tractography (see Chapter 2). Thus, we used DTI-based tractography. This did not 

enable us to reliably reconstruct the imMFB. 

 

In summary our results suggest that during recovery from depression white matter 

microstructure alterations occurred in two tracts previously associated with the 

pathobiology of depression. We detected a differential age-dependent pattern of 
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white matter plasticity in the left PHC and the right CB during the time course of 

remission. These findings provide initial evidence for the potential of white matter 

microstructure as a state marker in depression. Future studies should attempt to 

replicate and extend our findings by investigating more homogeneous clinical and 

age matched subgroups. Novel white matter mapping techniques may contribute to 

the identification of specific white matter microstructural sub-compartment changes 

(De Santis et al., 2013; Deoni et al., 2008a).   
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4 Myelination of the right parahippocampal cingulum is 
associated with physical activity in young healthy adults 
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4.1 Summary 
 
Physical activity (PA) is reduced in depression. Recent evidence suggests that 

individual differences in physical activity may be associated with individual 

differences in white matter microstructure and with grey matter volume of the 

hippocampus. However, little is known about the relationship between physical 

activity and white matter microstructure of pathways connecting to the hippocampus. 

This study investigated the association between physical activity and white matter 

microstructure of the fornix and bilateral parahippocampal cingula (PHC). A total of 

33 young, healthy adults underwent magnetic resonance imaging (MRI). High 

angular resolution diffusion-weighted imaging (HARDI) and multi-component 

relaxometry MRI-scans (multi-component driven equilibrium pulse observation of T1 

and T2 (McDESPOT)) were acquired for each participant. Activity levels (AL) of 

participants were calculated from 72-hour actigraphy recordings. Tractography using 

the damped Richardson Lucy (dRL) algorithm was used to reconstruct the fornix and 

bilateral PHC. The mean fractional anisotropy (FA) and the myelin water fraction 

(MWF), a putative marker of myelination were determined for each pathway. A 

positive correlation between both AL and FA and between AL and MWF were 

hypothesized. MWF in the right PHC was significantly correlated with AL (r = 0.482, 

p = 0.007), while there were no significant correlations between FA and AL for any 

of the three tracts. Thus, our results provide initial in vivo evidence for an 

association between myelination of the right PHC and physical activity in young 

healthy adults. Our results suggest that MWF may not only be more specific but also 

more sensitive than FA to detect white matter microstructural alterations. 
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4.2 Introduction 

4.2.1  Physical activity, white matter microstructure and depression 
 
Psychomotor retardation is a key feature of major depressive disorder (Schrijvers et 

al., 2008). It may distinguish clinical subtypes and it may be associated with 

response to some antidepressants (Calugi et al., 2011; Schrijvers et al., 2008). PA is 

known to be reduced during depressive episodes (Razavi et al., 2011). By means of 

reduced interest in daily activities it forms a diagnostic criterion of depression 

according to the diagnostic and statistical manual of mental disorders (DSM-IV). In 

addition slowing of movements is one of the diagnostic criteria according to the 

international classification of diseases (ICD-10). In many cases physical activity 

increases during the time-span from depression to remission, as shown in 

participants being investigated in this thesis (see the significant increase of activity 

levels comparing MDD-patients during depression and following remission, table 

3.1, Chapter 3).  

 

In healthy participants PA has been shown to be associated with improved cognitive 

performance (Sibley and Etnier, 2003), executive functioning (van der Niet et al., 

2014) and pleasurable affective responses (Bartlett et al., 2011; Ekkekakis et al., 

2005), all functions being impaired during depressive episodes. Thus, PA 

contributes to clinical recovery from depression and exercise programs form an 

integral part of antidepressive treatment (Cooney et al., 2014; Mead et al., 2009).  

 

So far, the focus of this thesis has been on the neurobiology of the reward system in 

depression. The reward system may be directly linked to motor behaviour given that 

much of our goal-directed actions are motivated by incentives, which are evaluated 

within the reward system (Chapter 1, (Der-Avakian and Markou, 2012). 

Neuroimaging studies have shown that there are not only structural and functional 

changes of the reward circuit in depression (Chapter 1), but also changes that are 

directly linked to psychomotor retardation in depression (Bracht et al., 2012a; 

Walther et al., 2012a; Walther et al., 2012b). Nevertheless to date –even in healthy 

subjects- very little is known on the effect of PA on the structure of the brain. 

Consequently, there has been an increasing interest in this topic. 

 

Diffusion Tensor Magnetic Resonance Imaging (DTI) enables a non-invasive in vivo 

assessment of brain white matter microstructure (Basser et al., 1994). Diffusion 
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properties such as FA indirectly reflect the extent to which the diffusion of water 

molecules in the brain tissue is preferentially hindered along one direction compared 

to others, which in turn provides information on the underlying white matter 

microstructure (Basser and Pierpaoli, 1996). A previous DTI study found a positive 

correlation between aerobic fitness and FA in the uncinate fasciculus and cingulum 

bundle (Marks et al., 2007). Findings in segments of the middle cingulum were 

replicated by the same group using objective markers of aerobic fitness (Marks et 

al., 2011). Walther et al. (2010), using 24 hour recordings of actigraphy as an 

objective measure of motor activity to assess PA, found a positive association 

between AL and FA in the right superior longitudinal fasciculus (SLF) and cingulum 

bundle, and a negative correlation between AL and FA in the left corticobulbar tract, 

right posterior corpus callosum and left SLF (Walther et al., 2010). Further, 

associations between PA and white matter microstructure were identified in the 

corticospinal tract (Herting et al., 2014), the corpus callosum (Johnson et al., 2012) 

and in prefrontal, parietal and temporal brain regions (Voss et al., 2013).  Thus, 

there is converging evidence that differences in PA are associated with differences 

in white matter microstructure in multiple brain regions. 

 

4.2.2 Hippocampal pathways and physical activity 
 
The hippocampus is a further region of particular interest regarding the structural 

correlates of PA. Animal research suggests strongly that PA induces neuroplastic 

processes in the hippocampus. For example, it has been shown that wheel-running 

in mice increases cell proliferation in the dentate gyrus (van Praag et al., 1999a; van 

Praag et al., 1999b; van Praag et al., 2005), and induces increases in BDNF, which 

supports survival of neurons, localized in hippocampal areas (Berchtold et al., 2005; 

Neeper et al., 1995). BDNF has been also shown to induce myelination in white 

matter pathways in both animal and in in vitro studies (Wong et al., 2014; Xiao et al., 

2010). In elderly humans, PA was associated with increased volumes in bilateral 

hippocampi (Erickson et al., 2009). This finding was corroborated by findings that a 

PA exercise program (in contrast to a stretching program) led to increases in volume 

in the hippocampus (Erickson et al., 2011). Moreover, MD has been shown to be 

reduced in elderly master athletes in a region incorporated in the parahippocampal 

cingulum in comparison with a less fit age-matched control group (Tseng et al., 

2013), while a reduction in FA was reported in sedentary older adults in a recent DTI 

study (Burzynska et al., 2014). In contrast, decreases of FA were associated with 
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increased PA in major depressive disorder while no association was found in 

healthy controls (Walther et al., 2012b). 

 

4.2.3 Diffusion properties and myelin water fraction 
 
Most previous studies using DTI-based diffusion properties such as FA for the 

assessment of white matter microstructure are limited by the lack of specificity for 

white matter sub-compartments. For instance, increases in FA may stem from 

reductions in axonal diameter, higher axonal density, higher myelination, and/or 

lower intra-voxel orientational dispersion (Beaulieu, 2002; Jones et al., 2013b). 

Thus, DTI-based measures on their own do not allow for a sub-compartment 

specific, and therefore neurobiologically meaningful, interpretation of the data. 

Moreover, the lack of specificity may lead to conflicting results across studies. For 

instance, while greater myelination and larger axonal diameter both increase 

conduction velocity, they have opposite effects on FA. The development of 

multicomponent driven equilibrium single pulse observation of T1 and T2 

(McDESPOT) allows for rapid acquisition of data to produce whole brain myelin 

water fraction (MWF) maps which have been shown to correlate with myelination 

(Deoni et al., 2008a; Hurley et al., 2010; Laule et al., 2006; MacKay et al., 1994; 

Moore et al., 2000). Thus, the measure of MWF represents a significant step 

forward for the interpretability of previously reported changes in white matter, 

compared to reliance on DTI alone. Furthermore, while DTI metrics can be sensitive 

to differences in myelin (Song et al., 2002) it is worth noting that in genetically 

modified mice in which myelin has very little presence (e.g. the Shiverer mouse), the 

fractional anisotropy is only around 15% lower than in a wild type mouse (Song et 

al., 2002). Consequently, changes in myelin of a few percent would have a very 

small impact on FA. Conversely, as measures such as MWF are thought to be more 

directly associated with myelin, their sensitivity to myelin changes should be more 

marked.  

 

 

4.2.4 Aims of the study and hypothesis 
 
The present study explored the association between PA and white matter 

microstructure of the two main hippocampal pathways: the fornix and the PHC. The 

fornix is the main efferent pathway of the hippocampus projecting to the mammillary 

bodies (Nieuwenhuys et al., 2007). The PHC forms part of the cingulum bundle and 
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contains predominantly afferent projections from the posterior parietal cortex 

(Goldman-Rakic et al., 1984; Jones et al., 2013a; Mufson and Pandya, 1984). In the 

present study we use FA as a well-established (though unspecific) marker of white 

matter microstructure. Further, we use MWF as a potentially more specific measure 

of myelination.  

 

We hypothesize a positive correlation between FA and AL, and a positive correlation 

between MWF and AL, in the fornix and in bilateral PHC. We assume that due to the 

specificity for myelination, i.e., being less susceptible to confounding microstructural 

differences such as axonal diameter, density and axonal orientational dispersion 

than DTI metrics, (De Santis et al., 2014) MWF will be a more sensitive marker than 

FA to detect associations between individual differences between PA and white 

matter microstructure. 

 

 

 

4.3 Methods 

4.3.1 Participants 
 
All participants were recruited through the School of Psychology, Cardiff, Wales, 

United Kingdom. All participants were undergoing or had previously completed a 

university degree course, were right handed as assessed with the Edinburgh 

Handedness Inventory (Oldfield, 1971) and of Caucasian origin. Exclusion criteria 

were a current episode or a history of neurological and psychiatric disorders, drug or 

alcohol abuse and medication that may have an impact on the structure of the brain. 

For assessment, the general health questionnaire was used (Goldberg and Huxley, 

1980). Since training may impact the structure of the brain we also excluded 

professional athletes, musicians and those at competitive amateur sport levels 

(Bengtsson et al., 2005; Hanggi et al., 2010; Scholz et al., 2009). A total of thirty-

three participants was recruited (19 female, 14 male). Participants had a mean-age 

of 25.5 ± 4.2 years. All participants provided written informed consent in order to 

take part in the study and received monetary compensation. The study had been 

approved by the local ethics committee of the School of Psychology, Cardiff 

(EC.13.07.02.3491RA).  
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4.3.2 Actigraphy 
 
Participants wore an Actiwatch (Cambridge Neurotechnology, Inc., Cambridge, UK) 

on the left wrist for 72 consecutive hours. Activity counts were stored in 5 second 

intervals. Participants provided an activity protocol stating the kind of daily activities 

and wake time. AL) (the cumulated activity counts during wake time divided by the 

net recording time in hours) were calculated separately for each day. Activity 

analyses were restricted to wake time. Mean-AL was calculated by averaging AL 

over the three consecutive days. The left wrist was chosen because AL of the non-

dominant arm reflects whole body movements without impact of manual fine motor 

activities (Middelkoop et al., 1997). Protocols were checked for consistency between 

reported activities and AL measures. Almost identical approaches have been 

repeatedly used in previous studies e.g. (Bracht et al., 2012b; Razavi et al., 2011; 

Walther et al., 2009). 

 

4.3.3 Structural MRI scanning 
 
T1-weighted structural scans were acquired using an oblique axial, 3D fast-spoiled 

gradient recalled sequence (FSPGR) with the following parameters: TR=7.9ms, 

TE=3.0ms, inversion time=450ms, flip angle=20°, 1 mm isotropic resolution, with a 

total acquisition time of approximately 7 minutes.  

 

4.3.4 Diffusion MRI scanning 
 
High angular resolution diffusion-weighted imaging (HARDI) data were acquired in 

the Cardiff University Brain Research Imaging Centre (CUBRIC) on a 3 T GE Signa 

HDx system (General Electric, Milwaukee, USA) using a cardiac-gated peripherally 

gated twice-refocused spin-echo Echo Planar Imaging (EPI) sequence, with 

effective TR/TE of 15R-R intervals / 87 ms. Sets of 60 contiguous 2.4 mm thick axial 

slices were obtained, with diffusion-sensitizing gradients applied along 30 

isotropically distributed (Jones et al., 1999) gradient directions (b-value = 1200 

s/mm2). The field of view was 23 × 23 cm; and the acquisition matrix was 96 × 96, 

resulting in data acquired with a 2.4 × 2.4 × 2.4 mm isotropic resolution. Following 

zero-filling to a 128×128 in-plane matrix for the fast Fourier transform, the final 

image resolution was 1.8 × 1.8 × 2.4 mm. A parallel acceleration (ASSET) factor of 

2 was used. Acquisition time was approximately 12 minutes. 
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4.3.5  McDESPOT scanning 
 
The McDESPOT protocol consists of a combination of sagittally oriented SPGR, 

balanced steady-state free procession (bSSFP) and inversion-recovery prepared 

SPGR (IR-SPGR) sequences (Deoni et al., 2008c; Deoni et al., 2008d). All three 

sequences were acquired with a FOV of 220 mm; 1.7 mm × 1.7 mm × 1.7 mm 

voxels, with frequency encoding in the superior-inferior direction for a total scan time 

of approximately 8 minutes. mcDESPOT protocol (spoiled gradient recalled, or 

SPGR, acquisitions: TE = 2.1 ms, TR = 4.7 ms, flip angles = [3°, 4°, 5°, 6°, 7°, 9°, 

13°, 18°]; balanced Steady-State Free Precession, or bSSFP, acquisitions: TE = 1.6 

ms, TR = 3.2 ms, flip angles = [10.6°, 14.1°, 18.5°, 23.8°, 29.1°, 35.3°, 45°, 60°], 

spatial resolution 1.7 mm isotropic, acquisition time 12 min). bSSFP acquisitions 

were repeated with and without 180° RF phase alteration to remove SSFP banding 

artefacts and SPGR and IR-SPGR acquisitions were used to correct B0 and B1-

induced errors in the derived MWF estimates. 

 

 

4.3.6 McDESPOT Data Pre-Processing 
 

SPGR and bSSFP images for each participant were linearly coregistered using an 

affine (12 degrees of freedom) technique based on mutual information to the first 

image in the sequence to correct for interscan and intrascan motion (Jenkinson and 

Smith, 2001). SPGR and IR-SPGR images were used for DESPOT1 with High-

speed Incorporation (DESPOT1-HIFI) of RF Field Inhomogeneities processing as 

described in (Deoni, 2007; Deoni et al., 2006b), resulting in B1 field and quantitative 

T1 maps. These B1 field and T1 maps were used in the subsequent calculation of B0 

field and T2 maps using two phase-cycled bSSFP data using the DESPOT2 with full 

modeling (DESPOT2-FM) algorithm (Deoni et al., 2004). Combining SPGR, IR-

SPGR and SSFP sequences allowed for the estimation of the multi-component 

three pool DESPOT model (Deoni et al., 2013; Deoni et al., 2008b; Deoni et al., 

2008c). Alongside other metrics not studied here (myelin water residence time and 

intra- and extra-cellular (IE) water and myelin water T1 and T2), this model provides 

whole brain estimates of the myelin water fraction (MWF). 

 

4.3.7 Post-processing of McDESPOT data 
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A synthetic-T1 image was computed from the quantitative T1 map (arising from the 

DESPOT1 data) for each subject assuming the same imaging parameters used to 

generate the FSPGR T1-weighted image (Deoni et al., 2006a). This effectively 

creates a template in MWF space with the same contrast as the target T1-weighted 

image. The synthetic T1-weighted image of each participant was then warped to the 

corresponding T1-weighted structural scan using the FNIRT non-linear registration 

tool (Jenkinson et al., 2002). The computed warps were then applied to the MWF 

map to transform it into the same space as the structural T1-weighted image.  

 

4.3.8 Diffusion MRI data pre-processing 
 
Data were analysed using ExploreDTI 4.8.3 (Leemans et al., 2009a). Eddy-current 

induced distortion and motion correction was performed using an affine registration 

to the non-diffusion-weighted B0-images, with appropriate re-orienting of the 

encoding vectors (Leemans and Jones, 2009). Field inhomogeneities were 

corrected for using the approach of (Wu et al., 2008). The diffusion weighted images 

(DWIs) were non-linearly warped to the T1-weighted image using the fractional 

anisotropy map, calculated from the DWIs, as a reference. Warps were computed 

using Elastix (Klein et al., 2010) using normalized mutual information as the cost 

function and constraining deformations to the phase-encoding direction. The 

corrected DWIs were therefore transformed to the same (undistorted) space as the 

T1-weighted structural images. A single diffusion tensor model was fitted to the 

diffusion data in order to compute quantitative parameters such as FA (Basser et al., 

1994). Following the method of Pasternak et al. (Pasternak et al., 2009; Metzler-

Baddeley et al., 2012), a correction for free water contamination of the diffusion 

tensor based estimates was applied. 

 

4.3.9 Tractography 
 
Tractography was performed using ExploreDTI (Leemans et al., 2009a). Whole 

brain deterministic tractography was performed following peaks in the fibre 

orientation density function (fODF) reconstructed from the damped Richardson Lucy 

algorithm (dRL) (Dell'acqua et al., 2010; Jeurissen et al., 2013). The dRL algorithm 

estimates multiple fibre orientations in a single voxel and therefore provides a more 

accurate diffusion profile than it is the case for DTI-based methods estimating only 

one fibre orientation per voxel.  For each voxel in the dataset, streamlines were 

initiated along any peak in the fibre orientation density function (fODF) that 
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exceeded an amplitude of 0.05. A streamline, uniform step-size, algorithm based on 

that of (Basser et al., 2000), but extended to multiple fibre orientations within each 

voxel (Jeurissen et al., 2011) was used for tractography. Each streamline continued 

in 0.5mm steps following the peak in the fODF that subtended the smallest angle to 

the incoming trajectory. Termination criteria were an angle threshold > 45° and 

fODF amplitude < 0.05. 

 

4.3.10 Tract reconstruction 
 
Tract ‘waypoint’ regions were drawn manually by one experimenter (T.B.) based on 

anatomical landmarks. The fornix and bilateral PHC (see figure 1) were 

reconstructed as described in Chapter 3. For reconstruction of the fornix, a coronal 

region of interest (ROI) was placed around the columns of the fornix four slices 

posterior to the anterior commissure (Bracht et al., 2015b). For reconstruction of 

bilateral PHC one horizontal ROI was placed at the height of the most ventral point 

of the splenium, and a second ROI was placed four slices above (Jones et al., 

2013a; Metzler-Baddeley et al., 2013). For each subject, the anatomical course of 

each tract was checked carefully. Mean-FA was derived for each reconstructed 

tract. In addition, the average MD, AD and RaD were computed for each tract in 

order to follow up any group differences seen in FA, our primary outcome measure. 

Further, mean-MWF was sampled along the tracts. The latter was derived from the 

MWF-images that had been warped to the T1–weighted structural image. 

 

4.3.11 Statistical analyses 
 
Statistical analyses were performed using SPSS22 (SPSS, Inc., Chicago, Illinois). 

First, normal distribution of mean-AL, FA and MWF-values was confirmed using 

Shapiro-Wilk-Tests. Second, Pearson correlations between the mean-AL and FA of 

bilateral PHC and the fornix were calculated. Third, correlations between mean-AL 

and MWF, our measure for myelination, were calculated for each of the three 

hippocampal pathways. We applied a strict Bonferroni correction for multiple 

comparisons. Thus the level of significance was set at p < 0.0083 (0.05 divided by 

the number of tests, n = 6). In pathways where significant correlations were detected 

we additionally controlled for age and gender calculating separate partial correlation 

with age and gender as covariates.  
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4.4 Results 

4.4.1 Activity levels 
 
One participant had to be excluded from the analyses because their actigraphy 

recording was incomplete and there had been inconsistencies between reported 

activities and recorded AL. Thus a total of 32 participants with AL-recordings 

remained. AL was normally distributed for each of the three single days and for 

mean-AL (averaged over the three days). Repeated measure analyses revealed no 

significant differences of AL for the three consecutive days (F (2, 30) = 0.37, p = 

0.70). AL-values were as follows: AL day 1 = 20513 ± 6081, AL day 2 = 21496 ± 

8000, AL day 3 = 21516 ± 6174, and mean-AL = 21174 ± 5345. Men and women did 

not differ regarding AL for any of the days or regarding mean-AL. 

 

4.4.2 Correlations between activity levels and white matter microstructure 
 
For each of the tracts, FA and MWF values were normally distributed. Across the 32 

participants there were no significant correlations between mean-AL and FA for the 

fornix (r = 0.232, p = 0.201), left (r = -0.123, p = 0.503) or right (r = 0.047, p = 0.800) 

PHC.  

 

Two participants had to be excluded from the McDESPOT analyses because of 

incomplete data acquisition, and thus 30 scans remained. There was a positive 

correlation between mean-AL and MWF for the right (r = 0.482, p = 0.007) but not 

for the left (r = 0.069, p = 0.718) PHC (see figure 2). Further, there was a non-

significant trend for a positive correlation between MWF of the fornix and mean-AL (r 

= 0.325, p = 0.079). The correlation between the right PHC and mean-AL remained 

significant after controlling for age (r = 0.531, p = 0.003) and for gender (r = 0.483, p 

= 0.008). In order to statistically demonstrate the larger magnitude of the correlation 

between AL and MWF of the right PHC in comparison to the correlation between AL 

and FA of the right PHC Fisher’s r-to-z transformation was used (z = 3,6, p = 

0.0003) (Steiger, 1980) (http://quantpsy.org/corrtest/corrtest2.htm). 
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Figure 4.1 Myelin water fraction sampled across the fornix and the PHC 

Myelin water fraction sampled across the fornix and the PHC. Tract “waypoint” regions are 
visualized in green. 
 
 
 
 

 
Figure 4.2 Correlation between AL and MWF for left and right PHC 

Correlation between activity level (AL) and the myelin water fraction (MWF) for the left (r = 
0.069, p = 0.718, left side) and the right (r = 0.482, p = 0.007, right side) parahippocampal 
cingulum (PHC).  
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4.5 Discussion 
 
This is the first tract-specific study linking white matter microstructure of 

hippocampal pathways to PA activity. This is also the first study investigating the 

association between PA and MWF, a more specific measure of myelination than FA. 

While correlations between FA and AL did not yield significant results for any of the 

tracts, there was a significant correlation between AL and MWF for the right PHC. 

Thus, our results suggest that higher PA is associated with higher myelination in the 

right PHC. We infer, therefore, that MWF not only represents a more specific marker 

for myelination but is also a more sensitive marker than FA for detecting 

associations between white matter microstructure and PA. Our results contribute to 

the understanding of brain-behaviour associations and inter-individual variance even 

in a highly homogeneous group of young adults. 

 

 

4.5.1 The role of myelin  
 
Our findings suggest that higher physical activity is associated with increased 

myelination of the right PHC. Myelination is mediated by oligodendrocytes, glia cells 

that encapsulate axons and facilitate fast and saltatory conduction of electrical 

impulses. Myelin increases conduction velocity which in turn may facilitate more 

efficient information processing (Fields, 2008). Animal studies clearly suggest that 

experience influences the degree of myelination. For instance, stress during 

pregnancy  in rodents increases myelination in the offspring (Wiggins and 

Gottesfeld, 1986). Moreover, the degree of social interactions and the number of 

play objects leads to increases in myelination (Bennett et al., 1964; Markham and 

Greenough, 2004; Szeligo and Leblond, 1977). In vitro studies also suggest that 

neuronal activity by means of neurotransmitter release promotes myelin induction 

(Demerens et al., 1996; Wake et al., 2011). Moreover, electrical stimulation of the 

premotor cortex in mice has also been shown to cause increases in myelination 

which were associated with improved motor function of the corresponding limb 

(Gibson et al., 2014). Thus, while our study design does not allow for statements 

regarding causalities of the observed association between MWF and AL, multiple 

lines of evidence suggest that experience and behaviour indeed induce remodelling 

of myelination of the brain (Fields, 2008). 
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4.5.2 Myelin and myelin water fraction 
 
In humans, the MWF can be used for an in vivo assessment of myelination. One 

previous study used MWF as a marker of myelination and found a pattern of 

myelination in infants that showed striking similarities with what is known from post-

mortem studies (Deoni et al., 2011). In addition, studies in demyelinating 

neurological disorders such as multiple sclerosis strongly suggest the validity of 

MWF as a measure for myelination (Kitzler et al., 2012; Kolind et al., 2012). In one 

longitudinal study during early childhood changes of MWF correlated positively with 

performance measures such as gross motor behaviour, visual reception and 

receptive language (Dean et al., 2014).  MWF has also been shown to be 

associated with disease severity in multiple sclerosis (Kolind et al., 2012). Finally, 

the most compelling evidence for the assumption that MWF indeed measures 

myelin stems from comparisons between MWF maps derived from a shaking pup 

myelin mutant and control animals (Hurley et al., 2010) and imaging studies 

demonstrating correlations between MWF and histopathology in multiple sclerosis 

(Laule et al., 2006; Moore et al., 2000). Thus, there is ample evidence that MWF 

does truly correlate with myelination and that this measure may represent a clinical 

and functional useful marker to detect associations of brain structure and function. 

 

4.5.3 Associations between physical activity and hippocampal anatomy  
 
In light of previous studies investigating the role of the hippocampus for aerobic 

exercise our finding in the PHC is highly plausible. In mice, wheel running has been 

shown to induce an increase of the number of axons (Pereira et al., 2007; van Praag 

et al., 1999a; van Praag et al., 1999b). Further, in both mice and in humans physical 

activity led to increases of the cerebral blood flow (CBF) (Pereira et al., 2007) which 

has been shown to induce neurogenesis in the dentate gyrus of these animals 

(Pereira et al., 2007). Wheel running in mice also induces increases in brain-derived 

neurotrophic factor (BDNF), a growth factor that supports survival of neurons and 

induces myelination (Berchtold et al., 2005; Neeper et al., 1995; Wong et al., 2014; 

Xiao et al., 2010). Further, there is converging evidence from neuroimaging studies 

that physical activity increases grey matter volume of the hippocampus (Chaddock 

et al., 2010; Erickson et al., 2012; Erickson et al., 2009; Pajonk et al., 2010) which 

may impact plasticity of white matter microstructure as well. Thus, studies in animals 

and volumetric neuroimaging studies in humans strongly support our finding that 
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physical activity is associated with higher myelination in the PHC, the main afferent 

pathway of the hippocampus. 

 

4.5.4 Comparison with previous DTI studies and lateralization 
 
In our study we found a selective positive correlation between PA and MWF in the 

right PHC. We did not find any associations between physical activity and diffusion 

properties in our young and healthy sample. The absence of a correlation between 

FA und PA is in line with a voxel-based DTI study of (Walther et al., 2012b) who 

found no association between AL and FA in healthy controls in the PHC. However, 

there was a negative association of FA and AL in major depressive disorder in the 

left PHC (Walther et al., 2012b).  A whole brain tract-based spatial statistics (TBSS) 

(Smith et al., 2006) study found reduced MD in physically fit older adults compared 

to a less fit control group in a region incorporating the PHC localized in the left 

hemisphere as well (Tseng et al., 2013). However, PA was not associated with FA. 

On the other hand (Burzynska et al., 2014) reported a decrease of FA in sedentary 

old adults averaged across bilateral PHC using TBSS. Since DTI-based diffusion 

properties are not specific for myelin and completely different populations have been 

investigated in previous studies (Burzynska et al., 2014; Tseng et al., 2013; Walther 

et al., 2012b) comparability of the latter findings with our study in young and healthy 

participants is aggravated. Nevertheless, in light of previous results in the left 

hemisphere (Tseng et al., 2013; Walther et al., 2012b) our specific finding for the 

right hemisphere is surprising. One possible explanation is that in elderly 

populations and in depression brain-structure behaviour associations of the right 

hemisphere that can be seen in our young and healthy sample are impaired and 

compensated for by the left hemisphere that is not involved in young and healthy 

participants.  

 

4.5.5 Translational aspects for the neurobiology of depression 
 
In Chapter 3 we found age-dependent FA changes to occur in the left PHC during 

the time-span from depression to remission. Participants of this study (Chapter 3) 

did not only recover from depression, they also significantly increased their activity 

levels (Chapter 3, Table 3.1). Thus, there may be associations between increases in 

PA, clinical recovery from depression and structural remodelling of the PHC. 

Reduced FA of the right PHC has also been described during depressive episodes 

(e.g. (Zhu et al., 2011). One possible explanation is that those FA reductions are 
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caused by reductions in myelin. When remitting this reduction in FA may be 

reversed as a consequence of physical activity increasing myelination. It would be of 

great interest to address this question with help of MWF maps and to investigate if 

putative reductions of MWF during depressive episodes may be reversed from 

depression to remission. A further key question is to investigate if these putative 

changes may be reversed with help of exercise interventions.  

 

 

 

4.5.6 Inconsistencies in the literature  
 
Previous studies indicate associations between PA and white matter microstructure 

of hippocampal pathways (Burzynska et al., 2014; Tseng et al., 2013; Walther et al., 

2012b). However, there are inconsistencies regarding identified diffusion properties 

(e.g. FA and MD), lateralization and the directionality of associations between PA 

and diffusion properties. In part, this may be owed to differences in study 

populations. It is possible that in different populations associations between brain 

structure and behaviour are reflected by changes in different sub-compartments of 

white matter microstructure (e.g. changes in axonal diameter, density or 

myelination) that may in aggregate have different effects on different DTI-based 

indices (such as FA and MD). However, due to the lack of specificity of DTI-based 

metrics for white matter sub-compartments this cannot be disentangled. Therefore, 

the myelin specific measure of MWF represents a significant step forward for the 

interpretability of white matter neuroimaging studies. A further explanation for those 

discrepancies is that age impacts on white matter microstructure (Lebel et al., 2010) 

and neuroplasticity of the PHC (see Chapter 3, (Bracht et al., 2015b)). Thus, it is 

possible that in our young sample changes predominantly occur in myelination 

which only has a subtle effect on FA (Song et al., 2002), while findings in diffusion 

properties in elderly populations may be the result of different neuroplastic 

processes (e.g. neuroplasticity of the axons) (Burzynska et al., 2014; Tseng et al., 

2013).  Moreover, contrasting results between studies may be owed to differences in 

methodological approaches. For instance, tractography approaches may be more 

sensitive than voxel-based analyses or regions of interest (ROI)-analyses to detect 

tract-specific group differences (Bracht et al., 2015a; Bracht et al., 2014; Kanaan et 

al., 2006; Keedwell et al., 2012).  
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4.5.7 Summary and conclusions 
 
Our findings suggest that higher PA is associated with higher myelination of the right 

PHC. We combined an advanced tract-specific approach (dRL) with a myelin 

specific measure that enables us to draw anatomically meaningful conclusions from 

our findings (Dell'acqua et al., 2010; Deoni et al., 2008a). A further strength of the 

study is the homogeneous sample that reduces much of the variance that otherwise 

is difficult to control for.  

 

Our results substantially extend previous findings on associations between PA and 

white matter microstructure. Most importantly, we provide a more myelin-specific 

measure that allows for a more neurobiologically meaningful interpretation of our 

data. Furthermore, we chose a tractography-based approach that (in contrast to 

automated voxel-based approaches) takes individual differences of the course of 

anatomical pathways into account, and combines multiple samples into the 

estimate, increasing the statistical sensitivity (Bells et al., 2011). Since the applied 

dRL-tractography algorithm estimates multiple fibre orientations within a single 

voxel, inaccuracies that lead to spurious reconstructions if applying DTI-based 

tractography can be diminished (Dell'acqua et al., 2010).  

 

Our study is limited by the cross-sectional study design, which does not allow us to 

determine whether physical activity influences white matter microstructure or 

whether white matter microstructure impacts on motor behaviour. Longitudinal 

studies are required to address this research question (Scholz et al., 2009). 

Furthermore, advanced white matter mapping techniques with specificity for axonal 

properties (e.g. density, diameter) may complement our myelin specific findings 

(Assaf and Basser, 2005). 
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5 General discussion 
 

5.1 Anatomical, clinical and functional considerations 
 
The first chapter focused on the existing literature of DTI-studies of the reward 

system. Findings vary across study populations and methods being used. Very few 

studies looked at healthy participants at familial risk for developing depression. 

Those studies point to structural alterations of the CB in this subgroup. In the 

absence of longitudinal data it remains unclear whether such structural alterations 

indicate vulnerability or resilience for depression. Also, given that only two studies 

have investigated this question, findings are very preliminary in nature and future 

replication studies are required for confirmation. During acute depression reduced 

FA in the UF has been identified quite consistently. Out of the tracts investigated in 

this thesis (CB, UF and slMFB) the largest number of studies has focused on this 

tract –using different methodological approaches. Therefore, conclusions regarding 

the UF have a greater degree of evidence, than it is the case for CB and slMFB. 

Given that the UF connects prefrontal brain regions with the amygdala, which form 

essential relay stations of the reward circuit that have shown altered activity during 

depression, this finding is also highly plausible from a functional point of view 

(Epstein et al., 2006; Keedwell et al., 2005; Smoski et al., 2009; Zhang et al., 2013). 

However, the most novel insights of this thesis concern the slMFB. The slMFB is at 

the very core of the reward system because (amongst other functions) it mediates 

dopaminergic projections from the VTA to the NAcc and to the orbitofrontal cortex, 

which can be regarded as the most specific brain regions contributing to reward 

processing (Haber and Knutson, 2010). In contrast to the CB and the UF, which 

were amongst the first pathways being described using tractography the slMFB has 

only be described for the first time in 2009 by Coenen and colleagues (Coenen et 

al., 2009). Coenen and colleagues described two different branches (imMFB and 

slMFB). The imMFB corresponds closely to what is known from animal studies and 

reflects projections from the VTA to the hypothalamus and NAcc with some fibres 

proceeding to the basal forebrain. Coenen and colleagues stated that the slMFB 

includes far reaching projections to prefrontal brain regions (including OFC and 

dlPFC) that may be specific to the human brain and may be the result of the more 

complex folding of the forebrain in humans (Coenen et al., 2012). However, 

although this slMFB has not been described in the animal literature strong direct 

connection pathways between the VTA and the OFC have been demonstrated in 
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ample tract tracing studies in animals (Geeraedts et al., 1990a, b; Nieuwenhuys et 

al., 1982; Veening et al., 1982). Thus, while the nomenclature of the slMFB is novel 

in my opinion there is little doubt that the connection pathways of the slMFB do 

indeed exist in animals as well. In particular a study of Coenen and colleagues that 

linked hypomanic side effects of deep brain stimulation of the subthalamic nucleus 

(which is located adjacent to the slMFB) in a Parkinson’s patient to an accidental 

stimulation of the slMFB has given rise to research in depression focusing on this 

specific pathway (Coenen et al., 2009). Chapter 1 makes an essential contribution to 

the literature because the literature is searched for findings of VBA- and TBSS 

studies that may actually have identified changes along the course of the slMFB 

either before its first description using DTI-based tractography or without referring 

(or being aware) of this fibre bundle. Due to the crossing of different fibre 

populations in single voxels and due to the proximity of different pathways (e.g. ATR 

and slMFB) voxel-based approaches (VBA and TBSS) provide less reliable 

anatomical tract-specific information than tractography studies do. The number of 

VBA and TBSS studies identifying changes within the ALIC without referring to the 

slMFB is surprisingly high. Further, it is clearly noteworthy, that changes along the 

anatomical course have been in particular found in severely depressed patients and 

in treatment-resistant depression (Bracht et al., 2014; de Diego-Adelino et al., 2014; 

Guo et al., 2012; Peng et al., 2013). In 2014 tractography was used for the first time 

to reconstruct specific segments of the MFB in order to compare white matter 

microstructure between MDD and HC (Bracht et al., 2014). Region-to-region 

anatomical connection pathways between VTA, NAcc, mOFC, lOFC and dlPFC 

were reconstructed. Reduced FA was found in (severely) melancholic depressed 

patients in comparison to a non-melancholic depressed group and a group of 

healthy controls. Reduced FA was also associated with higher depression rating 

scale scores and more pronounced anhedonia providing further evidence for a key 

role of the slMFB in severe depression. The observation of structural differences 

between different clinical populations illustrates the need to investigate 

homogeneous and clinical meaningful subgroups. In order to derive tract specific 

conclusions it is of utmost importance to use tractography approaches. In keeping 

with this assumption Chapter 2 investigates a highly homogeneous group of young 

healthy women being matched for age and IQ comparing a subgroup with a history 

of depressive episode versus those without a history of a depressive episode. While 

the identified correlation between FA and hedonic tone, the capacity to derive 

pleasure from rewarding experiences, further supports the central role of the slMFB 

for reward processing we did not find any group differences between the groups with 
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and without a history of depressive episodes. This suggests that white matter 

microstructure alterations may only be present in (severe) depression. 

 

 

5.2 Reconstruction of the medial forebrain bundle 
 
In Chapter 2 I separately reconstructed the two branches of the MFB (imMFB and 

slMFB). I applied dRL, an advanced tractography approach estimating multiple 

diffusion directions within a single voxel providing a greater degree of anatomical 

validity and sensitivity to pick up pathways than it is the case for DTI-based 

tractography (Dell'acqua et al., 2010). A robust approach is described how to best 

delineate the two branches of the medial forebrain bundle (imMFB and slMFB) 

based on anatomical landmarks that can be clearly identified (Chapter 2). 

Furthermore, I specifically reconstruct those segments that emanate from the VTA 

aiming to capture the most relevant fibre pathways for reward processing. While 

previous studies reconstructed both branches of the MFB in this thesis imMFB and 

slMFB are separately reconstructed and consequently, its diffusion properties are 

explored independently. 

  

A series of attempts not described in this thesis for the sake of readability have been 

made to systematically identify the best way for reconstructing these two branches. 

Using whole brain DTI-based tractography I failed to reconstruct the imMFB in 

several subjects. Data quality of data sets using 42 directions was sufficient for DTI-

based tractography but not to use the dRL-algorithm. Consequently I struggled to 

reconstruct the imMFB in these data sets. From my experience, 60 diffusion 

encoding directions and advanced tractography approaches (such as dRL) are 

required for reliable reconstruction of the imMFB, crucial factors to take into account 

when designing future studies.  

 

Using constrained spherical deconvolution (CSD) (Jeurissen et al., 2011) for 

reconstructing the slMFB led to many false positive fibres projecting to the cortex. 

Similarly, when I used an angle threshold of 60 degrees I obtained overinclusive 

pathways (using both CSD and dRL). From my experience, the best results are 

obtained using an angle threshold of 45 degrees. 

 

Initially I had tried to reconstruct the whole of the MFB (including both segments 

ventral and dorsal of the VTA), in line with the description of (Coenen et al., 2009). 
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However, following this approach, there is a spatial overlap with the superior 

cerebellar peduncle (SCP) which contains a proportion of slMFB fibres. Although 

this is anatomically correct, those segments may be less relevant for reward 

processing than the fibres emanating from the VTA. Therefore, for the purpose of 

my investigation (looking at the association between MFB microstructure and 

hedonic tone), I preferred to specifically reconstruct those segments of the MFB 

being localized dorsal of the VTA. 

 

 I have also tried to surround the SCP on a coronal plane and use it as an “AND 

gate” since this approach may be more sensitive to reconstruct the imMFB (Figure 

5.1). While this approach worked well for reconstructing the imMFB in many 

subjects, results seemed to be overinclusive regarding unwanted fibres stemming 

predominantly from the SCP. Interestingly, very recently this approach has been 

published by another group (Anthofer et al., 2015).  

 

 
Figure 5.1 Alternative reconstruction of the MFB 

A typical reconstruction of imMFB and slMFB based on a seed region surrounding the SCP 
is shown (using dRL and 60 diffusion encoding directions). In addition to the imMFB and the 
slMFB the SCP (that contains a proportion of imMFB and slMFB fibres) is being 
reconstructed. 
 

Overall, the described algorithm of Chapter 2 provided the most reliable approach to 

specifically reconstruct fibres of the imMFB and slMFB that emerge from the VTA. 

By now this approach has already been used by different other researchers from our 

group in Cardiff and from my new group in Bern yielding prominent results 

(satisfactory reconstruction in about 90% out of approximately 200 data sets). Thus, 

the applied algorithm represents an important contribution to the existing 

tractography literature.  
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5.3 The role of neuroplasticity  
 
Given that structural alterations of the slMFB seem to be dependent on clinical 

features of depression (e.g. melancholic, non-melancholic or remitted) results of 

Chapter 2 lead to the question whether neuroplastic changes occur during the time-

span from depression to remission. I had the opportunity to analyze a longitudinal 

diffusion MRI data set in a group of 15 (11 unipolar, 4 bipolar) depressed patients 

once during a depressive episode and a second time during remission following 

successful antidepressive therapy. I have looked at the major limbic and reward 

system pathways: CB, UF, slMFB, PHC and fornix. Our data is suggestive of an 

age-dependent pattern of neuroplasticity within the CB and the PHC, while no 

changes were identified in the UF and in the slMFB. Thus, according to these 

results, microstructure of CB and PHC may serve as state markers while the 

microstructure of UF and slMFB may be trait markers of depression. However, in 

particular the absence of any neuroplastic changes within the slMFB contradicts our 

initial hypothesis. The absence of group differences may be due to substantial 

heterogeneity of the investigated group (in terms of depression severity, inclusion of 

bipolar and unipolar patients, differences in medication status, and differences in 

age). Although statistically controlling for these factors did not change the results, 

these factors may still have had an impact on the data. Further, only 4 out of the 

eleven patients with longitudinal data met criteria for melancholic depression, the 

subgroup where changes of the slMFB have been reported (Bracht et al., 2014).  

 

5.4 The role of physical activity 
 
The PHC where we identified changes in FA from depression to remission is not 

only relevant to reward processing but may also be influenced by physical activity. 

Reduced PA is one of the clinical features in depression and normalization of PA 

occurring from depression to remission can be commonly observed (Chapter 3). 

Thus, increases of PA may be directly related to clinical remission and to 

neuroplastic changes occurring during the time course from depression to 

remission. I specifically assessed the association between PA and white matter 

microstructure of the PHC and the fornix, the two main hippocampal pathways 

(Chapter 4). In this thesis I applied a further methodological novelty by acquiring and 

analyzing McDESPOT data enabling to estimate the myelin content of white matter 

pathways. Given the lack of specificity of DTI-derived measures this provides an 
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important step forward in white matter imaging. Our results are suggestive for a 

positive correlation between PA and myelination of the right PHC. Thus PA may 

contribute to reverse changes in white matter microstructure that are putatively 

present during depressive episodes. However, this causality can only be established 

applying a longitudinal study design. If this was to be true, this may also explain why 

depressed people generally tend to clinically improve if engaging in physical activity.  

 

5.5 Work in progress and outlook 
 
Participants recovering from depression investigated in my analyses of Chapter 3 

included not only unipolar but also four bipolar depressed patients. However, so far 

it is not clear if any changes in FA can be observed in the slMFB in patients with 

bipolar disorder.  

 

Consequently I am currently collaborating on the analyses of data sets in both 

bipolar depressed (collaboration in Bern) and bipolar remitted (collaboration in 

CUBRIC) patients and hope to address this question. Further, I am about to design 

a study to specifically investigate the longitudinal course of white matter 

microstructural changes of the slMFB in a group of severely (melancholic) 

depressed patients and in a group of moderately depressed participants.  

 

In summary, future studies of white matter microstructure in depression should 

ideally investigate well characterized homogeneous subgroups, using a longitudinal 

study design and acquiring sixty diffusion encoding directions that enable the use of 

advanced tractography approaches. Further, novel sub-compartment specific 

imaging sequences such as McDESPOT may open exciting new insights in the 

neurobiology of depression.  
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