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Summary 

The development of periodontitis is a multifactorial process initiated by a bacterial-induced 

inflammation which is further modified by genetic and environmental factors contributing 

towards an exaggerated host response and associated tissue destruction. Pro-inflammatory 

mediators such as cytokines play an important role in the resulting inflammation leading to 

degradation of periodontal connective tissue, several of which may be detected in GCF and 

may be of diagnostic and prognostic value. However, our limited understanding of the 

molecular mechanisms involved in the pathogenesis of periodontal disease restrains the 

effectiveness of current diagnostic and management techniques in assessing true periodontal 

health, identify susceptible patients, monitor response to therapy or implement the use of 

biomarkers which may assist in the management of patients with periodontal disease. 

Therefore, this thesis aims to further our understanding of the pathology of periodontal disease 

through a series of in-vitro and in-vivo studies. In recognising that as a consequence of 

periodontal disease is the degradation of the extracellular matrix, clinical studies investigated 

the release of proteoglycan components from the periodontal tissue in patients with chronic 

periodontitis. Increasing levels of chondroitin sulphate (CS), a proteoglycan metabolite was 

observed with progressive clinical attachment loss, highlighted periods of activity and 

inactivity, with only a few sites demonstrating disease activity over a 21 month period. 

Furthermore,   in-vitro studies investigated the cellular synthesis of proteoglycan in a 

pathological condition by examining the biological effects of P. gingivalis LPS on PDL cells. In 

the presence of P. gingivalis LPS, an alteration in cell behaviour was observed with an 

increase in cell proliferation and a decrease in matrix formation, further suggesting that the 

degradation products detected in GCF such as decorin and biglycan, were as a consequence 

of tissue destruction and not as a result of repair or remodelling. Collectively, these results 

highlight the potential of CS present in GCF as a marker of disease activity. 

Due to the multifactorial nature of the disease, it is highly unlikely that any one marker may 

provide information that may be of diagnostic as well as prognostic value.  Rather, the use of 
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a panel of markers may further corroborate the implementation of biomarkers in periodontal 

disease management. Therefore, in considering the prominent role of cytokines in tissue 

destruction, this thesis further examined the prognostic value of cytokine profiling in identifying 

the high risk patient. On cross-sectional evaluation of cytokine profiles in GCF from patients 

with different types of periodontal disease using bead array technology, a variable response 

was observed in the severe type, which was suggestive of an imbalance in Th1/Th2/Th17/Treg 

responses, further affirming the predominant role of an altered host response in  disease 

progression. Further, resident PDL cells were also considered as potential contributors to the 

variation in response. Consequently, in-vitro studies demonstrated that although TLR 

receptors were present on PDL cells, no cytokines were released on exposure to P. gingivalis

LPS further suggesting that the cytokines detected in GCF were produced as a consequence 

of an altered host response which brings about progression of disease. 

In conclusion, the development of rapid, non-invasive, site based risk assessment and 

comprehensive screening for biomarkers may be possible in the near future as a result of  the 

rapid development of new diagnostic technologies such as microarray and microfluidics along 

with the use of oral fluids such as GCF. Therefore, in the future enhanced patient assessment 

may be possible which will enable provision of customized therapies that target treatment at 

individual level. 
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Chapter 1: Review of literature

1.1 Introduction 

Periodontal diseases are chronic inflammatory diseases of multifactorial aetiology 

(Page and Kornman 1997), common in all human populations, which may result in 

gradual destruction of  the supporting tissues of the teeth and ultimately tooth loss.  

The prevalence of periodontal disease within the U.K as reported by the Adult Dental 

Health Survey (2008)  is 45%,  of which 9%  suffer from the severe form of the disease 

(White et al. 2012).  The survey reported a marked reduction  in moderate chronic 

periodontitis when compared to the 1998 survey,  which was attributed to an 

improvement in oral hygiene practices and promotion of oral health. However, it is 

interesting to note  that prevalence of severe disease has increased from 6% to 9% 

which may be attributed to current diagnostic and management techniques which are 

limited in their ability to identify high risk individuals, assess true periodontal status and 

monitor response to therapy.  Therefore, in recent years, extensive research has 

focussed on scrutinizing the qualitative changes in the composition of potential 

markers released in GCF as adjunctive tools in the management of periodontal 

disease. 

Accumulation of plaque has been accepted as the primary initiator of periodontal 

disease (Loe et al. 1965) but it is not solely responsible for the destruction that may 

follow. The destruction seen in periodontal disease is a consequence of the interaction 

between host and microorganisms present in plaque which result in the activation of 

the host inflammatory and immune responses, leading to loss of collagen and bone 

supporting the tooth (Kornman 2008).  Although the role of bacteria is undisputed in 

the initiation of periodontitis, the quantity and types of bacteria have not been sufficient 

to explain the significant differences in disease severity between individuals (Page and 

Kornman 1997). The wide variations in susceptibility to periodontal disease seem to 
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be associated with a number of secondary genetic, environmental and behavioural risk 

factors (Salvi et al. 1997).  All forms of the disease, however, have a common series 

of underlying events leading to tissue breakdown and loss of attachment.  Although 

multiple factors have been cited as influencing the progression of periodontal disease,  

there is overwhelming evidence that, it is the uncontrolled inflammatory and immune 

responses that largely drive tissue destruction (Page et al. 1997) and therefore the 

important role played by the host inflammatory and immune response has been the 

focus of much research in the last several years.  

Diagnosis of periodontal disease is based on clinical and radiographic examination.  

Clinical examination involves assessment of loss of attachment and bleeding on 

probing. However, there are limitations with regards to reproducibility and accuracy. 

False positive results with bleeding on probing are common, most of the time (Lang et 

al. 1986).  Radiographs can be used to assess if there has been bone loss, but it only 

provides information on historical bone loss, rather than activity at the time of 

examination. The diagnostic examination therefore, only informs that tissue loss has 

occurred since the last evaluation and fails to inform whether bone is being lost actively 

at the time of examination. Consequently, it is estimated that the absence of an 

objective, specific and quantitative test for active periodontal disease has led to the 

misdiagnosis of periodontal disease in over 70% of patients resulting in costly and 

inappropriate treatment (Lang et al 1986).  Identification of mechanisms likely to result 

in periodontal breakdown will help us to target and manage ‘high risk’ patients and 

determine the efficacy of treatment procedures.     

In recent years, research has elucidated the contribution of host-microbe interaction to 

both disease initiation and disease progression.  Epidemiological and clinical studies 

indicate variation in susceptibility to periodontal disease despite the long-term 

presence of the oral bio-film (Baelum et al. 1986; Loe et al. 1986; Baelum et al. 1988), 

in addition to an increased susceptibility and greater severity of periodontal disease in 

patients with an impaired immune response (Feller and Lemmer 2008; Mealey and 
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Rose 2008).  These variations may be attributed to an altered host response which are 

regulated by inflammatory mediators such as cytokines, which play a prominent role in 

amplifying the immune response resulting in degradation of the periodontal tissue and 

subsequent collection of host and bacterial products in the GCF. It has been suggested 

that  these components may reflect the status of various components of the 

periodontium, that might serve as potential diagnostic and prognostic markers for the 

progression of periodontitis (Embery et al. 2000).   

Therefore, extensive research has been carried out in the last few years to identify 

biomarkers that have the potential to diagnose accurately disease activity, prognosis 

and response to therapy (Bakri et al. 2013; Leppilahti et al. 2013; Miricescu et al. 2013; 

Tsuchida et al. 2013; Zein Elabdeen et al. 2013; Carneiro et al. 2014; Kumari et al. 

2014; Leppilahti et al. 2014).  However, our limited understanding of the pathogenesis 

of periodontitis limits the implementation of markers as adjunctive diagnostic and 

prognostic tools in the management of patients with periodontal disease.  

Of particular interest to this project are proteoglycan metabolites such as chondroitin 

sulphate (CS) which is released as a consequence of periodontal tissue degradation 

and cytokines which are released as a consequence of microbial challenge.  Previous 

clinical and biomedical studies by Waddington and Embery (Waddington et al. 1989; 

Waddington and Embery 1991; Waddington et al. 1994; Waddington et al. 1996; 

Waddington et al. 1998; Embery et al. 2000; Waddington and Embery 2001; 

Waddington et al. 2003a) have highlighted the quantification of CS which is known to 

derive from the degradation of alveolar bone as a promising diagnostic marker for 

active bone resorption.  In recent years, cytokine interactions and their role in immune 

regulation in periodontal pathogenesis have been investigated extensively (Javed et 

al. 2012; Di Benedetto et al. 2013; Sima and Glogauer 2013; Souza and Lerner 2013; 

Yucel-Lindberg and Bage 2013; Javed et al. 2014; Khalaf et al. 2014; Kumari et al. 

2014).  Cytokines pooled in GCF have the potential to provide information of the 

inflammatory changes occurring in the underlying tissues and therefore cytokine 
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profiling may be of prognostic value in identifying high risk patients and thereby 

contribute towards timely and efficient management of these patients. 

Against this background, the  aim of this project is to further our understanding of the 

biological mechanisms that play an important role in modulating  chronic inflammation 

and alveolar bone loss in periodontal disease through a series of in-vitro and in-vivo

studies. Clinical studies will evaluate proteoglycan metabolites and cytokine profile in 

GCF of patients with periodontal disease to assess its value as potential markers in 

the management of patients with periodontal disease. Further, in-vitro studies will 

examine activity of the PDL cells in a pathological situation and thereby provide 

biological justification for the use of biomarkers in GCF for monitoring periodontal 

disease.   
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1.2 Global periodontal disease epidemiology 

Based on previous data available from the WHO Global Oral Health Data Bank, 

Peterson and Ogawa 2005, reported that gingivitis affects more than 90% of the 

population, whereas only 10–15% of the adult population worldwide, was affected by 

the severe form of the disease (Petersen and Ogawa 2005).  Among the countries that 

participated in these surveys, few countries reported findings using comparable 

methodologies that permit assessment of general trends. For example, USA, Australia, 

Vietnam have used the National Health and Nutrition Examination Survey (NHANES) 

protocol, whereas countries such as the UK, Germany and Canada have used the 

WHO protocol. These protocols vary in the types of probes used for measurement, 

various probing locations, full mouth assessment vs partial mouth assessment,  

probing depths vs loss of attachment, all of which make comparisons between studies 

difficult. 

 Recent epidemiological surveys of periodontal disease have revealed a 5-15% 

prevalence of advanced periodontitis in the adult global population (Dye 2012). Within 

the asian continent, the  prevalence of severe periodontitis was reported to be 15-20% 

(Corbet and Leung 2011).  In the U.S, the National Health and Nutrition Survey 

(NHANES) 2009-2010, reports the prevalence of periodontitis to be over 47% in the 

general population, with severe periodontitis affecting 8.5% of the adult population 

(Eke et al. 2012). In the UK, the Adult Dental Survey 2008 reported that 45% of the 

general population had periodontitis, with 9% suffering from the severe form of the 

disease (White et al. 2012).  Interestingly, these recent surveys have reported that the 

prevalence of mild to moderate periodontitis has decreased in Australia, UK and USA 

but has increased in Germany and Hungary (Dye 2012).  Promotion of oral health and 

an improvement of oral hygiene practice among the public, may contribute to the 

improvement of periodontal health in the population susceptible to mild to moderate 

periodontitis in countries such as the UK, USA and Australia. However, despite this 
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increase in periodontally healthy individuals, there has been an increase in the 

prevalence of severe periodontitis in some countries, for example the UK, from 6% in 

1998 to 9% in 2009 (White et al. 2012). Epidemiological data from Sweden showed an 

unchanged 6–8% prevalence of advanced periodontitis from 1973 to 2003, despite an 

increase from 8% to 44% in the prevalence of periodontally healthy individuals during 

the same time period (Hugoson et al. 2008). Despite the differences in the provision of 

dental services and oral hygiene measures in various countries, the occurrence of 

advanced periodontitis is surprisingly similar. These reports may possibly reflect the 

limitations of current diagnostic and treatment modalities in the management of the 

high-risk patient.  

Therefore,  current epidemiological studies and national surveys are shifting away from 

focussing only on pocket formation (WHO protocol), to include assessment of  loss of 

attachment and possibly self-reported  questions and blood sampling, with a view to 

promote the creation and use of standardised case definitions for population based 

studies, as it appears that there is not enough current information to refute or support 

earlier estimates of severe periodontitis,  which ranged from 5-15% of the adult global 

population (Dye 2012).  

1.3       The periodontal tissues in health 

The periodontium represents the supporting tissues of the teeth and comprises of the 

gingivae, the periodontal ligament, the alveolar bone and the cementum, which 

together maintain the function of a tooth.  Although each component has unique tissue 

architecture and characteristic biochemical composition, each of these components 

influences the cellular activities of adjacent structures (Bartold and Narayanan 2006). 

The main function of the periodontium is to attach the teeth to the jaws and support 

them effectively during function.  Its structure is such that it is able to accommodate 
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the small horizontal and lateral movements caused by the occlusal load during function 

and proper functioning of the periodontium is only achieved through structural integrity 

and interaction between its components.

The epithelial component of the gingiva provides the first line of defence in the 

periodontal region and presents with regional morphological variations such as oral, 

sulcular and junctional epithelium that are a reflection of tissue adaptation to the tooth 

and alveolar bone. Although its main role is one of protection to the underlying 

connective tissues, the epithelium is now recognised as having an active role in the 

innate host defence (Dale and Fredericks 2005). By rapid renewal and constant 

shedding of the epithelial cells, in addition to an increase in gingival crevicular fluid 

flow, bacterial colonization is efficiently inhibited. Bacterial internalization in a tissue 

culture model and in-vivo in severe periodontitis followed by epithelial cell apoptosis 

has been demonstrated (Andrian et al. 2004; Vitkov et al. 2005) and a decrease in 

mitosis and increased apoptosis of gingival epithelial cells at sites exhibiting severe 

inflammation has been reported (Carro et al. 1997).  Additionally, in-vitro experiments 

have demonstrated expression of Toll-like receptors and protease activated receptors 

by oral epithelial cells  in response to stimulation with P. gingivalis, leading to secretion 

of pro-inflammatory cytokines (Lourbakos et al. 2001; Ren et al. 2005).  Recent 

research has reported that antimicrobial peptides such as  defensins and LL-37  

contribute to host defence and homeostasis by recruiting immune cells in times of 

health and disease (Greer et al. 2013).  These antimicrobial peptides present in the 

epithelium contribute to the protection of the host tissue from dental plaque that resides 

around the tooth and root surfaces (Dale and Fredericks 2005). For example, 

defensins and LL-37 have the ability to enhance phagocytosis by macrophages (Yang 

et al. 2004a; Kohlgraf et al. 2010), they can also serve as chemo attractants for 

monocytes, macrophages, T-lymphocytes and immature dendritic cells (Chaly et al. 

2000; Yang et al. 2004a; Yeung et al. 2011). Defensins have the ability to enhance 

antigen-specific immune response (Kohlgraf et al. 2010; Yeung et al. 2011) and 



8 

suppress the production of pro-inflammatory cytokines of certain microbial agents 

(Kohlgraf et al. 2010). The defensins and LL-37 can activate and degranulate mast 

cells (Yang et al. 2004a; Kohlgraf et al. 2010) as well as regulate the complement 

system (Yang et al. 2004a; Kohlgraf et al. 2010). A recent clinical study evaluating 

human beta defensin (HBD) levels in GCF of patients with localised aggressive 

periodontitis  reports that the levels of defensins decreased significantly post treatment, 

thereby suggesting that the appropriate expression of HBD peptides in health and 

disease may contribute to the maintenance of periodontal homeostasis, possibly 

through its antimicrobial effects and the promotion of adaptive immune responses 

(Ebrahem 2013). The cells of the junctional epithelium actively facilitate leukocyte 

recruitment to the site of inflammation by expressing chemotactic factors such as IL-8, 

intercellular adhesion molecules (ICAM)  and E-selectin that aid leukocyte migration 

from the blood vessels (Moughal et al. 1992; Nylander et al. 1993; Gemmell et al. 1994; 

Tonetti et al. 1994; Tonetti 1997; Tonetti et al. 1998).  Calprotectin, a protein expressed 

in neutrophils, monocytes, and gingival keratinocytes protects against binding and 

infection by P. gingivalis (Nisapakultorn et al. 2001). Collectively, the above studies 

demonstrate the important role of the cells of the epithelium in maintaining   an active 

defence mechanism.

The connective tissues of the periodontium are composed of two soft tissues (gingival 

connective tissue and periodontal ligament) and two hard tissues (alveolar bone and 

cementum). Although each component has a unique tissue  architecture  and 

characteristic biochemical composition, each of these components influences  the 

cellular activities of the adjacent structures and the interactions  between these 

components not only determines tissue health, but also reflects events associated with 

tissue damage, repair and regeneration (Bartold and Narayanan 2006).  The 

extracellular matrix within each periodontal component comprises both fibrous and 

nonfibrous elements including collagens, elastin, fibronectin, laminin, osteopontin, 

bone sialoprotein, a variety of growth factors and other noncollagenous proteins, 
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proteoglycans, lipids, minerals and water.  The cellular component of the periodontium 

comprises of differentiated cells such as fibroblasts, osteoblasts, cementoblasts, 

epithelial cells (cell rests of Malassez), endothelial cells, as well as cells participating 

in the immune and inflammatory responses.  It also contains a population of 

stem/progenitor cell population which originate from the ectomesenchymal cranial 

neural crest cells which possess the capacity to differentiate into periodontal ligament 

fibroblasts, cementoblasts and osteoblasts  (Sodek and McKee 2000; Bartold et al. 

2006; Hynes et al. 2012). It is speculated that these progenitor cell population play an 

active role in repair and regeneration. Collectively these cells play a major role in the 

formation as well as degradation of the extracellular matrix which is in a state of 

constant renewal.  The main role of fibroblasts is the synthesis and secretion of 

collagen, glycosaminoglycans, proteoglycans and glycoproteins.  Whilst the main role 

of gingival fibroblasts is to maintain the synthesis and integrity of the gingival 

connective tissue, the periodontal ligament fibroblasts have specialised functions 

which are concerned with the formation and maintenance of the periodontal ligament, 

including its repair or regeneration following damage (Berkowitz, 1992). The fibroblasts 

within the PDL are a heterogeneous population (McCulloch and Bordin 1991) both 

around the same tooth and between different teeth. Compared to other fibroblasts, 

PDL fibroblasts are unique in that they possess the capacity to differentiate into 

cementoblasts and osteoblasts (Roberts et al. 1982; McCulloch and Melcher 1983). 

This osteogenic differentiation capacity is reflected in that, PDL fibroblasts in-vivo

possess alkaline phosphatase activity (Rooker et al. 2010).  

Furthermore, variations in alkaline phosphatase activity have been reported between 

subsets of PDL fibroblasts in that, PDL fibroblasts towards the tooth side express low 

alkaline phosphatase activity and PDL fibroblasts towards the bone side express high 

alkaline phosphatase activity (Rooker et al. 2010). In addition to alkaline phosphatase 

activity, the PDL fibroblasts are characterised by a high rate of collagen turnover 

(Sodek 1977) which occurs by simultaneous synthesis and degradation of collagen 
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matrix.  These  cells have been shown to possess osteoblast like characteristics 

including the production of osteonectin (Somerman et al. 1990; Nohutcu et al. 1996) 

as well as osteocalcin (Nojima et al. 1990b). From the above studies it is clear that   

phenotypically distinct and functional sub populations of cells of both fibroblast as well 

as osteoblast lineage exist in the periodontal ligament.   

Other cells present in the periodontium are the osteoblasts, cementoblasts, osteoclasts 

and cementoclasts which may be found lining the endosteal and periosteal bone 

surfaces and cementum surfaces, more obvious in the stages of active deposition or 

resorption. Osteoblasts synthesize and regulate the deposition of bone organic matrix 

including collagen type I, proteoglycan, osteonectin, osteocalcin, bone sialoprotein and 

osteopontin.  These cells also express and release alkaline phosphatase, which has 

been shown to be closely associated with new bone formation.  The process of 

mineralisation is controlled by osteoblasts, which may become trapped in their own 

secretion and subsequently become incorporated in the matrix as osteocytes.  

Osteoclasts, the large multinucleated cells are responsible for resorbing bone.  

Cementoblasts are morphologically and functionally identical to osteoblasts and their 

function is the synthesis and secretion of the components of the organic matrix of the 

cementum.  Similar to bone formation, during the formation of cememtum, 

cementoblasts become trapped and are then referred to as cementocytes.  Unlike 

bone, there is no evidence of cementum remodelling, however there is continuous, 

slow apposition of surface cementum as cementoblast activity continues at a low level 

throughout life. Resorption of cementum is carried out by cementoclasts and occurs in 

response to excessive occlusal stress, orthodontic movement, pressure from tumors 

or cysts, or due to deficiency of vitamin A and D, where bone and tooth mineralization 

is altered leading to malformed and weak bones and teeth, premature tooth loss and 

tooth infections.  
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1.3.1      Extracellular matrix of the periodontium 

Extracellular matrix assembly and subsequent mineralization in cementum and bone 

occur through successive, highly ordered steps with a lag phase existing between 

matrix deposition and mineralization. As part of this process, extracellular matrix 

proteins are secreted, sometimes modified or cleaved by enzymes and then organized 

into macromolecular assemblies, which together is then structured into a mature 

fibrillar matrix receptive to mineral deposition (McKee et al. 2005).   These events are 

orchestrated by the osteoblasts and cementoblasts with each being associated with a 

thin layer of unmineralised matrix that subsequently mineralizes at the ‘mineralization 

front’ to form the completed tissue. Additional mineralization and mineral changes such 

as further carbonate substitution in the hydroxyapatite lattice (Cazalbou et al. 2004) 

occur slowly over time (Boskey and Coleman 2010), along with changes in the organic 

phase of the extracellular matrix (Kaartinen et al. 2002; Kaartinen et al. 2005) and 

proteolytic degradation, in a maturation process that ultimately provides an adequate 

final functional state to provide for the biomechanical demands placed on each tissue.   

The extracellular component of the periodontium is made up of collagen I, III, IV, V, VI 

and XII.  In the periodontal ligament, type I and III predominate.  Much of the type I 

collagen which is fibrillar, is gathered together to form bundles which are about 5µm in 

diameter and these are known as principal fibres. Type III is more elastic in nature and 

may be important in maintaining the integrity of the ligament during the small vertical 

and horizontal movements which occur during chewing.  The main collagen in the 

organic matrix of bone and cementum is type I and this is virtually insoluble due to 

cross-links which provide the structural and mechanical stability for normal function 

(Bartold et al. 2006).   In addition to collagen fibres, the oxytalan fibres which play an 

important role in support, are present in the periodontal ligament.  
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1.3.1.1     Proteoglycans 

Numerous non-collagenous components exist in the periodontal tissues. Within the 

matrix, proteoglycans (PG) provide important roles in matrix assembly, cell signalling 

and mineralisation. 

Proteoglycans are characterized by a protein core to which one or more anionic GAG 

chains are attached. The proteoglycans are divided into extracellular matrix 

proteoglycans and cell surface proteoglycans (Fig 1.1). 
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Fig. 1.1: Classification of proteoglycans (PGs) based on their  location and binding. The 

heterogeneous group of PGs include those of the extracellular matrix, such as small leucinerich 
PGs (SLRP; e.g., decorin) and modular PGs. Modular PGs are divided into hyalectans 
(hyaluronan- and lectin-binding PGs) and the non-hyaluronan binding PGs of the basement 
membrane. The third group of cell-surface PGs encompasses mainly the membrane spanning 
syndecans (eg syndecan-4) and glypicains. Serglycin is an intracellular PG found in 
hematopoietic and endothelial cells (Schaefer and Schaefer 2010).  
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The physical characteristics and biological functions of the PGs are determined by the 

physicochemical characteristics of the GAG chains and partly by the structure of the 

core proteins interactions between PGs and other extracellular molecules (Embery et 

al. 2000).  GAGs are covalently bound to core proteins and are all sulphated with the 

exception of hyaluronan which exists unattached to a core protein and is non sulphated 

(Prehm 1984).  Seven species of GAGs exist (Fig 1.2), chondroitin-4-sulfate (C4S), 

chondroitin-6-sulfate (C6S), dermatan sulphate (DS), heparan sulfate, heparin, 

keratan sulfate and hyaluronan (Embery et al. 2000). In the periodontium, the non-

sulphated hyaluronic acid, and the sulphated heparin sulphate, chondroitin-4-sulfate 

and chondroitin-6-sulfate are present, of which condroitin-4-sulphate predominates 

(Larjava et al. 1992).  The turnover rate of these molecules is faster than collagen and 

they have many functions including ion and water binding and exchange, cell 

signalling, control of collagen fibrillogenesis and fibre orientation.  The water binding 

function   provides the ligament with a hydraulic cushion effect in resisting the forces 

of mastication as well as traction on the ligament fibres.  Cell adhesion and growth are 

regulated by the proteoglycans which also have the capacity to bind and regulate 

growth factor activity (Bartold and Narayanan 2006).   In recent years, it has been firmly 

established that the small leucine-rich proteoglycans (SLRPs), whose distinctive 

feature is the presence of 7 to 24 leucine-rich repeats in the core protein, are 

functionally involved in normal bone development and homeostasis (Nikitovic et al. 

2012).  Among the SLRPs, decorin and biglycan, which are conjugated to dermatan 

sulphate or chondroitin sulphate GAGs, with one or two GAG chains respectively, have 

been identified in several connective tissues. Studies have confirmed that these 

molecules have specific designated roles during all phases of bone formation including 

periods relating to cell proliferation, organic matrix deposition, remodelling and mineral 

deposition (Wilda et al. 2000; Soto-Suazo et al. 2002).  These SLRPs  influence cell 

behaviour by various means such as,  act as cytokine reservoirs in the extracellular 

matrix (Tillgren et al. 2009), matrix barriers restricting molecular diffusion (Magzoub et 
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al. 2008) and matrikines directly interacting with cell-surface receptors (Schaefer and 

Iozzo 2008). 

Following synthesis, the SLRPs are secreted into the pericellular matrix where they 

either diffuse and bind to the components of the extracellular matrix such as collagens 

or remain in free form.  The localisation of the SLRPs in the ECM appears to be strictly 

predetermined with specific SLRPs being predominantly distributed variably in the 

ECM ‘proper’ whereas others are localised both to the ECM and pericellular matrix 

(Henry et al. 2001; Schaefer and Iozzo 2008).  The SLRPs located in the ECM  ‘proper’ 

bind to various types of collagens thereby regulating the kinetics, assembly and special 

organisation of fibrils in tendon, bone and cornea (Iozzo 1997; Reed and Iozzo 2002; 

Chakravarti et al. 2006).  Besides being mainly sequestered in the ECM, these SLRPs 

can also exist as soluble molecules, as when released from the ECM by proteolytic 

digestion of injured tissues. In both the bound as well as the soluble form, the SLRPs 

interact with various growth factors including TGF-β (Hildebrand et al. 1994), BMP-4 

(Chen et al. 2004), PDGF (Nili et al. 2003), TNF-α (Tufvesson and Westergren-

Thorsson 2002) and IGF-1(Schonherr et al. 2005). The biological interactions 

modulate growth factor bioavailability through the formation of specific concentration 

gradients.  Pericellular localisation of SLRPs allows these molecules to interact with 

various molecules, ligands and cell surface receptors, thereby modulating a wide range 

of cell matrix interactions (Schaefer and Iozzo 2008). 
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Fig 1.2: Structural features of some small leucine-rich proteoglycans and versican, a 

hyaluronan-binding proteoglycan. HBR: hyaluronan-binding region, GAG: glycosaminoglycan, 
CS: chondroitin sulfate, DS: dermatan sulfate, Ig: immunoglobulin, KS: keratan sulfate, EGF: 
epidermal growth factor.    Adapted from Periodontology 2000, Vol. 24, 2000, 193–214: 
Connective tissue elements as diagnostic aids in periodontology(Embery et al. 2000) 
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1.3.1.1.1   Role of SLRPs in modulating cellular activity

Waddington et al (2003b), reported that dermatan sulphated (DS) biglycan is 

expressed during phases of proliferation and differentiation, whereas chondroitin 

sulphated (CS) biglycan is expressed at onset of mineralisation (Waddington et al. 

2003b).  Their results were suggestive of a potential role for decorin and biglycan as 

signalling molecules in that, the early expression of DS biglycan may be associated 

with directing proliferation or development of the osteoblast phenotype and the later 

expression of decorin may indicate a role in down regulation of cell proliferation.  

Biglycan is suggested to favour proliferation during osteoblast development 

(Waddington et al. 2003b) and proliferation of vascular smooth muscle cells by CDK2- 

and p27- dependent pathways  (Shimizu-Hirota et al. 2004).  In addition to its 

proliferative capacity, biglycan has anti-proliferative effects such as inhibition of tumor 

cells in pancreatic cancer (Weber et al. 2001) as well as inhibition of BMMSC (Inkson 

et al. 2009).   Biglycan also influences cellular differentiation, and is shown to control 

osteoblast differentiation by modulating BMP4 (Chen et al. 2004).  Additionally, it has 

been shown that  biglycan is a critical component in organising the niche of tendon 

stem/progenitor cells, and its absence affects tendon progenitor differentiation by 

modulating BMP signalling (Bi et al. 2007).   

Several studies have reported that biglycan controls key signalling pathways regulating 

osteogenic program, including the activity of  TGF-β (Bi et al. 2005), BMP-4 (Ye et al. 

2012),  Wnt and NFκB (Berendsen et al. 2011), which influence both the number of 

available osteogenic precursors as well as their subsequent development, 

differentiation and function in bone formation (Nikitovic et al. 2012).  These studies 

suggest that biglycan may regulate proliferation in a cell-specific manner via specific 

receptor and signalling pathways, or by an indirect and unidentified mechanism.  

Moreover biglycan is implicated as a co-regulator of growth factors such as FGF2 (Hou 
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et al. 2007) and TGF-β (Chen et al. 2002) which are important factors for progenitor 

proliferation and mineralisation.  Additionally, biglycan plays a role  as a signalling 

molecule important to the innate system whereby, on tissue stress or injury, 

sequestered and immunologically inactive biglycan is released from the ECM by 

proteolytic mechanisms (Nikitovic et al. 2012).  Decorin, signals through IGF-IR to exert 

anti-apoptotic effects under physiological conditions, thereby favouring normal cell 

growth (Schonherr et al. 2005) and also has anti-tumor properties (Reed et al. 2002).  

It has been suggested that in the absence of decorin and biglycan, the proper 

sequestration of TGF-β within the extracellular matrix is prevented.  Initially decorin 

binds to TGF-β (Kresse and Schonherr 2001) followed by biglycan to form SLRP/TGFβ 

complexes which may be excreted or in the presence of collagen I are sequestered in 

the ECM thus downregulating TGF-β signalling (Abdel-Wahab et al. 2002). However, 

the interaction between the SLRPs and TGF-β could also enhance the bioactivity of 

TGF-β as seen in the case of decorin during the process of bone formation during 

remodelling  (Takeuchi et al. 1994) or muscle formation (Riquelme et al. 2001).  

Therefore, the direct binding of excess TGF-β to its receptors could cause a switch of 

fate from growth to apoptosis and thus lead to decreased number of osteoprogenitor 

cells and subsequent reduced bone formation (Bi et al. 2005). Therefore SLRPs 

influence cell behaviours including differentiation, apoptosis, proliferation and 

migration through multiple means such as act as cytokine reservoirs in the ECM, as 

matrix barriers restricting molecular diffusion and matrikines directly interacting with 

cell surface receptors as mentioned above in section 1.3.1.1. 
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1.3.1.1.2   Role of SLRPs in matrix assembly

Although collagen fibrils can self-assemble, the cell also participates in organization of 

the fibrils through interactions involving integrins, fibronectin and other minor collagens 

such as thrombospondins, tenascins etc (Kadler et al. 2008). SLRPs have the ability 

to interact with collagen molecules and facilitate fibril formation thereby playing an 

important role in the provision of a collageneous framework which allows for further 

mineral deposition.  The cell-matrix interactions facilitated by the SLRPs, may be by 

directly interfering with plasma membrane receptors and pericellular matrix molecules. 

For example, decorin inhibits cell attachment through fibronectin (Schmidt et al. 1991) 

thrombospondin (Davies Cde et al. 2001), tenascin (Minamitani et al. 2004), whereas 

lumican (Zeltz et al. 2010), osteoadherin (Lucchini et al. 2004) and chondroadherin 

(Camper et al. 1997), all have high affinity for integrins. Biglycan on the other hand, 

regulates muscle cell behaviour by binding plasma membrane α-dystroglycan through 

its GAGs (Bowe et al. 2000) playing a role in muscular dystrophies.   Cell-membrane 

associated SLRP such as Nyctalopin act by integrating cell receptors and pericellular 

matrix proteins to modulate cell behaviour (Cao et al. 2011). 

Studies have shown that an altered expression of SLRPs, disrupts matrix integrity 

resulting in structural deficiency in that, SLRP-deficient mice exhibit phenotypes that 

are consistent with dysfunctional matrix assembly in connective tissue such as skin, 

bone, cartilage and teeth (Haruyama et al. 2009), as well as non-connective tissues 

such as liver (Baghy et al. 2011) and pregnant uterus (Sanches et al. 2010; Wu et al. 

2012b). For instance, targeted disruption of the biglycan gene leads to osteoporosis-

like phenotype in mice (Xu et al. 1998), biglycan/fibromodulin deficient mice have 

abnormal collagen fibrils in tendons that lead to gait impairment, ectopic ossification 

and osteoarthritis (Ameye et al. 2002), and Ehlers-Danlos like changes such as skin 

laxity and fragility as well as joint laxity are found in decorin and biglycan deficient mice  

as well as lumican and fibromodulin deficient mice (Corsi et al. 2002). Indeed, altered 
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expression of of SLRPs has been observed in a broad range of human diseases such 

as Marfan’s syndrome (Raghunath et al. 1993), localised scleroderma (Beavan et al. 

1993), infantile progeroid patients (Beavan et al. 1993), osteogenesis imperfect 

(Fedarko et al. 1995), systemic sclerosis (Westergren-Thorsson et al. 1996) and 

carbohydrate-deficient glycoprotein syndrome (Gu and Wada 1995).   

1.3.1.1.3   Role of SLRPs in mineral deposition 

Studies by Waddington et al (2003a and b),  have demonstrated that DS decorin is 

associated with early matrix deposition and maturation, while CS decorin presents 

during matrix mineralisation (Waddington et al. 2003b).  Furthermore, these studies 

suggest that GAG degradative products may contribute towards bioactivity, whereby 

DS may act to inhibit mineralisation, and conversely CS could control and/or promote 

mineralisation (Waddington et al. 2003a), having the capacity to bind five-fold more 

calcium than DS (Embery et al. 1998).  Preceding  studies investigating  molecular 

mechanisms have suggested CS adopts a rigid structure in solution, whilst DS is more 

flexible in nature, adopting several energetic conformations, thus providing a 

mechanism  by  which the SLRPs play an important role in interacting with crystal 

mineral while allowing for crystal growth (Embery et al. 1998). These differences may 

imply that these PGs perform differing functions during matrix formation.  

1.3.1.1.4   Role of SLRPs in bone formation 

The key role of biglycan in bone development is corroborated by the observation that 

biglycan deficiency leads to structural abnormalities in collagen fibrils in bone, dermis 

and tendon (Corsi et al. 2002) and delayed osteogenesis  (Chen et al. 2003).  Targeted 

deletion of genes encoding for decorin and biglycan within mice have demonstrated 

that, following single deletion of the gene within the mouse genome, the most striking 

effect was observed for biglycan knockouts which  developed as  osteoporotic 
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phenotype, failing to achieve peak bone mass due to decreased bone formation with 

significantly short femurs (Ameye et al. 2002).  In-vitro experiments, demonstrated that 

the number and responsiveness of bone marrow stromal cells to TGFβ and hence 

osteogenic precursor cells,  decreased dramatically with age while apoptosis rates 

increased (Chen et al. 2002). These effects were also observed within teeth, where 

transition from predentine to dentine appeared to be impaired and the thickness of 

enamel was dramatically increased (Goldberg et al. 2002).  For biglycan knockouts, 

the collagen fibrils in bone were very irregular in size, demonstrating variability in size 

along the length of the individual fibril with notches and protuberances frequently 

observed (Corsi et al. 2002; Goldberg et al. 2002). Conversely, for the decorin 

knockouts, bone mass was not affected, with bone appearing   both at histological and 

macroscopic levels, to be similar to the wild type (Corsi et al. 2002).  Interestingly, for 

the double knockouts, the decrease in bone mass was more severe and developed 

earlier than the single biglycan knockout, suggesting the effects of decorin and 

biglycan to be synergestic within bone (Corsi et al. 2002). These studies led to the 

conclusion that although single deletion of either decorin or biglycan would suggest 

that they provide distinct functions,  the gross effects witnessed from the double 

knockout indicate that a deficiency in one may be compensated by the presence of the 

other (Ameye and Young 2002).  

Moreover, recent studies have demonstrated a link between SLRPs and aortic valve 

stenosis. Both decorin and biglycan are also expressed in healthy arteries (Bianco et 

al. 1990; Yeo et al. 1995) with the adventitia of aorta being a major site for biglycan 

deposition (Heegaard et al. 2007).  However, biglycan plays a somewhat sinister role 

in the development of atherosclerotic plaques and aortic valve stenosis in that, biglycan 

promotes lipid deposition through binding to Toll-like receptor, induction of cytokine 

production and inflammation. It binds to Toll-like receptors 2 and 4 of macrophages, 

and thus functions as one of mediators of innate immunity (Schaefer and Iozzo 2008). 
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It also induces the expression of BMP-2 and alkaline phosphatase in human aortic 

valve interstitial cells primarily through Toll-like receptor 2, and thus contributes to the 

osteogenic process and calcifications during pathogenesis of aortic valve stenosis 

(Song et al. 2012). 

In carcinoma cells, decorin signals mainly via the epidermal growth factor receptor 

(EGFR) (Moscatello et al. 1998), whereas in endothelial cells and renal fibroblasts 

decorin binds to the insulin-like growth factor-I receptor (IGF-IR), thereby regulating 

apoptosis and synthesis of other extracellular matrix constituents(Schonherr et al. 

2005; Schaefer et al. 2007) In contrast, biglycan, is an endogenous pro-inflammatory 

ligand for the TLR2 and TLR4 in macrophages(Merline et al. 2009) and on  its release 

from the extracellular matrix, it signals through the MAP kinases p38 and ERK and 

through the NF-kB pathways (Schaefer et al. 2005) resulting in enhanced infiltration of 

mononuclear cells into the lung in experimental sepsis and into the kidney in unilateral 

ureteral obstruction(Schaefer et al. 2002; Schaefer et al. 2005). 

On the other hand,  dermatan sulphate proteoglycan play an important role in 

extracellular matrix organisation during the wound healing process by binding to FGF2 

(Turnbull et al. 1992) and promoting FGF mediated cell proliferation via FGFR1 (Penc 

et al. 1998). In addition to a functional role in wound healing, the dermatan sulphate 

molecule itself may have a role in reparative processes as opposed to deleterious 

effects during inflammation. However, it has also been speculated that dermatan 

sulphate may contribute towards pathological conditions (Malavaki et al. 2008).  

From the evidence presented in the literature, it is very clear that SLRPs have several 

important roles in a variety of biological and pathological processes, which include 

regulating cell proliferation, migration and differentiation in early developmental stages, 

regulate matrix assembly in later stages and further, as an indispensable structural 

component of the ECM. In pathological conditions, such as during inflammation and 

wound healing, SLRPs facilitate tissue repair and regeneration (Ansorge et al. 2012; 
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Dunkman et al. 2013). Additionally, recent research has highlighted that SLRPs may 

be associated with tissue changes associated with aging (Dunkman et al. 2013).The 

ECM are regulated by SLRPs during assembly, however, these matrices also regulate 

the dynamic distribution and function of SLRPs during development and disease. 

Therefore it has been suggested that the SLRPs in ECM matrices may provide us with 

biomarkers for bone diseases and perhaps enable novel therapeutic interventions in 

management of a broad range of diseases (Theocharis et al. 2010; Nikitovic et al. 

2012; Chen and Birk 2013).  
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1.3.1.2      Glycoproteins

The main glycoproteins present in the periodontium are fibronectin and tenascin.   

Fibronectin is a high molecular weight insoluble fibre-forming glycoprotein present both 

extra and intracellularly (Midwood et al. 2006) and binds to cells as well as  other sites 

that bind to collagen, heparin and fibrin (Mariotti 1993).  This is thought to promote the 

attachment of cells to the substratum and especially to collagen.  Additionally, cells 

preferentially adhere to fibronectin which may be involved in cell migration and 

orientation (Berkovitz et al, 1992).   In view of the high turnover rate of the periodontal 

ligament, it is possible that fibronectin may have considerable biological significance.  

Immunohistological localization techniques have revealed that fibronectin is uniformly 

distributed throughout the periodontal ligament, both during eruption and in fully 

erupted teeth (Steffensen et al. 1992; Romanos et al. 1993).  However, fibronectin is 

expressed particularly strongly along attachment sites of the periodontal ligament 

collagen fibres to cementum but not to alveolar bone (Matsuura et al. 1995).  It is also 

found in the endosteal spaces, periosteum and bone lining cells at their interface with 

alveolar bone (Steffensen et al. 1992).   In the cementum, its expression is weaker 

than in the periodontal ligament and ultrastructural studies have localised fibronectin 

over collagen fibres and at certain sites at the cell collagen interface (Zhang et al. 

1993).   Fibronectin has also been localised in the basement membrane and lamina 

propria (Steffensen et al. 1992) with a fibrillar and diffuse distribution (Romanos et al. 

1993).   In addition to its main role as an adhesive protein, fibronectin is involved in 

blood coagulation, wound healing and chemotaxis (Mariotti 1993).  During the terminal 

maturation of many connective tissue matrices, a general loss of fibronectin has been 

observed.  However, its continued presence in the periodontal ligament may be 

indicative of either the ligament retaining immature characteristics or its high turnover.  

On the other hand, expression of tenascin is only maintained during wound healing 

and in a few adult tissues including bone marrow and the periodontal tissues.   Unlike 
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fibronectin, it is not uniformly localised throughout the periodontal ligament but rather 

concentrated adjacent to the alveolar bone and the cementum (Steffensen et al. 1992; 

Becker et al. 1993).  It is found between less densely packed collagen fibrils of the 

periodontal ligament (Zhang et al. 1993) and accumulated towards the alveolar bone 

and cementum (Steffensen et al. 1992) with only weak expression throughout the 

alveolar bone matrix.  Weak expression of tenascin is also observed in cementum 

which may have been deposited prior to mineralisation (Zhang et al. 1993). Elastin, 

laminin (Mariotti 1993), vitronectin (Steffensen et al. 1992) are other glycoproteins that 

play a role in cell attachment  and are present in small amounts within the periodontal 

tissues. 

1.3.1.3   Proteins associated with bone and cementum

Osteonectin, osteocalcin, bone sialoprotein (BSP) and osteopontin are the main 

proteins associated with the hard tissues of the periodontium.   Osteonectin, secreted 

by osteoblasts, is one of the major non-collagenous proteins of bone, with a strong 

affinity for calcium ions thought to play an important role in the initial stages of 

mineralisation (Termine et al. 1981). It has been located in the basal lamina (Bilezikian, 

1996) as well as in the periodontal ligament particularly strongly around the Sharpey’s 

fibres, at the attachment sites between the ligament and alveolar bone and cementum 

(Matsuura et al. 1995).  Osteocalcin, a small protein that is mainly secreted by 

osteoblasts and becomes incorporated into the mineralised matrix soon after its 

secretion, is thought to plays a crucial role in mineralisation (Mariotti 1993).   BSP 

expression marks a late stage of osteoblast differentiation and an early stage of matrix 

mineralisation (Lekic and McCulloch 1996; Gordon et al. 2007).  A weak expression is 

also observed in the periodontal ligament at attachment sites with alveolar bone and 

cementum (Matsuura et al. 1995).  Additionally, BSP is expressed by cells lining  the 
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root surface at early stages of cementogenesis  during tooth development (MacNeil et 

al. 1996).  Although the precise function of BSP  is unknown, it may serve as an 

attachment factor as it has an affinity for collagen fibres.   Osteopontin, is found 

primarily in bone and has an affinity for calcium ions (MacNeil et al. 1995).  It is 

expressed prior to mineralisation and appears to be involved in the attachment and 

movement of osteoblasts and osteoclasts and may possibly function as an inhibitor of 

mineralisation during periodontal ligament development (MacNeil et al. 1995).   

1.4    Turnover in the periodontium 

In health, the regulation of tissue turnover is dependent on the recruitment as well as 

stimulation of the appropriate cells under the influence of growth factors released by 

the functioning mature cells.  These factors exert their effects by binding to specific 

transmembrane  receptors on target cells which generate a cascade of intracellular 

molecular signals (Ioannidou 2006), thereby regulating the activation and proliferation 

of the signalled cells as well as regulating a number of other factors including  cell 

migration and synthesis which are essential events in healing.  Epithelial turnover is 

also affected by hormones, cytokines, growth factors such as EGF, PDGF, TGFs, as 

well as the underlying connective tissue.  The turnover rate in the oral epithelium is 8-

40 days and the junctional epithelium is 4-11 days, with the connective tissue turnover 

in the periodontal ligament being five times higher than alveolar bone and 15 times 

higher than the dermis of normal skin (Eley and Manson, 2010).  The turnover rate in 

the periodontal ligament has been reported to be the highest when compared to other 

connective tissues in the body (Sodek 1977) resulting in constant renewal of the 
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periodontal ligament fibres, the alveolar bone proper as well as the Sharpey’s fibres, 

thereby facilitating adaptation to physical forces exerted on this tissue.  This increased 

turnover in the periodontal ligament may also suggest that these cells are more 

susceptible to destruction in the presence of inflammatory mediators and therefore 

contribute towards the rapid destruction observed in periodontal disease.  

Fibroblasts are responsible for both the synthesis and degradation of all components 

of the ECM with MMPs produced by fibroblasts playing a major role.   Two pathways 

of collagen degradation have been postulated.  The intracellular pathway involves the 

engulfment of the collagen fibrils by the fibroblast followed by digestion by MMP, 

followed by ingestion by phagosome and further degradation by cysteine proteinases.  

The extracellular pathway involves the digestion of relatively large amounts of collagen 

in the extracellular space under the influence of a variety of enzymes such as MMPs 

secreted by fibroblasts.  Additionally, some cytokines may affect collagen, fibronectin 

and proteoglycan synthesis and secretion and these include FGF, PDGF, and TGF.  

Other cytokines such as IL-1 and IFN-γ, PDGF and TGF can stimulate collagenase 

secretion.  In bone, turnover takes place continuously throughout life with deposition 

mediated by osteoblasts and resorption largely mediated by osteoclasts with additional 

support form osteoblasts.  Stimulated osteoblast secrete pro-collagenase which, when 

activated can remove the non-mineralised collagenous surface of bone. Cytokines 

such as RANKL and M-CSF are secreted by osteoblasts which are essential for 

osteoclast differentiation (Kobayashi and Udagawa 2007).  Osteoclasts then spread 

over the bone surface and beneath their ruffled borders secrete acid which dissolves 

the mineral phase.  The process is regulated by PTH, Vit D3 and calcitonin, in addition 

to locally produced factors such as PGE2, leukotrienes and cytokines such as IL-2, IL-

3 and IL-6 as well as growth factors such as TNF, TGF and PDGF. 

Although in health, this turnover process is tightly regulated by cytokines, an imbalance 

between pro-inflammatory and anti-inflammatory cytokines occurs, in response to the 

presence of periodontal pathogens. As a consequence, remodelling becomes 
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imbalanced or dysregulated   leading to rapid destruction and progression of disease.   

However, the most important characteristic of the periodontal ligament  is its capacity 

for repair and regeneration which is reflected in the complex and heterogenous cell 

population within this tissue (Lekic and McCulloch 1996).  The mesenchymal 

progenitor cell population present within the periodontal ligament proliferate, migrate 

and ultimately differentiate leading to the synthesis of new collagen fibres under the 

influence of proteins such as decorin.  Additionally, high proliferation of endothelial 

cells and angiogenesis in the periodontal ligament has been observed during periods 

of repair (Fiedler et al. 2008) and signalling factors such as VEGF and PGE2 from 

endothelial cells have been proposed to promote periodontal ligament progenitor cell 

osteogenesis (Wu et al. 2012a).  A study examining location of stem cells in humans, 

reported its presence in healthy as well as diseased periodontal ligament and that the 

number of these cells were enhanced in the presence of inflammation associated with 

periodontitis (Chen et al. 2006).  The origin and location of the progenitor stem cell 

population has been extensively investigated, with some reports suggesting that these 

cells are present perivascularly adjacent to blood vessels, which on appropriate stimuli 

may give rise to periodontal ligament  fibroblasts or migrate towards bone and 

cementum to form osteoblasts and cementoblasts (Lekic and McCulloch 1996).  Other 

studies suggest that these cells may be present in the vascular channels of the alveolar 

bone which may migrate towards the periodontal ligament (Melcher et al. 1987).  

Additionally, it is also possible that separate precursor cells may be present for each 

distinct mature cell type. 
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1.5       Aetiology of periodontal diseases 

Bacterial plaque is the primary aetiological factor in periodontal disease and the 

disease will not develop in the absence of plaque.  Studies have demonstrated a 

positive relationship between severity of gingivitis and the amount of plaque present 

when oral hygiene was ceased and resumed (Loe et al. 1965).  Further studies showed 

improved  oral hygiene in conjunction with non-surgical periodontal therapy resulted in 

a reduction in gingival inflammation in patients with periodontitis (Badersten et al. 

1984).  

In patients who failed to maintain adequate oral hygiene to remove microbial plaque 

post treatment, the periodontal treatment was generally unsuccessful, (Nyman et al. 

1977; Axelsson et al. 1991).  In addition, animal studies (Lindhe et al. 1970; Lindhe et 

al. 1975; Listgarten et al. 1979), microbiological studies (Socransky et al. 1964; 

Persson et al. 1990b) and immunological studies (Evans et al. 1992b; Persson et al. 

1994) have contributed to the overwhelming evidence to support the role of plaque as 

the primary aetiological factor in periodontal disease. 

The amount of bacterial plaque  or the types of bacteria found in plaque do not by 

themselves appear to explain the prevalence, wide variation and severity of disease 

seen in the adult population (Socransky 1977; Page and Kornman 1997).   

Epidemiological studies have identified groups of patients who are susceptible and 

resistant to disease. In a classical study of the natural history of periodontal disease in 

a population of Sri-Lankan tea workers, Loe and co-workers showed that in the 

absence of conventional oral hygiene  measures, the majority of workers exhibited 

moderate progression of disease whereas 8% suffered rapid progression  and 11% 

did not develop disease (Loe et al. 1986). This evidence supports the view that plaque 

alone is insufficient for disease progression.  
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According to the current concept of disease activity, periodontal pockets go through 

periods of exacerbation and quiescence resulting from bursts of activity followed by 

periods of remission.  Periods of quiescence (inactivity) are characterised by a reduced 

inflammatory response and little or no loss of bone or connective tissue attachment.  A 

build-up of unattached plaque (subgingival biofilm), with its predominantly gram-

negative, motile and anaerobic bacteria starts a period of exacerbation (activity) in 

which bone and connective tissue attachment are lost and the pocket deepens.  This 

period may last for days or weeks or months and is eventually followed by a period of 

remission or quiescence in which gram-positive bacteria proliferate and a more stable 

condition is established.   Periodontal destruction does not occur in all parts of the 

mouth at the same time or on only some aspects of some teeth at any given time.  This 

is referred to as site specificity of periodontal disease.  Sites of periodontal destruction 

are seen next to sites with little or no destruction.  The site specificity and predilection 

in periodontitis and gingivitis probably relates to the retention of plaque in specific 

areas, such as in local areas where oral hygiene is impaired or difficult, in areas of 

calculus accumulation and in areas of restoration overhangs or poor crown margins. 

Therefore, the severity of periodontitis increases with the development of new sites 

and the increased breakdown of existing sites.  Progression of disease occurs when 

the equilibrium between the destructive and protective mechanisms is lost either 

because an increase of destructive factors or a decrease in the effectiveness of 

protective mechanisms. 
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1.6     Pathogenesis of periodontal disease 

It is now well established that periodontal disease activity is determined by a complex 

interplay between the immune system and periodontal pathogens (Gaffen and 

Hajishengallis 2008).  The host response being highly complex, contains both 

protective and destructive elements and may be proactively modified by immune 

subverting pathogens (Gemmell et al. 2007; Kinane et al. 2011). In susceptible 

patients, a dysregulation of inflammatory and immune pathways leads to chronic 

inflammation, tissue destruction and disease.  

Like most biofilms, the dental plaque is built in a continued process characterized by 

succession of different bacterial species, each one with relevant roles in every step of 

biofilm construction (Kolenbrander et al. 2002) 

It is formed initially by the interaction of bacteria with the tooth surface and later by the 

physical and physiological interaction between different species within the microbial 

mass.  Primary colonization on the acquired pellicle is dominated by facultative Gram-

positive bacteria (such as Streptococcus species followed by Actinomyces species). 

These Gram positive cocci and rods coaggregate and multiply and provide receptors 

for the subsequent adhesion of Gram negative organisms (such as Fusobacterium 

nucleatum, Prevotella intermedia) which have a poor ability to directly adhere to the 

pellicle.  The heterogeneity increases as plaque ages and matures.  As a result of 

ecological changes, more Gram-negative strictly anaerobic bacteria colonize 

secondarily and contribute to an increased pathogenicity of the bio-film (Lindhe et al., 

1997).  The supragingival plaque matures to give a new ecological environment that 

strongly influences the growth, accumulation and pathogenic potential of subgingival 

plaque (Schibly et al., 1995).  Although subgingival plaque harbours over 500 species, 

current data suggests that within plaque a limited number of specific pathogenic 

bacteria like Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter 
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actinomycetemcomitans, Prevotella intermedia, Campylobacter rectus, Treponema

species are bacterial species strongly implicated in periodontitis  (Socransky and 

Haffajee 1991; Lovegrove 2004).  These specific pathogens are mostly gram-negative 

anaerobes producing lipopolysaccharides which play an important role in periodontal 

disease (Chen et al. 1995).  For periodontal microorganisms to be pathogenic it must 

be able to first colonize the periodontal tissue, then evade host defence mechanisms 

that are aimed at eliminating these organisms from the periodontal environment and 

finally cause destruction of the host tissue. In periodontal disease, tissue destruction 

results from the interaction of bacteria or bacterial substances with host cells which 

directly or indirectly lead to the degradation of periodontal tissues.  

1.6.1   Role of P. gingivalis LPS in the pathogenesis of   
periodontitis.   

P. gingivalis is a gram-negative rod that is strongly associated with chronic and 

aggressive periodontitis. Several studies suggesting a significant positive correlation  

between P. gingivalis numbers and pocket depth (Kawada et al. 2004) as well as a 

reduction of P. gingivalis numbers was associated with resolution of disease at the 

affected site following treatment (Haffajee et al. 1997; Fujise et al. 2002) confirmed the 

association of P. gingivalis with periodontal disease.  Moreover, experimental 

implantation of P. gingivalis in animal models induces an inflammatory response and 

periodontal bone loss (Evans et al. 1992a; Hajishengallis et al. 2011). This species 

possesses a number of potential virulence factors, such as cysteine proteinases 

(gingipains), lipopolysaccharide (LPS), capsule and fimbriae (Offenbacher 1996; 

Lamont and Jenkinson 1998). The carbohydrate capsule on its outer surface prevents 

opsonisation by complement and inhibits phagocytosis and killing by neutrophils.  P. 

gingivalis produces an array of toxins and proteolytic enzymes with the potential to 

degrade collagen and other constituents of the extracellular matrix.  This bacterium 
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releases copious amounts of outer membrane vesicles containing LPS (Grenier et al. 

1995), which can penetrate periodontal tissue (Schwartz et al. 1972; Moore et al. 1986; 

McCoy et al. 1987) and thus participate in the destructive innate host response 

associated with disease.   P. gingivalis LPS (Fig 1.3) has been considered to be an 

important pathogenic component in the initiation and development of periodontal 

disease (Hamada et al. 1994; Tobias et al. 1997) because bacterial LPS is known to 

be a potent stimulator of various biological responses such as bone resorption, 

polyclonal B-cell activation, inhibition of bone formation and fibroblast proliferation.  

LPS from P. gingivalis induces monocytes-macrophages to secrete TNF-α (Shapira et 

al. 1994; Shapira et al. 1998) and can also induce tissue necrosis (Amar 1996; 

Champagne et al. 1996). In-vitro studies have confirmed that whole bacteria and their 

respective isolated LPS yield similar responses (Darveau et al. 1991) and in vivo

studies have validated the important role of LPS in triggering inflammation in response 

to bacterial infection (Khan et al. 1998; Somerville et al. 1999; Haziot et al. 2001).   All 

Gram-negative LPS’s are known to activate the complement cascade by the alternative 

pathway which in turn generates prostaglandins resulting in bone resorption, with 

recent studies demonstrating that pathogens may not simply undermine complement 

or TLRs (or both) as separate entities, but may also exploit their crosstalk pathways 

(Roy and Mocarski 2007; Lambris et al. 2008; Wang et al. 2010).  
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Fig 1.3:      General structure of bacterial LPS: Lipid A, core region and specific O-chain. Rough 

type LPS(R) do not contain specific O-chain, semi rough (SR) contain a repetitive unit of specific 
O-chain and smooth type (S) contain two or more repetitive units of specific O-chains (Pupo E 
and Hardy E, 2009). 
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1.6.1.1    Receptors for LPS 

PDL cells are not only structural elements of the periodontium, but actively influence 

immune responses by interaction with innate immune cells (Konermann et al. 2012b). 

Evidence suggests that fibroblasts, which are known to produce paracrine immune 

modulators, are crucially involved in inflammation control and in the regulation of 

immune responses (Smith et al. 1997; Svensson and Kaye 2006) by the synthesis of  

immunomodulatory cytokines that  influence the local response to infections (Rizzo et 

al. 2010).  The release of inflammatory mediators occurs as a consequence of 

activation of cells  through a complex mechanism involving  CD14 and TLRs, which 

are a class of LPS receptors, resulting in  the signal transduction in LPS responsive 

cells (Fig 1.3).  

Pathogen-host interaction takes place on release of the bacterial components resulting 

in activation of host cells such as neutrophils, monocytes, macrophages, fibroblasts 

which generate an inflammatory response. Recognition of bacterial components by the 

host is a specific mechanism and involves two main components namely pattern 

recognition receptors (PRRs) such as TLRs, CD14 and pathogen associated molecular 

patterns (PAMPs) such as LPS, genetic material and fimbriae.  Once PRRs recognise 

PAMPs and bind to PAMPs, other extracellular and intracellular proteins are attracted 

to this complex to form the receptor cluster.  
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1.6.1.1.1    CD14 receptors 

The CD14 molecule which is primarily expressed on macrophages was the first protein 

to be identified as an LPS receptor for initial bacterial recognition and reported to bind 

with LPS and mediate LPS induced cell activation (Wright et al. 1990; Tobias et al. 

1995).  Many lipid containing molecules including LPS, microbial lipoproteins and the 

walls of streptococcal molecules can bind to CD14 (Pugin et al. 1994).  Two forms of 

CD14 molecules have been identified. One is the glycosylphosphatidylinositol (GPI)-

anchored membrane CD14 (mCD14) and the other is the soluble form of CD14 

(sCD14), which lacks the GPI structure (Bazil et al. 1989). CD14 expression has been 

correlated with increased sensitivity of a number of cells to LPS and other microbial 

molecules in their ability to activate downstream signalling events and cytokine 

production (Wright et al. 1990; Ulevitch and Tobias 1995; Wright 1995).  On its own, 

CD14 is unable to send signals into the cells as it is a GPI anchor protein and lacks a 

membrane bound domain and intracellular domain (Wright et al. 1990; Ulevitch and 

Tobias 1995; Wright 1995).  Toll like receptors, mainly TLR-2 and TLR-4 (Hirschfeld et 

al. 1999; Hajishengallis et al. 2002) act as a co-receptor to CD14. The observation that 

CD-14 deficient mice are hyporesponsive to LPS, strongly suggests that CD14 does 

play a very crucial role in this process, particularly in cellular activation and cytokine 

production (Haziot et al. 1998).  These receptors have been identified on by several 

studies on gingival fibroblasts, periodontal fibroblasts and osteoblasts (Amano et al. 

1997; Kadono et al. 1999; Hatakeyama et al. 2003; Scheres et al. 2011). 
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Fig 1.4: Toll-like receptors are involved in the recognition of various infective agents. 

TLR2+TLR1/TLR6 bind lipoproteins, TLR3 binds dsRNA, TLR4 binds LPS, TLR5 binds 
flagellin, TLR7 binds viral components and TLR9 binds bacterial DNA.



38 

Fig 1.5: Toll-like receptor (TLR) signaling: stimulation of TLRs by periodontal 

pathogen associated molecular patterns triggers the association of myleloid 
differentiation primary-response protein 88 (MyD88), which in turn recruits IL-1 
receptor associated kinase-4 (IRAK) which is activated by phosphorylation and then 
associated with TRAF6 (TNF receptor associated factor 6) leading to activation MyD88 
dependent or MyD88 independent signalling pathway resulting in activation of NFκB 
resulting in gene activation and secretion of pro-inflammatory cytokines (Kirkwood et 
al. 2007). 
Reproduced from  Periodontology 2000 :43 (1) Novel host response therapeutic 
approaches to treat periodontal diseases. 
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However, studies by different groups (Sugawara et al. 1998; Wang et al. 1998)  report 

inconsistent results on CD14 expression of fibroblasts.  These inconsistencies could 

possibly be because of difference in the origin of these fibroblast cells.  For example, 

periodontal ligament fibroblasts have an origin from the cells of the dental follicle 

whereas gingival fibroblasts have their origin from the enamel organ and therefore the 

variation in response to bacterial components.  Their findings suggest that fibroblast 

cells are not a homogenous cell population and that there is wide variation among 

fibroblast cells with respect to form, proliferation rate, expression of membrane 

markers, function and other characteristics.  In addition, gingival fibroblasts 

heterogeneously express different levels of  CD14 (Sugawara et al. 1998), IL-10 

receptor (Wang et al. 1999a) and Toll-like receptor (Wang et al. 2001) and can be 

separated into several populations. Gingival fibroblasts exposed to LPS from P. 

gingivalis respond by increasing the mRNA  and protein levels of the cytokines IL-1α, 

IL-1β, IL-6, Il-8 and TNF-α as well as receptors  CD14, TLR-2 and 4 (Wang et al. 2003). 

LPS on release from the bacterial cells form LPS aggregates due to the amphiphilic 

nature of the molecule.  LPS binding protein (LBP) is a lipid transfer molecule found in 

normal and acute phase serum that catalyses the movement of the LPS monomers 

from the LPS aggregates to CD14 (Hailman et al. 1994). Once the LPS- LBP-CD14 

interaction takes place, downstream signalling events are activated resulting in 

cytokine production (Wright et al. 1990; Ulevitch and Tobias 1995; Wright 1995).  
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1.6.1.1.2   Toll like receptors (TLRs)

Toll like receptors are a family of receptors (TLR1-TLR13) involved in the recognition 

of a wide range of microbial molecules, such as lipopolysaccharide (LPS) from Gram 

negative bacteria and peptidoglycan from Gram positive bacteria. These are 

expressed by myelomonocytic cells as well as endothelial, epithelial and various other 

cells including gingival fibroblasts (Wang and Ohura 2002).  Within periodontal tissues, 

TLR-2 and TLR-4 expression appears to be increased in severe disease states (Mori 

et al. 2003). 

Each receptor recognizes a small range of conserved molecules from a group of 

pathogens for eg: TLR-2 recognises peptidoglycan, bacterial lipoproteins and atypical 

LPS (Fig 1.3). The LPS/LBP/CD14/TLR complex activates the ‘downstream’ 

transcription factor (NF-κB) pathway resulting in the production of inflammatory 

cytokines and enhances the cells antimicrobial killing mechanisms and antigen 

presenting capacity.  TLRs all contain a common extracellular leucine rich domain and 

a conserved intracellular domain (Akira 2003). The intracellular tail of the receptor was 

shown to be homologous with the intracellular domain of the Interleukin-1 receptor type 

1.  The interaction of TLR with the pathogen associated molecule (Fig 1.4) results in 

the recruitment of specific adapter molecules such as MyD88 and Mal, which then bind 

to IL-1R associated kinase IRAK.  The signal is then transmitted through a chain of 

signalling molecules common to all TLR’s involving TNF receptor associated factor-6 

(TRAF6) and mitogen–activated protein kinases (MAPKs).  Thereafter, activation of 

nuclear kappaB (NF-κB) and activated protein1 (AP-1) leads to transcription of genes 

involved in the activation of the innate host defense resulting in release of  

proinflammatory cytokines (Fig 1.5).  
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1.7     Histopathological and immunopathological changes 
leading to periodontal tissue destruction

The progression of gingivitis to periodontitis has classically been described as 

progressing through a series of stages as described by Page and Schroeder, into 

initial, early and established stages leading to the advanced stage which is 

periodontitis (Page and Schroeder 1976).  The ‘initial lesion’ is the response of the 

resident leukocytes and endothelial cells to the bacterial biofilm. The metabolic 

products produced by the bacteria in the biofilm trigger the production of cytokines and 

neuropeptides resulting in vasodilatation of local blood vessels. Further, neutrophils 

leave the blood vessels and migrate toward the blood vessel and migrate towards the 

site of inflammation in response to chemokines.  

The ‘early lesion’ results from the inability of the activated host response to clear the 

infection and is characterised by an increasing levels of lymphocytes, macrophages, 

engagement of capillary vasculature and the development of a perivascular 

inflammatory infiltrate (Seymour et al. 1983).  The lesion was described to be a 

perivascular lymphocyte/macrophage  lesion with predominantly  T-lymphocytes with 

a CD4:CD8 ratio of 2:1 (Seymour et al. 1988). Complement proteins are activated and 

histologically, the epithelium proliferates to form rete pegs. Clinical signs of gingival 

inflammation such as bleeding is present in addition to an increase in GCF flow.  

The ‘established lesion’ is characterised by a predominance of plasma cells and B-

lymphocytes, where an intense chronic inflammatory reaction is observed (Page and 

Schroeder 1976; Seymour et al. 1981).  Plasma cells invade the connective tissue not 

only immediately below the junctional epithelium but also deep into the connective 

tissue, around blood vessels and between bundles of collagen fibers.   The ‘advanced 

lesion’ is the progression of the established lesion into the alveolar bone characterised 

by an infiltrate consisting of monocytes and lymphocytes including T-cells, B-cells and 

emigrating neutrophils (Page and Schroeder 1976).   Cytokines produced by these 
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cells and antigens from the bacteria drive differentiation of B cells to specific antibody 

producing plasma cells. Microbial factors such as LPS have an effect on the resident 

cells such as fibroblasts, epithelial cells, endothelial cells and also on the recruited cells 

such as neutrophils, monocytes, macrophages resulting in the release of pro-

inflammatory cytokines such as IL-1, IL-6, TNF-α, which in excess amplify the 

inflammatory host response (Bartold and Narayanan 2006).  As a result, osteoblasts 

and stromal cells are activated leading to an increase in RANKL expression, activation 

of osteoclasts and bone destruction (Fig 1.6).  

Histological studies show that periodontal lesion consists of predominantly 

lymphocytes and inflammatory cells with T-lymphocytes predominating in the stable 

lesion, B lymphocytes and plasma cells predominating in the progressive lesion 

(Seymour et al. 1981; Cole et al. 1987). Immunological studies also suggest that cell 

mediated response may be suppressed in active disease concluding that the active 

lesion in chronic periodontitis is predominantly B-lymphocyte mediated (Seymour and 

Gemmell 2001).   It has been suggested previously, that the progression of periodontal 

lesion is related to a shift from a Th1 to a Th2 response (Gemmell and Seymour 2004).  

The dominance of B-lymphocytes and plasma cells in the progressive lesion suggests 

that a change from Th1 to Th2 response may lead to the possibility of tissue destruction 

as a result of unregulated release of cytokines such as IL-1, IL-6 and TNF.   
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  A 

B 

Fig 1.6:     Pathogenesis of periodontal disease: In the presence of virulence factors, 
resident and recruited cells release cytokines which amplify the host response (A). 
Unregulated cytokine expression results in  activation of osteoblasts and stromal cells 
takes place resulting in increased expression of RANKL  thereby activating osteoclasts 
leading to destruction of hard tissues of the periodontium (B)(Kirkwood et al. 2007).
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However, with the identification of the Th17/Treg subsets and its signature cytokines, 

periodontal pathogenesis is currently considered under the extended 

Th1/Th2/Th17/Treg paradigm in which disease progression is considered to take place 

due to an imbalance between pro-inflammatory and anti-inflammatory cytokines, with 

the Th cells differentiating towards Th1, Th2,Th17/Treg subsets based on the cytokine 

microenvironment.   

If the innate response to a pathogen is poor, it will fail to control the infection which 

may then result in polyclonal activation of B-cells and the subsequent production of IL-

4 which would then stimulate the development of a Th2 response (Gemmell and 

Seymour 2004).  The disease will not progress if the antibodies generated by this 

response are protective and successfully clear the infection.  If  however, they are non-

protective, the lesion will persist and continued B-lymphocyte activation may then lead 

to unregulated production of IL-1 with subsequent tissue destruction (Gemmell and 

Seymour 2004).  Microbial products such as LPS activate monocytes or macrophages 

to produce vasoactive substances such as prostaglandin E2, interferon, TNF and 

interleukin-1 (Page and Kornman 1997).  Macrophages activated by 

lipopolysaccharide produce IL-1α, IL-1β, TNF-α, MMP’s and PGE2.  IL-1β and TNF-α 

activate resident fibroblasts to produce PGE2 and MMPs. Both activated cell types 

decrease production of TIMP’s resulting in greatly increased levels of MMPs.  This 

destroys components of the extracellular matrix, creating space for the enlarging 

inflammatory cell infiltrate.  The microbial cell infiltrate may extend apically and 

laterally.  The epithelial cells activated by LPS can produce MMPs which can destroy 

attached collagen fibers at the apical terminus of the junctional epithelium, allowing 

apical extension of the epithelium, formation of additional pocket epithelium and pocket 

deepening. As this occurs, MMP’s mediate clinical attachment loss and PGE2 mediates 

resorption of the alveolar bone and the gingival pocket progresses to become a 

periodontal pocket.  Once inflammation reaches the bone by extension from the 
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gingiva, it spreads into the marrow spaces and replaces the marrow with a leukocytic 

and fluid exudate, new blood vessels and proliferating fibroblasts (Takata and Donath 

1988).  Multinuclear osteoclasts and mononuclear phagocytes increase in number and 

the bone surfaces appear lined with Howship’s lacunae.   In the marrow spaces, 

resorption proceeds from within, causing a thinning of the surrounding bony trabeculae 

and enlargement of the marrow spaces followed by destruction of the bone and a 

reduction in bone height.  Fatty bone marrow is partially or totally replaced by a fibrous 

type of marrow in the vicinity of the resorption.   As the pocket deepens, the flora 

becomes more anaerobic and the host response becomes more destructive and 

chronic.  Eventually, the periodontitis lesion progresses to such an extent that the tooth 

is lost (Kirkwood et al. 2007). 

The production of proteinases and mediators as well as their inhibitors by host tissue 

cells are influenced by bacteria and regulatory molecules produced by host cells that 

are resident within or recruited to the periodontal tissues.  These mediators include 

cytokines, proteinases, and prostaglandins. Page et al (2000), suggested that 

uncontrolled production of IL-1 was a major mediator of tissue destruction in 

periodontal disease and other inflammatory disease.  Although in health macrophages 

are the major source, very few macrophages are present in the progressive lesion 

(Gemmell and Seymour 2004).  The most likely source of IL-1 in periodontal disease 

seems to be the B-lymphocytes which are present in large numbers in the progressive 

lesion (Gemmell and Seymour 2004). Furthermore, it has been demonstrated that P. 

gingivalis can induce the release of IL-1 from B-lymphocytes (Gemmell et al. 1998) 

thus providing a link between the microorganism, cytokine production and disease 

progression. 
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1.7.1   Cytokines of the advanced lesion

The term "cytokine" includes interferons, the interleukins, the chemokine family, 

mesenchymal growth factors, the tumor necrosis factor family and adipokines.  These 

are low molecular weight soluble proteins involved in the initiation and effector stages 

of immunity and inflammation, in which they regulate the amplitude and duration of the 

response.  The complex cytokine network that mediates the immune response includes 

pro-inflammatory cytokines, anti-inflammatory cytokines and specific cytokine 

receptors (Opal and DePalo 2000).  As in other chronic inflammatory conditions such 

as rheumatoid arthritis,  cytokines are considered to play an important role in the 

initiation, progression and the host modulation of periodontal disease (Bascones et al. 

2005; Salvi and Lang 2005).  Their primary role is protective with the aim of restoring 

homeostasis.  However, tissue damage may occur as an unwanted side-effect from 

the over production of these mediators leading to the so called “by-stander” damage.  

They are produced transiently, are extremely potent, generally acting in picomolar 

concentrations and interact with specific cell surface receptors which are usually 

expressed in relatively low numbers.  T-cells and macrophages are the major source 

of cytokines, although they are produced by a wide range of cells that play important 

roles in many physiological responses. Some cytokines are produced by a restricted 

type of cell, such as IL-2 produced by T-cells whereas others including IL-1 and IL-6 

are produced by many different cell types. Many cytokines are pleotropic, having 

multiple activities on different target cells or overlapping cell regulatory actions but 

despite this overlap, cytokine functions may not be identical (Dinarello and Savage 

1989).  The response of a cell to a given cytokine depends on the local concentration, 

the cell type and other cell regulators to which it is constantly exposed. Cytokines 

interact in a network by inducing each other, by transmodulating cell surface receptors, 

by synergistic, additive or antagonistic interactions on cell function (Balkwill and Burke 

1989).  The network of interactions within the immune system is very complex and it is 
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believed that this complexity is essential for overcoming the various defence strategies 

of microorganisms and hence could help in the preservation of homeostasis as well as 

being involved in autoimmunity and the pathogenesis of chronic inflammatory 

diseases.  Examples of cytokine interactions in  chronic diseases include: rheumatoid 

arthritis (Duff 1993), connective tissue disease such as scleroderma, systemic lupus 

erythematosus (Blakemore et al. 1994); inflammatory bowel disease (Carter et al. 

2001), periodontal disease and arteriosclerosis (Duff 1994).  

IL-1 is a principal mediator of inflammatory responses acting on many cell types and it 

has been suggested that uncontrolled production of IL-1 plays a major role in tissue 

destruction in periodontal and other inflammatory diseases (Page et al. 1997).  In 

active periodontal disease an increase in the amount of IL-1 (both α and β) in gingival 

tissues has been reported and levels can be reduced by treatment of disease (Masada 

et al. 1990).  Moreover, in patients with periodontal disease, levels of IL-1 in the 

gingivae were reported to be greater than in the gingivae of healthy patients (Honig et 

al. 1989) and  IL-1 levels in GCF were higher in sites with periodontal disease than 

from healthy sites (Mathur et al. 1996).   Furthermore, studies have reported that IL-1 

has the potential to induce many cell types to secrete prostaglandins, increase 

adhesion of leucocytes to endothelial lining and endothelial cell proliferation, stimulate 

fibroblast proliferation and collagenase secretion, stimulate macrophage and PMN 

activation, activate B and T lymphocyte for Immune response, induce many cell types 

to secrete cytokines and MMP’s and induce bone resorption (Dinarello 1996; Apte and 

Voronov 2002; Apte et al. 2006a; Apte et al. 2006b; Apte and Voronov 2008; Voronov 

et al. 2013) .   As a result of the above and the ability of IL-1 to induce its own secretion 

by some cells by a positive feedback mechanism, the inflammatory response may be 

amplified and thus allows a greater potential to increase ‘bystander damage’.  
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TNFα is a pleotropic cytokine produced primarily by macrophages in response to 

agents such as LPS (Clemens 1991) and  has a wide variety of biological effects similar 

to IL-1 (Le and Vilcek 1987). TNF-α  is a key mediator of chronic inflammation and has 

the potential to initiate tissue destruction and bone loss in periodontal disease.  TNFα 

mediates tissue destruction by stimulating collagenase (Dayer 1992) and degradation 

of type 1 collagen by fibroblasts leading to connective tissue destruction.  TNF-α 

synergises with IL-1 in stimulating bone resorption (Stashenko et al. 1991) and execute 

major changes in the connective tissue matrix (Qwarnstrom et al. 1989).  TNF-α 

molecules stimulate bone resorption by inducing the proliferation and differentiation of 

osteoclast progenitors and activating formed osteoclasts indirectly (Mundy 1991).  On 

its own, TNF-α is one hundred times less potent than IL-1in bone resorption assays 

(Stashenko et al. 1987). However, along with IL-1, it stimulates a number of events 

associated with periodontal disease (Graves and Cochran 2003; Takashiba et al. 

2003) such as stimulation of MMPs and bone resorption.  The use of antagonists to IL-

1 and TNF-α in experimental periodontitis have demonstrated a cause and effect 

relationship between their activity and disease progression, thereby suggesting that 

much of the tissue damage that occurs during the active stage of the disease is as a 

consequence of altered host response by excessive production of IL-1 and TNF-α in 

response to periodontal pathogens. 

IL-6 is a pleiotropic cytokine with important roles in the regulation of the immune 

response, inflammation and haematopoiesis (Gabay 2006; Nishimoto and Kishimoto 

2006). It is produced by both haemopoietic and non-hemopoietic cells and induces 

immunoglobulin secretion in preactivated B cells and thereby induces the final 

maturation of B-cells into high rate immunoglobulin secreting cells (O’Garra 1989).  

Like IL-1, it appears to have a major role in the mediation of inflammatory and immune  

responses initiated by infection or injury and has been shown to be a potent stimulator 

of osteoclast differentiation and bone resorption (Roodman 1992) and bone formation 

(Hughes 1993).  It has been shown to reduce osteoblast activity by by inhibiting 
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osteoblast differentiation (Hughes and Howells 1993).  Additionally, it induces the 

expression of TGF-β1 and angiotensin II, inducers of extracellular matrix component 

(Wang et al 2004, Omori et al 2004).  In periodontitis, IL-6 plays an important role by 

activating osteoblasts and inducing bone resorption.  Within inflammatory periodontal 

lesions, IL-6 is present in abundance and activates fibroblasts in the presence of 

soluble IL-6 receptor.  It also stimulates gingival fibroblasts to produce collagenolytic 

enzymes resulting in tissue destruction (Takashiba et al. 2003).  Additionally, it also 

stimulates T-cell differentiation and is important in maintaining the balance between 

the T-cell subsets.  An association between IL-6 gene polymorphism at several 

positions (-174, -572, -1363)  and periodontal disease has been reported in many 

studies (Trevilatto et al. 2003; D'Aiuto et al. 2004; Brett et al. 2005; Tervonen et al. 

2007). However, the results are conflicting with regards to the specific genotype which 

is responsible for the risk of periodontal damage.  

1.7.2    Role of T helper cell subsets 

In investigating the pathogenesis of periodontitis, the immunoregulatory role of T cells 

has been highlighted in the last several years.  T helper cells are lymphocytes within 

the tissues which regulate both the humoral and cell-mediated response via cytokines. 

The cytokines provide a precise mechanism for the control of the immune response so 

that a sufficient response is produced to deal with the offending pathogen. 

Naïve CD4+ T-cell are stimulated by antigen in the context of an antigen presenting 

cell to differentiate into specific effector cells (Gaffen and Hajishengallis 2008).  In the 

presence of IL-12, a newly activated Th cell develops into a Th1 phenotype, 

characterised by the secretion of IFN-γ, which activates macrophages, cytotoxic T cells 

and NK cells, as well as driving anti-viral signals in target cells.  IFN-γ also provides a 

positive feedback signal to reinforce Th1 development by up-regulating IL-12 receptor. 
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Signals from Th1 cytokines also inhibit Th2 and Th17 differentiation.  Conversely, a 

newly activated Th cell when exposed to IL-4, differentiates to a Th2 phenotype which 

is characterised by secretion of IL-4, IL-5 and IL-13. IL-4 provides an analogous 

positive reinforcement signal to drive expansion of this lineage (Gaffen and 

Hajishengallis 2008).  Th17 cells are driven to differentiate by TGF-β, IL-6, IL-1 and IL-

21 (Weaver et al. 2007).   IL-23 is a key expansion and pathogenecity factor for Th17.  

Th17 cells provide important immunity against extracellular pathogens through 

activation of innate inflammation as well as being the key Th cell contributors to 

autoimmunity in various settings (Gaffen et al. 2006; Kramer and Gaffen 2007). 

The Treg cell population are is driven to develop in opposition to Th17, since signals 

from TGFβ in the absence of STAT3 (via IL-6 and/IL-21) serve to drive this lineage.   

IL-2 plays an important role in expanding this lineage, while simulataneously inhibiting 

Th17 development (Laurence and O'Shea 2007; Laurence et al. 2007) 
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1.7.2.1     Pro-inflammatory cytokines of T-cell lineage in host 
response 

1.7.2.1.1    Th1 subset

IFNγ- the main cytokine associated with Th1 type response has been reported to be 

present in increased levels in biopsies from periodontal lesions (Garlet et al. 2003b) 

and high levels have been associated in tissue obtained from patients with severe 

forms of periodontal disease (Honda et al. 2006; Dutzan et al. 2009b).  Animal studies 

have supported that IFN-γ is involved in the inflammatory process and bone resorption 

in response to stimulation with A.actinomycetemcomitans and P.gingivalis (Baker et 

al. 1999; Garlet et al. 2008).  However, contradictory results have been reported by in 

vitro studies which have reported IFN-γ  to systematically inhibit osteoclastogenesis by 

the rapid degradation of the RANK adapter protein TRAF6 resulting in the inhibition of 

RANKL signalling and its subsequent osteoclastogenic events (Takayanagi et al. 2005; 

Ji et al. 2009).  These results support the previous hypothesis postulated by Gemmell 

et al, that Th1 cells were associated with stable lesions and Th2  cells were associated 

with disease progression (Gemmell et al. 2007).  However, other studies have reported 

IFNγ to stimulate osteoclast formation and bone loss in vivo via T cell activation or 

through chemo attraction of RANKL+ cells (Gao et al. 2007; Garlet et al. 2008; Repeke 

et al. 2010).  In addition, a recent study has demonstrated that Th1 cells are an 

important source of RANKL in experimental periodontitis (Repeke et al. 2010).  

IL-12, which is the major Th1 inducing cytokine has been reported to mediate 

proinflammatory response in mice on stimulation with P. gingivalis (Sasaki et al. 2008) 

However, conflicting results have been reported in human studies where IL-12 levels 

have been reported to be lower in diseased than in health (Johnson and Serio 2005) 

and  levels in GCF following therapy were low (Thunell et al. 2010). In view of these 

conflicting results, further studies are needed to determine the potential role of Th1 

related cytokines in the immunopathogenesis of periodontitis. 
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1.7.2.1.2    Th2 subset  

The main cytokine secreted by Th2 cells is  IL-4 which is necessary for the commitment 

and further action of Th2 cells in disease in addition to B-cell stimulation (Murphy and 

Reiner 2002; Appay et al. 2008; Sallusto and Lanzavecchia 2009).  In addition to IL-4, 

IL-6 is thought to contribute to B-cell differentiation and antibody production (Cronstein 

2007). Studies have reported that the majority of B-cells in periodontitis lesions are 

RANKL+ (Kawai et al. 2006) and on stimulation with periodontal pathogens, B-cells 

produce RANKL  (Han et al. 2009).  These results indicate that the Th2 type responses 

present in progressive lesions have an increased number of B-cells which are 

potentially RANKL producing cells and therefore bring about tissue destruction 

(Gemmell et al. 2002b; Kawai et al. 2006).  In addition, autoantibodies against 

periodontal tissue components have been described in patients with chronic and 

aggressive periodontitis (Koutouzis et al. 2009) and autoreactive B cells have been 

reported in inflamed periodontal tissue (Donati et al. 2009).  These studies indicate a 

destructive role of Th2/B-cells in the progression of periodontitis. 

1.7.2.1.3    Th17 subset 

Th17 cell lineage are characterised by selectively secreting IL-17. These cells develop 

through cytokine signals distinct from and antagonised by the products of the Th1 and 

Th2 lineages.  Th17 cells have the capacity to produce IL-6 and up regulate IL-1β and 

TNF-α production thereby generating an inflammation amplification loop with 

consequent increase of MMP and RANKL expression (Beklen et al. 2007).  Studies 

have also reported the presence of Th17 cells in chronic periodontal lesions (Cardoso 

et al. 2009; Adibrad et al. 2012) and the cytokines associated with these cells have 

been detected in periodontal lesions (Takahashi et al. 2005; Vernal et al. 2005; 

Ohyama et al. 2009).  
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A recent study has reported that human periodontal ligament cells on stimulation with 

pro-inflammatory cytokines such as IFN-γ, IL-17 produced significant increase of 

immunomodulatory cytokines and induced recruitment of leucocytes (Konermann et 

al. 2012a).  The above studies confirm that the Th1, Th2 and Th17 subsets have a 

potentially destructive role in the pathogenesis of periodontitis.  

1.7.2.1.4      Tregs 

Within the periodontal environment, Tregs have been considered to have a protective 

role in attenuating disease progression (Garlet et al. 2010). Tregs regulate the 

activation, proliferation and effector function of activated conventional T-cells, 

determining the outcome of several immunological settings, ranging from infectious 

diseases to immunopathology and autoimmunity (Appay et al. 2008; Sallusto and 

Lanzavecchia 2009). Treg cells secrete TGFβ and IL-10 and have a role in regulating 

other T-cell subsets and prevent autoimmunity by maintaining tolerance against self-

antigens (Josefowicz and Rudensky 2009). Within the periodontal environment, 

immunohistological, molecular and flow cytometry analysis have characterised Tregs 

in the periodontal tissues by the expression of their phenotypic markers such as 

FOXp3 (Nakajima et al. 2005a; Cardoso et al. 2008). TGFβ, a Treg associated cytokine 

is involved in the regulation of cell growth, differentiation and matrix production. It also 

plays an immunosuppressive role by down regulation of pro-inflammatory mediators 

such as IL-1β and TNFα, MMP’s (Okada and Murakami 1998)and RANKL (Dutzan et 

al. 2009a; Dutzan et al. 2009b) thereby reinforcing its protective role in tissue 

destruction. 
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Fig 1. 7:   Cytokine networks in periodontal disease (Preshaw and Taylor 2011). 
Resident and infiltrating cells in the periodontium respond to the presence of microbial 
factors  by release of cytokines. Upregulated cytokine activity leads to vascular 
changes, PMN activation and migration, and ultimately, osteoclastogenesis and 
osteoclast activation.  Furthermore, these cytokines activate the immune response 
resulting in differentiation of Th1/Th2/Th17/Treg cells which is dependent  on the local 
cytokine milieu thereby  contributing towards further destruction of the periodontal 
tissues. 
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1.8    Destruction of periodontal tissue 

1.8.1      Degradation of extracellular matrix 

Interaction between host and microbial factors such as LPS result in activation of the 

host inflammatory and immune response.  As a consequence, pro-inflammatory 

cytokines such as IL-1, TNF, IL-6 are released, which in excess, amplify the 

inflammatory response resulting in destruction of the soft and hard tissues of the 

periodontium.   Connective tissue destruction is mediated by several proteolytic 

enzymes such as serine proteases, MMPs, cysteine proteases or aspartic proteinases. 

The MMPs  are proteolytic enzymes which are dependent on intrinsic Zn2+ and extrinsic 

Ca2+ and are divided into true collagenases (MMP1,8,13), gelatinases (MMP2,9) 

stromelysins (MMP3, 10,11,19), matrilysins (MMP7, 26), metalloelastase (MMP 12) 

and membrane anchored MMPs (MMP14,15, 16,24)(Renaud et al. 2003). These 

enzymes can collectively degrade all the components of the extracellular matrix 

including collagens, gelatine, elastin, fibronectin, laminin, entactin and proteoglycans. 

The MMPs are inhibited by their tissue inhibitors (TIMPs) and an imbalance of their 

secretion, activity, inhibition and functions may play a key role in oral and periodontal 

disease (Sorsa et al. 2004).  Inflammatory cells, particularly PMNs are a major source 

of MMPs and thought to play a major role in the destructive lesion (Golub et al. 1995; 

Lee et al. 1995; Golub et al. 1998). Cysteine and serine proteases may also contribute 

to the extracellular matrix destruction and contribute towards activation of each other 

in the proteolytic cascades (Everts et al. 1992).  Proteoglycan degradation is carried 

out mainly by stromelysins such as MMP-3, 10, 11 (Reynolds et al. 1994; Reynolds 

1996).  Additionally, reactive oxygen species (ROS) have also been shown to damage 

proteoglycans (Moseley et al. 1995).  With regards to periodontal diseases, elevated 

levels of MMPs in periodontal lesions were demonstrated by immunocytochemical 

studies (Ryan et al. 1996).  The ability of MMP inhibitors such as doxycycline to retard 

periodontal destruction further supports the possible destructive role of these enzymes 
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in periodontal disease (Golub et al. 1995; Golub et al. 1998). Additionally, the 

degradation products of proteoglycans have been detected in GCF (Embery et al. 

1982), MMPs, elastase, cathepsins B, D and G, tryptase, chymotrypsin and 

aminopeptidases have been found in gingival tissue and/ crevicular fluid (Meikle et al. 

1986; Cox and Eley 1987, 1989a, b, c; Uitto et al. 2003). Furthermore, the activity of a 

number of these proteases in GCF have been positively correlated with the severity of 

chronic periodontitis and also significantly decrease following periodontal treatment 

(Cox and Eley 1992; Eley and Cox 1992a, b). 

1.8.2    Bone resorption

Bacterial products such as LPS, as well as products released by the host during the 

inflammatory and immune response may affect the bone turnover by either promoting 

differentiation and activation of osteoclasts or by inhibiting bone formation by 

osteoblasts. The main host derived bone resorbing factors are the prostaglandins and 

cytokines which are generated as a result of immune and inflammatory response.  In 

vitro studies have demonstrated that IL-1α and β  (Gowen and Mundy 1986), TNFα 

and β (Bertolini et al. 1986), TGF (Tashjian et al. 1985) and PDGF (Tashjian et al. 

1982) stimulate bone resorption.  Additionally, IL-6 released by fibroblasts, endothelial 

cells and osteoblasts may stimulate the formation of osteoclasts from precursor cells 

(Lowik et al. 1989). In periodontitis, IL-1 and TNF are considered to be the most potent 

stimulators of bone resorption. Both IL-1α and β have been found in GCF from 

periodontal sites  in nanomolar concentrations which are sufficient to cause bone loss 

in vitro (Masada et al. 1990) and significant levels of IL-1β have been detected in 

inflamed gingivae when compared to healthy sites (Honig et al. 1989).  TNFα has also 

been detected in GCF but in low levels which are below those necessary for bone 

resorption in vitro (Rossomando et al. 1990).  The two key mediators of osteoclastic 
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activity are the RANKL and its natural inhibitor, osteoprotegerin (OPG).  RANKL is 

responsible for the induction of osteoclastogenesis and bone resorption, whereas OPG 

can directly block this action (Bostanci et al. 2007a).  An imbalance between these two 

cytokines may cause a switch from the physiological state to enhanced bone formation 

or resorption, as these two cytokines play a crucial role in regulating the bone 

remodelling process.  An immunocytochemical study investigating levels of 

RANKL/OPG in inflamed connective tissue from patients with periodontitis compared 

to healthy subjects reported a significant higher level of RANKL protein in diseased 

compared to controls.  Conversely, OPG was found to be significantly reduced in 

diseased when compared to controls (Crotti et al. 2003).   A clinical study investigating 

levels of RANKL/OPG in GCF from patients with mild, moderate and severe 

periodontitis and healthy controls reported an increase in RANKL concentration 

compared to OPG in patients with periodontitis, compared to healthy controls (Sarlati 

et al. 2012).  Additionally, the ratio of the concentration of RANKL to OPG in GCF was 

found to be significantly higher in patients with periodontitis compared to healthy 

controls (Mogi et al. 2004).  Another study reported that RANKL and OPG expression 

are differentially regulated in various forms of periodontitis and the relative 

RANKL/OPG ratio appears to be indicative of the severity of disease thereby 

suggesting that this ratio could be of diagnostic and therapeutic value in treatment 

(Bostanci et al. 2007c). However, recent work by this same group has reported that, 

since RANKL/OPG levels do not reduce post treatment, increased RANKL/OPG ratio 

may not necessarily predict on-going disease activity (Belibasakis and Bostanci 2012). 
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1.9   Resolution of inflammation 

Periodontal disease may be considered as a failure of resolution pathways to control 

excessive inflammation. Inadequate resolution and failure to return to homeostasis 

results in neutrophil mediated destruction and chronic inflammation (Van Dyke and 

Serhan 2003), with destruction of both extracellular matrix and bone and subsequent 

scarring and fibrosis (Van Dyke 2007, 2008) which prevent the return to homeostasis. 

The resolution of inflammation is an active process that activate certain biochemical 

programs of resolution in which lipoxins, resolvins and protectins play an important role 

to counter-regulate proinflammatory signals through a number of complex intracellular 

processes. This process leads to the release of cytokines which stop neutrophil 

migration to the inflammatory site, attract monocytes that do not release 

proinflammatory mediators, enhance phagocytosis of bacteria and apoptotic cells by 

macrophages, direct the movement of phagocytes away from the site via the 

lymphatics and stimulate the synthesis of antimicrobial agents (Campbell et al. 2007; 

Serhan et al. 2008). Within this scenario, lipoxins are receptor agonists that promote 

resolution of inflammation by limiting the migration of neutrophils into sites of 

inflammation and modulating the phenotype of macrophages to stimulate the uptake 

of apoptotic polymorphonuclear neutrophils without secreting proinflammatory 

cytokines (Serhan et al. 1993; Maddox and Serhan 1996; Maddox et al. 1997). 

Resolvins, which have similar biological activity to lipoxins (Van Dyke 2007; Serhan 

and Chiang 2008)  stimulate the resolution of inflammation by preventing neutrophil 

penetration, the phagocytosis of apoptotic neutrophils to clear the lesion and enhance 

the clearing of inflammation within the  lesion  to promote tissue regeneration 

(Bannenberg et al. 2005; Hasturk et al. 2007; Schwab et al. 2007).  

The resolution of inflammation is a process commonly divided into three sequential 

phases characterised by inflammation, granulation tissue formation, and matrix 

formation and remodelling.  Initially a neutrophil infiltrate decontaminate the wound by 
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phagocytosing injured and necrotic tissue. This stage is followed by a decrease in 

neutrophil and an increase in macrophages which contributes to wound debridement 

by removing effete red blood cells, neutrophils, and residual tissue debris and, in 

addition, has a conspicuous role including release of growth factors which support 

fibroblast proliferation and matrix production, smooth muscle cell proliferation, and 

endothelial cell proliferation and angiogenesis. IL-1ra, TGF-β play an important role in 

shutting down the inflammatory process.  Other cytokines include IL-4, IL-10 and IL-

11. IL-1α and β indirectly induce fibroblast proliferation and collagen synthesis by 

stimulating production of PDGF, TGF-β and PGE2.  PDGF activates fibroblasts and 

osteoblasts resulting in the induction of protein synthesis. TGF-β stimulates fibroblasts 

and inhibits osteoclasts, epithelial cells and most immune cells.  It also promotes 

fibroblast extracellular matrix adhesion.  Osteoclast differentiation and activation are 

inhibited by interferon-γ which acts by the  inhibition of IL-1 and TNF-α induced 

osteoclast activation. The newly formed cell-rich tissue undergoes maturation and 

remodelling to meet functional demands. 

1.9.1   Anti-inflammatory cytokines 

The destructive process promoted by the pro-inflammatory cytokines may be 

counteracted by the regulatory pathways modulated by the anti-inflammatory 

cytokines. Cytokines implicated in the suppression of tissue destructive cytokines 

include   IL-4, IL-6, IL-10, TGF-β and IL-8.  IL-1RA is a member of the IL-1 gene family 

that binds IL-1 receptors without inducing apparent cell activation.  It is produced by 

monocytes and PMN’s and competes with IL-1 for binding to IL-1 receptor on target 

cells, thus preventing the formation of the protein necessary for signal transduction and 

thereby inhibiting IL-1 mediated effects. It is thus an important physiological regulator 

of IL-1 activity.  

javascript:openGlossary('IL-1RI');
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IL-10, the protypical anti-inflammatory cytokine (Pestka et al. 2004) has been reported 

to be widely expressed in periodontal tissues where it is thought to be associated with 

lower disease severity (Lappin et al. 2001; Garlet et al. 2004; Garlet et al. 2006).  

Studies have suggested that IL-10 can act in several ways to control the severity of 

periodontitis.  Yoshimura  suggested that the control of inflammatory signalling 

mediated by IL-10 may involve the inhibition of inflammatory mediator mRNA 

transcription after TLR or cytokine signalling and that this control could be exerted by 

the suppressors of cytokine signalling (SOCS), which act to attenuate signal 

transduction as part of a negative  feedback loop to inhibit the response to subsequent 

stimuli (Yoshimura et al. 2003; Yoshimura et al. 2007).  In addition, IL-10 has been 

reported to interfere directly with production of IFNγ and IL-17 production by T-cells 

(Naundorf et al. 2009) and therefore, it has been postulated that IL-10 may reduce the 

inflammatory signalling that leads to inflammatory and Th1 cytokine mRNA 

transcription which in turn could down regulate downstream pathways under its 

influence (Hosokawa et al. 2009).  Additionally, IL-10 modulates the MMP’s and RANK 

systems by up-regulation of TIMPS (Garlet et al. 2004; Claudino et al. 2008) and OPG 

(Zhang and Teng 2006) thereby providing a direct protective role in tissue destruction.  

IL-10 has also been reported to suppress osteoclastogenesis (Park-Min et al. 2009) 

and present a direct effect over bone formation (Claudino et al. 2010).  Furthermore, 

IL-10 has been shown to down-regulate IL-1 and TNF-α gene expression in human 

monocytes (Essner et al. 1989) and in polymorphonuclear neutrophils (Cassatella et 

al. 1993; Cassatella et al. 1994).    

 IL-4, a Th2 type cytokine presents marked anti-inflammatory and suppressive 

properties mediated by its capacity to inhibit the transcription of anti-inflammatory 

cytokines and IFN-γ (Agnello et al. 2003; Appay et al. 2008; Bluestone et al. 2009).  It 

induces the production of cytokines with similar or complementary suppressive 

properties such as IL-10 (Pestka et al. 2004) and is able to inhibit production of MMP’s 

and RANKL and up-regulate TIMP’s and OPG (Ihn et al. 2002), thereby reinforcing its 
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protective role in periodontal disease pathogenesis (Giannopoulou et al. 2003).  IL-4, 

like IL-10 has been shown to down regulate IL-1 and TNF-α gene expression in human 

monocytes (Essner et al. 1989) and to inhibit their secretion and that of another 

proinflammatory cytokine, IL-6 (te Velde et al. 1990).  Furthermore, IL-4 has been 

shown to induce the death by apoptosis of IL-1 or LPS stimulated monocytes but not 

unstimulated monocytes (Mangan et al. 1992).  Human monocytes contribute to both 

the persistence and resolution of chronic inflammation and the regulation of the 

production of monocyte mediators may have great value in healing or reducing the 

immunopathogenesis of chronic inflammation (Mangan et al. 1993). Recent studies 

have reported  increased levels of IL-4 and IL-10 in GCF of healthy controls  compared 

to GCF from patients with rheumatoid arthritis or chronic periodontitis and higher levels 

of IL-4 and IL-10 in patients with rheumatoid arthritis than in chronic periodontits 

possibly due to the regular use of NSAID’s by the rheumatoid arthritis group (Bozkurt 

et al. 2006; Cetinkaya et al. 2012). 

TGF-β is produced locally at the site of resorption of bone and has been shown to 

initiate new bone formation, an IL-1 inhibitor and acts by reducing the constitutive or 

induced level of IL-1 receptors (Centrella et al. 1988).  IL-8 is produced by a wide 

variety of cell types including PMN’s, monocytes, macrophages, fibroblasts and 

keratinocytes in response to microorganisms, mitogens and endogenous mediators 

such as IL-1 and TNF.  One of the main functions of IL-8 is its ability to induce the 

directional migration of cells including PMN’s, monocytes and T cells thus playing a 

key role in the accumulation of leukocytes at sites of inflammation (Nicola NA 1994).  

As the primary effector cells in acute inflammation, PMN’s synthesize and release 

inflammatory cytokines and thereby modulate both T and B cell function.  IL-11 has 

been shown to have an anti-inflammatory effect by inhibition of TNF-α and other 

cytokines (Trepicchio et al. 1996).  It indirectly minimizes tissue injury through 

stimulation of TIMP-1(Leng and Elias 1997). Subcutaneous injection of recombinant 
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IL-11 significantly reduced periodontal attachment loss in ligature induced periodontitis 

in an animal model (Martuscelli et al. 2000).  Further studies are needed to evaluate 

its potential use in treatment of periodontal disease.  

In addition to  its role in tissue destruction, recent studies have demonstrated the role 

of some pro-inflammatory cytokines  such as TNF-α, IFN-γ in the control of infection. 

TNF-α plays a critical role in both innate and adaptive immune responses, upregulating 

antigen presentation and the bactericidal activity of phagocytes (Dinarello 2000).  IFN-

γ contributes towards leucocyte recruitment and its subsequent activation and is 

considered to be the main phagocyte activating cytokine by enhancing phagocytosis 

and antigen uptake and stimulating the production of inflammatory cytokines and 

chemokines and microbial molecules.  Both TNF-α and IFN-γ play an important role in 

the control of bacterial load as demonstrated by the increased bacterial load and acute 

phase response presented by TNFp55-KO and IFNγ-KO mice to 

A.actinomycetemcomitans induced periodontal disease (Garlet et al. 2007; Garlet et 

al. 2008).  Recent evidence  have demonstrated the role of Th17/IL-17 axis by itself or 

along with pro-inflammatory and Th1 cytokines in the mobilization of macrophages and 

neutrophils against extracellular and intracellular pathogens (Silva 2010).  In addition, 

Th2/B cells are also thought to contribute to host protection against periodontal 

pathogens by production of antibodies thereby facilitating phagocytosis by 

opsonisation and enhancement of the phagocytes’ bactericidal activities (Guentsch et 

al. 2009). 

Due to several conflicting results as reported above, it was suggested that the host 

inflammatory immune response present a dual role in that, cytokines although required 

to control infection, may also generate an inflammatory response and thereby bring 

about tissue destruction (Garlet 2010). Although the individual effects of cytokines and 

their response to periodontal pathogens are investigated in highly controlled systems, 

one must bear in mind that within the periodontal environment these cytokines are in 

a complex mileau and function in complex networks in the presence of other cytokines 
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which can modulate them or be modulated by them in several ways.  However, most 

of the studies published that have reported on the local levels of cytokines in different 

periodontal conditions have focussed on one cytokine at a time and have used 

inadequate sample number. The results from these studies may be misleading and 

therefore limit our progress in understanding the immunopathogenesis of periodontal 

disease, as we are now aware that there exists links between the innate and adaptive 

immune systems and that these cytokines have multiple, overlapping and complex 

functions and involve recruited as well as cells resident within the periodontium.  
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1.10      Gingival crevicular fluid 

Gingival crevicular fluid is a serum transudate that exists in the healthy gingival crevice. 

In the presence of periodontal diseases, the volume of this fluid increases and it is then 

considered to be an inflammatory exudate.  In the presence of plaque induced 

inflammation, enlargement of the intercellular spaces of the junctional epithelium 

(Freedman et al. 1968) as well as partial destruction of the basal membrane occurs 

(Cergneux et al. 1982), which allows inward movement of bacterial products to create 

an osmotic gradient.  The resulting osmotic pressure draws interstitial fluid from the 

surrounding capillaries and lymphatics. Consequently, as the production of fluid by the 

capillaries exceeds its uptake by the lymphatics, oedema results leading to an increase 

in GCF.   As this ultrafiltrate passes from the tissues into the gingival crevice, it 

accumulates elements of cellular activity from both the bacterial as well as host tissue, 

which may be collected by non-invasive means by placement of adsorbant paper strips 

or a capillary tube at the gingival margin.  Therefore, GCF contains a rich array of 

potential biomarkers derived from host and bacterial origin, a number of which may 

have value as potential diagnostic or prognostic  markers of the periodontium in health 

and disease (Embery and Waddington 1994).  Additionally, the very popular use of 

GCF in the search of biomarkers is due to the easy access to the body fluid, non-

invasive method of sampling and the site-specific nature of the sample which allows 

laboratory investigations of GCF constituents to be linked to clinical assessments at 

the site of sample collection. 

Components of GCF include multiple proteins, including serum proteins, 

immunoglobulins, enzymes, periodontal tissue-derived proteins, and inflammation-

related proteins, cytokines and bacterial proteins (Embery and Waddington 1994; 

Griffiths 2003; Uitto et al. 2003). Albumin, macroglobulin and immunoglobulin are major 

proteins present in gingival crevicular fluid (Embery and Waddington 1994; Ozmeric 

2004).  Enzymes, including lysozyme, alkaline phosphatase, MMPs, aspartate 
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aminotransferase, lactate dehydrogenase and cathepsins, as well as matrix proteins, 

such as fibronectin, proteoglycans and osteocalcin, have also been identified in 

gingival crevicular fluid (Embery and Waddington 1994; Eley and Cox 2003; Giannobile 

et al. 2003; Ozmeric 2004).   Many bacterial products, host inflammatory and immune 

products, connective tissue degradation products and  bone resorption products in 

GCF have been investigated with a view to identify markers that will provide us with 

information of the cellular events in the underlying tissues of the periodontium. 
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1.11   Biomarkers for elucidation of pathology 

A biomarker is a substance that is objectively measured and evaluated as an indicator 

of normal biologic processes, pathogenic processes or pharmacologic responses to 

therapeutic intervention.  Because fluids like saliva and GCF can be easily collected 

and contain locally and systemically derived markers of periodontal disease, they may 

offer a patient specific biomarker assessment for periodontitis and other systemic 

disease (Ozmeric 2004). Several fluid based tests have been developed using serum, 

saliva and GCF to assist in the diagnosis and prognosis of the disease. These tests 

have been reported to detect the presence of periodontopathogens and their host 

derived enzymes, inflammatory mediators and tissue breakdown products.  

1.11.1     Bacterial products in GCF 

Bacterial proteases are released in the pocket and can be detected in the GCF (Cox 

and Eley 1989a). Commercial assays have been developed for the development of 

bacterial sulphide (Perio 2000), trypsin like protease activity from P. gingivalis

(Perioscan), non-specific neutral proteases (Periocheck); elastase (Prognostick) and 

β-glucoronidase (PeriGard). However, there are several disadvantages of using 

bacteria and their products. In the main, most are not predictive of disease activity. The 

polymicrobial nature of the disease and the complex nature of the subgingival flora 

which may vary from site to site and patient to patient make it difficult to select any 

specific bacterial species to assay as a marker.  Additionally, some of these markers 

may equally be derived from mammalian and bacterial cells may have to be sent away 

to special labs for analysis and may also have cost implications.  
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1.11.2   Inflammatory and immune markers

Cytokines, arachidonic metabolites such as PGE2, antibodies, are potential candidates 

suitable as markers.  An early study by Offenbacher et al, has reported PGE2 levels in 

GCF to have an overall predictive value of 0.92-0.95 (Offenbacher et al. 1993), thereby 

suggesting that it could be predictive of periodontal disease activity.  Cytokines such 

as IL-1, IL-6, TNF have been evaluated in GCF and show promise.  However, as the 

predictive ability of these cytokines is questionable, further research is needed to 

investigate the potential of these cytokines as markers. Additionally, these markers are 

associated with gingival inflammation and therefore could possibly be wrongly 

associated with disease activity. These issues will be discussed further in Chapter 5 

and 6. 

1.11.3     Hydrolytic and cytosolic enzymes

Several enzymes have identified as potential markers. Among these, longitudinal 

studies have  demonstrated  cathepsin B (Cox and Eley 1992), elastase (Eley and Cox 

1990), dipeptidyl peptidase (Eley and Cox 1995) and β-glucuronadase (Lamster 1992)  

to be predictive of periodontal disease progression.  Collagenase (Sorsa et al. 2004), 

tryptase (Eley and Cox 1990), alkaline phosphatase (Chapple et al. 1994), 

arylsulfatase (Page 1992), myeloperoxidase (Over et al. 1993) and aspartate 

aminotransferase (Persson et al. 1990a) have been shown to be associated with 

disease severity and activity. However, these are not predictive of disease activity. As 

mentioned above, these markers are also associated with inflammation and therefore 

could possibly be wrongly associated with disease activity. The above markers have 

been associated with disease activity but do not predict it.  Commercially available 

tests include Periocheck (collagenase), Prognostik (elastase) and Periogard (AST).  
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1.11.4     Markers of connective tissue degradation 

Collagens, proteoglycans, fibronectin have been investigated for the potential use as 

markers and will be discussed further in Chapter 5.  Carboxyterminal telopeptide 

(CTP), of type I collagen which makes up 90% of the organic matrix of bone has been 

detected in GCF in patients with periodontitis as well as in experimental periodontitis 

in dogs (Talonpoika and Hamalainen 1994; Giannobile et al. 1995).  In addition, 

periodontal treatment reduced the GCF CTP levels to that of healthy controls.  

However, large variations were observed in the amount of GCF CTP found in individual 

patients and at individual sites within each patient (Talonpoika and Hamalainen 1994).  

GAGs were detected in GCF samples from sites with periodontal disease as well as 

teeth undergoing orthodontic treatment (Embery et al. 1982; Last et al. 1985).  Based 

on cross-sectional studies, its presence in GCF has been correlated with those clinical 

conditions in which degradation changes are occurring in the deeper tissues (Last et 

al. 1985; Waddington et al. 1996). Although a potential marker of disease activity, no 

longitudinal studies have been carried out to correlate GCF GAG levels to disease 

activity. Additionally, cellulose acetate electrophoresis is time consuming and 

technique sensitive, therefore not suitable for chair-side use. 

Bone specific proteins such as osteonectin, bone phosphoprotein and   osteocalcin 

have also been investigated. GCF osteonectin and bone phosphoprotein levels  have 

been shown to increase in line with site probing depth (Bowers et al. 1989).  However, 

longitudinal studies on these proteins have not been reported. Studies on osteocalcin 

levels in GCF have reported that the total amount at diseased sites were significantly 

higher than those at healthy or gingivitis sites. Nonetheless, its value as a biomarker 

has been questioned due to the apparent high levels of circulatory osteocalcin and the 

inability to distinguish between alveolar bone resorption and remodelling of other 
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skeletal bones within the body (Waddington and Embery 2001). These markers are 

discussed further in Chapter 5. 

Although GCF contains a rich array of potential biomarkers, a diagnostic test that will 

demonstrate high predictive value for disease progression, will have a proven impact 

on disease incidence and prevalence and is simple, safe and cost-effective, is sought 

that will aid clinicians in the management of periodontal disease. However, given the 

complex nature of periodontal disease, it is unlikely that a sole biomarker exists for 

disease detection and disease prediction (Taba et al. 2005; Loo et al. 2010). Rather, 

the use of a panel of host biomarkers and periodontal pathogens may further aid 

diagnosis and prognosis (Ramseier et al. 2009). 

1.12   Aims 

Against this background, the aim of this thesis is to further our understanding of the 

biological processes involved in periodontal disease pathogenesis that will justify 

implementation of biomarkers to aid management of patients with periodontal disease. 

Specifically, this thesis will investigate: 

1. An increase in CS levels in GCF of patients with chronic periodontitis as a 

marker of  disease activity: a longitudinal study. 

2. The effects of P. gingivalis LPS on periodontal ligament cell behaviour, TLR 

expression and cytokine expression through a series of in-vitro studies 

3. Altered cytokine profile in the GCF of patients with periodontal diseases: a 

cross-sectional study.
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Chapter 2        

An increase in proteoglycan metabolites in GCF represents periods 
of disease activity: a longitudinal study in patients with chronic 
periodontitis.  

2.1          Introduction                                                                                                     

The diagnosis, prognosis and treatment planning of patients presenting with periodontal 

diseases is currently based on clinical findings generated using a periodontal probe, 

supplemented by radiographic assessment.  After initial cause related therapy, parameters 

such as probing depths, clinical attachment levels, bleeding on probing, suppuration are 

monitored, to determine need for further treatment which may include subgingival re-

instrumentation with or without adjunctive antimicrobials or periodontal surgery.  Several 

studies have reported that increase in probing depths, high proportions of persisting deep sites 

and residual suppuration  are considered  as indicators of a lack of periodontal stability and 

are predictors of future attachment loss on a subject level (Badersten et al. 1990; Claffey et 

al. 1990; Kaldahl et al. 1990; Claffey and Egelberg 1995).  However, a systematic review to 

assess the predictive value of residual probing depths (PD), bleeding on probing (BOP) and 

furcation involvement (FI) in determining further loss of attachment and tooth loss following 

initial cause related therapy has failed to confirm the validity of most of these clinical 

parameters for predicting future disease activity (Renvert and Persson 2002). 

The diagnostic ability of clinical parameters such as bleeding on probing may be hampered 

by several factors such as errors arising from variations in probing force or the inflammatory 

status of the periodontium (Lang et al. 1991; Karayiannis et al. 1992) or due to the suppressive 

effects of smoking (Dietrich et al. 2004; Johannsen et al. 2014).  In addition, pregnancy, 

systemic conditions, such as uncontrolled diabetes, haematological conditions, autoimmune 

disorders, infections, medications invariably have an effect on the periodontal tissues (Genco 
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and Borgnakke 2013; Alani and Seymour 2014; Chapple and Wilson 2014).  The diagnostic 

evaluation therefore, only helps in the identification and quantification of current clinical signs 

of inflammation, as well as the severity and extent of previous historical damage, but does not 

identify patients with active tissue destruction at the time of examination or predict future 

disease progression or response to therapy.  

Therefore in recent years, research has focussed on furthering our knowledge of the 

pathogenesis of periodontitis that will enable us to implement the use of markers of host as 

well as microbial origin in the management of patients with periodontal disease. Qualitative 

and quantitative changes of components present in GCF may provide us with valuable 

information which may be of prognostic and diagnostic value,  that will enable clinicians to 

identify high risk patients, detect disease activity and evaluate response to treatment.  Since 

considerable structural and metabolic change occurs in the periodontium during the active 

phase of periodontal disease, much research has focussed on the detection of components 

of extracellular matrix degradation released into GCF as potential markers.  

Cross-sectional studies have investigated components of periodontal tissues such as 

fibronectin  (Talonpoika et al. 1993; Huynh et al. 2002; Brajovic et al. 2010),  type 1 collagen 

carboxyterminal telopeptide (Talonpoika and Hamalainen 1994; Al-Shammari et al. 2001; 

Reinhardt et al. 2010), protein components more closely associated with the extracellular 

matrix of bone such as osteonectin, bone phosphoprotein (Bowers et al. 1989), osteocalcin 

(Kunimatsu et al. 1993; Nakashima et al. 1994; Nakashima et al. 1996; Griffiths et al. 1998; 

Becerik et al. 2011) in GCF from patients with periodontal diseases. Nonetheless, the  value 

of some of these such as fibronectin, osteocalcin  has been questioned due to the apparent 

high levels in the circulation and the inability to distinguish between alveolar bone resorption 

and remodelling of other skeletal bones within the body (Waddington and Embery 2001). A 

major limitation with most of these extracellular matrix components is firstly, the difficulty in 

differentiating between gingivitis and periodontitis.  Gingivitis is characterised by soft tissue 

inflammation and is reversible, unlike periodontitis where there is additional bone loss and is 
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irreversible. Secondly, these matrix components are not able to differentiate between sites 

that are in a state of active tissue destruction and therefore need treatment, compared to 

inactive sites where no treatment is required.  As a consequence, no additional information 

has been obtained by monitoring these markers other than that obtained by the traditional 

clinical examination.  Due to the site specific and episodic nature of the disease, where 

patterns of disease progression in susceptible patients is varied and unpredictable, it is 

essential that longitudinal monitoring of the component is carried out to definitively test that 

the marker  level correlates with attachment loss.  Such data is not available for these 

components. 

Much research has focussed on the proteoglycans present in the extracellular matrix of the 

mineralised connective tissue of the periodontium as a possible biomarker of disease activity.  

Initial studies by Last et al (1985), examined GCF from individual sites of defined conditions 

variously affecting the periodontium.  High levels of sulphated glycosaminoglycans (sGAGs) 

were reported in GCF from untreated early and advanced periodontitis, but not in sites with 

chronic gingivitis or sites that were treated surgically or with daily use of chlorhexidine.  Of 

note, hyaluronan, a major component present in soft and mineralised connective tissue in the 

body and seen in significant proportions in serum, was consistently present in all samples.  In 

addition, sGAG levels were detected in GCF samples from the control situations of active 

orthodontic tooth movement, onset of traumatic occlusion and the early healing stages of tooth 

extraction socket (Last et al. 1985).  Interestingly, dermatan sulphate, a component of the soft 

tissues of the periodontium was not detected in any of the samples, thereby indicating that the 

GAG detected was a component of the alveolar bone and reflect possible changes in the 

deeper periodontal tissue (Last et al. 1988).  These initial findings supported the hypothesis 

that the elevated levels of sGAGs present in the GCF samples originate from the hard 

connective tissue and therefore may be a potential marker for bone loss. 

Cross sectional studies investigating GAG levels in GCF,  reported that the total GAG content 

in GCF of patients with periodontitis were higher than in patients with gingivitis or healthy sites 
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(Giannobile et al. 1993) with sGAG levels elevated in sites with advanced periodontitis 

compared to healthy sites (Okazaki et al. 1995).  These studies confirmed the association 

between sGAG levels and disease severity and activity.  Smith et al (1995) investigated sGAG 

levels before and after periodontal treatment and reported significantly higher levels of sGAGs 

at diseased sites prior to treatment, correlating with increased pocket depth or attachment 

levels.  Non responding sites had significant levels of sGAGs compared to responding sites 

post treatment (Smith et al. 1995) further indicating that sGAG levels reduce following disease 

resolution. 

Subsequent studies examined the association between sGAG levels and underlying changes 

in the alveolar bone by examining GCF from patients undergoing orthodontic treatment and 

from peri-implant fluid around endosseous implants.  In patients undergoing orthodontic 

treatment, initial studies detected sGAGs in GCF from sites towards which tooth movement 

was being directed by an orthodontic appliance (Last et al. 1985; Last et al. 1988).  Further 

longitudinal studies reported increased levels of sGAGs in the pre-treatment phase involving 

rapid movement in patients undergoing orthodontic canine retraction (Samuels et al. 1993) 

and increased levels of sGAGs in teeth undergoing active tooth movement compared to the 

retention stages (Baldwin et al. 1999).  The variations in GAG levels mentioned above may 

reflect the tissue resorptive state of the underlying periodontal tissues during the different 

stages of orthodontic treatment.  In a longitudinal study of patients with dental implants, peri-

implant fluid was collected at 1-2 weeks, 5-6 weeks and 3 months post insertion and again at 

2 weeks and at 4 months after occlusal loading.  Higher sGAG  levels were detected around 

failing implants compared with  the healing and loading stages of successful implants (Last et 

al. 1991).  In addition, sGAG levels were found to be lower in peri-implant fluid collected from 

established functional implants than at the stages shortly after surgical exposure or full loading 

of implants (Last et al. 1995).  However, as a serum component, hyaluronan content showed 

no significant changes. These changes in sGAG levels may reflect bone resorptive activity as 

well as remodelling of the supporting alveolar bone.  
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The above clinical studies correlated the presence of sGAGs with various clinical conditions 

and confirmed its presence with bone remodelling.  Subsequent biochemical and 

immunological studies were carried out to identify these components in GCF and thereby 

support its use as a marker.  Among the GAG’s, chondroitin sulphate (CS) was found to be 

the principal GAG in cementum and alveolar bone (Bartold et al. 1988; Bartold 1990). 

Characterisation studies by Waddington and Embery on human alveolar bone, identified  

chondroitin 4 sulphate (C4S) as the predominant glycosaminoglycan constituent within human 

alveolar bone along with much lower amounts of  chondroitin 6 sulphate (Waddington et al. 

1989; Waddington and Embery 1991), with the additional presence of heparin sulphate, 

dermatan sulphate (DS) and hyaluronan associated with the non-mineralised portions of the 

matrix.  Further analysis of the proteoglycan species demonstrated small molecular weight 

proteoglycans confirmed to be decorin and biglycan (Waddington et al. 1998)  

Chondroitin 4 sulphate proteoglycan with a molecular weight of 55-65 kDa was identified in 

GCF from sites with advanced periodontal disease and from teeth undergoing orthodontic 

treatment (Waddington et al. 1994; Waddington et al. 1998).  Decorin and biglycan with 

molecular weight in the range of 200-90 kDa with separate core protein of 50kDa each were 

demonstrated on match analysis of human alveolar bone proteoglycan (Waddington et al. 

1998).  The difference observed in the molecular weight is suggestive of it being a degradation 

product in GCF.  In addition, hyaluronan was also detected in the GCF from various clinical 

conditions. However, comparative analysis failed to confirm the presence of dermatan 

sulphate, which is a component of the soft tissues of the periodontium.  Its absence in GCF 

may reflect a high metabolic turnover of the soft tissues of the periodontium.  

Although extensive basic and clinical research has been carried out to evaluate the use of 

sGAGs as a potential marker for disease activity, most of the information has been collected 

from cross-sectional studies.  Nonetheless, the data obtained from cross sectional studies 

may be misleading due to relating to inadequate clinical indices which are unable to identify 
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areas of active tissue destruction and therefore, a need for further longitudinal studies were 

addressed.  

Therefore, a preliminary longitudinal study, to evaluate the relationship of sGAG in GCF to 

attachment loss was carried out on a group of 10 patients with chronic periodontitis 

(Waddington et al. 1996).  GCF was collected from two deep sites at baseline and then every 

three months for 21 months.  Increased sGAG levels were reported in active sites (showing 

attachment loss of at least 1.5mm) compared to control sites (which showed no attachment 

loss for 6 months or more).  This study suggested that elevated levels of sGAG may indicate 

active destruction of the underlying connective tissue of the periodontium (Waddington et al. 

1996) and also provided sufficient information to determine sample size for a further 

longitudinal study. 

Against this background, the aim of this chapter was to further validate the use of sGAG   as 

a suitable marker of active tissue destruction by means of a longitudinal study. Furthermore, 

in establishing its use as a marker, we also wish to investigate if the marker represented a 

product released continually within the sampling period and thereby further our understanding 

of the disease pathogenesis. 
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2.2      Materials and Methods 

R & D approval was obtained from the Joint Trust / University Peer & Risk Review Committee. 

(Project ID: 07/DH/3925- copy provided in Appendix-A).   Ethical approval was provided by 

South East Wales Local Research Ethics Committee (08/WSE03/3- copy provided in enclosd 

CD).  The study was conducted as per Good Clinical Practice regulations and informed 

consent was obtained from each patient.  

 2.2.1   Longitudinal monitoring of proteoglycan metabolites in 
GCF. 

The sample size for the longitudinal study was determined with the help of professional 

statistical advice (Professor Newcombe, Cardiff University) using data from a previous pilot 

study (Waddington et al, 1996).  Within this previous study, GCF was collected from two deep 

sites from 10 patients every three months over a period of 21 months to determine GAG levels.  

Attachment levels were also recorded at these visits.  Statistical analysis to evaluate presence 

of marker with disease activity was carried out.  10% of the samples were identified as being 

active (demonstrating attachment loss of at least 1.5mm) at the point of sampling and 8.75% 

identified with confidence as being inactive (no attachment loss for a minimum of 6 months).  

Based on this data, a power analysis was carried out to determine adequate sample size as 

50 patients.  To account for dropouts during the 21 month period, the sample size was 

increased to a total of 70 patients. 70 new patients with a clinical diagnosis of chronic 

periodontitis were recruited from patients referred to the Restorative Clinic at Cardiff University 

School of Dentistry. 
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2.2.1.1    Validation of methodology 

2.2.1.1.1    Inclusion/Exclusion Criteria

Patients between the age group, 25-55, with clear medical history were recruited to the study.  

Exclusion criteria included pregnancy, any medical conditions or medications that may have 

an effect on the periodontal health, intake of any antibiotics or anti-inflammatory drugs in the 

previous six months or a history of periodontal therapy in the previous six months.  Patients 

were recruited between October 2008 and November 2009.  Follow up examinations were 

completed by October 2011.  A clinical examination supplemented with radiographic 

evaluation was carried out to identify suitable patients with chronic periodontitis and two deep 

sites were selected for sample collection and longitudinal monitoring.  Sample collection and 

clinical parameters were measured at initial visit, and then again every three months after 

treatment for a period of 21 months.  

2.2.1.1.2    Sample collection

Following isolation of the selected teeth with cotton rolls and high volume suction to prevent 

contamination with saliva, supragingival plaque was gently removed, the tooth air dried and 

GCF was collected using small diameter 2l capillary tubes (Drummond Microcaps, 

Drummond Scientific Co, Pennsylvania, USA) placed at the gingival margin for a period of 10 

minutes (Fig 2.1). Fluid accumulated into the tube by capillary action.  When the tube became 

full or blocked due to plaque debris it was refreshed with a new tube.  GCF was collected prior 

to clinical measurements to ensure collection of GCF reflecting disease activity rather than the 

exudate released as a response to inflammation caused by probing.  Samples visibly 

contaminated with excessive blood were discarded.   GCF volume was determined using the 

formula:     

Volume of GCF =Linear distance the fluid collected in the tube   x 2 l (total volume of tube) 

                                        32 (length of tube) 
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The samples were immediately placed in 1.5ml eppendorf tubes and stored at −80°C, under 

HTA regulations, until further analysis.   

2.2.1.1.3    Measurements of clinical parameters 

2.2.1.1.3.1   Florida Probe

Clinical parameters were recorded using the Florida Probe (Florida Probe with PASHA probe-

pressure controlled, automated, standardised handpiece from Florida Probe Corporation, 

Gainesville, FL, USA).  The Florida Probe is equipped to measure to the nearest 0.2mm and 

utilises a constant probing force of 0.2N.  The probe is able to measure automatically the 

Probing Depth as the distance from the tip of the probe inserted at the base of the pocket to 

the flange of the probe at the gingival margin.  Recession, measured as the distance from the 

gingival margin to the cement-enamel junction, was recorded on withdrawal of the flange from 

the gingival margin.  The Clinical Attachment Level was calculated at each site as the sum of 

probing depth and recession.   Probing depths and recession were recorded at six points per 

tooth. Bleeding on probing and suppuration were recorded as present or absent for each site 

after probing.  The probe was calibrated for each individual patient prior to recording indices.  

All measurements and sample collection were carried out by a single operator to ensure 

reproducibility, following which the patients underwent a hygiene phase which included oral 

hygiene instructions and scale and polish.  Oral hygiene instructions were repeated until 

sufficient plaque levels were achieved following which, root surface debridement was carried 

out for pockets > 4mm under local anaesthesia.  Full mouth root surface debridement was 

completed within 10 days. 
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2.2.1.1.3.2 Investigator calibration

 A one day Florida Probe training session using models was carried out by the local 

representative following which an intra-examiner calibration was carried out to ensure 

reproducibility.  Probing depths and recession were recorded at mesio-buccal, mid-buccal and 

disto-buccal points from 2 selected sites from 10 individuals.  These measurements were 

repeated again within 24 hours and statistical analysis to determine Kappa value was carried 

out to ensure reproducibility.  

2.2.1.1.3.3   Longitudinal assessment of periodontal health 

On completion of the treatment, patients were recalled at 3 monthly intervals over a 21 month 

period for maintenance therapy.  At each of these recall visits, GCF samples from the 2 

designated sites were collected, followed by recording of periodontal indices using the Florida 

Probe as described above. Sites that demonstrated a clinical attachment loss ≥ 2mm over 3 

months were presumed active and sites that remained static over a period of 6 months were 

considered as stable sites.   Oral hygiene instructions were reinforced followed by subgingival 

debridement of sites which bleed on probing. 

2.2.1.1.4   Evaluation of release of sGAG in GCF during collection 
period.  

Current practice for collection of GCF is to use capillary tubes over a timed 10 minute period. 

However, it is not clear whether the biomarker detected represents a pooled accumulation of 

the GAG within the gingival pocket or GAG released into the GCF over a timed period of 10 

minutes. 

To evaluate the release of biomarkers, 15 patients with chronic periodontitis were recruited 

from patients referred to the Restorative Clinic at Cardiff University School of Dentistry. 

Inclusion and exclusion criteria were as above (Section 2.2.1.1.1).  GCF was collected from 2 
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sites over a period of 10 mins each.  The sampling period of 10 minutes was divided into 3 

time points as the first 4 mins, followed by second 3 minutes and the final 3 minutes.   GCF 

was collected using fresh micro-capillary tubes at each time point. Analysis of the GAG 

component by cellulose acetate electrophoresis was carried out as detailed in section 

2.2.1.1.5. below.  Intensity levels of the bands were compared over the three time points to 

detect significant change in levels. 

2.2.1.1.5      Cellulose Acetate Electrophoresis (CAE) 

Cellulose acetate electrophoresis technique was used to identify the presence of CS in the 

GCF or serum samples.  This technique, originally described by Stanbury and Embery (1977) 

and further modified by Waddington (1988), separates the GAG components on the basis of 

their charge density and has therefore been used as a technique for the separation and 

characterisation of GAG chains.  

Cellulose diacetate sheets (Electrafor, Cellulose Diacetate, Shandon Southern Ltd) were 

marked at midline (7.5cm) to divide the sheet into two equal halves.  At 1cm away from the 

midline (6.5mm), a line of origin was drawn for application of samples.  The sheets were 

immersed in running buffer (0.2M calcium acetate buffer, pH7.2), blotted from excess buffer 

and positioned centrally (7.5cm) in the electrophoresis apparatus (Shandon low voltage 

electrophoresis apparatus, Shandon Southern Instrument Ltd, Cheshire, UK) with the line of 

origin lying towards the cathode.  Electrical contact was made using filter paper wicks 

(Whatman Chromatography Paper 1CHR).   Samples were applied onto the electrophoresis 

sheets along the line of origin positioned 6.5cm from one end.  The samples were placed 

within 1cm of the edge of the sheet to prevent distortion due to edge effect and applied over 

0.5cm at 0.5cm intervals to avoid cross contamination. Standards containing commercially 

available Hyaluronan (HA), Heparan sulphate (HS), Dermatan sulphate (DS),  Chondroitin-4- 

sulphate (C4S) and Chondroitin-6-sulphate (C6S) (Sigma Chemical Co, U.K) at a 
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concentration of 0.05mg/ml were included on each sheet.  Electrophoresis was then carried 

out at 0.6mA per cm width for 4.5 hr.  Following electrophoresis, the cellulose acetate sheets 

were stained with 0.05% w/v Alican blue 8 GX (Gurr Biological Stain, BDH) in 3% acetic acid, 

containing 0.05M magnesium chloride, pH 3.9 for 15 min. The sheets were destained with 1% 

acetic acid, 0.05M magnesium chloride at pH 3.9.  The solution was changed several times 

until all excess stain was removed.   The sheets were finally rinsed with water and allowed to 

air dry.  Digital images were captured using Gel Doc (Bio-Rad Laboratories, Hertfordshire, 

UK), followed by densitometric analysis using Image-Pro Plus Analysis software (Version 6.0, 

Media Cybernetics, Inc).  The ‘black’ (intensity generated when no light passes through the 

material) and ‘incident’ values (intensity generated when no material was present) on each 

image was determined so as to calibrate the intensity scale to standard optical density values.  

The total pixel density of each band was determined by placing a pair of defining lines 

horizontally at the top and bottom end of the band (Fig 2.2). Concentrations were determined 

by comparison to the GAG standards.  GAG levels were determined for each site over a period 

of 21 months. 

2.2.1.1.6   Assessment of methods for GAG quantification 

In order to assess the accuracy of the technique in the quantification of GAGs, standard curves 

were generated prior to analysis of samples.  Cellulose acetate electrophoresis of standards 

containing commercially available Hyaluron (HA), Heparan sulphate (HS), Dermatan sulphate 

(DS), Chondroitin-4-sulphate(C4S) and Chondroitin-6-sulphate (C6S) (Sigma Chemical Co, 

U.K) at concentrations of 0.05mg/ml, 0.04mg/ml, 0.03mg/ml, 0.02mg/ml and 0.01mg/ml were 

carried out several times to ensure reproducibility and sensitivity of the technique in detecting 

the GAG component.  The sheets were then stained, air dried and scanned using the 

technique above (Section 2.2.1.1.5). GAG levels were plotted against staining intensity and 

correlation coefficients were calculated to determine linearity of standard curves. 
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2.2.1.1.7        Statistical   Analysis 

Statistical advice was obtained from Prof.R.Newcombe and Prof.S.Herawi (Cardiff University) 

and analysis carried out using SPSS Statistics 20. The data obtained were evaluated initially 

in the form of a longitudinal study. Activity at a site was defined as increase in attachment loss 

of 2mm or greater over a 3 month period.  Sites that remained unchanged or showed 

improvement over a 6 month period or more were regarded as inactive sites and served as 

controls. The presence of a clear hyaluronan band is indicative of an adequate sample size of 

the serum based fluid and therefore GCF samples that had hyaluronan levels ≥ 50ng were 

included in the analysis (Fig 2.6). Statistical analysis was carried out using one site per patient 

as the unit of analysis.    The sGAG content in GCF at the onset of a period of active tissue 

destruction was compared statistically with the sGAG concentrations determined at the 

commencement of a control inactive period.   The  values obtained from scanning pixel density 

of the bands was  subjected to normality tests using Q-Q plots and histograms as shown in 

(Fig 2.10 and Fig 2.11) to analyse distribution of data.  Due to the non-uniform distribution of 

the data and to test the possibility that the sites that progressed were worse than those sites 

that remained static, a non-parametric one tailed unpaired Mann-Whitney test was used 

making no restrictive assumptions regarding scatter of the data. As per prior clinical 

assumption, a one-tailed test was considered suitable for the analysis of data as the results 

were expected to be unidirectional (ie sites that that progressed were worse than the sites that 

remained static).  A one-tailed p-value of 0.05 was considered to indicate a significant 

difference in statistical analysis.

The data was also analysed as a cross-sectional study.  As above, samples that had levels 

less than 50ng of hyaluronan were not included in the analysis, regarded as providing an 

inadequate GCF sample size.  Sites were divided into 3 groups based on clinical attachment 

levels as  3 to 5mm loss of attachment, 6 to 8mm loss of attachment and ≥ 9mm loss of 

attachment.  A Kruskal-Wallis test (Nonparametric ANOVA) with Dunn’s Multiple Comparison 
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test was used to compare sulphated GAG levels between the three groups.  Differences were 

considered significant when p-value was < 0.05.  For all samples with HA ≥ 50ng, sGAG was 

plotted against attachment loss and correlation assessed by the Spearman rank correlation 

test. 
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2.3 Results 

2.3.1   Investigator calibration 

In order to assess reproducibility, an intra-examiner calibration was carried out by recording 

probing depths and recession on the mesiobuccal, midbuccal and distobuccal aspects of two 

selected teeth from 10 individuals.  These measurements were repeated again within 24 hours 

and the statistical analysis was carried out using Kappa statistics.  

Table 2.1: Kappa statistical values obtained from analysis of three sites on two selected teeth from  10 patients.    

(A Kappa value of 1 indicates perfect agreement whereas a Kappa value of 0 indicates agreement purely due to 

chance). 

In this sample population, analysis revealed k-values of 0.7 for site A and 0.9 for site B, 

reflecting substantial agreement between the repeat measurements. 

2.3.2   Assessment of methods for quantification of GAGs 

Electrophoretic separation of a mixture of four standard GAG preparations at concentrations 

of 0.05mg/ml, 0.04mg/ml, 0.03mg/ml, 0.02mg/ml and 0.01mg/ml revealed clear, distinct faster 

and slower migrating bands representing hyaluronan, dermatan sulphate, chondrotin-4-

sulphate and chondroitin-6-sulphate, thus confirming the sensitivity of the technique in 

Tooth site 
designation

K-coefficient

A

B

0.7

0.9
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detecting levels as low as 0.01mg/ml or 20ng/2µl sample (Fig 2.2).  Pixel density of scanned 

bands, against respective GAG standards are shown graphically and calculation of correlation 

coefficient produced R2 values of 0.8 for both hyaluronan and the sulphated GAGs indicating 

linearity in the standard curve and therefore ensure reproducibility of the methodology (Fig 2.3 

A and B).   

2.3.3       Longitudinal analysis of proteoglycan metabolites in GCF 
with disease severity 

Clear, distinct faster and slower migrating bands representing hyaluronan, dermatan sulphate, 

chondroitin 4 and chondroitin 6 sulphate were observed in the standards. Electrophoretic 

separation of the GCF samples revealed hyaluronan and sGAG bands that were comparable 

with the standards. In addition, slow migrating bands were also observed close to line of origin 

(Fig 2.4 and 2.5).  HA and sGAGs were determined by comparison of the pixel density of the 

GAG standard separation on the same sheet and was calculated as total sGAG within the 

whole sample collected over 10 minutes.   A clear hyaluronan band was present in active as 

well as in  inactive sites and its presence above 50ng was used as an indicator of an adequate 

sample size for analysis (Fig 2.6). This HA value was selected on considering HA levels in all 

samples, where it presented a clear cut-off value, with lower levels of HA were significantly 

lower (less than 10ng per sample).   On examining the attachment loss data alongside sGAG 

data for each site as a longitudinal analysis of sites, Fig 2.7 presents examples of profiles 

identifiable with some sites demonstrating disease progression with an increase in attachment 

loss and increase in GAG levels, whereas some sites remain the same. Sites which 

demonstrated fluctuation of attachment loss with time (Figs 2.8 and 2.9) were disregarded 

from the statistical analysis as they confirmed neither disease progression nor quiescence. 

Only sites that remained static over 6 months or had attachment loss of >2mm over a period 

of 3 months were included in the analysis (Fig 2.7).  A total of 85 samples were included in 

the analysis.   Data was categorised as static and progressive (Fig 2.10 and 2.11) and further 
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subjected to normality tests using Q-Q plots and histogram.  A non-uniform distribution of data 

was observed, with a higher proportion of the static sites showed negligible sGAG (presumed 

inactive) compared to the progressive sites, whereas an increased proportion of the samples 

collected from the progressive sites showed an increase in sGAG levels (presumed active) 

(Figs 2.10 and 2.11). Subsequent longitudinal analysis of GCF samples using a one way 

analysis of variance revealed statistically significant differences between the GAG levels  in 

GCF samples obtained from active group compared to control inactive group (p=0.03)  as 

shown in Fig 2.12. 
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Fig 2.1:   Collection of GCF samples using microcapillary tube. Selected sites were isolated, ensured 
plaque free and air dried. 2µl microcapillary tubes were placed at the gingival margin and GCF allowed 
to accumulate by capillary action.  
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Fig 2.2: Cellulose acetate electrophoresis of GAG standards at a concentration of 0.05mg/ml, 

0.04mg/ml, 0.03mg/ml, 0.02mg/ml and  0.01mg/ml, demonstrating clear distinct bands representing 
Hyaluronan(HA), Dermatan Sulphate(DS), Chondroitin-4-Sulphate(C4S) and Chondrotin-6-
Sulphate(C6S). Brackets shown enclosing area of band scanned for densitometric analysis.
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Fig 2.3: Graphical representation of analysis of GAG standards demonstrating linearity for both 

Hyaluronan (R2=0.8) and sulphated GAGs (R2=0.8).
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Fig 2.4: Analysis of GCF samples collected over a sequential period of 4, 3 and 3 mins(=10 mins) 

demonstrated that the sGAG was detected at all time points investigated, indicating that the sGAG  was 
not a pooled product but released continuously at the point of sampling. Brackets shown enclosing area 
of band scanned for densitometric analysis.
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Fig 2.5: Longitudinal analysis of GCF samples collected from one site (A) in a patient (No.62) at 12 

months(562), 15 months(662), 18 months(762) and 21months (862) representing periods of relative 
inactivity(lighter bands) at 12 months and activity (represented by darker bands) at 15 months, 18 
months and 21 months. Brackets shown enclosing area of band scanned for densitometric analysis. 
Dark areas preceding HA bands represent presence of non-specific blood proteins.
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Fig 2.6:  Cumulative distribution graph analysing levels of sGAG and HA in each GCF sample analysed 

demonstrating that some samples (about 31) had substantially low levels of HA and sGAG compared 
to other samples (about 85 ). A clear cut-off in HA levels is apparent in these samples when compared 
with the remaining 85 samples   in the graph above. These were considered as inadequate for sample 
size and therefore excluded from further analysis. 
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Fig 2.7:  Longitudinal analysis (over 21 months) for a selection of patients demonstrating periods of 

activity represented as an increase in attachment loss (Pt1:0-6mths, pt3:6-12mths) and periods of 
inactivity/stability represented as no change in attachment levels over 6 months (pt2:12-21mths, pt4:0-

6mths). 
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Fig 2.8: Examples of samples excluded from analysis representing sites demonstrating fluctuation of 

attachment levels (pt6:3-15mths, 8:0-18mths) as sites that failed  to demonstrate a high probability for 

active tissue destruction or presumed inactivity over 6 months, inadequate sample size due to absence 

of hyaluronan (pt 5:3-12mths, 6:0-9mths, 7:3-12mths)) and absence of GAG (pt5:3-12mths, 6:0-9mths, 

7:3-12mths, 8:0-9mths).    GAG-          ,   HA-          , LOA-  
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Fig 2.9: Examples of samples excluded from analysis representing sites demonstrating fluctuation of 

attachment levels (pt9:6-15mths, 10:0-6mths, 12:0-21mths) ) as sites that failed  to demonstrate a high 

probability for active tissue destruction or presumed inactivity over 6 months , inadequate sample size 

due to absence of hyaluronan (pt10:0-6mths, 11:12-21mths, 12:0-21mths) and absence of GAG 

(pt10:0-6mths, 12:0-21mths). GAG-          ,   HA-         , LOA-  
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Fig 2.10: Q-Q plot and histogram demonstrating non-uniform distribution of data for sites that remained 

static. Increased samples with negligible GAG (suggesting inactivity) when compared to the progressive 
sites (Fig 2.11) 
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Fig 2.11: Q-Q plot and histogram demonstrating non-uniform distribution of data for progressive sites 

(as demonstrated by an increase in LOA of ≥2mm). Increased samples with an increase in GAG levels 
(suggesting disease activity) when compared to the static sites (Fig 2.10). 
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Fig 2.12: Longitudinal analysis of data comparing distribution of GAG levels in GCF collected from 

sites that demonstrated disease activity by an increase in loss of attachment of 2mm or more over 3 
months compared to GAG levels in GCF from sites which showed no change over a period of 6 months 
or demonstrated improvement by gain in attachment (p<0.05). 
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2.3.4      Cross-sectional analysis of proteoglycan metabolites in GCF 
with   disease severity 

Analysis of GCF samples collected at fixed time points (initial 4 minutes, followed by 

subsequent time periods of 3 minutes each) revealed clear, distinct faster and slower migrating 

bands representing hyaluronan, dermatan sulphate, chondrotin 4 and chondroitin 6 sulphate 

in the standards. Additionally, clear hyaluronan bands were observed from both active and 

inactive sites. As mentioned above in section 2.3.3, samples that contained no distinct 

hyaluronan band were rejected from the analysis. The final analysis involved 8 samples. 

Varying but detectable levels of sGAGs were observed in most samples as high and low 

intensities. However no trends were observed. Detectable levels of sulphated GAGs were 

present at all time points in some of the samples whereas in some samples the GAG was 

present only at the first time point. A typical profile is shown in Fig 2.4.  In addition, non specific 

staining was also observed around the line of origin. However, in this group, statistical analysis 

could not carried out due to an insufficient sample size.  

Further, data obtained from 2.3.3 was also subjected to cross-sectional analysis. Out of a total 

of 716 samples, 498 were rejected as they contained no distinct hyaluronan band and only 

218 samples were included in the analysis.  All data with sufficient sample size were 

catagorised with respect to attachment loss.  On cross-sectional examination of the data (Fig 

2.13), significant differences were noted between the groups that had attachment loss of 6-

8mm and ≥9mm (p<0.05). However, no correlation was observed between GAG levels and 

attachment loss (Fig 2.14). 
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Fig.2.13:  Cross-sectional analysis of data comparing GAG levels from sites with loss of attachment of 

3-5mm compared to loss of attachment of 6-8mm and >9mm.  Significant differences were observed 
on comparing groups 6-8mm and >9mm (p<0.05). Increased GAG levels at deeper sites suggest 
increased disease activity at deeper sites. 
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Fig: 2.14:  Cross sectional analysis of data demonstrating no correlation between loss of attachment 

and GAG levels, further confirming the episodic nature of the disease. 
Correlation coefficient (r) = 0.1388 and p value =0.0006   
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2.4     Discussion

This study investigated the relationship between the levels of sGAG in GCF and sites of active 

periodontal destruction. Our results demonstrated a significant increase in sGAGs associated 

with sites that demonstrated continuing signs of disease activity and progressive attachment 

loss, identified periods of activity and inactivity, with few sites demonstrating disease activity 

over a 21 month period. Moreover, the sGAG was identified as a product released 

continuously at the point of sampling. Therefore, the presence of sGAG in GCF could be used 

as a potential marker of disease activity. 

Although extensive research has been carried out to further our understanding of the 

pathogenesis of periodontal disease with a view to develop improved techniques that may be 

of diagnostic and prognostic value in the management of periodontal disease, there have been 

several limitations such as the nature of the disease process itself and inconsistencies in 

research methodologies that have hindered progress in this field.  With regards to periodontal 

disease progression, several models of disease progression have been proposed in the past 

with early studies reporting that the common forms of destructive periodontal disease once 

established, progress slowly and continuously until treatment or tooth loss (Suomi et al. 1971; 

Sheiham et al. 1986).  The limitations of these early studies were that they were cross-

sectional in nature, used inadequate sample size and used average values of attachment loss 

for a given mouth, thereby eliminating intra-oral variation and disease severity.  As a 

consequence, the information obtained from these studies have the potential to be misleading. 

Additionally, data from cross sectional studies were used to interpret longitudinal changes 

observed in periodontal disease.  Subsequent studies examined loss of attachment at specific 

sites over a period of time and reported that periodontal destruction is not continuous but 

progresses in an episodic manner with bursts of activity followed by periods of quiescence 

and possibly repair (Goodson et al. 1982; Lindhe et al. 1983; Socransky et al. 1984).  These 

studies have used manual probing which cannot reliably detect changes of ≤2.5 mm and 

therefore would be able to detect only rapid progressive attachment loss of ≥ 2.5mm and not 
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identify gradual attachment loss of ≤2.5 mm possibly over a longer period of time.   With the 

development of automated probes, it has been demonstrated that using large thresholds, only 

rapid progressive attachment loss can be detected whereas using smaller thresholds, a higher 

proportion of gradual attachment loss was also detectable (Jeffcoat and Reddy 1991).  This 

led to the conclusion that progression of periodontal disease included both rapid loss of 

attachment as well as gradual loss of attachment and that the type of attachment loss would 

be based on the susceptibility of the patient.  However, accurate diagnosis and prognosis has 

not been possible yet, due to the absence of reliable markers to detect disease activity and 

identify high risk patients. 

These limitations were taken into account when validating the methodology in this study in 

that, firstly this is the first substantial longitudinal study with a significant sample population 

that has attempted to assess the relationship between sGAG levels in GCF and periodontal 

disease activity and therefore has allowed for statistical robustness of the study. Previous 

studies investigating this relationship have been cross-sectional in nature and have used fewer 

samples and therefore the information obtained from these studies have been limited.  

Secondly, taking into account that the chances of error are high especially when the magnitude 

of changes are minute (Haffajee et al. 1983; Haffajee and Socransky 1986), in this study, a 

Florida probe with a precision of 0.2mm was used to standardise probing forces and improve 

reproducibility.  Intra-examiner calibration was carried out to increase confidence in clinical 

measurements.  Furthermore, the release of sGAG was monitored over timed intervals to 

determine whether the detected GAGs were released continually at the point of sampling or 

pooled in GCF which helped further our understanding of disease pathogenesis and 

contributed towards validating the use of sGAG as a marker of disease activity. 

With regards to analytical method used, CAE was the technique of choice as it has been 

shown to be more sensitive than other techniques in detecting GAGs. Although a time 

consuming technique which requires specialist training, it is able to detect levels as low as 5ng 
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and yield reproducible results (Embery et al. 2000).  Despite the fact that a range of 

monoclonal and polyclonal antibodies have been developed to a variety of epitopes within the 

GAG chain of proteoglycan species for the development of immunological assays, there have 

been difficulties in raising such antibodies with high immunogenicity due to the universal 

distribution of these GAG chains in both soft and mineralised tissues, in addition to inter-

species similarities. Therefore the creation of neo-epitopes by selective digestion with 

chondroitinases yielding an unsaturated non-reducing terminal as a suitable antigen for the 

development of antibody has been proposed. However, the use of hydrolytic enzymes may 

result in disintegration of the proteoglycan and therefore reduce the sensitivity of the 

technique. Some studies have used ELISA for GAG detection in GCF (Shibutani et al. 1993; 

Khongkhunthian et al. 2008; Makeudom et al. 2014) in patients with periodontitis and patients 

undergoing orthodontic treatment (Intachai et al. 2010; Insee et al. 2014)  but the sensitivity of 

the technique has been reported to be 15-1000ng/ml which is lower than that of CAE which is 

able to detect up to 5ng/ml(Embery et al. 2000).  

In the analysis of data, strict parameters were applied to the data for inclusion in the analysis 

and to identify sites as highly likely to be active or inactive at the time of sampling. The 

presence of HA of ≥50ng has been shown previously as an effective internal control measure 

in ascertaining the collection of a sufficient GCF sample size required for analysis (Waddington 

et al. 1994; Waddington et al. 1996).  Although present ubiquitously in all tissues and 

extracellular fluids, hyaluronan is a critical component of the extracellular matrices of the 

mineralised as well as well as non-mineralised connective tissue, where it  contributes 

significantly to tissue hydrodynamics, cell signalling, proliferation and migration (Bansal et al. 

2010).  Hyaluronan is also produced by fibroblasts in the presence of endotoxin; and plays an 

important anti-inflammatory role through the inhibition of tissue destruction and facilitates 

healing (Moseley et al. 2002). The anti-inflammatory effect may be due to the action of 

exogenous hyaluronan as a scavenger by draining prostaglandins, metalloproteinases and 

other bio-active molecules (Laurent et al. 1995).  Due to its anti-inflammatory property, 
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hyaluronan has been used effectively in the field of medicine in the treatment of osteoarthritis 

and rheumatoid arthritis. Therefore, the presence of detectable levels of hyaluronan in the 

GCF samples may indicate its important role in the modulation of wound healing.  The high 

turnover rate observed in the periodontal tissue (Sodek 1976) in addition to being in a constant 

state of remodelling due to functional forces, may also contribute towards its constant release  

in the GCF.  Therefore, a combination of disease activity, repair and remodelling may 

contribute to its consistent presence in the GCF. In the analysis, all samples that contained 

HA levels of <50ng were excluded from the study due to insufficient sample size (Fig 2.6).  

Only sites that demonstrated a clinical attachment loss ≥ 2mm over 3 months or remained 

static over a period of 6 months were included in the analysis (Fig 2.7 and 2.8). This resulted 

in rejection of a major proportion of the sample.  The change in sGAG profile over a period of 

21 months was notable (Fig 2.7) and  possibly reflects periods of activity and quiescence 

which is  characteristic of periodontal disease progression as mentioned previously.   

On statistical analysis of the results from the longitudinal study by associating the presence of 

the biomarker with loss of attachment, large standard deviations were observed (Fig 2.12). 

This reflects possible variations in disease activity in that, at the point of sampling, the selected 

sites may be in a state of ongoing activity or at the initial early stage or at the terminal end 

stage of the disease active period. Further, on normality testing using Q-Q plots and 

histogram, variations were observed between the groups  in that more samples with increased 

GAG levels were observed in the progressive sites which was indicative of representing 

disease activity (Fig.2.10 and 2.11).  Depending on the level of activity, the amount of sGAG 

produced may vary, with increased levels of GAG being released during the ongoing phase 

compared to decreased amounts of sGAG released during the initial or terminal stages of 

activity.  In addition, the level of sGAG may also reflect the severity of the disease with higher 

levels reflecting rapid destruction and lower levels reflecting gradual destruction.  Statistical 

analysis of the data in a cross sectional manner to evaluate sGAG levels with disease severity, 

significant differences were noted between the groups with 6-8mm attachment loss and 
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≥9mm.  These findings are supported from alternative clinical studies which have reported that 

further attachment loss mostly occurred at deeper sites (Grbic et al. 1991; Grbic and Lamster 

1992).  Therefore, an increase in sGAG levels in sites with attachment loss of ≥9mm may 

reflect higher disease activity within this group. Furthermore, statistical evaluation of the cross 

sectional data examining sGAG levels with attachment loss revealed no correlation, which 

may possibly be due to the varying levels of disease activity among the sites in that at the 

point of sampling, the site may be in a state of inactivity or in the initial, mid or terminal stage 

irrespective of the severity of the disease. Moreover, the lack of correlation further 

corroborates on the limitations of cross-sectional analysis in assessing longitudinal changes 

as observed in periodontal disease. 

In monitoring the release of the marker over a timed period of 10 minutes, variations were 

observed in GAG levels over the 21 month time period.  These variations reflect the amount 

of GAGs released during these timed period.  In some of the patients, detectable GAG levels 

were   present only in the first time point whereas in others, the levels were detected at all time 

points.  These variations may possibly reflect on degree of disease severity whereby, the 

consistent GAG levels at all time points indicate continuous release of the marker brought 

about by the ongoing degradative changes at the point of sampling rather than the pooled 

marker.   Irrespective of whether the marker was released on sample collection or pooled, its 

presence in the collected GCF indicates disease activity and therefore a need for treatment 

and its absence therefore indicates the site as being inactive.  Furthermore, the absence of 

sGAG in the inactive sites suggests that the sGAG detected in GCF in sites presumed “active” 

was as a consequence of disease and not turnover and therefore has contributed to further 

our understanding of the disease process.  

In conclusion, the results obtained from this study demonstrate that the increase in sGAGs 

detected in GCF may be indicative of active destruction of the underlying tissues of the 

periodontium and therefore the detection of sGAG in GCF may be used as a potential marker 

of disease activity. The longitudinal design of the study helped further our understanding of 
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disease pathogenesis by enabling us to make observations of the disease process at regular 

intervals of 3 months over a 21 month period and identify sites presumed active and inactive. 

The  wide range of values  observed on data analysis  may possibly suggest  that the sites 

may be at different stages of the disease process  which further corroborates on to the several 

models of disease progression such as gradual loss, single burst, multiple burst,  random 

burst, random walk theories that  have been reported in the literature none of which can explain 

variation in data (Yang et al. 1992). Although the underlying disease process may have 

evolved continuously over time and it is difficult to interpret exactly at what point the transitions 

occur, the possibility of identifying an actively degrading site still appears to be relatively high 

and therefore the presence of sGAG in the sample could be used as a measurement of actual 

tissue destruction.  While this study is not without limitations due to the nature of the disease 

process and experimental design, the use of strict parameters in study design, analytical 

methods, statistical and data analysis have helped minimise inaccuracies due to methodology, 

operator and technical errors as highlighted in previous studies.  However the development of 

an assay system that is relatively easy to perform, sensitive, selective, reproducible and yields 

quick results is sought that will assist the clinician in managing the patient with periodontal 

disease. 
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Chapter 3:   

P. gingivalis LPS inhibits the reparative and regenerative processes 

during periodontal disease by influencing periodontal ligament cell 

behaviour and altering the biological events associated with matrix 

synthesis. 

3.1      Introduction 

The previous chapter evaluated the presence of sGAG in GCF samples collected from patients 

with periodontal disease as a marker of disease activity. The pathological processes leading 

to matrix degradation and the release of these sGAGs into the GCF, are however unclear. 

Extensive research has identified that the tissue destruction observed in periodontal disease 

is largely attributed to local inflammation resulting from interaction between host and microbial 

factors which alter the host immune response.  These microbial factors have an effect on the 

resident cells resulting in release of pro-inflammatory mediators (Taylor 2010; Kinane et al. 

2011).   Within this scenario, it has been proposed that the activity of the periodontal ligament 

(PDL) cells is altered, consequently affecting its important functions such as maintenance of 

homeostasis and repair by tissue degradation and formation, remodelling, maintaining a high 

turn-over rate and structural integrity. Although the PDL cells play an important role especially 

in repair and regeneration, the response of these cells during the inflammatory process has 

not been extensively investigated and therefore the focus of this chapter is to investigate by 

means of in-vitro studies, the biological effects of P. gingivalis LPS on PDL cells, which will 

further our understanding of the cellular synthesis of proteoglycans within a pathological 

condition. 

Although over 700 different bacterial species have been identified in the oral cavity (Aas et al. 

2005; Palmer 2014), only 10 bacterial species as combinations, or on their own, have been 

implicated in the progression of the disease.  The pathogenic role of gram negative anaerobic 
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bacteria in the severe forms of disease has been extensively investigated and studies have 

confirmed that P. gingivalis can be detected in 86% of disease sites (Yang et al. 2004b) and 

is the species most highly associated with the chronic forms of periodontitis.   Kawada (2004) 

reported a significant positive correlation  between P. gingivalis numbers and pocket depth 

(Kawada et al. 2004).   In addition, a reduction of P. gingivalis numbers was associated with 

resolution of disease at the affected site following treatment (Haffajee et al. 1997; Fujise et al. 

2002).  Additionally, experimental implantation of P. gingivalis in animal models induces 

inflammatory response and periodontal bone loss (Evans et al. 1992a; Hajishengallis and 

Lambris 2011). These studies correlated the presence of P.gingivalis with chronic 

periodontitis.  Further studies demonstrated that  P. gingivalis possesses bioactive materials 

such as cytoplasmic membranes, peptidoglycans, outer membrane proteins, 

lipopolysaccharides (LPS), capsules and fimbriae on their cell surface (Offenbacher 1996) in 

addition to cysteine proteases which may induce excessive production of cytokines and 

modulate cytokine networks in the periodontal tissues (Genco and Slots 1984).   Among the 

several virulence factors, P. gingivalis LPS was reported to be a potent stimulator of 

inflammatory cytokine production and bone resorption (Chiang et al. 1999; Nishida et al. 

2001).  The LPS molecule is an essential constituent of the cell wall of gram-negative bacteria, 

is amphiphilic in nature, comprising three regions: lipid A which is responsible for its toxicity, 

the core region and a polysaccharide portion (Gabrielli et al. 2012) as detailed in chapter 1.

Studies examining LPS toxicity, demonstrated that  although the endotoxic activity of P. 

gingivalis  LPS was low compared to that of LPS isolated from that of enterobacteria (Ogawa 

1994), P. gingivalis  LPS was a potent inducer of various biological responses such as bone 

resorption, polyclonal B-cell activation, inhibition of bone formation and fibroblast proliferation 

(Mayrand and Holt 1988; Wang et al. 1999b). Therefore, P. gingivalis LPS has been 

considered to be an important pathogenic component in the initiation and development of 

periodontal disease (Tobias et al. 1997).   In addition to the presence of periodontopathic 

bacteria, other factors such as genetic susceptibility, systemic diseases, environmental factors 



110 

such as smoking and stress play an important role in the onset and progression of periodontal 

disease (Pihlstrom et al. 2005).  

The periodontium is composed of the gingiva, periodontal ligament, cementum and alveolar 

bone and hosts different fibroblast populations with heterogeneity  existing within the 

population of gingival fibroblasts (Bordin et al. 1998; Zhou and Windsor 2007) as well as 

periodontal ligament fibroblasts (Saito et al. 2002; Tomokiyo et al. 2008) with both populations 

containing cells with stem-cell characteristics and self-renewal capacity (Fournier et al. 2010; 

Hynes et al. 2012; Zhang et al. 2012).   The periodontal ligament  is a unique soft connective 

tissue positioned between the root surface of the tooth and the inner wall of the alveolar socket, 

made up highly specialised connective ligament fibres which provide for flexibility during 

movement, nutrition, maintain homeostasis and repair (Bartold et al. 2000; Shimono et al. 

2003). The heterogeneous cell population of the periodontal ligament composed of resident 

cells such as fibroblasts, osteoblasts, cementoblasts, epithelial cells, endothelial cells, 

undifferentiated mesenchymal cells and recruited cells such as neutrophils, monocytes, 

macrophages, provide for maintenance of homeostasis and repair by tissue degradation and 

formation,  alveolar bone remodelling and maintaining a high turn-over rate.   The fibroblasts 

are the predominant cell type and are oriented along collagen fibres present throughout the 

periodontal ligament. These fibroblasts are responsible for the unusually high collagen 

turnover in the periodontal ligament compared with other connective (Sodek 1977; McCulloch 

et al. 2000) tissues in that, they are capable of endocytosis of collagen during degradation, 

unlike gingival and other mucosal or dermal fibroblasts. They preserve collagen homeostasis 

in the periodontium according to mechanical challenge  which the cells are able to perceive

as  mechanical signals through extracellular matrix linkages by forming intimate contacts with 

collagen fibrils and intracellular stress fibers (McCulloch et al. 2000). PDL fibroblasts exhibit 

different biologic reactions in response to environmental factors such as infections (Scheres 

et al. 2010) in that, when compared to gingival fibroblasts,  PDL fibroblasts differ in their 

inflammatory response to viable P. gingivalis, suggesting considerable heterogeneity in their 
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response and that these differences are possible crucial determinants for the susceptibility to 

develop periodontitis. Similar results were reported on exposure to  mechanical challenge 

(Pender and McCulloch 1991) in that,  mechanically induced remodelling is mediated by a 

complex feedback mechanism involving the synthesis of cytokines such as IL-1, IL-6 and 

RANKL by cells present in the PDL, which then act in an autocrine and paracrine manner to 

regulate the expression of transcription factors, cytokines, growth factors, enzymes and 

structural molecules involved in the proliferation, differentiation and function of mesenchymal 

and other cell types (Meikle 2006).  

PDL cells have an important role in maintaining tissue regeneration (Hughes et al. 2010), 

express alkaline phosphatase activity and mineralization capacity (Nohutcu et al. 1997; Hou 

et al. 2000; Lin et al. 2000). These cells  exhibit phenotypic characteristics consistent with 

osteoblast like cells and have the potential to differentiate into osteoblasts and or 

cementoblasts with the capacity to form mineralized deposits (Somerman et al. 1988; Nojima 

et al. 1990a; Arceo et al. 1991).  This heterogenous cell population within the PDL allow for 

the unique properties of the PDL which include rapid turnover  (Sodek 1977) as well as the 

ability to withstand the forces brought about by mastication, thereby maintaining dynamic and 

strong connections between the tooth and bone (Berkovitz 1990; McCulloch et al. 2000).  The 

undifferentiated mesenchymal cells present within the periodontal ligament, also identified by 

previous studies as ‘progenitor cells’, exhibit some of the classical cytological features of stem 

cells (McCulloch et al. 1987) and it has been postulated that these mesenchymal cells are 

recruited and activated following damage to the periodontium, where they undergo terminal 

differentiation into ligament forming cells or mineral forming cementoblasts, both of which act 

to secure the connections between the cementum and alveolar bone (Bartold et al. 2006).  

Experimental studies have demonstrated the continual recruitment of proliferating cells from 

bone marrow stroma through vascular channels that communicate with the PDL (McCulloch 

et al. 1987).  These cells appear to preferentially migrate to the osteoblast and cementoblast 

surfaces, consistent with the recruitment of osteoprogenitor cells from stem cells located in 
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the bone marrow stroma through the PDL and ultimately undergo  differentiation, similar to 

kinetics described in other bony tissues (McCulloch et al. 1987).  These studies confirmed that 

the PDL is constantly repopulated by relatively undifferentiated mesenchymal cells and is a 

rich source of progenitor cells with the capacity to form new hard and soft tissue. Further 

studies have reported that the mesenchymal stem cells isolated from the PDL have the 

capacity to form ligamentous structures resembling Sharpey’s fibres and mineralised tissues 

similar to bone and cementum in vivo (Seo et al. 2004), with recent work reporting that  PDL 

derived MSCs exhibit a superior capacity to form mature mineralized structures which were 

histologically similar to mature bone when compared to MSC derived from gingiva or lung 

(Hynes et al. 2014).   Therefore PDL cells play an important role in repair and regeneration by 

providing a rich source of progenitor cells to facilitate the healing process. 

The effect of LPS on the various cell types present within the periodontium such as fibroblasts, 

osteoblasts, epithelial cells, dendritic cells have been extensively investigated and reported in 

the literature.  However, the effects of LPS on the the progenitor cell population has not been 

investigated previously. This investigation is crucial, as it is the progenitor cell population which 

exhibit greater potential to remodel periodontal tissue compared to other MSC’s and provide 

an important source of cells in periodontal tissue regeneration. Therefore, it was the aim of 

this present study to investigate the effect of  sub-toxic levels of P. gingivalis effect on cell 

proliferation and matrix formation using an in vitro culture system.  This unique culture system 

utilises a possible high proportion of progenitor cells derived from the periodontal ligament and 

is therefore highly relevant for understanding periodontal disease, as it is these cells which 

are recruited during attempts at periodontal tissue repair. 
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3.2   Materials and Methods 

3.2.1      Extraction of LPS from P. gingivalis

At the commencement of this study (2006), only E. coli LPS was available commercially. 

However, the commercially available LPS proved to be contaminated and due to the large 

quantities required for the study, justification was obtained for the necessity to extract and 

purify LPS.  Porphyromonas gingivalis W50 (generous gift from Prof. A Smith, Glasgow Dental 

School) was grown as continuous culture in 500ml fastidious anaerobe agar (Lab M Ltd, 

Lancashire, UK) supplemented with 0.1µg/ml hemin (Sigma Chemical Co, Dorset, U.K) and 

maintained at 37˚C, in an anaerobic atmosphere containing 80%N2,10%H2 and 10% CO2.  The 

purity of the cultures was verified by Gram staining and sub-culture on blood agar plates.  

Bacteria were harvested by centrifugation at 10,000g for 15min at 4˚C. The supernatant 

medium was removed and the bacterial cell pellets were further washed twice with PBS and 

lyophilised.  

The hot-phenol water technique as described by Westphal and Jann (1965) was used to 

extract the LPS fraction of the lyophilised bacterial cells. 10mg of the lyophilised bacterial cells 

were first ground using a mortar and pestle to break the pellet into a uniform mix and then 

resuspended in a centrifuge tube containing equal volumes (15ml each) of double distilled 

water and 90% phenol (Sigma Chemical Co, Dorset, U.K). The mixtures were placed in a 

water bath pre-heated at 65-68˚C and shaken vigorously for 20 mins.  This resulted in the 

formation of one homogeneous phase.  The mixture was immediately cooled in an ice bath for 

5 min and centrifuged at 8,000g for 20 mins at 4˚C.  This resulted in the formation of three 

distinct layers; an upper aqueous layer containing polysaccharides and nucleic acids, a phenol 

layer containing proteins and a lower insoluble layer containing cell debris.  The upper layer 

was collected and the residual phase was treated with another volume of hot water as above.   

The upper layers were collected, pooled and dialysed against double-distilled water at 4˚C 

overnight and centrifuged at 100,000g for 3hrs at 4˚C.  The resulting precipitate was washed 
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twice with double-distilled water and lyophilised.   The lyophilised pellet containing the LPS 

was resuspended in 2mls pyrogen free distilled water and treated with 1μg/ml of DNase (from 

bovine pancreas; Sigma Chemical Co) and 1μg/ml of RNase (from bovine pancreas; BDH, 

Poole, UK) and incubated at 30˚C for 90 mins at pH 7.5 to remove nucleic acids.  Finally 

1μg/ml of Proteinase K (from fungi; Sigma Chemical Co) was added and incubated at 30˚C 

for 90 mins to remove contaminating bacterial proteins.  Following these enzymatic 

treatments, the solution was heated at 90˚C for 30 mins in a water bath to inactivate the 

enzymes.  This was followed by extensive dialysis against double distilled water at 4˚C and 

then lyophilized. Stock solutions were prepared in pyrogen free distilled water at 

concentrations of 1mg/ml. 

3.2.2     Characterisation of LPS

The LPS from P. gingivalis extracted by hot-phenol water technique was further examined to 

assess its purity. Absence of contamination with nucleic acids was confirmed by 

electrophoresis of samples using agarose gel stained with ethidium bromide.  Removal of 

contaminating protein was confirmed by SDS PAGE followed by staining with Coomassie Blue 

and Silver stain.  The molecular size profile of the extracted P. gingivalis LPS was compared 

to commercially available E.coli LPS (Sigma Chemical Co.), also reported to be extracted 

using the same technique. LAL assay was carried out for the quantification of endotoxin 

levels.
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3.2.2.1      SDS- Polyacrylamide Gel Electrophoresis

P. gingivalis or E. coli LPS samples were prepared at concentration of 1mg/ml. To 10 µl of 

sample, 1 µl of NuPAGE sample reducing agent (500 mM dithiothreitol (DTT) at a 10X 

concentration, Invitrogen, UK) and 2.5 µl of sample buffer (containing Coomassie G250 and 

Phenol Red as tracking dyes) was added.   500mls of running buffer was prepared by adding 

25mls of 20X NuPAGE SDS Running buffer containing 50 mM MOPS, 50 mM Tris Base, 0.1% 

SDS, 1 mM EDTA, pH 7.7 (Invitrogen, UK)  to 475 mls of deionized water.  The antioxidant 

buffer was prepared by adding 500 µl of NuPAGE antioxidant (Invitrogen, UK) to 200mls of 

the running buffer.  

The pre-cast NuPAGE® 4-12% Novex Bis-Tris Gel (Invitrogen, UK) was removed from gel 

pouch and the gel cassette rinsed with deionized water.  The tape was removed from the 

bottom of the cassette and the comb gently removed from the cassette.  The sample wells 

were rinsed with 1x NuPAGE SDS running buffer and the gel oriented in the tank as per 

manufacturer’s instructions.  The seal was checked to ensure that there was no leakage.  The 

inner chamber of the tank was filled with the antioxidant buffer and the out chamber with the 

running buffer.  10µl each of the molecular weight marker (SeeBlue, Invitrogen, UK ) and the 

prepared samples were  loaded onto the gel and the gels were run for 35 mins at 120mA to 

separate the LPS molecule. 
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3.2.2.2    Staining with Coomassie Brilliant Blue for detection of protein 

contamination

Following electrophoresis, the gels were submerged in staining solution containing 0.1% 

Coomassie Blue R250 (w/w), 30% methanol and 5% acetic acid for 30mins on a platform 

shaker.  Destaining was carried out by soaking the gel firstly in 30% methanol and 5% acetic 

acid for 15mins   followed by 7% acetic acid and 5% methanol until the gel background was 

clear.   Presence of proteins were detected as blue bands on a clear background. 

3.2.2.3           Staining with Silver for characterisation of LPS 

The Color Silver Stain Kit (Pierce, UK) was used for characterisation of LPS.  Following 

electrophoresis, the gel was fixed with 50% ethanol, 5% acetic acid for 4 hours with frequent 

changes of the fixative buffer.  Gels were then washed four times with ultrapure (deionised 

and distilled) water.  Silver working solution (WS) was prepared by adding 10 ml of silver 

reagent (provided in the kit) to 140ml of water.  Reducer aldehyde working solution and 

reducer base working solution was prepared by adding 10 ml each of reducer aldehyde 

reagent or reducer base reagent (both provided in the kit) to 65ml of water.  Stabiliser base 

working solution was prepared by adding 10ml of stabiliser base reagent (provided in the kit) 

to 440ml of water.   The gel was then incubated in silver working solution for 30mins followed 

by water rinse for 20 seconds.  Reducer working solution was prepared by combining equal 

volumes of reducer aldehyde working solution and reducer base working solution immediately 

before use.  The gel was incubated in reducer working solution for 5mins followed by 

incubation in stabilizer working solution for 40mins.  The gel was visualised using Gel Doc 

(Bio-Rad Laboratories, Hertfordshire, UK) and digital images recorded. 
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3.2.2.4           Staining with Ethidium  Bromide  for assessing contamination   with 

nucleic acids

Ethidium Bromide is the most commonly used stain for nucleic acids.  It is a large flat molecule 

which has the capacity to insert itself within the double stranded DNA molecule.  This results 

in the formation of fluorescent complexes which can be viewed under UV light. 

2% agarose gels (Sigma, Aldrich) were prepared in 0.5x TBE buffer.  The solution was heated 

and stirred intermittently until the agarose had dissolved to form a clear solution.   On slight 

cooling, 5µl of ethidium bromide solution (Molecular grade 10mg/ml, Promega) was added to 

the solution and immediately poured into a casting tray and left to set.   Once set, the gel along 

with the casting tray was then placed in an electrophoresis tank containing 0.5x TBE buffer 

with the comb facing cathode.   The comb was removed carefully from the gel. 10μl each of  

E. coli LPS and P. gingivalis LPS were loaded into the respective wells along with 5μl of 100bp 

ladder (Promega) on either side. The gel was run at 80V for approximately 45min until the 

marker reached the bottom of the gel.  The gel was then removed from the casting tray and 

products visualised on Gel DocTM scanner (Bio-Rad, Hemel Hempstead, UK) using UV light 

and digital images recorded. 

3.2.2.5     LAL assay 

The QCL-1000R assay (Lonza, UK)   was used to perform the Limulus Amebocyte Lysate 

(LAL) assay to estimate levels of LPS in the sample.  This assay is based on the biological 

principle that, in the presence of endotoxin, the proteolytic activity of the proenzyme Factor C 

found in circulating amebocytes of the horseshoe crab Limulus polyphemus is activated.  On 

addition of a chromogenic substrate containing para-nitro aniline (pNA), the enzyme splits the 

chromophore pNA from the chromogenic substrate resulting in yellow colour that can be 

quantitated by measuring the absorbance at 405nm and extrapolated against a standard 
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curve.  Standards were prepared at a concentration range of 0.1EU/ml to 1EU/ml.  50µl of 

samples and standards were pipetted into wells in triplicates in a 96 well plate.  50µl of the 

LAL reagent provided in the kit was added into each well and samples were incubated at 37°C 

for 10 minutes.  100 µl of the chromogenic substrate (containing pNA) provided in the kit was 

added to the samples and standards and incubated at 37°C for an additional 10 min. The 

enzymatic reaction was stopped by the addition of 50µl of a stop reagent containing 25% v/v 

glacial acetic acid in water and absorbance measured spectrophotometrically at 405nm.  A 

standard curve was obtained by potting the absorbance against the corresponding 

concentrations of standards provided in the kit.  The concentration of endotoxin in the sample 

was determined from the standard curve.    

3.2.3    Isolation of periodontal ligament cells 

Periodontal ligament (PDL) like cells were obtained as explants from alveolar bone chips. 

Alveolar bone was dissected from ten week old CD1A mice (culled under schedule 1 for 

harvest of tissue), by placing incisions at each corner of the mouth and cutting through skin 

and muscle.  All supporting muscle and soft adherent tissues were removed from the alveolar 

bone.  Molars and incisors were removed and the alveolar bone proper was washed three 

times with 0.1 M phosphate buffered saline (PBS, pH 7.4).  The alveolar bone was then split 

longitudinally into two halves and placed in 6 well plates and cultured in alpha-modification 

Minimum Essential Medium (αMEM) pre-supplemented with ribonucleosides and 

deoxyribonucleosides (Invitrogen, UK), containing antibiotics (100 units/mL penicillin G 

sodium, 0.1 µg/mL streptomycin sulphate and 0.25 µg/mL amphotericin; Invitrogen, UK) at 

37ºC and 5% CO2 .  Migrating cells from bone chips were observed by day 5 and confluency 

attained at 3-4 weeks.  Existing media was replaced with fresh media once every 48 hours.  
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On attaining confluency, the alveolar bone sections were removed, confluent cells were 

washed with PBS and 1.5ml accutase (0.5 mM EDTA, Sigma-Aldrich, UK) was added to each 

well, incubated at 37˚C, 5% CO2 for 5 min to detach the cells from the plate.  The cells were 

then collected into a 15 ml centrifuge tube and centrifuged at 1500rpm for 5 minutes. The 

supernatant was discarded and the cell pellet was resuspended in 1 ml of media and counted 

using a haemocytometer.  The cells were then reseeded in appropriate volume of working 

media to provide a cell density of 1x104 cells/cm2 in 6 well plates and expanded.  Cells of the 

third passage were used for experiments.  

3.2.4    Characterization   of periodontal ligament cells 

The PDL cells were evaluated by immunocytochemical staining and characterized according 

to the expression of cell surface markers CD105 (Endoglin), CD90 (Thy1), CD73 and OPN. 

The presence of CD105, CD90 and CD73 positive cells allows for characterization of 

mesenchymal stem cells whereas, the presence of OPN positive cells allows for 

characterization of osteoprogenitor cells.  PDL cells from passage 3 were reseeded at a 

density of 1x104 cells/cm2 in 8 well chamber slides (BD Biosciences) and incubated at 37ºC, 

5% CO2 for 24 hours   in culture conditions as described in   section 3.2.3   above. The cells 

were fixed in freshly prepared paraformaldehyde (4%) for 30 mins and then washed twice with 

PBS.  In order to avoid non-specific staining, the cells were incubated in blocking buffer (1% 

normal horse serum in TBS) at room temperature for 1 hr.  Primary antibody (anti CD105, anti 

CD90, anti CD73 and anti OPN goat polyclonal antibodies, Santa Cruz Biotechnology Inc, 

Santa Cruz, USA) diluted in 1% BSA in PBS was prepared at a concentration of 1:50.  Blocking 

buffer was discarded and the cells were incubated in primary antibody at 4 ºC overnight.  Goat 

IgG was used for isotype control and negative control was obtained by the omission of primary 

antibody.  The cells were then washed 3 times in PBS for 5 mins and then exposed to rabbit 

anti-goat IgG FITC conjugated secondary antibody (Santa Cruz Biotechnology Inc, Santa 
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Cruz, USA) diluted in 1% BSA/PBS solution at a concentration of 1:250 and incubated for 90 

mins at room temperature in the dark.  The cells were then washed 3 times in PBS for 5 mins 

each time.  The slide was placed in 70% acetone for 10 minutes and the slide tool used to 

dislodge the chamber from the slide. The edges were carefully blotted to remove excess 

solution and a droplet of mounting medium for fluorescence microscopy viewing containing 

Dapi (VECTASHIELD, Vector Laboratories Inc, Burlingame, USA) was added onto the slide. 

A large coverslip was mounted with the cells facing the microscope slide (Polysine slides, 

Thermos scientific, UK). Dapi or 4’, 6-diamidino-2-phenylindole is a fluorescent stain that binds 

strongly to the A-T rich regions in the DNA and helps visualise the nuclei whereas FITC 

(Fluorescein isothiocyanate) is an amine-reactive derivatives of the fluorescein dye, 

functionalized with an isothiocyanate reactive group in its structure which is reactive towards 

primary amine groups on proteins. The cells were then viewed under an Olympus AX70 

fluorescent microscope and images were captured using a Nikon digital camera DXM 1200. 

3.2.5.        Determination of seeding density using MTS assay 

To ensure that cells used in experiments were in the exponential growth phase, MTS 

assay was used to determine appropriate seeding density.  CellTiter 96 AQueous One 

solution Cell proliferation assay-MTS assay, (Promega, UK) is a colorimetric method for 

determining the number of viable cells in proliferation, cytotoxicity or chemosensitivity assays.  

The principle behind this technique is dependent on the capacity of living cells to reduce 

tetrazolium salt {3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide} to a formazan 

crystal in their metabolizing mitochondria.   In this assay, the number of viable cells at specific 

time points, were assessed delivering information regarding cell expansion over time.  The 

quantity of formazan product as measured by the amount of 490 nm absorbance is directly 

proportional to the number of living cells in culture. 
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PDL cells obtained from third passage were plated at concentrations of 6x103, 1x104, 2x104, 

4x104, 6x104, 8x104, 1x105 in duplicates in a 12 well plate and left to adhere for 24 hours. Cell 

viability was assessed by adding 200l of MTS reagent to each well and the cells incubated 

for 4 hrs.  100l of supernatant was transferred into a 96 well plate.  Absorbance was recorded 

at 490nm with a 96-well plate reader (Bio-Tek Instruments Ltd).  

3.2.6     Determination of sub-toxic levels of LPS on cell viability

Staining with Trypan blue dye was carried out to examine the cytotoxic level of LPS on PDL 

cells.  This test is based on the principle that viable cells possess an intact cell membrane and 

therefore are able to exclude dyes such as Trypan Blue and therefore appear clear unlike non-

viable cells which appear stained. 

PDL cells obtained from third passage were reseeded to provide a cell density of 1x104 

cells/cm2 in 12 well plates.  The cells were left overnight to adhere.  On day 0, the supernatant 

was removed and replaced with culture media supplemented with P. gingivalis LPS at a range 

of concentrations (50ng-500ng).  After 24 hours, the media was removed, cells washed three 

times with PBS and then incubated with 1ml of 0.4% trypan blue stain (Sigma-Aldrich) for 1 

minute.  The stain was pipetted out and the cells washed once with PBS.  The numbers of 

blue stained and non-stained cells from five fields of view were immediately counted under an 

inverted microscope and the percentage viability was determined. 
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3.2.7     Effect of subtoxic levels of LPS on cell proliferation 

Following viability count on cells stimulated with different concentrations of LPS, a survival 

rate of less than 95% was noted for cells stimulated with LPS concentrations of greater than 

200ng/ml.  Therefore, further experiment  were carried out using LPS of concentrations 

50ng/ml and 100ng/ml.  Cells obtained from the third passage were plated at   concentrations 

of 1x104 cells/cm2 in 12 well plates.  The cells were left overnight to adhere. The media was 

then replaced with media containing LPS at concentrations of 50ng/ml and 100ng/ml, each 

LPS concentration in triplicate. Media not supplemented with LPS was used as control. 

On day 0, 200l MTS reagent was added to 800l media in each well and the plate incubated 

at 37˚C for 4 hours.  100μl of sample was subsequently transferred to a 96 well plate and 

absorbance read at 490nm.  The procedure was repeated on days 1, 2, 3, and 4 to monitor 

the expansion of cell numbers with time in culture media.  Media was replaced every 24 hours 

with fresh media containing LPS at concentrations of 50-100ng/ml respectively. Standard 

deviations were determined for all repeated analysis (n=3) to determine scatter of the data.  In 

order to compare expansion of cells with time at LPS concentrations of  50ng, 100ng and 

control, a one way ANOVA test was used making no restrictive assumption regarding scatter 

of data, using Graphpad InStat computer software package.  The correlation coefficient to 

assess linearity between cell number and absorbance at 490nm, were also determined using 

Graphpad InStat computer software package (Instat Package; GraphPad Software, San 

Diego, CA, USA). 
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3.2.8    Effect of subtoxic levels of LPS on alkaline phosphatase activity 

The alkaline phosphatase enzymes are a specialised group of glycoproteins usually 

associated with bone matrix, detected in mineralised matrices and linked with external 

membranes of osteoblasts (Robey, 1993).  At present there are no specific markers for 

periodontal ligament cells, however several studies have demonstrated that a population of 

cells capable of expressing alkaline phosphatase activity exist in the periodontal ligament 

(Lekic et al., 2000; Saito et al., 2002).  

The alkaline phosphatase assay is based on the biochemical principle that in the presence of 

alkaline phosphatase, the chromogenic substrate p-nitrophenylphosphate is hydrolysed to 

form p-nitrophenol (pNP) which is yellow color and can be measured at 410nm on a 

spectrophotometer.  

PDL cells were cultured as above (section 3.2.3) and seeded at 1x104 cells/cm2 in 12 well 

plates. Cells were allowed to settle for 24 hours after which (day 0) the media was replaced 

with media containing LPS at concentrations of  50ng/ml and 100ng/ml respectively, each LPS 

concentration in triplicate. Media without LPS was used as control. On days 2, 4, 6 and 8, the 

media was removed and the remaining adherent cells were treated with 2.5 ml of 0.1% Triton 

X-100 buffer (pH 7.2) for 15 min at 37˚C.  The wells were scraped with a cell scraper to free 

adherent cells.  The supernatant containing solubilised cell components were removed and 

buffer-exchanged using PD-10 columns (Amersham Life Sciences, Buckinghamshire, UK) as 

follows.  The PD10 columns were equilibrated with 25ml elution buffer (1M diethanolamine, 

0.5mM magnesium chloride, pH 9.8) following which,  2.5 ml of sample treated with Triton-X  

was allowed to run into the column.   Once the whole of the sample had run through the 

column, 3.5ml of elution buffer was run through the column to elute the protein fraction and 

the buffer containing the protein fraction was collected. 10μl of 150mM p-nitrophenyl 

phosphate (Sigma-Aldrich) was mixed with 90μl of sample obtained from elution.  Triplicates 

of each sample were prepared and the plate incubated at 37ºC for 30min and absorbance 
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recorded at 405nm with a 96-well plate reader (BioTek Instruments Ltd).  The activity of 

alkaline phosphatase present was calculated by applying the mean absorbance readings to 

the equation:               

ALP activity (units) = Abs/min x TV 
                                 18.45x LPx SV 

Where    TV = Total vol (ml) 
               SV = Sample volume (ml) 
           18.45 = Millimolar absorptivity of p-nitrophenol at 405nm 
                LP = Lightpath (1-cm). 

The assay was performed in triplicate and cell counts were carried out from 5 different fields 

per well. The mean activity of alkaline phosphatase (activity units/104 cells) for each time point 

was calculated. 

3.2.9    Effect of sub-toxic levels of LPS on matrix formation 

To investigate the effect of sub-toxic levels of LPS on matrix formation, the  expression of 

bone markers were examined at mRNA level and at protein levels.  The specific markers 

examined were osteopontin, BSP, osteonectin, osteocalcin, alkaline phosphatase, decorin 

and biglycan.  RT-PCR was carried out to examine gene expression at mRNA level and 

Western blot carried out to examine synthesis of protein. 
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3.2.9.1     RT PCR 

3.2.9.1.1    RNA extraction 

PDL cells were seeded at 1x 104 cells/cm2 in 12 well plates  and left overnight to adhere.  The 

cells were then stimulated with 0, 50ng and 100ng/ml P. gingivalis LPS, each condition in 

triplicate. Media was replaced with fresh media every 48 hrs. On days 4, 8 and 12, the media 

was pipetted out and the cells washed twice with PBS.  Using RNeasyTM mini  kit (Qiagen, 

Crawley,UK), total RNA was extracted from the periodontal ligament  cells. The kit consists of 

RLT lysis buffer, RW1 and RWE wash buffers and spin columns containing membranes which 

bind RNA.  10µl β-mercaptoethanol was added to 1ml RLT Buffer  (containing 25% guanidium 

thiosulphate) to facilitate complete inactivation of RNase activity.  100 µl of this buffer was 

added to the cells and the cell lysate was mixed and pipetted directly into a QIA shredder spin 

column placed in a 2ml collection tube and centrifuged for 2min at 10,000g to facilitate 

homogenization.  An equal volume of 70% ethanol (Qiagen Ltd) was added to the 

homogenised lysate and mixed by pipetting to promote selective binding of the RNA to the 

column membrane.   The spin columns were centrifuged at 8000g and the flow through 

discarded. 350µl of buffer RW1 (containing 2.5 -10% guanidium thiosulphate, 2.5-10% 

ethanol) was added to the spin columns, centrifuged for 15 seconds and the flow through 

discarded. 10µl of DNase enzyme (Qiagen) was added to each column to eliminate 

contamination with genomic DNA and incubated at room temperature for 15mins prior to a 

repeat wash with buffer RW1.  500 µl of Buffer RPE was added to the column and centrifuged 

at 8000g for 15secs and the flow through discarded, followed by a repeat wash using buffer 

RPE and centrifuged at 12,000g to dry the RNeasy membrane.  The RNeasy column was then 

transferred to 1.5ml collection tube and 30µl of RNase free water (Qiagen Ltd) added to the 

column membrane and centrifuged at 8,000g for 1min to elute the RNA.  The tubes containing 

the RNA was placed immediately on ice.  
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3.2.9.1.2     Quantification of RNA  

RNA was quantified using NanovueTM   spectrophotometer (GE Healthcare).  Purity of RNA 

was assessed by examining the A 260:A280.   RNase free water was first used to obtain a 

blank reading.  2 µl of the sample was placed onto the sample plate and absorbance values 

were recorded at 260nm.  An absorbance of 1OD is equivalent to  approximately 40 µg/ml 

RNA.   Concentration of RNA was calculated by the following equation: 

A260 X RNA factor (40) X Dilution factor = Total RNA µg/ml 

The absorbance at 260:280nm of all samples were < 2.0 indicating RNA purity. 

3.2.9.1.3       Reverse transcription of total RNA 

To 1 µg RNA sample, 1 µl of random primer (Promega) was added and final volume made up 

to 15 µl with nuclease free DEPC water and incubated at 70°C for 5mins in PCR machine.   A 

master mix made up of  55µl  5x reaction buffer (250mM Tris-HCl  at pH 8.3, 375mM KCl, 

15mM MgCl2, 50mM DTT),13.75µl 10mM PCR nucleotide mix (dNTP’s), 6.6 μl of 40U/ml 

RNase inhibitor, 11μl of 200U/μl reverse transcriptase and 23.65 μl DEPC water was 

prepared.   10 μl of the Master mix was added to 15 μl of RNA/random primer mix.  A RT 

negative control was prepared by excluding RNA from the above components and nuclease 

free water was used as negative control.   Reactions were run on a G-stormTM GS1 Thermal 

cycler (Genetic Research Instrumentation Ltd, UK) and run at 37ºC for 1 hour after which the 

samples were  cooled on ice and stored at -20˚C until used for PCR reaction.   All reagents 

used obtained from Promega, Southampton, UK. 
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3.2.9.1.4     Polymerase chain reaction

A  master mix was prepared by adding 55μl of 5x Green GoTaqTM Flexi Buffer (Promega), 5.5 

μl 10mM stock nucleotide mix (dNTP’s),13.75μl (F) Primer and 13.75μl (R) Primer (Table 4.1), 

11μl of 3mM MgCl2, 162.25 μl PCR grade water and 2.75 μl Taq DNA polymerase (Promega).   

24μl of Master-mix was pipette into separate 0.25ml PCR tubes and 1μl cDNA was added to 

each tube to make up a final volume of 25 μl.  Nuclease free water was used as negative 

control. Reactions were run on a G-stormTM GS1 Thermal cycler (Genetic Research 

Instrumentation Ltd, UK) with an initial denaturing step of  95˚C for 4mins, followed by  35 

cycles of a 1min 95˚C denaturing step, 1 min 62˚C annealing step and 1 min 72˚C extension 

step.  A final extension step at 72˚C was run for 10mins to end the reaction.   The reaction 

products were cooled down to 4˚C and then visualised.
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Primer Sequence

Osteonectin
F : 5’GGG GCC AGG GTG TCT GGG TAG CAC ACA GCC-3’
R: 5’ TGG GAG CAG GGC AGC TGG TGG GGT CCT G-3’

Alkaline Phosphatase F: 5’ CAC TGC GCT CCT TAG GGC TGC CGC TCG C-3’
R: 5’ CAG TGG CAG TGC CCG CGC TGT CAG GGA C-3’

Osteopontin F: 5’GGA GTC CGA TGA GGC TAT CAA-3’
R: 5’TCC GAC TGC TCA GTG CTC TC-3’

Decorin F: 5’ GTG GGT GTC AGC TGG ATG CGC TCA CGC AG-3’
R: 5’ AGG TTG TGT CGG GTG GAA AAT CCC AGG GCA- 3’

Biglycan F: 5’ AGC GGG CTC CGC AAC ATG AAC TGC ATT G-3’
R:5’ TGC ACT TCC CAG TAG GGC ACA GGG TTG T-3’

Osteocalcin F: 5’ AGT CCC ACA CAG CAG CTT GGC CCA GAC CTA-3’
R: 5’ ATT GAC CTG CAC GTC TAG CCC TCT GCA GGT -3’

BSP F: 5’ CTG CTT TAA TCT TGC TCTG-3’
R: 5’ CCA TCT CCA TTT TCT TCC-3’

Β-Actin
(House keeping gene)

F:5’ TGA AGA TCA AGA TCA TTG CTCC TCC   -3’
R:5’  CTA GAA GCA TTT GCG GTG GAC GATG  -3’

Table 3.1:    Primer sequences used in the PCR reactions. Primers were designed using Primer 

Blast to ensure specificity for the intended amplification targets. 
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3.2.9.1.5    Visualisation of PCR products on Agarose gels 

PCR products were run on 2% agarose gels (Sigma, Aldrich) as described in section 3.2.2.4     

and visualised on Gel DocTM scanner (Bio-Rad, Hemel Hempstead, UK) using UV light and 

digital images recorded. 

3.2.9.2        Western blot  analysis 

3.2.9.2.1     Protein extraction 

Periodontal ligament cells from second passage were reseeded at a concentration of 1x104

cells /cm2.  After 24 hours, cells were stimulated with P. gingivalis LPS at concentrations of 

50ng and 100ng/ml, each condition in triplicate.  On days 4, 8 and 12, non-collagenous 

proteins were extracted using extraction buffer.  One CompleteTM protease inhibitor cocktail 

tablet (Roche, Hertfordshire, UK) was dissolved in 50ml of the extraction buffer (4M 

Guanidine-HCl, 0.03M EDTA and 0.05M Tris HCl) as per manufacturer’s instructions, 

immediately prior to use.  The cells cultured in 12 well plates were washed twice for 5mins 

with PBS.  1ml of extraction buffer was added to each well and left for 48hrs at 4˚C with 

constant agitation.  Extracts were collected and centrifuged at 1,000g for 5mins.  The resulting 

supernatents were collected and desalted using Centriprep spin columns (Millipore, Billerica, 

USA) prior to lyophilisation and resuspension in 2mls of distilled water.  All samples were 

homogenised by sonification and stored at -20˚C.
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3.2.9.2.2        Evaluation of protein content using BCA assay  

The BCA protein assay kit (Pierce, Northumberland, UK) was used to determine the protein 

concentration in the samples.  This assay is based on the principle that Cu+2 is reduced to 

Cu+1 in the presence of protein in an alkaline medium (biuret reaction) followed by chelation 

of the cuprous ion by the bicinchoninic acid resulting in the formation of a purple product which 

can be measured by absorbance thereby indicating the relative protein concentration in the 

sample. 

Standards provided in the kit were prepared to a concentration range of 125μg/ml to  2,000 

μg/ml.   25 μl of samples or standards were placed in triplicate  wells of a 96 well plate.

The BCA reagent was prepared by combining 12 mls of reagent A (a sodium bicinchoninate 

solution) with 240 mls of reagent B (a cupric sulphate solution).  200μl of the combined sodium 

bicinchoninate/cupric sulphate solution was added to each well containing either sample or 

standard and incubated at 37˚C for 30 mins.  Absorbance at 570nm was read using a 

Microplate reader (BioTek Instruments Ltd). The protein concentration of the samples was 

determined from the standard curve generated by the absorbance values of the BSA 

standards plotted against protein concentration.   Protein samples were then diluted to an 

equal concentration of 2.5 μg/µl  for further experiments.

3.2.9.2.3      Protein separation using SDS-PAGE

The molecular size profile of the protein was examined by SDS-PAGE using the Phast System 

(Amersham Biosciences, Buckingshire, UK).  The Phast System is a semi-automated 

horizontal electrophoresis system, utilising preformed gels and buffer strips with voltage and 

sample application controlled by a microprocessor.  Protein samples were diluted 1:1 with a 

protein sample buffer  containing 26% (v/v) 0.5M Tris HCl, 21%(v/v) glycerol, 42% (v/v) of 10% 

( w/v) SDS in distilled water, 10%(v/v) of 2-β-mercaptoethanol and 1%(v/v) of 0.5%(w/v) 
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bromophenol blue in distilled water (final protein concentration of 2.5μg/µl).  Samples were 

heated to 100˚C for 5mins and the proteins were separated on 4-15% gradient polyacrylamide 

gels (GE Healthcare).  

70μl of double-distilled water was placed on the separation bed cooled to 15˚C and the gel (4-

15% gradient polyacrylamide gels, GE Healthcare) was placed on the bed to give a thin film 

of water between the gel and the bed.  The performed buffer strips (GE Healthcare) were 

inserted into the appropriate anode and cathode compartments and placed onto the gels.  

Molecular weight marker (SeeBlueR Plus 2 pre-stained marker, Invitrogen) and samples were 

first drawn into a six lane, 4μl application comb by capillary action, before being placed in the 

electrophoresis apparatus and applied to the gel.  The separation programme used involved 

two initial steps: an initial low electric output of 100V, 1.0MA, 1.0W, 4.0Vh, which drew the 

samples through the stacking gel, followed by an increased electrical output of 250V, 10.0MA, 

3W, 66Vh for separation of the molecular components. 

3.2.9.2.4    Western Blotting 

On completion of separation, the gel was removed from the separation unit and placed in 

transfer buffer (0.03M Tris Base, 0.2M glycine, 10% methanol, 1% SDS).  The anode base 

plate was cleaned by wiping with transfer buffer and the electro blot apparatus was placed 

over it.  The transfer sandwich was built up by placing 3 filter papers (chrom1) wetted in 

transfer buffer, one on top of the other taking care to exclude air bubbles.  Using the gel 

separating apparatus, the gel was separated from its plastic backing and placed on a paper 

towel with the polyacrylamide side facing up. Next, a nitrocellulose sheet (ECL hydrobond, GE 

Healthcare) wetted in transfer buffer was placed carefully over the gel without trapping any air 

bubbles.  The plastic backing was removed from the gel and the gel along with the 

nitrocellulose sheet was placed over the wet filter papers with the nitrocellulose sheet 

positioned below the gel.  3 additional sheets of filter papers wetted in transfer buffer were 
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placed over the gel.  The cathode was placed over the sandwich and protein was electro 

blotted onto the nitrocellulose sheet for 30 min at 15V, constant voltage. 

On completion of transfer, the nitrocellulose membrane was separated   and incubated in 5% 

milk (low fat dried skimmed, Marvel) in wash buffer ( 0.01M Tris HCl pH7.5, 0.1 M NaCl, 0.1% 

Tween-20) for one hour to block non-specific protein binding sites. Primary antibodies were 

diluted 1:50 in 5% milk (Marvel) and applied to the membrane for 1 hr at room temperature. 

The nitrocellulose membrane was then washed with 4 changes of wash buffer with each wash 

of a duration of 5 min. Secondary antibody in a dilution of 1: 10,000 in 5% milk was applied to 

the blot for 1 hr at room temperature.  The nitrocellulose membrane was then washed x3 with 

wash buffer and the immuno-reactive bands were visualised by using BCIP/NBT color 

development substrate. The combination of NBT (nitro-blue tetrazolium chloride) and BCIP 

(5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt) is used for the colorimetric detection of 

alkaline phosphatase activity and yields an intense, insoluble black-purple precipitate in the 

presence of alkaline phosphatase.  The substrate was prepared in 5ml of alkaline phosphatase 

buffer( 100mM Tris HCl at pH-9.0, 150mM NaCl, 1mM MgCl2) by adding 33µl of NBT, followed 

by 16.5µl of BCIP.   The nitrocellulose membrane was left in the substrate on a platform shaker 

with constant agitation till the formation of the blue black substrate and then washed x3 in 

wash buffer and blotted dry. 
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1º Antibody and dilution 

used

Antibody source ALP conjugated 2º antibody 

and dilution used

Rabbit anti mouse Decorin

1:50

Larry Fisher 

LF-113

Goat anti rabbit IgG  (Sigma)

1:10,000

Rabbit anti mouse Biglycan

1:50

Larry Fisher 

LF- 104

Goat anti rabbit IgG  (Sigma)

1:10,000

Goat anti mouse Osteonectin 

(SPARC)                     1:50              

Santa Cruz Biotech

H-14

Rabbit anti goat IgG  (Sigma)

1:10,000

Goat anti mouse Osteopontin

1:50

Santa Cruz Biotech

P-18

Rabbit anti goat IgG  (Sigma)

1:10,000

Rabbit anti mouse Osteocalcin 

1:50

Santa Cruz Biotech

FL-95

Goat anti rabbit IgG  (Sigma)

1:10,000

Rabbit anti mouse BSP

1:50

Larry Fisher 

LF-87

Goat anti rabbit IgG  (Sigma)

1:10,000

Table 3.2: 1ºand 2º Antibodies used in Western Blot and their dilutions. 
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3.3   Results 

3.3.1       Characterisation of P.gingivalis LPS 

Electrophoretic separation of P. gingivalis LPS extracted using hot phenol water technique 

and commercially available E. coli LPS (Sigma, UK) was carried out by SDS-PAGE followed 

by silver staining. The classical laddering heterogenous pattern of LPS (Fig 3.1), which is 

attributed to the variability of the O-specific oligosaccharide moiety (Tsai and Frasch 1982) 

was observed for P. gingivalis LPS, similar to that obtained from E. coli although lower 

molecular weight fragments were also observed in P. gingivalis samples.  

Staining of SDS-PAGE gels with Coomassie Blue was carried out to assess contamination 

with protein in the P. gingivalis and E. coli LPS samples.  Successful removal of contaminating 

protein was confirmed as indicated by the absence of staining in the purified samples as 

shown in Fig. 3.3.   Similarly, P. gingivalis and E. coli   LPS were assessed for contamination 

with nucleic acid on agarose gel electrophoresis followed by staining with ethidium bromide.  

Absence of streaks in the purified samples (lane 1 and 3 in Fig 3.2) confirmed successful 

purification from nucleic acid contamination. Significant amount of nuclear material were 

present in the non-purified samples as shown in Fig.3.2 (lane 2 and 4) 
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Fig 3.1: LPS fraction was extracted by hot phenol method and subjected to SDS-PAGE followed by 

silver staining.    
Lane 1 - Unpurified E. coli LPS sample with streaks indicating contamination with protein. 
Lane 2 - Unpurified P. gingivalis LPS sample demonstrating distinct laddering pattern of LPS with 
               streaks indicating  protein contamination. 
Lane 3 - Purified P. gingivalis sample demonstrating distinct laddering pattern with absence of streaks. 
Lane 4 - Sample of supernatant obtained during hot-phenol extraction demonstrating   heavy streaks 
              indicating contamination.   
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Fig 3.2: Agarose gel stained with ethidium bromide demonstrating streaks in the unpurified LPS 
samples (lane 2 and 4) indicating contamination with nuclear material. 

Fig 3.3: SDS-PAGE stained with coomassie blue  demonstrating dark band in lane 5 indicating 
contamination with protein in the supernatant obtained from hot phenol extraction.  
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3.3.2   Isolation and characterisation of PDL cells 

The PDL derived cells demonstrated a spindle shape fibroblast like morphology with formation 

of colonies (Fig 3.4). The presence of MSC’s were evaluated by the presence of cell surface 

markers CD105 (Endoglin), CD90 (Thy1), CD73 and the  presence of osteoprogenitor cells 

were evaluated  by the presence of surface marker OPN by immunocytochemical staining, 

with a majority of the cell population staining positive to the markers investigated (Fig 3.5).  
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A 

B

Fig 3.4:  Representative light microscopy images of PDL cell population obtained using explant 

technique. Cells were initially cultured as explants in culture media until confluent and then passaged 
further (x3).  Typical appearance of cells obtained from passage 3, on day 4 (A) and day 8 (B) 
demonstrating proliferating PDL cells with spindle shape fibroblast like cell morphology and formation 
of colonies (indicated by arrow).  

Day 4

Day 8
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Fig 3.5: PDL cells obtained from passage 3 were cultured in chamber slides, fixed with 4% 

paraformaldehyde and treated with antibody (anti-CD105/ anti CD 90/ anti CD 73 or anti-OPN antibody) 

and then visualised with FITC conjugated antibody (stained green) and DAPI (nuclei stained blue). 

Representative fluorescence microscopy images depicting immunocytochemical staining of the PDL 

cells demonstrating the presence of A- CD105 (Endoglin), B- CD90 (Thy1), C- CD73 and D- OPN 

positive cells in the cultured PDL cell population indicating the presence of MSC’s and osteoprogenitor 
cells.   

Fig 3.3CD105 CD90

CD73 OPN
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Fig 3.6: Typical examples of  isotype control (A) and negative control (B).   No staining observed on 

immunocytochemical staining indicating that the staining observed in Fig 3.5 was not caused by non-
specific interactions of immunoglobulin molecules with the sample. 
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3.3.3           LAL Assay

LAL assay was carried out to estimate levels of LPS in the samples.  A standard curve was 

obtained by plotting the absorbance against the corresponding concentrations of standards 

provided in the kit as shown in Fig 3.7 and the concentration of endotoxin in the samples was 

determined from the standard curve (1mg=10,346EU). 

3.3.4          Evaluation of seeding density by MTS assay 

PDL cells were plated at concentrations of 6x103, 1x104, 2x104, 4x104, 6x104, 8x104, 1x105 in 

duplicates in a 12 well plate and MTS assay carried out as detailed in section 3.2.5.   A 

standard curve was obtained by plotting the absorbance against the corresponding 

concentrations of cells as shown in Fig 3.8.  The correlation coefficient (r) was calculated using 

Instat Graphpad software package to determine association between seeding density and 

absorbance.   A r value of 0.9688 was obtained indicating a linear response. A seeding density 

of 1x10,000 was determined as appropriate for further experiments. 
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Fig 3.7:  LAL assay was carried out to determine endotoxin levels in sample. Proteolytic activity was 

activated in the presence of endotoxin, which resulted in yellow color on addition of chromogenic 
substrate that was quantitated by measuring the absorbance at 405nm and extrapolated against a 
standard curve (1mg=10,346EU).  
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Fig 3.8: PDL cells were plated at various seeding densities and cell proliferation assessed by MTS 

assay showed a linear increase in absorbance with increasing cell seeding density at 490nm 
(R=0.9688).  A seeding density of 10,000 cells/cm2 was determined as appropriate for further 
experiments. 
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3.3.5          Effect of P.gingivalis LPS on cell viability 

The influence of P. gingivalis LPS on PDL cell viability was assessed by trypan blue staining. 

Viable (unstained) and non-viable cells (blue stained cells) were counted from 5 different 

fields, from which the percentage of viable cells were calculated, where a cell viability count 

greater than 95% was acceptable.  A dose dependent decrease in cell viability was observed 

as shown in Fig.3.9.  Cells cultured in the presence of  LPS at a concentration of 50ng/ml and 

100ng/ml demonstrated a viability between 80-90% whereas cells cultured in the presence of 

500ng/ml LPS demonstrated a cell viability of <50%.  
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Fig 3.9: Toxic and sub-toxic levels were determined by monitoring cell viability by trypan blue staining. 

PDL cells obtained from passage 3 were exposed to various concentrations of LPS and the % of viable 
and non-viable cells determined.  The data represent mean + SD of triplicate experiments. With 
increasing levels of LPS, the cell viability reduced to <50%   for cells exposed to 500ng/ml LPS (**p<0.01 
at 100ng/ml and ***p<0.001 at 200ng/ml and 500ng/ml).
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3.3.6       Effect of sub-toxic levels of LPS on cell behaviour.

The influence of P. gingivalis LPS at concentrations of 50ng/ml and 100ng/ml on PDL cell 

expansion over the first 4 days post reseeding was monitored by means of MTS assay (Fig 

3.10). Significant differences (p<0.05) were observed between LPS supplemented and 

unsupplemented cells on days 1, 2 and 3 with the highest stimulatory effect observed on day 

3 (p<0.001).   However, these differences were not dose dependent.  

Values are presented as means ± S.D. p-values were calculated using one-way analysis of 

variance with the Tukey post-correction test if the p-value was < 0.05 (Instat Package; 

GraphPad Software, San Diego, CA, USA), to determine the direct differences in cell numbers 

and absorbance between P. gingivalis LPS-supplemented and unsupplemented cells at each 

time points analysed.  
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Fig 3.10: Cell proliferation of PDL cells was assessed by MTS assay.  PDL cells from passage 3 were 
cultured in media containing P. gingivalis LPS (50 or 100ng/ml) and MTS assay carried out at various 
time points. The data represent mean + SD of triplicate assays. Cell proliferation was significantly 
increased when compared to unsupplemented cells at day 1 (*p<0.05), day 2 (**p<0.01) and day 3 
(***p<0.001). 
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3.3.7      Effect of sub-toxic levels of   LPS on alkaline phosphatase activity. 

 Fig 3.11 demonstrates the effect of LPS at concentrations of 50ng/ml and 100ng/ml on 

membrane bound alkaline phosphatase activity.  PDL cells were cultured in the presence of 

LPS at concentrations of 50ng/ml and 100ng/ml and the alkaline phosphatase activity was 

monitored by the hydrolysis of p-nitrophenol at specific time points (days 2, 4, 6 and 8).  Cells 

cultured in the presence of 50ng/ml and 100ng/ml LPS, significantly inhibited (p<0.001) 

alkaline phosphatase activity over days 2 and 4 as shown in Fig. 3.11.  Significant differences 

between LPS supplemented and unsupplemented cells (p<0.05) were observed upto day 6.  
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Fig 3.11:  Differentiation potential of PDL cells was determined by monitoring alkaline phosphatase 
activity. PDL cells from passage 3 were cultured in media containing P. gingivalis LPS (50 or 100ng/ml) 
and alkaline phosphatase activity was measured at various time points. The data represent mean + SD 
of triplicate assays.  PDL cells  cultured in media containing P. gingivalis LPS (50 or 100ng/ml) showed 
significant reduction in alkaline phosphatase activity when compared to unsupplemented cells on days 
2, 4 and 6 (**p<0.01 and ***p<0.001). 

0

0.005

0.01

0.015

0.02

0.025

0.03

2 4 6 8

U
n

it
s
/1

0
,0

0
0
c
e
ll
s

Time in days

0ng

50ng

100ng

***
**

**

***



150 

3.3.8            Effect of LPS on matrix formation 

a)    Protein quantification 

BCA assay was carried out to quantify protein levels in the samples. A standard curve was 

generated by plotting the absorbance against the corresponding concentrations of standards 

provided in the kit as shown in Fig 3.12 and the concentration of the protein in the sample was 

determined from the standard curve. 

b)     mRNA level 

Expression of markers characteristic of the osteogenic phenotype were assessed at gene  and 

protein levels.   Fig 3.13 shows a steady decline in alkaline phosphatase mRNA levels from 

day 4 to day 12.  Expression of decorin was weak at day 4 compared to day 12, whereas 

biglycan was expressed at all time points.  Osteopontin, osteonectin, osteocalcin and BSP 

mRNA levels were   expressed at all time points. 

The techniques used in this study (RT-PCR) are semi-quantitative and therefore the absolute 

levels of mRNA expression  between different conditions and time points was not possible. 

The densitometric analysis was carried out to demonstrate trends in levels and on analysis, a 

reduction in biglycan expression was observed on day 8 (Fig 3.14).  
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c) Protein synthesis 

Western Blot immunocharacterization of osteopontin, osteonectin, osteocalcin, decorin, 

biglycan and   BSP isolated from the extracellular matrix surrounding cells incubated in the 

presence or absence of P.gingivalis at different concentrations is shown below.  Faint bands 

are present on day 4 and 8 with the presence of (Fig 3.15).  Presence of streaks  may 

represent the presence of low molecular weight proteins representing degradation products 

or may be due to altered phosphorylation or post translational modification of OPN. On day 

12, an increase in osteopontin synthesis was observed on stimulation with 100ng LPS 

suggesting persistence of OPN which may inhibit mineralization.  Similarly, osteocalcin (Fig 

3.16) and osteonectin (Fig 3.17) were also detected.  A dose dependent difference was not 

observed.  On the other hand, a dose dependent difference was observed for biglycan on day 

12 (Fig 3.18).  Decorin (Fig 3.19) and BSP (Fig 3.20) were weakly expressed at all time points 

observed. 
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Fig 3.12:  BCA assay was carried out to quantify protein levels in the samples. 
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Fig 3.13: PDL cells were cultured in media containing LPS (50ng and 100ng/ml) and gene expression 

of alkaline phosphatase, decorin, biglycan, osteopontin, osteonectin, osteocalcin and BSP were 
assessed by RT-PCR on days 4, 8 and 12.  A steady decline in alkaline phosphatase mRNA is observed 
from day 4 to day 12. Weak expression of Decorin and BSP mRNA are indicated on day 4 and 8 
whereas biglycan and osteopontin mRNA are expressed consistently on all days. Osteonectin and 
osteocalcin mRNA expression appear progressively weaker from day 4-12.. 
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Fig 3.14:  Densitometric analysis of gene expression of alkaline phosphatase, decorin, biglycan, 

osteopontin, osteonectin, osteocalcin and BSP investigated by RT-PCR on days 4, 8 and 12 show a 
trend towards decreased alkaline phosphatase, osteonectin, decorin and biglycan mRNA expression.  
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Fig 3.15:  Western Blot analysis of  protein extracted from ECM surrounding PDL cells stimulated with 

P. gingivalis LPS (50ng/ml and 100ng/ml) at various time points (days 4, 8 and 12 post seeding) 
demonstrating presence of OPN (Mol wt - 44kDa) on day 4 and 8. Presence of streaks may indicate 
the presence of degradation products indicating delayed/ impaired matrix formation. 
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Fig 3.16:  Western Blot analysis of protein extracted from ECM surrounding PDL cells stimulated with 

P. gingivalis LPS (50ng/ml and 100ng/ml) at various time points (days 4, 8 and 12 post seeding) 
demonstrating expression of osteocalcin (Mol wt -5.8kDa) on days 4 and 8. Absence on day 12 may be 
suggestive of impaired/ delayed matrix formation.

Day 4                          Day 8
Day8            Day 12

LPS(ng/ml) 0     50   100      0       50 LPS(ng/ml)  100     0      50     100    

188kDa
188kDa

62kDa

49kDa
62kDa

49kDa



157 

Fig 3.17: Western Blot analysis of protein extracted from ECM surrounding PDL cells stimulated with 
P. gingivalis LPS (50ng/ml and 100ng/ml) at various time points (days 4, 8 and 12 post seeding) to 
investigate the presence of osteonectin (Mol wt - 40 kDa).  Faint expression of osteonectin observed 
on day 4 with streaks present at all concentrations and time points which may represent degradation 
products. 
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Fig 3.18: Western Blot analysis of protein extracted from ECM surrounding PDL cells stimulated with 
P. gingivalis LPS (50ng/ml and 100ng/ml) at various time points (days 4, 8 and 12 post seeding) 
demonstrating faint expression of biglycan (Mol wt - 45 kDa) on day4.  Streaks present at all 
concentrations and time points may represent degradation products. 
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Fig 

Fig 3.19: Western Blot analysis of protein extracted from ECM surrounding PDL cells stimulated with 
P. gingivalis LPS (50ng/ml and 100ng/ml) at various time points (days 4, 8 and 12 post seeding) to 
investigate presence of decorin (Mol wt - 50 kDa).  Faint streaks present at all concentrations and time 
points may represent degradation products. 
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Fig 3.20: Western Blot analysis of protein extracted from ECM surrounding PDL cells stimulated with 
P. gingivalis LPS (50ng/ml and 100ng/ml) at various time points (days 4, 8 and 12 post seeding) to 
investigate the presence of BSP(Mol wt -60-80kDa).  Streaks present at all concentrations and time 
points may represent degradation products. 
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3.4   Discussion 

In the last decade, extensive research has identified the presence of mesenchymal stem cell 

population within the periodontal ligament with a capacity to form physiological bone and 

connective tissue.  Albeit, limited repair/regeneration is observed in patients undergoing 

periodontal treatment, the reasons for which are less understood.  One could speculate that 

the presence of virulence factors such as LPS may alter cell behaviour of the progenitor cell 

population, but this has not been investigated previously. Therefore, this present study 

investigated the influence of sub-toxic levels  of P. gingivalis LPS on periodontal ligament cell 

behaviour in terms of proliferation, differentiation and matrix formation with a view to further 

our understanding of the response of these cells within a pathological situation.   

The behaviour of the progenitor cell population thus obtained was further assessed on 

exposure to sub-toxic levels of P. gingivalis LPS and the results obtained from this study 

provided strong evidence that P. gingivalis LPS has the capacity to increase the proliferative 

activity of the PDL cells  but decrease the differentiation and matrix formation potential of these 

cells.  A reduction in differentiation potential was evidenced by a decrease in the alkaline 

phosphatase activity and an alteration in matrix production was demonstrated by examining 

mRNA expression profile of decorin, biglycan, osteocalcin, osteonectin and osteopontin in 

addition to western blot analysis examining protein expression. The effects of LPS on matrix 

formation has not been investigated previously to include a wide range of matrix proteins and 

therefore this study reports for the first time that in the presence of virulence factors such as 

P. gingivalis LPS, the biological events associated with the synthesis of a matrix may be 

altered and consequently influence the potential of the tissues in protecting the alveolar bone 

from resorption, the preservation of the Sharpey’s fibres and thus influence homeostasis. PDL 

tissue has been reported to have the highest turnover rate when compared to other connective 

tissues in the body. Therefore, an imbalance between tissue formation and degradation is 
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likely to render the tissue more susceptible to rapid breakdown, providing an explanation for 

its high susceptibility and reduced resistance to combat infection.  

At the time of study (2006), only E. coli LPS was available commercially which appeared to 

be contaminated with protein and nucleic acid (Fig 3.3). It has been reported that 

contaminating components, specifically bacterial proteins and nucleic acids may have the 

capacity to influence cell behaviour. In addition, structural differences in the core molecule 

along with variations in length and phosphorylation of the lipid A component have been 

identified within LPS of P. gingivalis species and reported to have an influence on cell 

behaviour.  Therefore, justification was obtained for the necessity to extract and purify      P. 

gingivalis LPS and thereby provide a more clinical relevant scenario with which to investigate 

the effect of LPS on PDL cell behaviour in vitro.  

LPS was extracted from bacterial cell walls using the hot phenol-water differential extraction 

technique and the characterisation of P. gingivalis LPS demonstrated absence of 

contamination with bacterial proteins and nucleic acids. The classical heterogenous laddering 

pattern of P. gingivalis LPS as reported in other studies (Chen et al. 1990; Kadono et al. 1999; 

Roberts et al. 2008) was observed on SDS-PAGE of the LPS samples,  which is attributable 

to the variability of the O-specific oligosaccharide side chain (Tsai and Frasch 1982).  

As mentioned previously in Chapter 1, the heterogeneous population present in the PDL also 

includes a population of stem/progenitor cell population which originate from the 

ectomesenchymal cranial neural crest cells which possess the capacity to differentiate into 

periodontal ligament fibroblasts, cementoblasts and osteoblasts  (Sodek and McKee 2000; 

Bartold et al. 2006; Hynes et al. 2012) and it is this progenitor cell population that have been 

speculated to play an active role in repair and regeneration.  Therefore, to confirm the 

presence of a progenitor cell population within the cultured cells, the presence of cell surface 

markers CD105, CD90 and CD73 were evaluated by immunocytochemical staining. 

Additionally, the presence of OPN positive cells was investigated to confirm the presence of 

osteoprogenitor cell population. The results demonstrate that the PDL population presented 
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with a typical fibroblastic morphology with a majority of the cell population staining positive to 

cell surface markers CD105, CD90, CD73 and OPN.  The model system used in this study is 

therefore highly relevant in understanding the pathological processes involved in periodontal 

disease, as this technique utilises a possible high proportion of progenitor cells similar to that 

recruited during the repair process.   In order to maintain the rich phenotypic and functional 

heterogeneity of the cells characteristic of the original tissue, primary PDL cell cultures of early 

passage were used for all experiments.  

On exposure to sub-toxic levels of LPS, an increase in cell growth was observed, followed by 

a decrease in alkaline phosphatase activity over the time period investigated.  The mRNA 

expression profile supported the results obtained from examining the ALP activity of the PDL 

cells in that, a noticeably weaker mRNA expression of alkaline phosphatase was observed 

with an increase in time, which further indicated that P. gingivalis LPS  may inhibit the 

osteoblastic differentiation of PDL cells.  ALP is a marker of the osteoblastic phenotype and is 

secreted during mid-stage differentiation (Weinreb et al. 1990), which is when mineralisation 

is initiated (Aubin et al. 1995). Early characterisation studies have identified histochemically, 

that PDL fibroblasts stain intensively for ALP and biochemical analysis demonstrated an 

increase in basal ALP activity in culture over time (Basdra and Komposch 1997).  Further 

studies reported PDL cells exhibited phenotypic characteristics consistent with osteoblast like 

cells and that such cells have the potential to differentiate into osteoblasts and or 

cementoblasts with the capacity to form mineralized deposits particularly in the maintenance 

and repair of the Sharpy’s inserts interfacing with the alveolar and cementum surfaces  

(Somerman et al. 1988; Nojima et al. 1990a; Arceo et al. 1991).  During the inactive or repair 

stages of periodontal disease, repair is facilitated by the recruitment of the progenitor cell 

population present in the PDL adjacent to the alveolar bone, in addition to growth factors such 

as bone morphogenic proteins, transforming growth factor β, platelet derived growth factor, 

which are released as part of the repair process, to stimulate the proliferation and 

differentiation of the progenitor cells to form osteoblasts and fibroblasts  that are capable of 

the eventual synthesis of the mineralised matrix (Bartold and Narayanan 2006; Hughes et al. 
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2006).  It is therefore highly likely that the cells contributing towards alkaline phosphatase 

activity are pre-osteoblastic in nature. Other studies have evaluated the effect of LPS on the 

behaviour of osteoblast cells and reported an increase in the proliferative capacity 

demonstrated by these cells in response to stimulation with subtoxic levels of LPS and 

appeared to impede the formation of the osteoblast phenotype as evidenced by a reduction in 

ALP activity (Roberts et al. 2008; Kato et al. 2014).  In the development of the osteogenic 

phenotype, three distinct phases have been reported by Roberts et al (2008), which involve 

an initial active cell growth, extracellular matrix synthesis and maturation followed by 

mineralisation.  On exposure to subtoxic levels of LPS, an increase in cell growth was 

observed, a decrease in alkaline phosphatase activity which is suggestive of an impairment in 

the development of the osteogenic phenotype and a concomitant decrease in mineral 

deposition (Roberts et al. 2008).  Based on the above findings, one could speculate that within 

the heterogenous cell population, LPS may increase the cell growth of one or more subsets 

of the mesenchymal cell population, which may have a detrimental effect on the other subsets.   

Therefore, the decrease in ALP activity observed in this study, may possibly reflect a decrease 

in the number of osteogenic precursor cells brought about by an increase in the other 

progenitor cell population in response to LPS stimulation.    

The ECM proteins (osteopontin, osteonectin, osteocalcin, BSP, decorin and biglycan) play an 

important role in the processes modulating mineralization and remodelling. Therefore mRNA 

and protein expression profiles for specific markers (osteopontin, osteonectin, osteocalcin, 

BSP, decorin and biglycan) were investigated for the first time in this study to assess the 

influence of LPS on the functional ability of PDL cells in the production of matrix, as this has 

not been investigated by previous studies. Although differences were observed in the 

intensities of the various product bands, it is not possible to directly compare absolute 

differences in mRNA expression between stimulated and unstimulated cells as RT-PCR is at 

best a semi-quantitative method. However, this technique makes it possible to examine a 

broad range of markers and identify key markers and observe general trends which could then 
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be  further investigated with advanced techniques such as Q-PCR that allows for direct 

measurement of differences in the levels of mRNA expression between stimulated and 

unstimulated or between cells stimulated with varying concentrations of LPS.   

Osteopontin (OPN),  a marker of the osteogenic phenotype which is expressed in the early 

stages of osteoblast differentiation (Hughes et al. 2006), was strongly expressed at all time 

points.  OPN has a wide array of functions which include stimulation of cellular signalling 

pathways, regulation of cell proliferation and phagocytic activity and can both promote and 

participate in cell migration in addition to the enhancement of cell survival by inhibiting 

apoptosis in addition to its primary function of facilitating recovery after injury or infection 

whereby an increase in its expression is observed (Sodek et al. 2000).  Therefore, in this 

study, the continued expression of OPN at both mRNA and protein levels up to day 12 may 

indicate the presence of cell population in attempting to facilitate repair, as osteopontin is 

typically expressed in the early developmental stage by osteogenic cells (Sodek et al. 2000; 

Hughes et al. 2006).  With regards to the wound healing process, osteopontin has several 

complex functions which include a chemo-attractant and anti-apoptotic signal for 

macrophages, neutrophils, T-cells, fibroblasts and endothelial cells, in addition to osteoblasts 

progenitor cells via CD44 interactions (Ashkar et al. 2000; Denhardt et al. 2001; Wang and 

Denhardt 2008).  Therefore, the continued persistence of OPN up to day 12 may also indicate 

a potential role in the recruitment of cells of immune and inflammatory origin in-vivo, thereby 

extending the inflammatory response by the secretion of cytokines and other inflammatory 

mediators, consequently leading to a delay in the repair process. OPN induces the expression 

of MMP-2 and 9 which play an important role in matrix degradation (Weber et al. 2002; Philip 

and Kundu 2003) and is an inhibitor of mineralization (McKee et al. 2011; Yuan et al. 2014) 

further suggesting that its persistent presence in this study may be suggestive of impaired 

matrix formation. Post translational changes, variable phosphorylation and the presence of 

degradation products may contribute to the streaking present on W.B analysis.  

Osteocalcin, an osteoblast specific protein which is considered to be an indicator of a mature 

osteoblast phenotype and has been proposed to halt the process of bone formation and begin 
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the process of bone remodelling, thereby participating in the final stages of bone maturation 

(Boskey 1992; Hughes et al. 2006).   In this study, the mRNA expression of osteocalcin 

decreased with an increase in time which was further supported by an absence of protein 

expression by day 12, in addition to the presence of degradation  products/ as a result of post-

translational modification as represented by streaks on W.B  Therefore In this study, exposure 

to P. gingivalis inhibited osteocalcin production thus inhibiting the differentiation of PDL cells 

to mature osteoblasts and consequently altered matrix synthesis.  

Osteonectin, is a matrix-associated glycoprotein that influences a variety of cellular activities 

by binding to several proteins of the extracellular matrix (ECM), affect ECM protein expression, 

alter cell shape, reduce cellular adhesion, influence migration, modulate growth factor-induced 

cell proliferation and angiogenesis (Brekken and Sage 2000).  In addition, it also influences 

cell interactions with the extracellular milieu during embryonic development and in response 

to tissue injury (Phan et al. 2007).  A decrease in expression of osteonectin with an increase 

in time period as demonstrated in this study at both mRNA and protein level in addition to the 

presence of degradation products may suggest an altered ability of the tissues in facilitating 

repair. 

Decorin and biglycan play an important role in cellular signalling, formation of matrix and 

mineralisation (Waddington et al. 2003a) and were therefore investigated in this study. The 

mRNA expression profile of biglycan was consistent at all time points investigated whereas 

decorin was weakly expressed at both mRNA and protein levels.  However, at protein levels 

significant differences were noted for biglycan; an increase in protein synthesis was noted for 

cells stimulated with 100ng/ml LPS compared to 50ng whereas decreased protein synthesis 

was observed for the unstimulated cells.  As the biglycan synthesis is normally high in the 

early stages of culture, which are associated with cell proliferation and early differentiation of 

progenitor cells (Waddington et al. 2003a), the results from this study indicate that the normal 

high levels were suppressed (day 4) in the early stages involving  cell proliferation and 

differentiation after which it appears by day 12.  In considering the repair process, these results 

are significant as biglycan binds to growth factors such as TGFβ and TNFα, sequestering them 
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to the matrix and thereby influence cellular activity indirectly (Hildebrand et al. 1994; Tufvesson 

and Westergren-Thorsson 2002; Bi et al. 2005), modulate BMP 2 induced osteoblast 

differentiation (Mochida et al. 2006),  promote collagen fibrillogenesis (Vogel et al. 1984; Vogel 

and Trotter 1987; Sugars et al. 2003) and regulate the deposition of mineral in bone (Boskey 

et al. 1997).   Low expression of decorin in this study may lead to a detrimental effect on the 

collagen matrix as decorin has been shown to bind to collagen and influence collagen fibril 

formation which ultimately provides the provisional matrix for mineral deposition(Vogel et al. 

1984; Vogel and Trotter 1987; Sugars et al. 2003). 

In conclusion, this study provides a more detailed assessment of the biological effects of sub-

toxic levels of P. gingivalis LPS on PDL cell population and has provided evidence to further 

our knowledge on the events that take place during repair and regeneration.  It is evident that 

complex interactions occur in the active and quiescent stages of periodontal disease due to 

imbalances in the metabolism and normal cellular activities of the cells present within the 

periodontium.  Our results demonstrate that low levels of virulence factors such as LPS, have 

the potential to alter the growth and repair potential of cells involved in the repair process, 

which may further suppress the role of these cells in the repair and remodelling of tissue lost 

as a consequence of the disease process. Interestingly, since completion of this study, a 

recent study has endorsed this work in that, an increase in cell proliferation with a concurrent 

decrease in alkaline phosphatase activity was reported on exposing human PDL cells to P. 

gingivalis LPS (Kato et al. 2014). The clinical implications of these results may be that the 

delayed or impaired healing seen in non-responding deep sites despite extensive treatment, 

may be due to the presence of virulence factors such as LPS which is capable of affecting a 

whole range of biological events associated with matrix formation followed by mineralisation 

and therefore affect the ability of the tissues in attempting remodelling and repair. An 

imbalance in tissue turnover/remodelling rates may render the tissue susceptible to rapid 

destruction. Furthermore, these results implicate that as the biological processes associated 

with matrix synthesis is altered in periodontal disease, the  contribution of the PDL towards 

the matrix degradation products collected in GCF is negligible, further confirming that  the 
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degradation products detected in GCF are as a consequence of tissue destruction and not as 

a result of repair or remodelling. Therefore these results also contributed towards further 

evaluating proteoglycan as marker of disease activity in biomarker development.   
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Chapter 4              

P. gingivalis  LPS upregulates TLR2  and CD14 on periodontal 

ligament cells. 

4.1    Introduction 

The biological events associated with matrix synthesis have been proposed to be altered as 

a consequence to exposure to virulence factors such as LPS as detailed in the previous 

chapter.  These alterations are driven by cytokines which are released as a consequence of 

the host-microbial interaction which result in amplifying the inflammatory response resulting in 

destruction of the soft and hard tissues and ultimately tooth loss. The response of the host 

immune response to invasion by pathogens is initiated by the recognition of conserved 

pathogen associated molecular patterns (PAMPs) through an array of receptors known as 

pattern recognition receptors (PRRs) which include the Toll like receptors (TLRs).  The 

engagement of these receptors with their ligands, sets off a cascade of inflammatory reactions 

which, if not balanced may exacerbate chronic inflammatory processes such as periodontal 

diseases (Mahanonda and Pichyangkul 2007). 

          The TLRs are predominantly expressed on the cells of the innate immune system which 

mainly involve the neutrophils, monocytes, macrophages and dendritic cells.  Different TLR 

expression is observed by these cells, thereby allowing them to induce a wide variety of 

immune responses to these specific pathogens.  CD14 is a glycoprotein that forms a complex 

with LPS and LPS-binding protein (LBP), playing a role as a co-receptor for TLRs.  Binding of 

the LPS/LBP/CD14 complex to TLRs triggers the downstream events in LPS signalling, 



170 

resulting in the activation of nuclear factor-kappa B followed by the transcription of various 

pro-inflammatory cytokine genes (Akashi-Takamura and Miyake 2008).  As well as its role in 

LPS-mediated signalling, CD14 also plays a role in the recognition of PAMPs from 

mycobacteria and viruses and participates in signalling events involving TLR2 (Cleveland et 

al. 1996). 

           Since the periodontium is constantly exposed to bacteria, it has been suggested that 

TLR detection and activation may play an important role in the maintenance of periodontal 

health. The cells of the periodontium express different types of TLRs (Table 5.1) and thereby 

facilitate active participation in the first line of defence in maintaining periodontal health. 

Gingival epithelial cells recognise and continually interact with various microorganisms 

present within the oral cavity as well as those present within the biofilm on the tooth surface 

with the help of receptors TLR 2, 3, 4, 5, 6 and 9 (Kusumoto et al. 2004). This results in 

activating innate immune responses involving the release of antibacterial β-defensins 

cathelicidin and calprotectin as well as neutrophil chemoattractant IL-8 (Weinberg et al. 1998) 

resulting in limiting microbial invasion and breaching of the epithelial barrier, thereby 

maintaining gingival health.  Tissue destruction results in disruption and penetration of the 

epithelial barrier by invasive bacteria or their products resulting in activation of TLRs in cells 

present in the deeper tissues such as macrophages, fibroblasts, osteoblasts, osteoclasts and  

antigen presenting cells.  On stimulation, these cells produce various pro-inflammatory 

cytokines leading to inflammation and activation of the immune cells, thereby amplifying the 

inflammatory response leading to destruction of connective tissue and bone.  
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Cell type TLR

Neutrophils TLR 1,2,4,5,6,7,8,9,10

Langerhans cells/Tissue dendritic cell TLR 1,2,3,4,5,6,8,10

Epithelial cells TLR 2,3,4,5,6,9

Gingival fibroblast TLR 2,4,9

Endothelial cells TLR 1,3,4,5

Perodontal ligament fibroblast TLR 2,4

Cementoblasts TLR 2,4

Osteoblast TLR 1,4,5,6,9

Osteoclast TLR 1,2,3,4,5,6,7,8,9

Table 4.1 mRNA expression of TLRs on different cell types within the periodontium (Mahanonda and 

Pichyangkul 2007) 

                      On sustained exposure to bacterial structures such as LPS, the oral mucosa 

develops tolerance (Muthukuru et al. 2005) in an attempt to regulate local immune responses. 

The underlying mechanism of this tolerance may be attributed to the down regulation of TLR 

expression and inhibition of intracellular signalling.  However, chronic stimulation may result 

in over production of inflammatory mediators thereby contributing towards tissue destruction 

such as seen in severe forms of the disease.   Therefore, studies have investigated the effect 

of bacteria and their products on TLR activation on various cell types with a view to understand 

how TLR stimulation determines the outcome of immune response. 

                       Among the TLRs, TLR2 and TLR4 have been reported to be involved in the 

recognition of P. gingivalis LPS (Hirschfeld et al. 2001; Darveau et al. 2004).  TLR4 is the 

principal signal transducer for most types of LPS (Darveau et al. 2004; Hajishengallis et al. 
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2006), while TLR2 is a signal transducer for other bacterial components, such as 

peptidoglycan and lipoprotein (Takeuchi et al. 1999). However, P. gingivalis LPS is unusual, 

in that it has been reported to be an agonist for both TLR-2 and TLR-4 (Hajishengallis et al. 

2002; Darveau et al. 2004; Zhou et al. 2005). 

                     Studies examining the expression of TLRs by fibroblasts have reported that 

human gingival fibroblasts (HGF’s) constitutively express mRNA of TLR2 (Tabeta et al. 2000), 

TLR4 (Wang et al. 2000) as well as receptor related molecules such as CD14 and  MyD88 

(Hiraoka et al. 1998; Tabeta et al. 2000). DNA microarray analysis demonstrated that 

expressed levels of TLR2, TLR4 and CD14 in human gingival fibroblasts were higher in 

patients with periodontitis compared to healthy controls (Wang et al. 2003).  Additionally, in 

vitro stimulation of  human gingival fibroblasts showed increased expression of TLR2, TLR4, 

CD14 and MD-2 (Tabeta et al. 2000).  A recent study reported  P. gingivalis infection induces 

TLR2 and TLR9 up regulation in chronic periodontitis and that the P. gingivalis-induced TLR2 

expression in HGFs was partly dependent on TNF-α and may lead to sensitization of HGFs to 

bacterial components encountered in the periodontal micro-environment (Wara-Aswapati et 

al. 2012). These studies suggest that P. gingivalis LPS may play an important role in the up 

regulation of TLR2, TLR4, CD14 in periodontal disease.  Studies examining expression of 

TLRs by epithelial cells in gingival biopsies have reported expression of TLR2, TLR6 and TLR9 

(Kusumoto et al. 2004).  Low levels of TLR4 have also been reported with an increased 

expression on treatment with IFN-γ (Uehara et al. 2002).  An abundance of TLR2 positive cells 

were observed in connective tissue subjacent to pocket epithelium (Mori et al. 2003). 

Therefore, TLR2 expression by epithelial cells may be important, given its strategic position in 

the outermost layer where it is continually exposed to microorganisms.  In addition, TLR3 and 

TLR9 (Kusumoto et al. 2004) have also been detected on epithelial cells thereby reflecting the 

ability of the epithelial cells to respond to both viral and nucleic acids. 

                  Besides gingival fibroblasts and epithelial cells, little information is available on 

TLR signalling in other cells of the periodontium.  On comparison of human gingival fibroblasts 

with periodontal ligament fibroblasts from the same donor, a low CD14 and high TLR2 
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expression in periodontal fibroblasts was reported suggestive of different functions of both cell 

types in reponse to plaque bacteria (Kusumoto et al. 2004). Hatakeyama et al, investigated 

the effects of PAMPs on fibroblasts of gingival and periodontal origin and reported that on 

stimulation with PAMPs, gingival fibroblasts produce pro-inflammatory cytokines such as IL-

1, TNF-α, IL-6, leading to tissue destruction and bone loss whereas periodontal ligament 

fibroblasts produce proteinases on TLR stimulation resulting in direct degradation of the 

periodontal tissues (Hatakeyama et al. 2003). 

                     The effect of P. gingivalis LPS on a murine cementoblast cell line demonstrated 

that they express mRNA for TLR2, TLR4, CD14, MD-2 and participate in the inflammatory 

process by activation of the TLR2 pathway (Nociti et al. 2004; Nemoto et al. 2006).  

Interestingly, OPG was constitutively expressed by cementoblasts, and was not significantly 

altered by P. gingivalis LPS stimulation thereby suggesting a protective role in physiological 

as well as pathological conditions (Nemoto et al. 2006).  Osteoclasts from mouse bone marrow 

cells were shown to express mRNA for TLR2, TLR4 and CD14 in response to stimulation with 

LPS (Itoh et al. 2003) and primary mouse osteoblasts have been reported to respond to LPS 

stimulation by RANKL expression and osteoclast differentiation through TLR2 and TLR4 

(Kikuchi et al. 2001).  A study on human osteoblastic cell line SaOS-2, has reported mRNA 

expression of TLR1, TLR4, TLR6, TLR9, MD-2, CD14 and MyD88 but failed to express mRNA 

for TLR2.  In considering the endothelial cells, these cells express mRNA for TLR1, TLR3, 

TLR5 but little or no mRNA for TLR2 and therefore respond to only TLR4 ligands such as E. 

coli LPS (Faure et al. 2000). Although from the above studies it is clear that these receptors 

play a crucial role in the maintenance of periodontal health as well as progression of disease, 

there are huge gaps in our understanding of the underlying mechanisms in this process. In 

addition, the role of these molecules in the repair stages of disease has not been addressed. 

            The engagement of the receptors with their ligands results in activation of downstream 

signalling and production of cytokines which play an important role in the containment or 

propagation of inflammation. Chronic inflammation as seen in periodontal disease results in 

prolonged expression of inflammatory cytokines leading to a general delay in healing of the 
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periodontal pocket and ultimately stimulation of bone resorption by osteoclasts. These 

cytokines are multifunctional and have a variety of roles depending on the context of their 

expression. In addition to its direct effect on the surrounding tissues, these cytokines function 

in networks and influence the repair process indirectly through the modulation of other 

cytokines. At present, the strongest evidence for cytokines functioning in networks in 

periodontal pathogenesis exists for IL-1β, TNF-α, IL-6 and RANK/RANKL/OPG (Preshaw and 

Taylor 2011). These inflammatory mediators function synergistically to influence the wound 

healing process at various levels and their function is also dependent on the concurrent 

expression of other cytokines.  Their role includes mediating osteoblast and fibroblast 

differentiation and matrix production to controlling bone remodelling through the modulation of 

osteoclast function (Preshaw and Taylor 2011). In addition, a variety of growth factors such 

as TGF-β are also heavily involved in the regulation of cell differentiation and function within 

the periodontium. Among the pro-inflammatory cytokines, IL-1β has been shown to increase 

osteoblast proliferation and differentiation (Lange et al. 2010), to increase bone mineralisation 

(Ding et al. 2009) and inhibit osteoblast production of bone matrix (Zhang et al. 1996). On the 

other hand, TNF-α has a broadly suppressive effect on osteoblast proliferation, differentiation 

and production of matrix components (Rosenquist et al. 1996; Abbas et al. 2003).  IL-6 is a 

multifunctional cytokine that can activate target genes involved in proliferation, differentiation, 

survival and apoptosis, notable in a variety of cells (Kishimoto et al. 1995; Eulenfeld et al. 

2012). Furthermore, IL-6 has been reported to be an important regulator in bone remodelling 

and an adequate amount of this cytokine is crucial for bone homeostasis (Li et al. 2008). Its 

reported effects on cells involved in the repair process are however controversial. Some 

studies have reported that IL-6 has no effects on osteoblasts unless soluble IL-6 receptor is 

added (Littlewood et al. 1991; Bellido et al. 1996), which is contradictory to the fact that both 

IL-6 and IL-6R are expressed in bone marrow osteoblasts in vivo (Wognum et al. 1993; 

Hoyland et al. 1994; Langub et al. 1996). However, another study has reported the expression 

of IL-6 receptor increased during in vitro differentiation of osteoblast cells and by signalling 

through its receptor, IL-6 acted as a differentiation accelerator in pre-osteoblasts and an 
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apoptosis initiator in mature cells, thereby suggesting that IL-6 plays an important role in 

controlling the function and life span of osteoblasts (Li et al. 2008).  

             The regulation of these cytokines is equally complex. IL-1β is a key regulator of the 

inflammatory process and is known to modulate osteoblast production of TNF-α and IL-6 

(Hughes et al. 2006). In addition, IL-1β, TNF-α and IL-6 can all upregulate osteoblast 

expression of RANKL leading to a potent stimulation of bone resorption through RANKL/RANK 

mediated osteoclast activation (Boyle et al. 2003; Lerner 2004). IL-1β and TNF-α also 

influence the negative feedback control of osteoclast activation by stimulating osteoblast 

production of OPG which competitively binds to RANKL preventing it from activating RANK 

(Brandstrom et al. 1998). These inflammatory cytokines are closely involved in the 

maintenance of a RANKL/OPG ratio which directly regulates bone resorption. 

In addition to the inflammatory cytokines, growth factors such as TGF-β play an important role 

in the healing process. TGFβ1 is a crucial component of a complex regulatory cascade which 

is involved in the initial recruitment of osteoblast progenitor cells (Centrella et al. 1994; Hughes 

et al. 2006). The specific activity of TGFβ1 is contextual and may vary based on its ratio of 

expression with other growth factors but it has been shown to specifically drive the early 

phases of the osteoblast differentiation pathway, particularly in terms of driving the proliferation 

of osteoblast progenitor cells (Centrella et al. 1994). TGF-β can inhibit osteoclastogenesis, 

depending on the presence of osteoblasts, possibly by upregulating OPG production and 

thereby inhibiting RANKL/RANK signalling in osteoclasts and their precursors (Takai et al. 

1998; Yan et al. 2001). Additionally, TGFβ1 enhances OPG expression, making it an inhibitor 

of osteoclast activation and therefore bone resorption (Boyle et al. 2003). TGFβ1 has also 

been reported to suppress the TNF-α potentiated production of IFN-γ by dendritic precursor 

cells (Koutoulaki et al. 2010) thereby suggesting that it may have anti-inflammatory properties. 

Although the role of cytokines and growth factors has been extensively investigated in 

pathological and healthy conditions, their role in the healing process is less understood. It is 

therefore clearly important to consider the role of virulence factors such as LPS on the wound 
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healing process due to the wide range of impact it has on the cell population of the 

periodontium 

                       Against this background, the aim of this chapter is to investigate the effect of 

sub-toxic levels of LPS on expression of receptors (TLR2, TLR4 and CD14) and inflammatory 

cytokines in PDL cells at both mRNA and protein level using the same in vitro model described 

in the previous chapter. Additionally, due to the involvement of osteoblasts in the regulation of 

osteoclast activity and the obvious relevance of this to the process of regeneration in the 

healing process, the expression of RANKL and OPG will also be investigated.  Due to the 

central role that TGF-β plays in the regulation of the osteoblast differentiation pathway, its role 

in the inhibition of osteoclast activation and its possible anti- inflammatory properties, 

expression of TGF-β will also be investigated. Investigating the expression of these molecules 

by PDL cells in response to stimulation with sub-toxic levels of LPS will help further our 

understanding of cell behaviour in the repair stages of periodontal disease. 
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4.2       Materials & Methods 

The effect of sub-toxic levels of LPS on TLR expression and cytokine profile was investigated 

at mRNA and protein levels.  Gene expression of TLR2, TLR4, CD14 receptors and cytokines 

IL-1β, IL-1RA, IL-6, TGF-β, RANKL, OPG, TNF-α, TNFR were examined by RT-PCR.   The 

extracellular expression of TLR2, TLR4 and CD14 in response to sub-toxic levels of LPS was 

investigated by immunocytochemistry and cytokine profiles were evaluated by means of 

ELISA.   

4.2.1    RT PCR 

Periodontal ligament (PDL)-like cells were obtained as explants from alveolar bone chips as 

described in section 3.2.3.   Cells from passage 2 were used for the experiments.  PDL cells 

were reseeded at a concentration of 1x104 cells/cm2 in 6 well plates.  Cells were allowed to 

adhere to the plate overnight and then stimulated with LPS at a concentration of 0ng/ml, 

50ng/ml and 100ng/ml.   Existing media was replaced with fresh media every 48 hrs.  On days 

1 and 2 post seeding, RT-PCR was carried out as described in section 3.2.9.1.   Primer 

sequences used in the PCR reactions are listed in the table 4.2 below.   PCR products were 

run on 2% agarose gels (Sigma, Aldrich) as described in section 3.2.2.4  and visualised on 

Gel DocTM scanner (Bio-Rad, Hemel Hempstead, UK) using UV light and digital images 

recorded. 
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Target gene (receptors) Primer sequence

TLR 2 F:  5’ GGGAGCGGCGGCTGGAGGACTCCTAGGC-3’
R: 5’TCGCACACGCTCGGAGGTCACCATGGCCA-3’

TLR 4 F: 5’AAGGAGTGCCCCGCTTTCACCTCTGCCT-3’
R:5’GGGCTCTCGGTCCATAGCAGAGCCCCAGG-3’

CD14 F: 5’CGCCACCGCTTCTGGAAGCCACCGGACC-3’
R: 5’GGGCGTCTCCATCCCCGCGTTACGCAGC-3’

Target gene (cytokines) Primer sequence

IL-1β F:5’TTGTGGCTGTGGAGAAGCTGTGGCAGCT-3’
R:5’TCCAGCTGCAGGGTGGGTGTGCCGTCTT-3’

IL-1RA F:5’TTGGGCATCCACGGGGGCAAGCTGTGCC-3’
R:5’TGGCAGGGGTAGGGTGGGTGGTAGAGCA-3’

IL-6 F:5’CACGGCCTTCCCTACTTCACAAGTCCGG-3’
R:5’TCCTTAGCCACTCCTTCTGTGACTCCAGC-3’

TGF β F:5’ACGTCGGGGCGACCTGGGCACCATCCAT-3’
R:5’TGGGCAGTGGCTCCAAAGCCTGCGGCAC-3’

TNFα F:5’CTCACCCACACCGTCAGCCGATTTGC-3’                                                                        
R:5’TCTGGAAAGGTCTGAAGGTAGGAAGG-3’                                               

TNFR F:5’ACTGCCGGCCGGACATGGGTCTCCCCAC-3’
R:5’ACGGTGCCGTTGAAGCAGGGGCTGCAGT-3’

RANKL F:5’ATGCGCCGGGCCAGCCGAGACTACGGCAAGTA-3’                                                                      
R:5’TCAGTCTATGTCCTGAACTTTGAAAGCCCCAA-3’                                                                      

OPG F:5’CCGCCTCCCGCTCCATGTTCCTGGCCCT-3’
R:5’GCCTCAGGCTTGCCTCGCTGGGCCACA-3’

β-Actin
(House keeping gene)

F:5’CAGGTCCCGGCCAGCCAGGTCCAGACGC-3’
R:5’ CTGTCGAGTCGCGTCCACCCGCGAGCA-3’

Table 4.2: A list of primer sequences used in the PCR reactions. Primers were designed using Primer 

Blast to ensure specificity for the intended amplification targets.
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4.2.2      Immunolocalisation 

Immunodetection of TLR2, TLR4 and CD14 was carried out using goat polyclonal antibodies 

against mouse TLR2, TLR4, and CD14 followed by exposure to FITC labelled antibodies and 

fluorescence microscopy as described below.  Round glass coverslips (Thermo scientific, UK) 

were autoclaved and placed at the base of wells of 6-well plates.  Cells obtained from passage 

2 were reseeded in the 6 well plates at a density of 1x104 cells/cm2 in culture conditions as 

described previously in section 3.2.3.   After 24 hrs, the media was replaced with fresh media 

containing LPS at 0ng/ml, 50ng/ml and 100ng/ml.   At specific time points (Day 1, 2) media 

was decanted out from the wells and the cells washed with PBS.   The cells were then fixed 

in freshly prepared paraformaldehyde (2%) for 30 mins and then washed (x2) with PBS.   In 

order to avoid non-specific staining, the cells were incubated in blocking buffer (1% BSA in 

PBS) at room temperature for 1 hr.   Primary antibody (anti TLR2, TLR4 and CD14 goat 

polyclonal antibodies, Santa Cruz Biotechnology Inc, Santa Cruz, USA) diluted in 1% BSA in 

PBS was prepared at a dilution of 1:50.  Blocking buffer was discarded and the cells were 

incubated in primary antibody at room temperature for 1 hr.   Replacement of primary antibody 

with goat IgG was used for isotype control and negative control was obtained by the omission 

of primary antibody.   The cells were then washed (x3) in PBS for 5 mins and then exposed to 

mouse anti-goat IgG FITC conjugated secondary antibody (Santa Cruz Biotechnology Inc, 

Santa Cruz, USA) diluted in 1% BSA/PBS solution at a dilution of 1:1000 and incubated for 1 

hour at room temperature in the dark.   The cells were then washed (x3) in PBS for 5 mins 

each time.   Using fine tweezers, the glass coverslips were then removed from the bottom of 

the wells and the edges carefully blotted to remove excess solution.   A droplet of mounting 

medium for fluorescence microscopy viewing containing DAPI (4’, 6-diamidino-2-phenylindole,  

VECTASHIELD, Vector Laboratories Inc, Burlingame, USA) was added onto the coverslip. 

The coverslip was mounted with the cells facing the microscope slide (Polysine slides, 

Thermos scientific, UK).  The cells were then viewed under an Olympus AX70 fluorescent 

microscope and images were captured using a Nikon digital camera DXM 1200. 
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4.2.3     ELISA  

ELISA was performed to analyse cytokine levels in PDL cells stimulated with P.gingivalis LPS 

at concentrations of 0ng, 50ng and 100ng/ml.  96 well plates (Microplate Immuno MaxiSorp, 

Fischer) were coated with 50μl/well capture antibody (1:500 dilution of anti-mouse IL-1β in 

coating buffer (0.1M NaHCO2 , pH - 8.5) and incubated overnight at 4˚C. The wells were then 

washed (x4) with wash buffer (0.05% v/v Tween-20 in TBS) and then blocked with blocking 

buffer (10% FBS in PBS) for 2 hrs at 37˚C to minimise non-specific binding. Plates were once 

again washed (x4) using wash buffer. 

Standards were prepared by diluting the supplied protein standards with a starting 

concentration of 5ng/ml.   50μl of double diluted standards in triplicates at concentrations in 

the range of 5ng/ml to 0.078ng/ml were added to the coated ELISA plate.   Diluent buffer was 

used as control.  50μl of supernatant collected from each condition were added in triplicates 

to the coated plates and incubated at 4˚C overnight.   Plates were then washed with wash 

buffer (x4) and 50μl of 1/500 diluted biotinylated detection antibody (eBioscience, San Diego, 

CA) was added to each well and incubated at 37˚C for 2 hrs.  The plates were washed (x5) 

and 50μl of 1/500 diluted HRP Strep Avidin (eBioscience, San Diego, CA) was added to each 

well and incubated at 37˚C for 1.5 hrs.

The plates were washed (x6) and 50μl of Super Aqua blue ELISA substrate (eBioscience, San 

Diego, CA) was added and the plate incubated for about 30 minutes.  The substrate contains 

ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) which is oxidised by HRP 

resulting in a soluble blue green colored end product.  The absorbance was measured using 

a microplate reader (BioTek instruments Ltd) at 405nm. 
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4.2.4    Slot Blot 

Slot Blot was carried out as an alternative technique for cytokine detection.  A nitrocellulose 

membrane pre-soaked in TBS for 5 mins was assembled onto the slot blot apparatus and 

vacuum applied to the apparatus.   Unused wells were blocked by a plate sticker.   Slots were 

washed (x3) with TBS and then 150µl of supernatant collected from each condition were 

loaded onto the wells of the slot blot apparatus taking care not to puncture the membrane or 

introduce bubbles. Vacuum was applied to the wells until all the samples were absorbed.  The 

slots were then washed (x3) with TBS and the wells were allowed to dry.  The vacuum was 

turned off, the apparatus unclamped and the membrane was removed carefully.  

Immunodetection was carried out as detailed in 3.2.9.2.4.
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4.3    Results 

4.3.1    RT PCR 

mRNA expression of TLR2, TLR4, CD14, IL-1β, IL-1RA,   IL-6, TGFβ,   RANKL, OPG, TNF-α 

and TNFR were investigated by RT-PCR.  Fig 4.1A shows  the expression of TLR2 and CD14 

was strong compared to TLR4.  On densitometric analysis of the bands following 

standardisation against β-actin, the most notable difference (as demonstrated by a twofold 

difference) in mRNA expression was observed for TLR2 and CD14, 24 hrs post stimulation 

(Fig 4.1B).  However this effect was not observed for TLR4.  
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Fig 4.1 PDL cells were stimulated with LPS (0,50ng/ml and 100ng/ml) and expression of CD14, TLR2 

and TLR4 were investigated by  RT-PCR. Total RNA was extracted and mRNA expression of CD14, 
TLR2 and TLR4 was analysed by RT-PCR (Fig A). The mRNA levels of CD14, TLR2 and TLR4 were 
normalised to β-actin levels in individual samples. Fig B shows the semi-quantification of mRNA 
expression by densitometry showing a general trend of increased expression of TLR2 and CD14 when 
compared to TLR4 (not possible to compare absolute levels as technique used is semi-quantitative)  
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Gene expression for RANKL, OPG, TNF-α, TNFR, IL-1β, IL-1RA, IL-6 and TGFβ were 

observed as shown below (Fig 4.2 A and B).  On densitometric analysis following 

standardisation against β-actin, a strong expression of TNFR was observed at all time points 

which was not dependent on LPS stimulation.  However, on day 4, an increased expression 

(>2 fold) was observed for TGF-β and IL-1β in response to stimulation with 100ng LPS.

On comparing pro-inflammatory vs anti-inflammatory cytokines, RANKL expression was 

stronger when compared to OPG and IL-1β stronger than IL-1RA. However, the reverse was 

true for IL-6 and TNF-α with stronger expression observed for TNFr and TGFβ when compared 

to TNF-α and IL-6 (Fig 4.2 A and B). The techniques used in this study (RT-PCR) are semi-

quantitative and therefore the absolute levels of mRNA expression between different 

conditions and time points were not possible. 
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Aa 
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Fig 4.2:  PDL cells were stimulated with LPS (50ng/ml and 100ng/ml) and expression of RANKL, OPG, 

TNFα, TNFr, IL-1β, IL-1ra, IL-6 and TGFβ were investigated on days 4,8 and 12 by  RT-PCR. Total 

RNA was extracted and mRNA expression of RANKL, OPG, TNFα, TNFr, IL-1β, IL-1ra, IL-6 and TGFβ 
was analysed by RT-PCR (A). The mRNA levels were normalised to β-actin levels in individual samples. 
Fig B shows the semi-quantification of mRNA expression by densitometric analysis. Increased 
expression of TNFr was observed at all time points (not dependent on LPS stimulation) and increased 
expression of TGFβ and IL1β was observed in response to stimulation with 100ng LPS. It was not 
possible to compare absolute levels as technique used is semi-quantitative.  
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4.3.2    Immunolocalisation 

FITC labelled antibodies and fluorescent microscopy was used in this study to label and 

identify the cell surface proteins.  Images resulting from the immunolocalisation of receptors 

in response to stimulation with various concentrations of LPS are shown in Figures 4.3 to 4.6. 

Nuclei are seen stained blue with DAPI and receptors stained green with FITC conjugated 

antibody. 

TLR2 expression was observed at all time points and at all concentrations (Fig 4.3).  An 

increase in expression was observed between stimulated and unstimulated cells.  On day 2 

an increase in TLR2 expression was observed (Fig 4.3).  TLR4 expression was observed on 

cells stimulated with LPS at concentrations of 0ng, 50ng and 100ng on Day 1(Fig 4.4).  A dose 

dependent difference was not observed. 

CD14 receptors were expressed at all concentrations on day 1(Fig 4.5).  An increase in 

expression was observed between stimulated and unstimulated cells as observed with TLR2 

expression. 

Negative controls: 

Typical examples of isotype control and negative control are shown in Fig 4.6.  Both of these 

negative controls were performed for all receptors investigated and at all time points.   No 

positive staining for receptors were observed  as shown in Fig 4.6. 
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Fig 4.3:  Expression of TLR2 on immunostaining.  PDL cells were stimulated with LPS (0, 50ng/ml and 

100ng/ml) on days 1 and 2. The cells were fixed with 4% paraformaldehyde and treated with anti-TLR2 

antibody and then visualised with FITC conjugated antibody (receptors stained green) and DAPI (nuclei 

stained blue).

0ng                                     50ng                                   100ng
TLR2 Day 1

100um

100um

100um
TLR2 Day 2

100um 100um 100um

100um 100um 100um



188 

Fig 4.4:  Expression of TLR4  on immunostaining.  PDL cells were stimulated with LPS (0, 50ng/ml 

and 100ng/ml) on days 1 and 2. The cells were  fixed with 4% paraformaldehyde and treated with anti-

TLR4 antibody and then visualised with FITC conjugated antibody (stained green) and DAPI (nuclei 

stained blue).
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Fig 4.5:  Expression of CD14 receptors  on immunostaining.  PDL cells were stimulated with LPS (0, 

50ng/ml and 100ng/ml) on days 1 and 2. The cells were fixed with 4% paraformaldehyde and treated 

with anti-CD14 antibody and then visualised with FITC conjugated antibody (stained green) and DAPI 

(nuclei stained blue).
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Fig 4.6:   Typical examples of negative controls demonstrating no positive staining of receptors. 
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4.3.3   ELISA 

The effect of sub-toxic levels of LPS on cytokine profile was investigated by means of ELISA.  

A standard curve was generated for IL-1β by plotting the absorbance against the 

corresponding concentrations of standards provided in the kit. With an increase in 

concentration, an increase in absorbance was observed thereby indicating immunoreactivity 

in the ELISA’s. The line of best fit had a correlation coefficient of R2=0.6.   The concentration 

of cytokines in the samples was determined from the standard curve.  However, detectable 

levels of protein (IL-1β and TNF-α) were not present in the culture supernatants. 

4.3.4   Dot blot 

On dot blot analysis, results were similar to ELISA in that, detectable levels of proteins (IL-1β 

and TNF-α) were not present in the supernatant samples. 
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4.4          Discussion 

                  This study has investigated the effects of sub-toxic levels of LPS on the expression 

of receptors TLR2, TLR4 and CD14 and cytokine profile by PDL cells at both mRNA and 

protein levels with a view to further our understanding of the response of PDL cells and the 

mechanistic pathways by which cytokines are released into the GCF.  The results from this 

study report for the first time that on exposure to sub-toxic levels of LPS, an increased 

expression of TLR2 and CD14 at both protein and mRNA levels were observed when 

compared to TLR4.  Further, the expression of IL1-β, IL-1RA, TNF-α, TNFR, IL-6, TGF-β, 

RANKL and OPG were observed at mRNA levels, but significantly these cytokines were not 

detected to be secreted by the PDL cells. These results suggest that firstly, although P. 

gingivalis LPS activates both TLR2 and TLR4 receptors, there is a preferential utilisation of 

TLR2 receptors (Fig 4.1A). The absence of cytokines in the supernatant may indicate that the 

resident PDL cells may not contribute to the inflammatory status of the periodontal tissues, 

leading to connective tissue destruction or towards the cytokine pool detected in the GCF.   

As the binding of LPS to TLRs activates signal transduction leading to transcription of pro-

inflammatory cytokines, it is important to identify TLR signalling pathways to further our 

understanding of how TLR stimulation determines the outcome of immune responses. It has 

been reported that TLR2 is mostly involved in the recognition of a variety of different bacterial 

components such as peptidoglycan and lipoproteins (Lien et al. 1999) whereas TLR4 has 

been shown to  specifically recognize LPS of Gram-negative bacteria and acts in cooperation 

with several protein components such as lipopolysaccharide-binding protein and CD14 

(Yoshimura et al. 2002).  However, a large body of evidence suggests that P.  gingivalis LPS 

stimulates TLR2 and not TLR4 (Pulendran et al. 2001; Yoshimura et al. 2002; Kikkert et al. 

2007).  In contrast, Gram-negative enterobacteria can stimulate both TLR2 as well as TLR4 

(Mandell et al. 2004). In addition, Kikkert et al, demonstrated that Gram-negative periodontal 



193 

bacteria primarily interact with TLR2 (Kikkert et al. 2007). However, only Aggregatibacter 

actinomycetemcomitans and Veillonella parvula were capable of stimulating both TLR2 and 

TLR4.  This study has demonstrated further that P. gingivalis LPS is capable of stimulating 

both TLR2 and TLR4 receptors. In healthy tissues, mRNA and protein expression of both 

TLR2 and TLR4 has been demonstrated but the expression of both receptors were markedly 

up-regulated with inflammation (Sugawara et al. 2006).  In chronic periodontitis tissues, both 

TLR2 and TLR4 were detected at mRNA and protein levels, whereas in healthy tissues, there 

was only a weak expression of TLR2 and no expression of TLR4 (Ren et al. 2005).  Our results 

demonstrate that in the presence of low levels of virulence factors, there is an increased 

expression of TLR2 receptors when compared to TLR4 which may suggest that as the 

bacterial load increases, an up-regulation of these receptors occurs.  Therefore, the 

expression of TLR2 and TLR4 receptors is dependent on the severity of periodontal 

inflammation.  

Although the overall influence of these receptors in health and disease is not clearly 

understood, it is evident that these receptors play an important role in mediating the LPS 

response. The cytokine expression response of PDL cells to exposure of sub-toxic levels of 

LPS was investigated at both mRNA and protein level.   Interestingly, the mRNA expression 

of most cytokines were similar in that a decreased expression was observed over time 

whereas IL-1β, TGF-β and TNFr were consistently expressed over time.  The techniques used 

in this study (RT-PCR) are semi-quantitative and therefore the absolute levels of mRNA 

expression between different conditions and time points was not possible.  The results 

presented herein, provide us with a profile of the general trend observed.  Further information 

could be obtained by using more sensitive techniques such as qPCR that will help us to 

quantify specifically the differences in the mRNA levels between cells cultured in various  

conditions and time points.  Interestingly, detectable levels of cytokines were not present in 

the culture supernatants, despite its expression at mRNA levels. This may be attributed to the 

possibility that although these cytokines were expressed at gene level, protein translation may 
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not have taken place or these cytokines may not have been secreted extracellularly. 

Alternatively, these cytokines may be secreted at levels too low to be detected by techniques 

such as ELISA.  

In considering the mRNA profile of the cytokines investigated, a gradual decrease in mRNA 

levels over time were observed from day 4 to 12 for all cytokines except TNFR and TGF-β. 

The mRNA expression of pro-inflammatory cytokines IL-1β, TNF-α and IL-6 were observed 

although the expression of IL-1β and 1L-6 was stronger than that for TNF-α.  Detectable levels 

of cytokines were not present in the supernatant on analysis by ELISA.   As an alternate 

technique, Slot Blot was used to investigate the presence of cytokines.  The results obtained 

by both techniques confirmed that PDL cells do not secrete high levels of cytokines in 

response to stimulation with sub-toxic levels of LPS.  However, we are aware that these cells 

are capable of secreting cytokines as demonstrated by studies using orthodontic models 

investigating the effect of tensile stress on PDL cells where these cells respond to mechanical 

stress by the production of cytokines such as IL-1 and IL-6 (Meikle 2006). Recent studies 

using human PDL cells have reported that these cells produce IL-1β, IL-6 and IL-8 in response 

to stimulation with P. gingivalis LPS (Tang et al. 2011; Kato et al. 2014). However the 

concentration of LPS used was much higher than that used in this present study.   Therefore, 

although studies have reported that PDL cells are capable of secreting cytokines in response 

to stimuli (mechanical as well as due to infection), the results from this study suggests that the 

PDL cells may not necessarily contribute to the pro-inflammatory cytokine profile in GCF 

collected from patients with periodontal disease. 

Previous studies investigating effects of P. gingivalis LPS on other cell types in the 

periodontium have reported that P. gingivalis  LPS stimulates host cells including 

macrophages and fibroblasts to produce cytokines (Takada et al. 1991).  Gingival fibroblasts, 

the most abundant cells in periodontal tissue which is responsible for the synthesis and 
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degradation of connective tissues, were reported to secrete a variety of immunoregulatory 

cytokines and chemical mediators (Okada and Murakami 1998).  On stimulation with microbial 

factors such as LPS and cytokines such as IL-1 and TNF-α, gingival fibroblasts were reported 

to induce IL-6 mRNA expression (Agarwal et al. 1995).  Cultured gingival fibroblasts stimulated 

with LPS from Porphyromonas species secreted increased levels of IL-1, IL-6 and IL-8 

(Takada et al. 1991; Tamura et al. 1992; Sakuta et al. 1998).  On stimulation with P. gingivalis

LPS, gingival fibroblasts produce cytokines such as IL-6 which in turn activated osteoclasts 

but this process could be inhibited by IL-10.  (Wang et al. 1999a).   In vitro, P. gingivalis LPS 

is shown to stimulate secretion of pro-inflammatory cytokines such as IL-1α, IL-1β, IL-6, IL-8, 

IL-18 and TNF-α in monocytes (Zhou et al. 2005; Bostanci et al. 2007a; Bostanci et al. 2007b; 

Hamedi et al. 2009). Monocytes, a source of precursor cells for osteoclasts on stimulation with 

P. gingivalis LPS have been reported to up regulate RANKL and down regulate OPG 

expression at both mRNA and protein levels, thereby promoting osteoclastogenesis (Reddi et 

al. 2008).  Additionally, P. gingivalis LPS promotes the secretion of pro-inflammatory cytokines 

in dendritic cells (Pulendran et al. 2001).  PDL cells however, host a heterogeneous 

population, are involved in multiple regulatory roles such as formation and degradation of 

tissues, repair and remodelling, very high turnover rate, maintaining flexibility during function 

as detailed in Chapter 3. The progenitor population in the PDL contribute to the repair of both 

mineralised and ligamentous tissue, maintain insertion points of Sharpey’s fibres but most 

importantly, they are unique in the way high turnover of the extracellular matrix is carried out 

by endocytosis of the collagen fibres. The key findings in this study that  that at low levels LPS 

appears to have more of a significant effect on cell behaviour resulting in altered matrix 

synthesis (as demonstrated in Chapter 3) as compared to its contribution to the pro-

inflammatory cytokine profile further indicates that the altered behaviour results in formation 

of tissue less resistant infection. Further the high turnover rate may be further accelerated 

leading to further tissue destruction. 
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Recent research has highlighted the important role played by the PDL cells in the repair and 

remodelling process. Although the response of PDL cells to the continual presence of factors 

such as LPS may affect the repair and remodelling stages in periodontal disease, these 

responses are difficult to elucidate, as within the periodontal environment, in addition to LPS 

and other virulence factors, there exists cytokine networks that play key roles in the host’s 

response to bacterial challenge. The key finding that cytokines were not detected on exposure 

of the PDL cells to sub-toxic levels of P. gingivalis LPS, despite the presence of receptors, 

suggests that these resident cells may have a minimal contribution  towards the cytokine pool 

detected in the GCF. Therefore, a more prominent role may be played by the cells recruited 

during the inflammatory-immune response.   Due to the complexities involved in the wound 

healing process, in addition to the various factors that may influence this process, further 

investigations are necessary to gain a clearer understanding of the processes involved in the 

repair stages of the disease. 
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Chapter 5            

Altered cytokine profile in GCF  in patients with periodontal 

diseases: a cross-sectional study

5.1     Introduction 

The response of the resident PDL cells in the presence of virulence factors such as LPS was 

investigated in the previous chapters to assess the contribution of these cells to the 

inflammatory response. The presence of microbial factors stimulates a local inflammatory 

response resulting in activation of the innate immune system. The innate response is primarily 

involved in the recognition of microbial components such as LPS, bacterial DNA, 

peptidoglycan (Mahanonda and Pichyangkul 2007) with the aid of pathogen recognition 

receptors such as TLRs expressed by resident cells, which subsequently lead to the release 

of pro-inflammatory cytokines.  It is now recognised that the progression of the disease is 

determined by the nature of the host immune response to specific microorganisms within the 

biofilm (Graves 2008; Preshaw 2008).   An unregulated inflammatory response leads to the 

activation of the adaptive immune response by antigen presenting cells to the T and B cells 

(Cutler and Jotwani 2004; Xu and Banchereau 2014), resulting in a Th1,Th2,Th17,Treg 

response and antibody production respectively.  Within this scenario, cytokines produced by 

these  subsets of cells will determine phenotypically distinguished immune responses with the 

Th1 and Th2 cells, respectively associated with cellular and humoral immunity (Murphy and 

Reiner 2002) and the more recently described Th17,Treg cells presenting antagonistic roles 

as effector and suppressive cells (Appay et al. 2008; Sallusto and Lanzavecchia 2009; Weaver 

and Hatton 2009). Besides T-cells, B-cells are also activated and transform into plasma cells 

which produce antibodies in response to bacterial antigens. Consequently, tissues affected by 
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periodontitis become populated with both subtypes, of which B cells predominate (Berthelot 

and Le Goff 2010).  

Several early studies have demonstrated that the development of periodontitis involves a 

switch from a gingivitis lesion, mainly mediated by T cells to one involving large numbers of B 

cells and plasma cells (Ohlrich et al. 2009) and that this shift is mediated by a balance between 

the Th1 and Th2 subsets, with gingivitis being mediated by Th1 cells and periodontitis by Th2 

cells (Ohlrich et al. 2009). This concept proposed that a strong innate immune response leads 

to the production of high levels of IL-12 by both PMN’s and macrophages which in turn 

stimulates a Th1 response, cell mediated immunity, protective antibody and a stable 

periodontal lesion. In contrast, a poor innate immune response with polyclonal B cell activation 

leads to a Th2 response, non-protective antibody formation and a progressive periodontal 

lesion (Kinane and Bartold 2007). The Th1 phenotype are characteristically cellular and pro-

inflammatory in nature and secrete IL2, IFN-γ, in addition to suppression of B cells and plasma 

cells. In contrast, Th2 cells induce predominantly B cell humoral immune response,  secrete 

IL-4, IL-5 and IL-10, while their secondary function is the suppression of T cell mediated 

response (Ohlrich et al. 2009). Thus, the immunoregulatory control was considered to be 

dependent on the balance between these two T cell subsets. However, certain additional 

cytokines, which did not fit into either the Th1/Th2 category, seem to play an important role in 

the pathogenesis of periodontitis, of which were cytokines belonging to the recently identified 

Th17 and Treg subsets.  Recent studies have characterised the Th17 cell lineage as an IL-17 

producing CD4 T-cell subset, which has been implicated in numerous auto-immune and 

inflammatory conditions (Dong 2008; Sallusto and Lanzavecchia 2009; Maddur et al. 2012). 

Th17 cells develop through cytokine signals distinct from and antagonised by products from 

the Th1 and Th2 lineages (Appay et al. 2008; Dong 2008; Sallusto and Lanzavecchia 2009). 

These cells are characterised by the production of pro-inflammatory cytokines such as IL-17, 

IL-21, IL-22 of which IL-17 is the most important effector cytokine. IL-17  promotes 

inflammation by inducing various pro-inflammatory cytokines, chemokines, recruiting 
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neutrophils, enhancing antibody production, and activating T cells (Iwakura et al. 2008). It has 

been suggested that the unregulated proliferation and dysfunction of the Th17 cells could lead 

to the amplification of local inflammation, thus intensifying the tissue damage. Tregs, in 

addition to these Th cells, are engaged in maintaining peripheral tolerance, preventing 

autoimmune diseases and limiting chronic inflammatory diseases by suppressing and 

regulating the effector functions of Th cells (de Rezende et al. 2010). Thereby, they play a 

significant role in the maintenance of immunological self-tolerance and the modulation of 

immune response (Mougiakakos et al. 2010). These cells predominantly mediate suppression 

by the release of suppressor cytokines such as TGFβ and IL-10 (Yuan et al. 2010). In light of 

the opposing functions between these subsets of T cells, it has been suggested that an 

imbalance between them may be involved in the occurrence and development of many chronic 

diseases. 

Accumulated data have demonstrated quantitative or functional imbalance between Th1/Th2 

and  Th17/ Treg in chronic diseases such as osteoporosis (Pacifici 2012; Tyagi et al. 2012), 

rheumatoid arthritis (Andersson et al. 2008; Oh et al. 2010), bone marrow malignancies 

(Hideshima et al. 2007; Noonan et al. 2010). Subsequent research in periodontal disease 

conditions to investigate the link between Th1/Th2/Th17/Treg (Kinane and Bartold 2007; 

Kinane et al. 2011) have highlighted the important role played by these cells in maintaining 

homeostasis. As mentioned above, an imbalance between Th1/Th2 was originally thought to 

bring about progression of periodontal disease. However, recent research has highlighted the 

additional important roles of the Th17/Treg subsets. For example, studies have reported that 

pathogenic as well as commensal organisms present within the oral cavity, are capable of 

stimulating the production of mediators characteristic of T-cell responses and markers 

characteristic of the T cell subsets have been demonstrated within diseased periodontal 

tissues (Gemmell et al. 2002a; Garlet et al. 2003b; Kopitar et al. 2006; Cardoso et al. 2008; 

Gaffen and Hajishengallis 2008; Cardoso et al. 2009).  Specifically,   P. gingivalis  has been 

reported to induce CD4+ T cells to differentiate into Th17 cells, and stimulate CD4+ T cells to 
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produce IL-17(Oda et al. 2003). Furthermore, it has been reported that human periodontal 

ligament cells on stimulation with pro-inflammatory cytokines such as IFN-γ, IL-17, produce 

significant increase of immunomodulatory cytokines and induced recruitment of leucocytes 

(Konermann et al. 2012a).  

In attempting to establish a link between abnormal T cell response and bone loss,  studies 

have identified that Th1 and Th2 cells inhibit osteoclastogenesis by producing inhibitory 

cytokines, IFN-  and IL-4, respectively whereas, Th17 cells and related cytokines have the 

capacity to induce osteoclastogenesis (Takayanagi 2012). Additionally, IL-17 induces RANKL 

on osteoclastogenesis-supporting mesenchymal cells, such as osteoblasts and synovial 

fibroblasts, enhances local inflammation by increasing IL-6 and IL-1, which further promote 

RANKL expression and activity. Moreover, Th17 cells may also contribute directly to bone loss 

by producing RANKL. Therefore, the infiltration of Th17 cells into the inflammatory lesion may 

be  the link between the abnormal T-cell response and bone damage (Okamoto and 

Takayanagi 2011). Recent clinical studies have reported the presence of Th17 cells within 

chronic periodontal lesions (Cardoso et al. 2009; Adibrad et al. 2012) and the cytokines 

associated with these cells have been detected in tissues obtained from periodontal lesions 

(Takahashi et al. 2005; Vernal et al. 2005; Ohyama et al. 2009). Similarly, immunohistological 

and gene expression study has shown increased Tregs and Foxp3 in periodontitis (Nakajima 

et al. 2005b). Intracellular IL-10 analysis showed a higher frequency of IL-10 producing CD4+ 

T cells in inflamed gingiva compared to normal tissue thereby suggesting potential role for 

Treg cells in the downregulation of inflammatory responses through the production of IL-10 

(Kobayashi et al. 2011). Furthermore, Tregs can inhibit osteoclast formation via IL-10 and 

TFGβ signalling pathways (Luo et al. 2011). Therefore, in light of their anti-inflammatory and 

antiresorptive properties, the presence of Tregs within the periodontal tissue suggests that 

this subset has a potential protective role and that the balance between Treg and Th17 is 

particularly essential in maintaining homeostasis. However, very few clinical studies have 

investigated this relationship.  
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The understanding that GCF contains a vast array of biochemical factors with the potential to 

provide information crucial in the assessment of the status of the underlying tissues has led to 

its popular use in the evaluation of cytokines. Analysis of cytokine profiles in periodontal 

tissues affected by periodontal disease has been done previously by various techniques such 

as in situ  hybridization and immunohistochemistry (Lappin et al. 2001), ELISA (Gorska et al. 

2003; Havemose-Poulsen et al. 2005; Duarte et al. 2010), RT-PCR (Garlet et al. 2003a; 

Suarez et al. 2004) and more recently with cytometric bead array (CBA) (de Queiroz et al. 

2008; Andrukhov et al. 2011). Among the various techniques, conventional ELISA is the most 

widely used technique for cytokine analysis but is limited by its ability to measure only a single 

cytokine in each sample. Recent developments in serum cytokine quantification technology 

include multiplex arrays such as CBA, which has the additional advantage of analysing 

multiple cytokines simultaneously using small sample volume and thereby allow for 

comparisons between cytokines. However, limited studies have used CBA to analyse GCF in 

comparing cytokine profiles in health and periodontal diseases.

Against this background, the aim of this study was to further evaluate the profile of cytokines 

associated with the Th1/Th2/Th17/Treg cells using bead array technology. GCF levels of 

cytokines were compared using a CBA kit, in periodontal health and disease conditions 

(gingivitis, chronic periodontitis and aggressive periodontitis) in a cross-sectional study. 

Further, the potential of utilising abnormal cytokine ratios in assessing health of periodontal 

sites and identify individuals susceptible to rapid periodontal disease destruction was 

investigated.    
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5.2    Materials and Methods

R & D approval was obtained from the Joint Trust/ University Peer & Risk Review Committee. 

Ethical approval was provided by South East Wales Local Research Ethics Committee. The 

study was conducted as per Good Clinical Practice regulations and informed consent was 

obtained from each patient (Data provided in enclosed CD).  

5.2.1    Recruitment of patients 

A total of 40 patients representing 10 patients with chronic periodontitis, 10 patients with 

generalised aggressive periodontitis, 10 patients with gingivitis and 10 healthy subjects were 

recruited for this study from patients referred to the Restorative Clinic at Cardiff University 

Dental School. None of the patients recruited, had a history of any systemic disease that may 

impair the immune response or had received any antibiotic or periodontal treatment in the 

previous 6 months. Exclusion criteria included pregnancy, any medical conditions or 

medications that may have an effect on the periodontal health, intake of any antibiotic or anti-

inflammatory drugs in the previous six months or a history of periodontal therapy in the 

previous six months. Patients were recruited between October 2008 and December 2010. The 

recruitment of selected patients were based on the clinical and radiographic criteria proposed 

at the 1999 International World workshop for classification of periodontal disease conditions 

(Armitage 1999). The Generalised Aggressive group consisted of 3 male and 7 females 

between the age group 28-40 years. These patients demonstrated a generalised pattern of 

severe destruction in the absence of local factors with probing depths ranging from 6-10mm 

in the selected sites. The Chronic Periodontitis group consisted of 4 females and 6 males 

between the age group 33-52 yrs with generalised moderate to severe bone loss associated 



203 

with the presence of local factors and probing depths ranging from 6-10mm. The gingivitis 

group consisted of 4 male and 6 female between the age group of 28 to 52 yrs with varying 

degrees of gingival inflammation but no loss of attachment. The healthy group consisted of 5 

males and 5 females between the age group 28-42 yrs with no clinical signs of periodontal 

disease. Two deep sites were selected from each patient for GCF collection from the 

aggressive periodontitis and chronic periodontitis group. In the gingivitis group, two sites from 

each patient were selected that demonstrated signs of clinical inflammation and in the healthy 

group two sites were selected that showed no signs of inflammation. 

5.2.2    Sample collection 

Following isolation of the selected teeth with cotton rolls and high volume suction to prevent 

contamination with saliva, supragingival plaque was gently removed, the tooth air dried and 

GCF was collected using small diameter 2l capillary tubes (Drummond Microcaps, 

Drummond Scientific Co, Pennsylvania, USA) placed at the gingival margin for a period of 10 

minutes.  Fluid collected into the tube by capillary action.  When the tube became full or 

blocked due to plaque debris it was refreshed with a new tube.  GCF was collected prior to 

clinical measurements to ensure collection of GCF reflecting disease activity rather than the 

exudate released as a response to inflammation caused by probing.  Samples visibly 

contaminated with excessive blood were discarded.   GCF volume was determined using the 

formula:     

Volume of GCF = Linear distance the fluid collected in the tube   x 2 l (total volume of tube) 

                                        32 (length of tube) 

The samples were immediately placed in 1.5ml eppendorf tubes and stored at −80°C, under 

HTA regulations, until further analysis.   
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5.2.3      Measurement of clinical parameters 

Clinical parameters were recorded using the Florida Probe (Florida Probe with PASHA probe-

pressure controlled, automated, standardised handpiece from Florida Probe Corporation, 

Gainesville, FL, USA).  Probing depths and recession were recorded at six points per tooth. 

Bleeding on probing and suppuration were recorded as present or absent for each site after 

probing.  The probe was calibrated for each individual patient prior to recording indices. All 

measurements and sample collection were carried out by a single operator. 

5.2.4       Multiple cytokine analysis of GCF fluid

Analysis of GCF samples for the detection of cytokine levels of IL-2, IL-4, IL-6, IL-10, TNFα, 

IFN-γ and IL-17 was carried out using BD Cytometric Bead Array Human Th1/Th2/Th17 

Cytokine Kit (BD Biosciences, San Jose, CA, USA.). This kit contains seven bead populations 

with distinct fluorescence intensities that have been coated with capture antibodies specific 

for IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17 proteins.  

GCF samples were prepared by adding 15 µl of diluents to each sample and allowed to stand 

for 10 minutes. The mix was then centrifuged at 1000g for 5 minutes. The resulting 

supernatant was collected in a sterile eppendorph and assay diluent added to make up the 

total volume to 35 µl.  Each capture bead suspension was vortexed vigorously to obtain a 

uniform mix as the antibody-conjugated beads tend to settle out of suspension over time. A 

master mix was prepared by mixing 193 µl of each capture bead into a bijou and vortexing it 

further to make up the final mix. This mix was prepared immediately before using them in the 

assay. The assay was carried out by adding 35 µl of bead master mix and 35 µl of PE detection 

reagent to the prepared samples or standards and mixed by pipetting gently.  The 

eppendorphs were incubated at 4ºC overnight in dark, followed by equilibration to room 

temperature for 1 hour. 700 µl of wash buffer was added to each eppendorph and then 
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centrifuged at 200g for 5 minutes. The supernatant was collected carefully without disturbing 

the pellet and discarded. 200 µl of wash buffer was added to each tube and vortexed to 

resuspend the beads. Sample data was acquired using a BD FACSCalibur flow cytometer (BD 

Biosciences).  FCAP ArrayTM software was used to generate results in a tabular and graphical 

form. 

5.2.5   Statistical analysis

Total cytokine levels (pg/ml) were analysed and reported for each cytokine. Normality tests 

were carried out to assess distribution of data. As the data was non-uniformly distributed, non-

parametric tests were used for analysis. Concentration of cytokines was expressed in pg/ml 

and presented as means and standard deviation. The statistical significance of the difference 

in cytokine levels between the controls, aggressive periodontitis, chronic periodontitis and 

gingivitis groups was determined using a Kruskal-Wallis Test.  In each case the level of 

significance was set at p<0.05. Multiple comparisons were adjusted using Dunn’s Multiple 

Comparison test. The Pearson correlation (R) was applied to ascertain association between 

cytokine ratios within the four studied groups.  In addition, correlation between cytokine levels 

and disease severity was also evaluated. SPSS Statistics 20.0 software was used to analyse 

the data. Statistical advice was provided by Professor R. Newcombe and Professor.Syed 

Herawi (Cardiff University). 
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5.3     Results

5.3.1    Cytokine levels in health and disease

Levels of individual cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL17) were investigated 

in GCF samples from the four different groups. The observed trend as shown in Fig 5.1 and 

5.2, was for higher cytokine levels in gingivitis samples compared to control, aggressive and 

chronic periodontitis; higher cytokine levels in aggressive and chronic periodontitis samples 

compared to control and similar cytokine levels in chronic and aggressive periodontitis groups.  

The levels of all cytokines examined were significantly higher in inflammatory gingivitis than 

in healthy sites (p<0.01) and significant for IL-2, IL-4, IL-17 and IFN-γ on comparing aggressive 

vs gingivitis groups (p<0.05). Additionally, IL-10 levels were higher in aggressive periodontitis 

and gingivitis compared to chronic periodontitis. 
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Fig 5.1: Cytokine levels (IL-2, IL-4, IL-6, IL-10) in GCF samples from patients with Aggressive 

Periodontitis (AP), Chronic Periodontitis (CP), Gingivitis (G) and healthy controls (C) presented as mean 

and SD (n=20 in each group). All groups investigated demonstrated variations in cytokine levels  but 

significant differences were observed only on comparing (G)with (C)(p<0.01) for all cytokines (IL-2, IL-

4,IL-6 and IL-10) and between AP and G for IL-2 and  IL-4 (p<0.05). Large SD’s in the AP and G groups 
may suggest variations in disease activity (*p<0.05,** p<0.01 and ***p<0.001). 
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Fig 3.2: CBA analysis of cytokines (IFNγ, TNFα and IL17) in GCF samples from patients with 
Aggressive Periodontitis (AP), Chronic Periodontitis (CP), Gingivitis (G) and healthy controls (C). n=20 

in each group. All groups investigated demonstrated variations in cytokine levels  but significant 

differences were observed only on comparing (G) with (C) (p<0.01) for all cytokines (IL-2, IL-4,IL-6 and 

IL-10) and between AP and G for IL-2 and IL-4 (p<0.05). Large SD’s in the AP and G groups may 
suggest variations in disease activity (*p<0.05,** p<0.01 and ***p<0.001). 
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5.3.2      Cytokine correlations in health and disease

In order to evaluate whether the increase in cytokine levels were correlated to one another, a 

correlation analysis was carried out. On plotting cytokines one against another, a linear 

relationship was observed between IL-2/IL-4, IL-2/IFN-γ, IL-2/IL-17, IL-4/ IFN-γ, IL-4/IL-17 and 

IFN-γ/IL-17 in healthy controls, chronic and aggressive periodontitis as shown in Fig 5.3. 

Whereas in aggressive periodontitis group, a linear relationship was observed only between 

IL-2 and IL4 (Fig 5.3,   Table 5.1) 

Statistical analysis revealed strong correlations between IL2/IFNγ in chronic periodontitis 

group (R=0.979, p<0.01)), gingivitis group (R=0.933, p<0.01) and control (R=0.994, p<0.01) 

suggesting a strong Th1 response, as IL2 is produced by all T cells and IFNγ by Th1 cells. 

However, a low correlation was observed for the aggressive periodontitis group (R=0.296) 

As shown in Table 5.1 and Fig 5.3, positive correlations were observed between IL2/IL4 for 

gingivitis (R=0.997, p<0.01), aggressive periodontitis (R=0.967, p<0.01), chronic periodontitis 

(R=0.993, p<0.01) and control (R=0.999, p<0.01). These results indicate a strong Th2 

response as IL4 is produced by Th2 cells. Strong correlations were also observed for IL2/IL17 

for gingivitis (R= 0.982, p<0.01), chronic periodontitis (R=0.969, p<0.01), control (R=0.988, 

p<0.01) and moderate correlation for aggressive periodontitis (R=0.623, p<0.05).  This 

suggests a strong Th17 response for all groups except aggressive periodontitis. Similar 

responses were noted for IL4/IL17. Other cytokine combinations showed no correlation as 

shown in Fig 5.4 to 5.6. 
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Fig 5.3: On comparing cytokines representing Th1/Th2/Th17 subsets, a linear relation is observed 

between (IL2/IL4, IL2/IFNγ, IL2/IL17, IL4/IFNγ, IL4/IL17, IL17/IFNγ) suggesting a strong Th1/Th2/Th17 
response in all groups except aggressive periodontitis. Clustering of samples observed for AP 

suggesting very low levels of cytokines whereas gingivitis samples demonstrate a linear spread 

indicating higher levels of cytokines. 

□-Aggressive Periodontitis, Δ – Chronic Periodontitis,  X –gingivitis  and O-healthy control.
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Fig 5.4: On comparing cytokines representing Th1/Th2/Treg subsets a non-linear relation between 

(IL6/IL2, IL10/IL2, TNFα/IL2, IL6/IL4, IL10/IL4, TNFα/IL4) was observed in all groups. Clustering of 

samples was observed  indicating low levels of cytokines in both AP and CP. 

□-Aggressive Periodontitis, Δ – Chronic Periodontitis,  X –gingivitis  and O-healthy control.
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Fig 5.5:  On comparing cytokines representing Th1/Th2/Th17 subsets, a  non-linear relation between 

(IL17/IL6, IL17/IL10, IL10/IL6, IL10/TNFα, TNFα/IL6 and IL6/IFNγ) was observed in all groups. 
Clustering of samples was observed  indicating  low levels of cytokines in both AP and CP. 

□-Aggressive Periodontitis, Δ – Chronic Periodontitis,  X –gingivitis  and O-healthy control.
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Fig 5.6: On comparing cytokines representing Th1/Th2/Th17 subsets, a non-linear relation between 

(IL10/IFNγ, TNFα/IFNγ and IL17/TNFα) was observed in all groups. Clustering of samples was 
observed  indicating low levels of cytokines in both AP and CP. 

□-Aggressive Periodontitis, Δ – Chronic Periodontitis,  X –gingivitis  and O-healthy control.

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000

IF
N

γ(
p

g
/m

l)

TNFα(pg/ml)

TNFα/IFNγ

0

500

1000

1500

2000

2500

3000

0 5000 10000 15000 20000 25000

IF
N

γ(
p

g
/m

l)

IL-10(pg/ml)

IL-10/IFNγ

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000

T
N

F
α(

p
g

/m
l)

IL-17(pg/ml)

IL-17/TNFα



214 

5.3.3    Cytokine ratios in health and disease 

For ratios of IFNγ /IL-2, IL-17/IL-4, IFNγ /IL-4, IFNγ /IL-17 a variable spread was observed for 

samples from aggressive periodontitis compared with IL-4/IL-2, suggesting variation in the 

production of these cytokines within the aggressive periodontitis group.  On the other hand, a 

narrower spread of ratio values was observed for samples from “healthy” control, chronic 

periodontitis and gingivitis sites (Fig 5.7)
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Fig 5.7a: Analysis of cytokine ratios: For ratios of IFNγ/IL-2, larger spread of ratio values  was observed 

compared to IL-4/IL-2 for samples from Aggressive periodontitis. A narrower spread of ratio values was 

observed for samples from “healthy” control, chronic periodontitis and gingivitis sites indicating variable 
responses within the Aggressive periodontitis groups.
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Fig 5.7b: Analysis of cytokine ratios: For ratios of IFNγ/IL-2, larger spread of ratio values  was observed 

compared to IL-4/IL-2 for samples from Aggressive periodontitis. A narrower spread of ratio values was 

observed for samples from “healthy” control, chronic periodontitis and gingivitis sites indicating variable 

responses within the Aggressive periodontitis groups.

R
a

ti
o

sR

a
ti

o
s



217 

Cytokine Ratios Control Aggressive Chronic Gingivitis

Pearson  r Pearson  r Pearson  r Pearson  r

IL2/IL4 0.9991** 0.967** 0.993** 0.997**                  

IL2/IL6 -0.186 -0.318 0.613* -0.449

IL2/IL10 0.400 -0.082 0.390 0.201

IL2/TNF 0.720* 0.240 0.834** 0.136

IL2/IFN 0.994** 0.296 0.979** 0.933**

IL2/IL17 0.988** 0.623* 0.969** 0.982**

IL4/IL6 -0.190 -0.180 0.635* -0.442

IL4/IL10 0.397 0.020 0.437 0.230

IL-4/TNF 0.714* 0.237 0.832** 0.149

IL4/IFN 0.995** 0.235 0.972** 0.934**

IL4/IL17 0.987** 0.658** 0.982** 0.979**

IL6/IL-10 -0.030 0.877** 0.484 -0.186

IL-6/TNF 0.275 0.516* 0.833** 0.270

IL6/IFN -0.174 -0.017 0.636* -0.232

IL6/IL17 -0.142 -0.018 0.647** -0.469

IL10/TNF 0.761* 0.409 0.289 0.734**

IL10/IFN 0.384 -0.114 0.369 0.146

IL10/IL17 0.424 -0.076 0.503 0.295

TNF/IFN 0.703* 0.335 0.862** 0.259

TNF/IL17 0.756* 0.616* 0.804** 0.225

IFN/IL17 0.990** 0.382 0.939** 0.915**

**Correlation significant at the .01 level, correlation significant at the .05 level 

Table 5.1: Evaluation of cytokine ratios in GCF samples of patients with Aggressive periodontitis 

(n=20), Chronic periodontitis (n=20), Gingivitis (n=20) and in healthy individuals.  
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5.3.4  Cytokine correlation with attachment loss 

For all cytokines analyzed, there was no correlation between cytokine levels and attachment 

loss. Data for IFN-γ and IL17 presented  (Fig 5.8).
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Fig 5.8: Plots representing loss of attachment and cytokine levels (IFNγ and IL-17) show no 

relationship in health or disease thereby indicating that cytokine levels do not relate to pocket depths 

rather relate to disease activity. 

□-Aggressive Periodontitis, Δ – Chronic Periodontitis,   X –gingivitis  and  ◊-healthy control
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5.4    Discussion 

The progression of periodontal disease occurs as a consequence of an altered immune 

response brought about by a dysregulation of molecules released by specific cell populations, 

many of which are involved in bone regulation and maintenance, an imbalance of which leads 

to altered remodelling and repair. Therefore, this present study examined the expression of 

cytokines that defined the Th1/Th2/Th17/Treg response types (IL-2, IL-4, IL-6, IL-10, TNFα, 

IFN-γ and IL-17) and supports preceding hypothesis that, periodontal disease is brought about 

by an imbalance in the Th1/Th2/Th17/Treg response. Although these cytokines have been 

categorised as belonging to the Th1/Th2/Th17/Treg cells, it is imperative to emphasise that 

sources other than Th1/Th2/Th17 cells may contribute to the presence of these cytokines in 

the GCF.  This is the first study evaluating cytokine ratios in GCF using cytokine bead array 

(CBA), which has distinct advantages to other techniques in that, it allows for simultaneous 

measurement of multiple cytokines from a single sample thereby minimising methodological 

errors. Our results showed that levels of IL-2, IL-4, IL-6, TNFα, IFN-γ and IL-17 in gingivitis 

were significantly higher, when compared to aggressive periodontitis and chronic periodontitis 

which may be suggestive of an important role played by the T-cells in inflammatory conditions 

as in gingivitis. Furthermore, chronic periodontitis and gingivitis indicated a strong and 

balanced Th1/Th2/Th17 response which was matched by minor responses seen in the 

“healthy” control group as demonstrated by the linear response between cytokines IL2/IL4, 

IL2/IFNγ, IL2/IL17, IL4/IFNγ, IL4/IL17 and IL17/IFNγ. Whereas, in aggressive periodontitis 

group, a consistent Th2 response dominated alongside a mixed Th1/Th17 response as shown 

by a linear response only to IL2/IL4. However, clustering of samples were observed in the 

aggressive periodontitis groups, on comparing cytokines belonging to Th1/Th2/Th17/Treg 

against each other, reflecting low levels of cytokines whereas a more linear relation was 

observed in the gingivitis group. Additionally, large standard deviations were also observed 
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within the aggressive periodontitis and gingivitis groups reflecting possible wide variations in 

T cell responses. The immunosuppressive cytokine, IL-10 was higher in aggressive 

periodontitis and gingivitis compared to chronic periodontitis. Collectively, these results 

suggest that measuring cytokine ratios may provide important information for identifying 

patients susceptible to rapid periodontal destruction. Correlation between cytokines and 

attachment levels were also investigated. No correlation was observed, thereby confirming 

that cytokine levels relate to disease activity and not severity. Indeed, an absence of 

correlation reflects on the unique process of disease progression in that, there are periods of 

exacerbation and quiescence. A longitudinal study design would provide more information 

linking cytokine levels with disease activity.

In health, the presence of low levels of all cytokines investigated, may indicate that they are 

essential and contribute towards the maintainance of homeostasis within the periodontal 

environment. Additionally, the detection and identification of these cytokines gives us an 

indication of the pattern of cytokine profile in health.   

Th1 cytokines (IFN-γ, TNF-α) were significantly higher in the gingivitis group when compared 

to healthy controls. Aggressive and chronic groups expressed similar levels although higher 

than healthy controls. IFN-γ and TNF-α, are primarily involved in the activation of T cytotoxic 

cells and macrophages consequently stimulating cellular immunity and inflammation. On the 

other hand, IL-2 is necessary for the growth, proliferation, and differentiation of T cells to 

become 'effector' T cells. Additionally, it augments cytokine production, cytolytic activity, 

enhances antibody secretion and induces apoptosis of activated T-cells (Gaffen and Liu 2004). 

Correlation regression analysis identified strong correlations between IL2/IFN-γ in chronic 

periodontitis group (R=0.979), gingivitis group (R=0.933) and control (R=0.994) suggesting a 

strong Th1 response, as IL2 is produced by all T cells and IFN-γ by Th1 cells. These results 

indicate that all patients produced Th1 cells in proportion to the overall T cell response. 
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However, a low correlation was observed for the aggressive periodontitis group (R=0.240) 

which was suggestive of a variable response within this group (Table 5.1). 

Th2 cytokines (IL4, IL-6) were higher in the gingivitis group when compared to the other 

groups. However, IL-6 levels were higher in the chronic groups compared to aggressive. On 

examining cytokine ratios, a stronger correlation was observed for IL6/IL2 (R=0.613), IL-6/IL-

4(R=0.635), IL-6/TNF-α(R=0.833), IL6/IFN-γ(R=0.636) and IL6/IL-17(R=0.647) in chronic 

periodontitis samples compared to other groups. IL-6 has a direct growth stimulatory effect on 

cells and regulates cell proliferation, differentiation and cell survival through cross talk with 

growth factor and several signalling pathways (Ara and Declerck 2010; Poncet et al. 2011).  

Additionally, IL-6 can promote MMP-2, MMP-7 and MMP-9 activity which play a role in 

extracellular matrix degradation, promote angiogenesis, T-cell differentiation and activation, 

and more recently IL-6 has been identified as a major regulator of the balance between Treg 

and Th17 cells (Taniguchi and Karin 2014). Specifically, IL-6 along with TGFβ induces the 

generation of Th17 cells, while it inhibits differentiation of Treg cells thereby promoting a pro-

inflammatory mileau. Therefore strong correlations between IL-6/TNFα(R=0.833), 

IL6/IFNγ(R=0.636), IL6/IL-17(R=0.647), IL6/IL2 (R=0.613) and IL-6/IL-4(R=0.635) in chronic 

periodontitis compared to aggressive periodontitis, gingivitis and healthy control is suggestive 

of a balanced  Th2 response in the chronic periodontitis group. 

Higher levels of IL-4 and IL-10 were observed in aggressive periodontitis compared to chronic 

periodontitis and healthy controls.  IL-10 (Treg cytokine) along with IL-4 (Th2 cytokine)  have 

been considered as potent anti-inflammatory agents (Dinarello 2000) and it has been 

suggested that their lack may cause increased production of inflammatory mediators such as 

TNFα and IL1β in periodontal tissue (Shapira et al. 1992). Furthermore, IL-10 has been 

regarded as a key immunoregulatory cytokine capable of controlling inflammation in various 

pathophysiological settings by inhibiting activity of Th1 cells, Th2 cells, NK cells, monocytes, 

macrophages and dendritic cells.   Within the  control group, the  levels of IL-4 and IL-10 were 
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lower when compared to chronic periodontitis and aggressive periodontitis which was 

contradictory to previous clinical studies which have reported lower levels of IL-4 and IL-10 in 

GCF samples from chronic periodontitis compared to healthy controls (Bozkurt et al. 2006; 

Cetinkaya et al. 2012).  However, it has also been reported that an increased number of IL-10 

producing CD4+ T cells were present  in inflamed gingival tissue compared to normal tissue 

in experimental periodontitis model, suggesting a potential central role for Treg cells in down-

regulation of inflammatory response by IL-10 production in periodontal inflammation and 

alveolar bone loss (Kobayashi et al. 2011). Therefore, the increased expression of IL-10 in the 

aggressive periodontitis group may indicate a potential role in inhibiting cell mediated immunity 

and B-cell response.  Although previous studies have documented the anti-inflammatory 

properties of IL-10, recent research has reported IL-10 to possess pro-inflammatory effects by 

promoting proliferation, differentiation and antibody production by B cells, with subsequent 

detrimental immune-complex deposition  thereby suggesting a dual role (O'Garra et al. 2008; 

Rutz and Ouyang 2011; Hofmann et al. 2012; Kubo and Motomura 2012). Clinical studies 

have disclosed perplexing pro-inflammatory functions of IL-10, contradictory to data obtained 

in defined rodent models of disease which propose IL-10 as potent and reliable anti-

inflammatory cytokine (Muhl 2013).  Recent reports have suggested that on priming by type 1 

interferon, IL-10 family cytokines (IL-10, IL-22) promote Th-1 like inflammation, promote 

apoptosis and control of tumor growth (Kubo and Motomura 2012; Bachmann et al. 2013), 

thereby suggesting plasticity of IL10 production by various cell types or the presence of certain 

cytokine environment. Similarly, IL4 causes a Th2 response with B-cell activation and 

production of antibodies which help in containing the infection. However, nonprotective 

antibodies may also be produced leading to persistence of infection and high levels of IL-1 

resulting in tissue destruction (Gemmell et al. 2002b). Therefore, it is less clear whether the 

dominant role of the Th2/Tregs are host protective or destructive. 

Th17cytokine (IL-17) levels were significantly higher in the gingivitis and aggressive 

periodontitis groups compared to healthy controls (Fig 5.1). Early studies reported on the 
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crucial function of the Th1/Th2 paradigm in the host immune responses in chronic periodontitis 

(Gemmell and Seymour 2004) with Th1 cells being associated with a stable lesion and Th2 

cells associated with disease progression.  However, with the discovery of Th17 and Treg 

subsets, with equally important roles in host immune inflammatory response, it is clear that 

the molecular responses underlying periodontal tissue destruction involves additional factors. 

In recent years research has identified Th17 and Tregs to play important roles in the host 

immune-inflammatory response. Studies have demonstrated that Th17 cells are involved in 

periodontal inflammation and tissue destruction in periodontitis (Zhao et al. 2011; Adibrad et 

al. 2012) whereas Tregs play a protective role in the development of periodontitis (Ernst et al. 

2007; Garlet et al. 2010). An imbalance in the Th17/Treg ratios has been reported recently in 

several chronic and autoimmune diseases such as Rheumatoid arthritis (Wang et al. 2012), 

pemphigus (Xu et al. 2013), sarcoidosis (Huang et al. 2013), systemic lupus erythematosis 

(Mengya et al. 2013), in addition to cancer(Zhao et al. 2013) and as a natural consequence of 

aging (Schmitt et al. 2013). For example, an enhanced Th17 cell response and a weakened 

Treg response has been associated with rheumatoid arthritis(Wang et al. 2012). In contrast, 

a weakened Th17 cell response and an enhanced Treg response has been demonstrated in 

non-small cell lung cancer (Zhao et al. 2013). With regards to periodontal disease which is 

also a chronic condition, data obtained from murine experimental periodontitis model, have 

reported that levels of both Th17 and Treg related cytokines were elevated and that inhibiting 

IL-17 alleviated periodontal destruction, whereas inhibiting Treg cell function exacerbated 

periodontal lesions (Garlet et al. 2010; Eskan et al. 2012). Clinical studies have reported that 

Th17 cells were found infiltrated in periodontal tissues in chronic periodontitis, and IL-17 level 

in GCF was significantly increased (Cardoso et al. 2009). Gingival concentrations of IL-23, IL-

17, 1L-6, IL1β and TNFα were significantly higher at sites with severe attachment loss 

compared to healthy sites (Lester et al. 2007). Additionally, it has been reported that Th17 cell 

related cytokines correlated positively with periodontal destruction whereas Treg cell related 

cytokines correlated negatively with periodontal destruction in patients with periodontitis 

(Dutzan et al. 2012) indicating that Th17/Treg imbalance may be associated with the 
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pathogenesis of periodontitis which lends support to the results presented from this present 

study showing a significant correlation between IL-17 expression and severe disease 

condition. Since Th17 responses are indicated to drive periodontal disease progression, 

abnormal Th1/Th2/Th17 response in the aggressive periodontitis group strongly suggests a 

contribution to the development of an exacerbated manifestation of the disease. It may be 

that, patients with aggressive periodontitis may be predisposed to a potential cellular 

hyperactivity which may contribute to the exacerbated tissue destruction seen in aggressive 

periodontitis. 

In conclusion, this pilot study has further contributed to the characterization of the cytokine 

profile presented in health and disease with distinct variations observed within the four groups 

investigated. It is possible that this variability or lower frequency of detection may be useful in 

determining the presence or severity of the disease. Additionally, this study demonstrated for 

the first time, that an abnormal immune response exists in the severe disease group.  In the 

absence of signs and symptoms as in chronic conditions like periodontitis, early stages of the 

disease are usually undetected until clear evidence of bone destruction is present. Appropriate 

early intervention may prevent progression of the disease if diagnosis were possible in the 

early stages of the disease. Within this scenario, it is possible that susceptible patients may 

be identified on the basis of differential immune response. To this end, cytokine profiling may 

be of prognostic value in assisting identification of high risk patients as well as monitoring 

response to treatment. However, further longitudinal studies to investigate the intricate 

balance between the cytokines belonging to the various T subsets would be necessary to 

validate its use as a prognostic tool in the management of patients with periodontal disease. 



226 

Chapter   6                    

DISCUSSION 

The inability of current clinical methods to accurately diagnose disease activity, identify high 

risk patients and predict disease progression have been major predicaments in the 

management of patients presenting with periodontal diseases, as detailed in Chapter 1. 

Therefore, through a series of in-vitro and in-vivo studies, this study set out to further our 

understanding of the molecular mechanisms involved in the pathogenesis of periodontal 

disease, that may help implement the use of markers detected in GCF to aid clinicians in the 

management of patients with periodontal diseases. Previous studies have identified CS to be 

a matrix metabolite component released as a consequence of inflammatory degradation 

during periodontitis.  In this study, the diagnostic potential of CS as a marker of disease activity 

was evaluated longitudinally in patients with chronic periodontitis and results identified CS as 

a product released continuously at the point of sampling, increased CS levels were associated 

with sites demonstrating progressive attachment loss, identified periods of activity and 

inactivity, with few sites demonstrating disease activity over a 21 month period. Furthermore,

in-vitro studies investigated the cellular synthesis of this proteoglycan in a pathological 

condition by examining the biological effects of P. gingivalis LPS on PDL cells. In the presence 

of P. gingivalis LPS, an alteration in cell behaviour was observed with an increase in cell 

proliferation and a decrease in matrix formation, further suggesting that the degradation 

products detected in GCF (CS), were as a consequence of tissue destruction and not as a 

result of repair or remodelling. Collectively, these results highlight the potential of CS present 

in GCF as a marker of disease activity. 
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Cytokines detected in GCF are released as a consequence of the inflammatory-immune 

process activated in response to a bacterial challenge, an imbalance of which lead to 

periodontal tissue destruction.  A cross-sectional study investigating cytokine profiles in GCF 

of patients with periodontal disease to investigate the prognostic value of cytokine profiling in 

identifying the high risk patient, demonstrated a variable response in the severe type, which 

was suggestive of an imbalance in Th1/Th2/Th17/Treg responses, thereby affirming the 

predominant role of an altered host response in disease progression. Cytokine ratios were 

examined between different groups and the results demonstrated an inconsistent Th1/Th17 

response in the aggressive periodontitis group compared to a consistent Th1/Th2/Th17 in the 

other groups further suggesting that cytokine profiling may be of prognostic value in the 

identification of high risk patients. Further, non-immune sources were also considered as 

potential contributors to the variation in response. Consequently, in-vitro studies demonstrated 

that although TLR receptors were present on PDL cells, no cytokines were released on 

exposure to P. gingivalis LPS further suggesting that the cytokines detected in GCF were 

released by the recruited immune cells, an imbalance of which causes periodontal tissue 

destruction and alveolar bone loss.  

CS has previously been detected in GCF and proposed as a marker of active tissue 

destruction (Last et al. 1985; Last et al. 1988; Samuels et al. 1993; Waddington et al. 1994; 

Okazaki et al. 1995; Smith et al. 1995; Waddington et al. 1996; Waddington et al. 1998; 

Baldwin et al. 1999). Based on the above pilot data, this study investigated further, the validity 

of CS as an ideal biomarker of periodontal destruction.  This study also addressed the potential 

of CS as a marker of disease activity at the time of sampling.  Longitudinal analysis revealed 

a statistically significant increase in sGAGs associated with sites that demonstrated continuing 

signs of disease activity and progressive attachment loss, thereby confirming its potential as 

a good marker of disease activity.  However, within the active and inactive sites, large 

variations were present which possibly suggests, the sites being in different stages of an 

active/inactive period.  It is possible that a burst of activity without 2 mm loss of attachment 
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may have occurred but not been included in the study or a burst of activity may have occurred 

in the 3 month period between visits and therefore not be detected.  Therefore, future work 

would involve determination of the cut-off point so as to increase the specificity/sensitivity of 

the marker, as it is possible that we may otherwise misdiagnose disease activity due to the 

considerable overlap in GAG levels.  Sites demonstrating high levels of GAGs may need to 

be monitored closely over a shorter period of time to detect periods of activity.   Furthermore, 

cytokine profiling may be of additional value in monitoring these sites, as a concurrent 

increase/decrease in specific cytokines may be useful in identifying sites that need further 

monitoring.  Significantly, only 30% of the sites demonstrated disease activity over a period of 

21 months.  These results have serious clinical implications in terms of managing patients 

diagnosed with periodontal disease, as these results are suggestive that current treatment 

modalities provide treatment that may not be necessary for the patient and therefore, further 

highlight the need for a biomarker that can accurately detect disease activity.  Deeper sites (≥ 

9mm) demonstrated increased disease activity when compared to less deeper pockets. These 

findings are supported from alternative clinical studies which have reported that further 

attachment loss mostly occurred at deeper sites (Grbic et al. 1991; Grbic and Lamster 1992).  

The techniques used for the detection of GAGs are however time consuming and technique 

sensitive.  For its use as a diagnostic test, the assay must be relatively easy to perform, quick 

and reproducible.  Ideally, an immunoassay would best serve the purpose, however, specific 

antibodies to specific components to the GAG chains would need to be developed.  

This study further addressed the source of these proteoglycans in the GCF, in that CS may 

be released into the GCF as a consequence of either turnover or an increase in tissue 

destruction.  As periodontal disease destruction is largely attributed to local inflammation 

resulting in interaction between host and microbial factors such as bacterial 

lipopolysaccharides (LPS), which alter the host immune response, the effect of LPS on 

periodontal ligament cell behaviour was investigated with a view to further understand the 

release of these markers in GCF. The effect of LPS on the various cell types present within 
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the periodontium such as fibroblasts (Takada et al. 1991; Tamura et al. 1992; Sakuta et al. 

1998),  osteoblasts (Bostanci et al. 2007a; Hamedi et al. 2009), epithelial cells, dendritic cells 

(Pulendran et al. 2001) have been extensively investigated and reported in the literature as 

detailed in Chapter 2. Several of these reports contradict each other and this may partly be 

due to the variations in cell types examined in that, some studies have used primary cells 

whereas others used cell lines.  The source and method of LPS extraction and purification 

may also have contributed to the conflicting results as structural variations between strains, 

contamination with protein or DNA, have been reported to exhibit an effect on cellular activity 

(Wang and Ohura 2002).  However, the effect of LPS on the cells contributing to the repair 

process is less understood.   In order to model the complex nature of a wound healing process, 

an in-vitro culture system utilising a possible high proportion of progenitor cells derived from 

the periodontal ligament was used,  as it is these cells which are possibly recruited during  

attempts at periodontal tissue repair.  At toxic levels, viability was reduced to less than 50% 

suggesting that the presence of an increased microbial load within a periodontal pocket, would 

have a deleterious effect on the cells of the periodontal ligament and therefore lead to tissue 

destruction.  However, in the presence of sub-toxic levels of LPS, an increase in cell expansion 

was observed, with a consequent decrease in matrix production.  Within a clinical scenario, 

this may represent the post treatment stage where the microbial load has been reduced and 

the tissues are in a state of attempting repair.  As it is almost impossible to totally eradicate 

microorganisms from a pocket, its presence in low levels within a healing pocket may be 

responsible for delayed/impaired healing and therefore the non-responding sites within 

responding patients, as well as the limited regeneration observed post treatment.  Thus, sub-

toxic levels of LPS may alter the biological events associated with the synthesis of a matrix 

and consequently influence the potential of the tissues in attempting repair.  The results from 

our study along with other studies examining effects of LPS on various cell types are 

suggestive of a stimulatory effect by P. gingivalis LPS on the cell growth phase, thereby 

prolonging the initial cell growth phase and delaying the formation of matrix, with a further 

concomitant effect on maturation and mineralisation as demonstrated by an alteration in 
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decorin and biglycan synthesis.  It is possible that within the heterogenous cell population, 

LPS may increase the cell growth of one or more subsets of the cell population which may 

further have a detrimental effect on the other subsets.  Therefore, the decrease in ALP activity 

observed, may possibly be due to the decrease in the number of osteogenic precursor cells 

brought about by an increase in the other progenitor cell population in response to LPS 

stimulation.  Alternatively, LPS may also affect the ability of the cells to induce and sustain 

matrix production. Previous work reporting the absence of DS decorin and biglyan in GCF 

(Last et al. 1988) along with the results from this study that indicates a decrease in expression 

of CS decorin and biglycan, is suggestive of an increase in processing and removal from the 

extracellular compartment.  As a consequence of this, the remodelling and repair process may 

be affected and this implies that the degradation products such as proteoglycans or CS 

decorin and biglycan, detected in the GCF are as a consequence of tissue destruction.  The  

effect of sub-toxic levels of LPS on other cells of the periodontium have not been investigated, 

therefore further studies to address this effect  on other cell types, with a view to understand 

their behaviour during the repair process in the presence of virulence factors such as LPS, 

may provide us with more understanding of impaired/delayed wound healing processes. The 

isolation of the various populations of progenitor cells may also be useful to further study their 

individual behaviour during healing with a view to consider alternate techniques to promote 

repair and regeneration.  

The presence of matrix degradation product (CS) in GCF as reported above, is attributed to 

an inappropriate host response resulting in an imbalance between the pro-inflammatory and 

anti-inflammatory cytokines released by specific cell populations such as the 

Th1/Th2/Th17/Treg cells. On cross-sectional examination of cytokine levels in gingivitis, 

chronic periodontitis, aggressive periodontitis, and healthy controls, significantly increased 

levels of IL-2, IL-4, IL-6, IL-17, IFN-γ and TNF-α were observed in gingivitis.  Further 

examination of cytokine ratios in gingivitis, chronic periodontitis, aggressive periodontitis and 

healthy controls revealed an inconsistent Th1/Th17 response in patients with aggressive 
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periodontitis compared to a consistent Th1/Th2/Th17 in the other groups further confirming 

the potential of cytokine profiling in identifying high risk patients.  Non-immune sources were 

also considered as potential contributors to the variation in response by means of in-vitro 

studies and results demonstrate that in spite of the presence of TLRs, which are necessary 

for downstream signalling and activation of NFκB resulting in cytokine secretion, the PDL cells 

did not release detectable levels of cytokines on stimulation with sub-toxic levels of LPS. 

These results confirmed that the cytokines detected in GCF may be released by the recruited 

immune cells, an imbalance of which causes periodontal tissue destruction and alveolar bone 

loss. Future work may involve the investigation of the role of other recruited cells such as the 

neutrophils and monocytes to the inflammatory pool. Additionally, the use of an ex-vivo murine 

mandible model for the study of inflammatory bone destruction (Sloan et al. 2013) to which T 

cells are introduced, may allow for the observation of co-expression of cytokines by specific 

cell types. 

Although this study was cross-sectional in nature, it helped us to identify general trends and 

answer the question as to whether cytokine profiling may be of any value in identifying high 

risk patients.  Further longitudinal studies investigating the relationship of cytokines to clinical 

loss of attachment would perhaps provide us with more information on its ability to specifically 

identify high risk patients and also its ability to assist in diagnosing disease activity. The 

longitudinal monitoring of these ratios to assess changes in values in response to treatment, 

will provide us with further information on its ability to monitor or alter host response in 

periodontal disease. However, care must be taken in the interpretation of these results, as the 

level of cytokines may be altered non-specifically in both gingivitis as well as periodontitis. 

In conclusion, this study demonstrated that, CS is a good marker of diagnostic value as it has 

the ability to detect disease activity at the time of sampling.  Results from in-vitro studies are 

suggestive of the degradation products in GCF being a product of tissue destruction rather 

than as a consequence of remodelling or repair further confirming the potential of CS as a 

good marker. However, on its own, CS/cytokines may not be ideal biomarkers. The specificity 
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of these biomarkers may be enhanced when used in combinations. Therefore, a chair-side 

test composing of a panel of markers such as CS and specific cytokine ratios, may be of 

significant value to clinicians in identifying high risk patients as well as  sites, that require 

further monitoring. With the development of new diagnostic technologies such as microarray 

and microfluidics along with the use of oral fluids such as GCF, the development of rapid, non-

invasive, site based risk assessment and comprehensive screening for biomarkers may be 

possible in the near future. Biomarker screening will allow for enhanced patient assessment 

which may enable provision of customized therapies that target treatment at individual level. 
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