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 Abstract 

Huntington's disease (HD) is caused by an expanded HTT CAG repeat that leads in a length-dependent, 

completely dominant manner to onset of a characteristic movement disorder. HD also displays early 

mortality, so we tested whether the expanded CAG repeat exerts a dominant influence on age at death and 

on the duration of clinical disease. We found that, as with clinical onset, HD age at death is determined by 

the expanded CAG repeat length with no contribution from the normal CAG allele. Surprisingly, disease 

duration is independent of the mutation’s length. It is also unaffected by a strong genetic modifier of HD 

motor onset. These findings suggest two parsimonious alternatives: 1) HD pathogenesis is driven by mutant 

huntingtin but, before or near motor onset, sufficient CAG-driven damage has occurred to permit CAG-

independent processes to then lead to eventual death. In this scenario, some pathological changes and 

their clinical correlates may still worsen in a CAG-driven manner after disease onset but these CAG-related 

progressive changes do not themselves determine duration. Alternatively, 2) HD pathogenesis is driven by 

mutant huntingtin acting in a CAG-dependent manner with different time courses in multiple cell-types, and 

the cellular targets that lead to motor onset and to death are different and independent. In this scenario, 

HTT CAG length-driven processes lead directly to death but not via the striatal pathology associated with 

motor manifestations. Each scenario has important ramifications for the design and testing of potential 

therapeutics, especially those aimed at preventing or delaying characteristic motor manifestations. 
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Introduction 

Huntington's disease (HD) is a dominantly inherited disorder (OMIM #143100)1; 2 whose characteristic 

neurological symptoms result from an expanded CAG repeat of greater than 35 units in the huntingtin-

encoding sequence of HTT (OMIM # 613004).2-5 It has long been known that the age of onset of HD motor 

symptoms is negatively correlated with expanded HTT CAG repeat length,2; 6-9 but the question of whether 

the length of the normal CAG allele also plays a role in determining onset remained uncertain until recently. 

Two publications reported that a complex interaction between the CAG repeat lengths of the normal and 

expanded alleles played a significant role in determining an individual's age at motor onset.10; 11 However, a 

more comprehensive study recently uncovered issues with the statistical analysis of age of onset vs. CAG 

correlation, developed a route to robust statistical analysis of such data, and concluded that there is no 

significant impact of the normal allele CAG length, either alone or in interaction with the expanded CAG 

repeat, on age at motor onset.12 Consistent with this conclusion, age at motor onset of HD subjects with two 

expanded HTT alleles is determined by the longer of their two CAG repeats and is similar to subjects with a 

single mutant allele of comparable size.12 Thus, the expanded HTT CAG repeat triggers HD pathogenesis 

(defined here as the underlying abnormal process that leads to pathology, defined in turn as disease 

phenotype) and the length of the mutation largely determines the rate of the pathogenic process that leads 

to clinical motor signs in a fully dominant fashion. The motor disturbances are thought to result from 

dysfunction and degeneration of neurons in the striatum which, based upon pathological examination of 

brains post-mortem, is also correlated with CAG repeat length.13-16 The relationship between CAG repeat 

length, age at motor onset, and inferred rate of striatal pathology has informed the potential for treatment by 

HTT gene-silencing, since the lack of an effect of either the normal allele or of an interaction between 

normal and expanded alleles implies that one can target the single mutant copy of HTT in the striatum to 

delay onset and worsening of motor symptoms.  

Another important feature of HD that has been reported to show a strong correlation with the expanded 

CAG repeat length is age at death.6; 9; 17 HD shows early mortality compared to the general population,18 but 

it is not clear whether this reflects a direct or an indirect effect of mutant huntingtin on vital processes. In 
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principle, early mortality in HD could be due to neurodegenerative changes in the regions most associated 

with HD clinical symptoms or, alternatively, to some other independent effect of mutant huntingtin.16; 19-25 In 

order to inform potential treatments for preventing or delaying disease onset and early death of HD 

subjects, we have performed a comprehensive statistical assessment of the impact of the expanded and 

normal CAG repeats on determining the timing of death and the relationship of this timing with the prior 

onset of diagnostic motor signs, an interval that we define as ‘disease duration’. Our findings support a 

dominant effect for the expanded CAG repeat on age at death, like that on age at motor onset, with no 

impact of the normal CAG allele. However, they also indicate a surprising lack of contribution of either the 

mutant or normal HTT allele to determining the duration of clinical disease from onset to death. We propose 

two alternative explanations for the relationship between motor onset and death that have quite different 

implications for designing therapies in HD. 
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Material and Methods 

Study subjects 

We analyzed DNA samples from 4,448 HD heterozygous subjects with either known age of onset of motor 

signs and/or age at death: 4,161 subjects had age at onset data, 1,165 subjects had age at death data, and 

878 subjects had both. Subjects with recorded age at death were primarily identified from HD brain banks: 

the Harvard Brain Tissue Resource Center (McLean Hospital, Belmont MA), the New York Brain Bank 

(Columbia University, New York City, NY), the National Neurological Research Specimen Bank 

(Department of Veterans Affairs Medical Center, Los Angeles CA), and the Harvard NeuroDiscovery Center 

Advanced Tissue Resources Core (Massachusetts General Hospital, Charlestown MA). HD subjects with 

recorded age at onset were described previously.12 The HTT CAG repeat lengths for each DNA sample 

were determined by a polymerase chain reaction assay, against sequenced allele size standards as 

described previously.26 Primary analysis was based on HD subjects who carried one expanded HTT CAG 

repeat (CAG > 35). The means of expanded and normal CAG repeat lengths of our study subjects were 

45.1 (range, 36-120; median, 44) and 18.45 (range, 9-35; median, 18), respectively. Age at death, age at 

onset of motor signs, and disease duration (the difference between age at onset and age at death) were the 

primary dependent variables in the statistical models. Motor onset ages were from a clinician rater estimate, 

family member report, and/or self-report. When multiple onset ages were available, priority was given first to 

the expert rater estimate and then to the family member report. In addition to ascertained subjects for onset 

and/or death, we also independently analyzed European Huntington's Disease Network (EHDN) Registry 

observational cohort data to construct survival models. CAG repeats of EHDN samples were determined by 

the same method as above. The familial relationships of our samples were not known due to the lack of 

pedigree information in our de-identified data. Considering the tendency of related individuals to cause 

statistical inflation, the lack of significant influence in our results would not change dramatically if familial 

relationship could be included in the model. The study was approved by the Partners HealthCare 

Institutional Review Board.  

Statistical analysis of age at death 
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We previously described a robust statistical analysis method for age at onset of motor signs,12 and have 

used it in this study for the analysis of age at death. Natural log transformed age at death data from 1,165 

subjects were modeled as a function of 1) expanded CAG length, 2) normal CAG repeat length, and 3) 

gender (Table 1, Model 3). In addition, quality control analyses were performed to identify a subset of data 

that met the requirements of linear regression modeling, including 1) normality, 2) equal variance, and 3) 

absence of disproportionately influential observations. First, we evaluated data normality for each CAG 

repeat length and found that the distribution of age at death approximates a normal distribution for subjects 

with 40-52 CAG repeats, representing 90.3% of the samples (Figure S1). Variance in age at death was not 

constant but rather was larger for subjects with smaller expanded CAG repeats potentially implicating a 

greater role for modifiers in this range (Figure S2A). We addressed the non-constant variance by log 

transformation of the data as shown in Figure S2B, which also rendered the relationship between expanded 

CAG repeat length and age at death close to linear (Figure S2C). Lastly, we identified outliers to exclude 

using a standard inter-quartile outlier detection method (Figure S2C). Briefly, for each CAG repeat size, age 

at death data were sorted to obtain an inter-quartile value (i.e., the difference between 75 and 25 percentile 

data points). Then, 1.5 times of the inter-quartile was added to the 75 percentile data point and subtracted 

from the 25 percentile data points. Any age at death values outside of this range were identified as potential 

outliers. These procedures resulted in a subset of 1,019 subjects (87.5% of all those with age at death data) 

for a robust analysis of models that included gender along with both expanded and normal CAG length 

(Model 1) and only expanded CAG length (Model 2) as summarized in Table 1. In addition, Model 3 was 

fitted to all data without any exclusion of samples to evaluate the effect of outlier removal. The model 

behavior was evaluated by checking 1) residuals vs. fitted values, 2) quantile-quantile plots, and 3) 

residuals vs. leverage (Figure S3).  

We also performed three additional tests to establish the robustness of the conclusion from Table 1. 1) 

Using the minimal adequate model based on only QC-passed data (Table 1, Model 2), we calculated the 

residual of age at death for all subjects with 40-52 CAGs including outlier subjects (total 1,052 subjects) and 

subsequently used it as a dependent variable to test the effect of outliers previously excluded via our quality 

control (QC) pipeline (Figure S4). 2) We compared the normal CAG repeat length distributions of HD 
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subjects who represent the top or bottom 10% of residual age at death values (105 individuals each) (Figure 

S5). 3) We determined the effects of samples excluded from the model due to repeats longer than 52 CAGs 

by constructing an independent model using only the 97 HD subjects excluded from the analysis (Figure 

S6). None of these additional tests supported any effect of the normal CAG repeat length on age at death. 

Statistical analysis of disease duration 

Eight hundred and seventy eight HD subjects were fully ascertained for both age at motor onset and age at 

death. For each subject, disease duration was calculated by subtracting age at onset from their age at 

death. For these fully ascertained subjects, the range, mean, standard deviation, and median of duration 

values are 0-46, 15.4, 6.8, and 15 years, respectively. Approximately 72.9% of the HD subjects have 

duration values within one standard deviation around the mean (8.6-22.2 years), forming a non-normal 

distribution with a sharp peak and long-tails indicating positive excess kurtosis and prompting our non-

parametric statistical analysis. Since duration values of 10-20 years were highly enriched in the data 

regardless of the length of expanded CAG repeats, quality control analyses that were applied to age at 

death data and age at onset data could not identify a subset of data points that were normally distributed 

(Figure S7-S8). Therefore, instead of using parametric regression models, we performed non-parametric 

modeling (i.e., generalized additive model and Spearman's rank correlation analysis) to test the significance 

of CAG repeat lengths and gender on duration. In addition, we compared disease duration of HD subjects 

with expanded CAG < 43 to that of HD subjects with expanded CAG > 45 to test whether HD subjects with 

longer expanded CAG repeats display a shorter duration compared to HD subjects with shorter expanded 

CAG repeats. In a conceptually similar manner, expanded CAG repeat lengths of HD subjects with the top 

10% duration values were compared to those of HD subjects with the bottom 10% of duration values to test 

whether extreme duration subjects vary by expanded CAG repeat length. Finally, disease duration of adult 

onset HD subjects (age at onset > 20) was compared to juvenile onset HD subjects (age at onset < 21) 

(Mann-Whitney U test).  

Survival analysis of duration for an observational study cohort and for fully ascertained samples 



Keum et al.                                                                                                                                             8 

In addition to non-parametric analyses of duration using HD subjects fully ascertained for both onset and 

death, survival analysis was performed using data from the European Huntington's Disease Network 

(EHDN) Registry observational cohort. In this data set, 1,314 HD subjects had only recorded onset age, and 

115 HD subjects had both onset age and age at death data. A non-parametric survival analysis using a Cox 

Proportional Hazards model was performed by setting onset age as time 0 and duration as time to event. 

For subjects without recorded age at death, age at onset subtracted from age at last study visit was used as 

time to event with a censoring indicator. Duration values were modeled as a function of CAG (continuous 

variable) and gender using the "coxph" function in the "survival" R package. A similar survival analysis 

approach (but without censoring) using CAG repeat size as a continuous predictor variable and gender was 

applied to the data for 855 fully ascertained HD subjects that were used for our primary non-parametric 

analysis. In addition, based on sorted CAG repeat sizes of fully ascertained samples, two groups of HD 

subjects with the top or bottom 10% extreme CAG repeats (85 subjects in each group, 50-63 CAGs and 38-

41 CAGs, respectively) were identified to be compared for duration through survival analysis.  

Simulation analysis 

The capacity for CAG length to explain duration was not significant in the observed data set (Figure 3). To 

estimate whether different levels of explanatory power of the CAG repeat for duration could have been 

visualized in such data, we first randomly permuted the duration values of the 855 HD subjects. Then, 

without data replacement, we sampled duration values randomly until the model's R square value (model: 

duration ~ CAG) reached either 20, 10, 5, 2, or 1%. Once the model based on permuted data generated the 

pre-specified R square value, the mean of duration for each CAG length based on that simulation set was 

recorded for plotting against CAG.  

 

Software package for statistical analysis 

All statistical analyses were performed using R (version, 3.0.2). 
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Results 

Age at death in HD is strongly correlated with expanded HTT CAG repeat length 

We initially compared the relationships between 1) expanded CAG repeat length and age at onset of motor 

signs (age at onset, hereafter), 2) expanded CAG repeat length and age at death, and 3) age at onset and 

age at death. Consistent with previous findings,6; 9; 12 analysis using all data points showed that age at motor 

onset (Figure 1A) and age at death (Figure 1B) are both inversely correlated with the expanded CAG repeat 

length (adjusted R-squared, 65.4% and 74.5%, respectively). However, there is substantial variance in age 

at onset and age at death that is not explained by the expanded CAG repeat, suggesting that these 

outcomes are modified by other factors. In addition, age at death is strongly correlated with age at onset 

(Figure 1C), indicating that the former can be predicted relatively accurately from the latter (adjusted R-

squared, 77.5%). Interestingly, the correlation of expanded CAG length with age at death appears stronger, 

as age at onset is more variable. This may be because age at onset involves a subjective assessment on 

the part of an expert clinician whereas age at death is objectively recorded. It may also be that age at onset 

is more easily modified by other genetic or environmental factors than is age at death. In any event, the 

strong correlation of age at death with the expanded CAG length indicates that, averaged across the HD 

population, the length of the mutation is the primary factor determining at what age an individual with HD 

dies.  

 

Age at death is not influenced by the length of the normal HTT CAG repeat 

Next, we tested whether variance in age at death of HD is influenced by the normal allele CAG repeat or 

gender. The expanded CAG repeats in 1,165 HD subjects ranged from 36 to 120 CAGs; the median of the 

expanded and normal CAG repeat lengths was 44 and 18, respectively. We have reported previously on the 

importance of conforming to data quality assumptions in parametric statistical analysis of CAG repeat 

relationships to avoid spurious results when testing for potentially subtle effects of modifiers and have 

proposed a QC pipeline for robust statistical analysis.12 Among other factors, important requirements to 
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confirm when performing parametric regression analysis include 1) data normality, 2) equal variance, and 3) 

absence of disproportionately influential data points. We performed QC analyses, as described in Lee et 

al.12 and in the Material and Methods (Figures S1-S2), to generate a data set of 1,019 subjects with 40-52 

CAG repeats that conforms to the assumptions of regression analysis (Figure S3). This data set was used 

to generate reliable statistical models, Model 1 and Model 2, which include or exclude the normal CAG 

repeat, respectively (Table 1). Only the expanded CAG repeat length and gender explained a significant 

portion of the variance in age at death (Model 1; adjusted R-squared, 66.9%) since omitting the normal 

CAG repeat length from the model (Model 2; R-squared, 66.9%) made no significant difference (ANOVA 

model comparison, p-value, 0.1348). Exclusion of outliers did not change the conclusion since Model 3, 

fitted to all data without any sample exclusion, also revealed significance only for expanded CAG and 

gender (Table 1; Figure S3). Similarly, tests involving inclusion of the outliers excluded by the QC pipeline 

or specific examination of individuals with > 52 CAGs failed to reveal any significant impact of the normal 

CAG repeat length (Figures S4-S6). Thus, the size of the expanded CAG repeat and gender have predictive 

power for age at death, but the normal CAG length has no discernible impact.  

 

Relationship between age at onset and age at death: disease duration 

The construction of statistical models relating the expanded CAG repeat length to both age at onset 12 and 

age at death (Table 1, Model 2) allowed us to estimate indirectly the average time between the initial 

presentation of diagnostic motor signs and death in male and female HD subjects. Age at onset was not 

different between the two genders (Figure 2A, dashed lines), but there was a significant ~1 year difference 

between males and females in age at death (Figure 2A, red and blue solid lines). Interestingly, the age at 

death model (solid) and the age at onset model (dashed) were largely parallel for CAG ranges associated 

with onset in adulthood, indicating that the disease duration from diagnosis to death is similar regardless of 

expanded CAG repeat size. This implies that gender-associated disease duration is independent of the 

length of the expanded CAG repeat, which we have suggested previously from a limited post-mortem brain 

study.5; 9 
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We next used several approaches to test this proposition in the 878 HD subjects where disease duration 

could be measured directly because both age at motor onset and age at death were ascertained, a much 

larger dataset than analyzed previously. The median of the expanded and normal alleles was 44 and 18 

CAGs, respectively. As suggested from the statistical models, although the duration values were highly 

variable for any given CAG repeat length, the median of measured disease duration for these HD subjects 

appeared similar regardless of expanded CAG repeat length (Figure 2B). It was not possible to construct a 

reliable parametric linear regression model relating disease duration and expanded CAG length since the 

duration values are not normally distributed but instead are highly enriched for values between 10 and 20 

years, quite different from the distributions of age at onset 12 and age at death (Figures S7 and S8). 

Therefore, as a first analysis we instead performed non-parametric statistical analysis, using a generalized 

additive model and Spearman's rank correlation, which does not require normal distribution of the data, to 

test whether disease duration is associated with CAG repeat length. This generalized additive model based 

on 855 subjects with those CAG sizes represented by at least three HD subjects indicated that gender was 

a significant predictor of disease duration with male HD subjects having a slightly shorter duration compared 

to female HD subjects (p-value, 0.00015). However, there was no significant association or correlation 

between disease duration and either the expanded or normal CAG repeat lengths (Figure 3).  

We also specifically examined duration values for HD subjects with shorter versus longer expanded CAG 

repeats. The median CAG repeat in our duration data was 44, so we excluded 3 consecutive CAGs bins 

around the median CAG in order to generate two arbitrary groups of HD subjects with 1) similar sample 

sizes and 2) distinct CAG repeat lengths. Disease duration for HD subjects with expanded CAG < 43 

(Figure S9A, blue; 247 subjects) and > 45 (Figure S9A, red; 305 subjects) was not significantly different 

(Figure S9B; Mann-Whitney U test, p-value, 0.484). Furthermore, mutant alleles in HD subjects 

representing the top 10% (Figure S9C, red; median duration, 27; 87 subjects) and bottom 10% (Figure S9C, 

blue; median duration, 5; 87 subjects) of duration values show similar expanded CAG repeat sizes (Figure 

S9D; Mann-Whitney U test, p-value, 0.8975). Finally, we determined whether juvenile onset HD subjects 

(age at onset < 21 years old, n=55) had different duration values compared to adult onset HD subjects (age 

at onset > 20 years old, n=823). This analysis revealed the expected significant differences in expanded 
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CAG repeat lengths, age at onset, and age at death, but no difference in median disease duration between 

adult onset and juvenile onset HD subjects (Figure 4D; Mann-Whitney U test p-value, 0.75). In our data, the 

mean and median duration of those 11 juvenile onset HD subjects with CAG repeat size greater than 69 

were 9.1 and 9, respectively. Therefore, although disease duration overall in juvenile onset HD individuals 

(age at onset < 21 years) is similar to that of adult onset HD subjects, those with extreme juvenile onset HD 

(e.g., age at onset < 10) may have a shorter disease duration.  

Consistent with the lack of an effect of the expanded CAG repeat on disease duration in HD heterozygotes, 

5 additional HD individuals with 2 expanded CAG repeat alleles had disease duration within one standard 

deviation (8.6 - 22.2 years) of the mean. Although based due to their rarity on a very small cohort of ‘HD 

homozygote’ individuals, this suggests further the lack of a dosage effect of mutant huntingtin on disease 

duration. 

All of the above comparisons were consistent in supporting the conclusion that in HD, disease duration is 

independent of the length of the expanded CAG repeat. Since a lack of effect of the disease mutation on the 

duration of clinical disease is counterintuitive, we were concerned that an actual correlation with CAG length 

might be obscured by some ascertainment bias. There were two sources of ascertainment for our subjects: 

1) cohort studies in which HD patients were ascertained for age at onset and subsequently, a subset of 

individuals died, and 2) brain banks where ascertainment was based upon death. Although our ultimate 

conclusion was derived from individuals from both groups where duration could be measured directly 

because both parameters were known, it was conceivable that individuals in observational cohort studies 

with shorter CAG repeat lengths and potentially longer duration were missed because they have not yet 

died. Consequently, we performed a survival analysis for our major source of cohort samples with motor 

onset, 1,426 heterozygous HD individuals from the European Huntington's Disease Network (EHDN) 

Registry study. Survival analysis based on this observational cohort with censoring indications for surviving 

HD subjects revealed a significant impact on age at death for expanded CAG (p-value < 2E-16), but not 

normal CAG (p-value, 0.0926). We then tested whether CAG repeat length and gender influence survival 

after onset using non-parametric Cox’s proportional hazards analysis. We found no effect on disease 
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duration for either expanded CAG repeat length (exponentiated coefficient per one unit of expanded CAG, 

1.007; p-value, 0.754) or of gender (exponentiated coefficient for male, 1.178; p-value, 0.385). Tests for 

proportional hazards assumption using the "cox.zph" function confirmed that neither CAG repeat size nor 

gender violated the assumption; p-values for expanded CAG and gender were 0.504 and 0.680, 

respectively. 

A similar analysis of the 10% extremes of CAG repeat length from 855 HD subjects of the MA HD Center 

Without Walls collection where both age at onset and age at death were known showed an influence only of 

gender (exponentiated coefficient for low CAG group, 0.8216; p-value, 0.22; exponentiated coefficient for 

male, 1.2582; p-value, 0.146). Survival analysis using all 855 ascertained subjects and CAG as a 

continuous variable also revealed no significant contribution of CAG to duration (p-value, 0.665).  

Next, we restricted analysis of duration only to those cases ascertained through death, i.e., obtained from 

HD brain banks. Like the full set of 878 individuals with a direct measurement of duration, this set of 524 

brain-bank derived cases showed no significant correlation between CAG repeat length and the length of 

time between onset and death (Spearman's rank correlation p-value, 0.2738; Pearson's correlation p-value, 

0.4529).  

Finally, in order to judge the degree to which we had power to visualize an effect of the expanded CAG 

repeat length on duration, we performed simulation studies based upon the characteristics of our actual 

data set of 855 cases of known duration (described in the legend for Figure 3). We simulated distributions of 

the duration data across the CAG repeat range, based upon CAG repeat length explaining 1, 2, 5, 10 or 

20% of the variance in duration (Figure S10). Briefly, a data matrix of true CAG repeat size and duration 

was used to calculate R square value to evaluate the variance in duration that was explained by CAG 

repeat in observed data (Figure S10A). Duration values were then randomly shuffled to obtain the 

explanatory power of permuted CAG on duration. Although CAG repeat length accounts for more than 65% 

of the variance in age at onset and age at death, it has no detectable influence on duration (Figure S10A) 

while these simulations (Figure S10B-S10F) suggest that even a 2% contribution of CAG repeat length to 

determining duration could have been detected (Figure S10E).  
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Impact of HTT haplotypes and of a genetic modifier of age at onset on duration 

In the absence of an effect of expanded CAG length on HD duration, we next assessed two additional 

candidate modifiers. We first tested whether common HTT haplotypes, which we have shown do not modify 

age at onset,27 might instead have an effect on disease duration. HTT haplotypes were defined based on 21 

common single nucleotide polymorphisms (SNPs) that show significant differences in allele frequencies 

between HD subjects and normal controls.27 ANOVA models in which duration was modeled as a function 

of HTT haplotype, either on the disease chromosome (p-value, 0.363) or on the normal chromosome (p-

value, 0.091), provided no evidence for a significant association between duration and HTT haplotype.  

Recently, through a genome-wide association strategy we discovered genetic loci significantly associated 

with the difference between observed age at onset of motor signs and that expected based upon the CAG 

repeat length of the individual subjects. The genome-wide significant locus with the largest effect size, 

detected by SNP rs146353869 on chromosome 15, was estimated to accelerate motor onset by ~6 years 

suggesting hastening of HD pathogenesis, at least prior to diagnosis. The same SNP was significantly 

associated with age at death corrected for CAG repeat length (p-value, 9.3E-5). We therefore evaluated the 

potential influence of this strong age at onset modifier locus on disease duration.28 As expected and shown 

in Figure 5, HD subjects with a minor allele for rs146353869 had onset significantly earlier than those 

without such an allele (Mann-Whitney U test p-value, 0.010). However, disease duration was similar 

between subjects with or without a rs146353869 minor allele (Mann-Whitney U test p-value, 0.370). Thus, 

the functional variant tagged by rs146353869 modifies CAG-driven HD pathogenesis but does not influence 

the length of the CAG-independent period between onset and death. 
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Discussion 

Our robust statistical analysis based on a large data set firmly establish that, like age at diagnostic onset, 

the age at death of HD individuals is determined primarily by the size of their HTT CAG expansion mutation, 

with no significant impact from the normal CAG allele. Indeed, the correlation of CAG repeat length is 

slightly better with age at death than with age at motor onset, due to greater variance in the latter which 

reflects either the subjectivity of determining onset or its greater susceptibility to modification. It has been 

suggested from the effects of precise genetic replicas of the CAG mutation in the endogenous mouse 

orthologue (formerly Hdh, now Htt) and the fact that these "knock-in" alleles rescue the embryonic lethality 

of a null Htt allele that mutant huntingtin may precipitate pathogenesis by enhancing or dysregulating some 

normal activity of huntingtin29. At least some normal activities of human huntingtin vary with changes in CAG 

length even in the normal size range, revealing the CAG repeat to be a polymorphism with functional 

consequences.30 Our data with respect to age at motor onset and now age at death indicate that any 

variations in the activity of normal huntingtin occasioned by changes in the normal allele repeat size do not 

have an effect on the rate of pathogenesis leading to motor onset or to that leading to death. 

Since diagnosis of HD is primarily based upon characteristic motor signs, the length of time that an 

individual actually displays HD, i.e., the period between motor onset and death, is defined here as disease 

duration. In the literature, HD disease duration varies greatly with reported ranges of 1-45 years and 

medians of 16.2-21.4 years, although in some cases analyses have included individuals ascertained for 

either onset or death but not both.16; 31-33 In our analyses, we have been able to focus on individuals where 

both age at motor onset and age at death had been ascertained, permitting a direct assignment of disease 

duration values. Across this data set, disease duration: 1) is not correlated with the expanded CAG repeat 

length, 2) is similar between HD subjects with low CAG or high CAG expansions and 3) is comparable 

between adult onset and juvenile onset HD. In addition, expanded CAG lengths are similar between HD 

subjects with shorter or longer duration. As our studies were based exclusively on individuals who have 

already displayed disease onset, it remains formally possible that individuals with expanded CAG repeats 

who are pre-manifest will, in the future, display a disease duration that is correlated with CAG repeat length. 



Keum et al.                                                                                                                                             16 

However, we think that this theoretical possibility is unlikely. The potential bias of studies excluding pre-

manifest individuals was first considered in examining the CAG-onset relationship based on a survival 

model by Langbehn et al.34 The "Langbehn et al. survival model" for CAG-onset relationship was similar to 

1) our regression model based on a large cohort of manifest HD subjects (> 4,000) (data not shown), and 2) 

predictions from previously published formulae for the adult onset CAG repeat range.35 The similarity in the 

two models when the regression model data set is large indicates that the exclusion of pre-manifest 

individuals does not substantially bias the estimate of the CAG-onset relationship. We would expect the 

same to be true of the CAG-death relationship and that our estimation of duration based on a large sample 

of subjects fully ascertained for both onset and death is not likely to be substantially biased by the absence 

of pre-manifest subjects. 

 

Although sometimes assumed, it has not been clearly demonstrated whether juvenile onset HD subjects (< 

21 years of age) generally have a different duration from adult onset individuals (> 20 years of age). In one 

study, disease duration was similar across HD subjects for onset in the juvenile and adult age ranges, with 

a somewhat shorter duration for those with onset age over 50.32 A second report based on age at onset of 

first sign and age at death, or on age alone if HD subjects were still living, noted that extremes of onset, 

either juvenile or elderly, were associated with significantly shorter durations than typical adult onset.33 

Juvenile onset subjects had a 1-2 year shorter duration (median, 20.0) than those with typical adult onset 

between 20 and 49 years (median of 21.3 for age at onset between 20 and 34; 22.1 for age at onset 

between 35 and 49).33 The lack of consistency in disease duration may be due to different definitions and 

types of onset.. However, breaking down the juvenile onset category to only those most extreme cases with 

the longest CAG repeats who developed clinical symptoms before 10 years of age has been reported to 

reveal a significantly shorter disease duration (range, 2-15 years; mean, 6.6 years) than other HD 

subjects.36; 37  

Nevertheless, our data indicate strongly that the duration of the period in which clinical manifestations of HD 

are expressed, i.e., the period between diagnosis and death, is not altered in the vast majority of HD 

individuals by the expanded CAG repeat, the normal CAG repeat, HTT haplotype, or a strong age at onset 
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modifier. Our statistical confirmation of this seemingly counterintuitive finding argues against the simple 

scenario in which a toxic CAG length-determined property of mutant huntingtin drives a single pathogenic 

process that leads in a sequential manner first to onset and then directly from onset to death. Rather it 

suggests two alternative scenarios for the HD disease process that should be considered in designing, 

testing and interpreting the results of therapeutic interventions, particularly those aimed at gene-silencing of 

the mutant CAG expanded HTT allele.  

It is well established that the rate of the pathogenic process that leads to clinical diagnosis is determined 

primarily by the length of the expanded CAG tract. The onset of diagnostic motor abnormalities is thought to 

ensue from the dysfunction and eventual loss of striatal neurons and it has been estimated that at the time 

of clinical onset, 30% or more of medium spiny neurons in the striatum have been lost, with the remainder 

already compromised38 by a neurodegenerative process that continues as clinical manifestations 

progressively worsen (commonly referred to as “progression”). Indeed, in studies of post-mortem HD brains, 

Hadzi et al. have shown that the extent of striatal pathology (pathological grade) is correlated both with CAG 

repeat length and duration.16 The former correlation is consistent with a CAG-driven pathogenic process 

causing striatal pathology. The latter correlation makes sense because the longer the duration of disease, 

the longer that CAG-driven process has to act, and consequently the greater the extent of striatal pathology. 

However, we show the lack of correlation of CAG repeat length with duration, suggesting that the extent of 

striatal pathology per se is not a determinant of death and that the reasons for correlation of each of these 

two parameters with striatal pathology are distinct. In analyses of the 310 brains from our study for which 

pathological grade is known, we find, like Hadzi et al.,16 that higher pathological grade associates with 

longer CAG repeat, earlier onset, and earlier death, all of which are consistent with a more rapid rate of HD 

pathogenesis with increasing mutation size. The higher pathological grade also associates with longer 

duration in these individuals, reinforcing the conclusion that disease duration is not determined by CAG 

repeat length or by extent of striatal pathology.  

Like motor onset, age at onset of cognitive and to a lesser extent of psychiatric signs are correlated with the 

expanded CAG length and may reflect contributions of additional neuropathological changes in cortical 
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regions. A simple view of pathogenesis, in which the same CAG-driven process in the striatum or in these 

cortical regions that leads to diagnostic onset simply continues with worsening manifestations and ultimate 

death, is not a viable hypothesis because of the CAG-independence of disease duration. Instead, we 

propose two alternative parsimonious explanations for these data. 

In the first scenario, the pathogenic process is driven by mutant huntingtin, with motor onset resulting when 

the coping capacity of the most vulnerable structures, particularly the striatum, has reached its limit. Around 

or before motor onset, the damage has so weakened the homeostatic mechanisms of the individual that 

catastrophic failure of the regions associated with onset enables susceptibility to one or more CAG-

independent processes that contribute to causing early death, on average 15 years later. In this “two-stage” 

scenario, CAG-driven pathological changes, including those affecting other cells and tissues, and 

consequent worsening of symptoms continue to occur after onset, but these CAG-driven changes are not 

critical to causing death. Instead, death results from one or more separate CAG-independent processes 

acting on the background of the initial CAG-dependent pathogenesis having reached a critical juncture.  The 

potential CAG-independent processes that may determine duration are not necessarily limited to intrinsic 

biological risk factors, as many external factors (nutrition, medical care, nursing home care, infectious 

exposure, etc.) could play a contributory role. 

In the second scenario, a pathogenic process is driven by mutant huntingtin independently in multiple cell 

types in the brain, or in other organs, each of which has a distinct coping potential. The striatum is most 

vulnerable and so succumbs first and produces clinical manifestations that progress over time. However, 

neither the occurrence of diagnostic symptoms nor their progression due the underlying CAG length-

dependent pathology determines viability of the individual. Rather, some other cells are critical for viability 

and when these essential cells independently reach their coping limit, averaging 15 years after motor onset, 

the subject dies. In this second scenario, unlike the first, an HTT CAG length-driven pathogenic process 

leads directly to death in a manner that is not a downstream consequence of the pathology associated with 

characteristic neurological manifestations. 
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The leading causes of death of HD subjects as reported in the literature are pneumonia and heart 

disease.18; 39 While not directly connected to the brain, each of these causes could occur on the background 

of physiological changes occasioned by the neuronal dysfunction that becomes evident at the time of HD 

onset (scenario 1) or be precipitated by direct effects of mutant huntingtin in peripheral cells, such as 

immune system components or cardiac muscle (scenario 2). Indeed, HD subjects display a number of 

peripheral abnormalities that could represent either direct or indirect effects of mutant huntingtin, including 

abnormal energy metabolism, extreme weight loss, diabetes, and reduced pulmonary function.21; 23; 24; 40-42 

These all suggest that although HD is classified as a neurodegenerative disorder, the overall impact of the 

HTT CAG expansion is ultimately rather widespread. Given that HD CAG-driven neuropathological changes 

in symptom-associated brain regions continue after onset, the early mortality in HD may result from effects 

of the expanded CAG repeat in vital brain regions not associated with early clinical symptoms (scenario 2), 

may be due to CAG repeat effects outside the brain (scenario 2), or may be due to intrinsic or extrinsic 

factors unrelated to the CAG repeat (scenario 1). 

Our findings and the two distinct explanations proposed for them have implications for developing and 

testing disease-modifying therapeutic modalities in HD. Our results clearly indicate that only the expanded 

HTT CAG repeat length has significant power for predicting both age at onset and age at death but that 

there is remaining variance in these measures unexplained by the CAG mutation that must be due to other 

causes. One approach that we and others are taking to reveal validated therapeutic targets for HD is to 

identify genetic modifiers of motor onset in human patients, i.e., genetic factors that alter the rate of CAG-

driven HD pathogenesis and therefore can identify proteins and processes to target for development of 

traditional small molecule therapeutics. An example of such a factor is the as yet undefined functional 

variant tagged by SNP rs146353869 that dramatically hastens motor onset. In both scenario 1 and 2, drugs 

based upon modification of CAG-driven processes would be expected to be effective in delaying both onset 

and death if delivered sufficiently prior to onset. In scenario 2, such interventions might also be expected to 

delay death even if delivered after motor onset, whereas in scenario 1 they may alleviate the progression of 

clinical symptoms without actually delaying death. The CAG-independence of disease duration suggests 

that if the first scenario is correct, a different array of modifiers and potential therapeutic targets may be 
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effective in delaying death compared to those involved in CAG-dependent processes. Indeed, both 

alternative scenarios also allow for modifiers that act in a cell or tissue-specific fashion, with the potential of 

modifying predominantly age at onset or disease duration, but most likely not both. 

A fundamentally different route to therapeutic intervention currently being explored is suppression of mutant 

huntingtin expression through nucleic acid-based gene silencing strategies. Planning for initial clinical trials 

has typically considered delivery of the therapeutic agent to the brains of HD individuals early after clinical 

diagnosis, with the goal of delaying the progression of clinical symptoms and associated neuropathology. In 

our first scenario, such treatment can be very effective in limiting the progression of clinical symptoms and 

improving quality of life without necessarily altering disease duration since the latter is independent of CAG 

repeat length. Consequently, although it presents greater regulatory hurdles and difficulties in clinical trial 

design, the ideal time to treat using a HTT gene-suppression strategy is significantly prior to diagnostic 

onset since an effective treatment would then be expected to delay both onset and death. In the second 

scenario, treatment of the brain may have no impact on preventing death if the gene silencing strategy is 

not being delivered to the cells or organ responsible for maintaining viability. Thus, in either scenario, our 

findings suggest that a HTT gene-silencing strategy in the brain that is successful in reducing the 

progression of symptoms may improve the quality of life of HD individuals without necessarily preventing 

their early death.  

Although it is not possible currently to distinguish between our two scenarios for HD pathogenesis leading to 

early death, the CAG-independence of disease duration suggests that the results of treatment trials 

measuring some aspects of clinical progression after onset may not be predictive for the efficacy of the 

same treatments in preventing motor onset or early death. Fortunately, ongoing large natural history studies 

of HD offer a route to more fully explore the biological basis for early death in HD in order to distinguish 

between these explanations and to guide therapeutic development. Most importantly, the application of the 

continuous CAG analysis strategy, applied here to onset and death, to defining and distinguishing other 

phenotypic measures (molecular, imaging, neurological, etc.) tied to the pathogenic process offers the hope 
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of enabling clinical trials before motor onset, when disease-modifying treatments based upon CAG-length 

dependent effects are expected to be most broadly effective.  
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Supplemental Data include ten figures.  
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Figure Legends 

Figure 1. Correlation between expanded HTT CAG repeat length and age at death. 

A) Age at onset of motor signs plotted against the expanded CAG repeat length.  

B) Age at death plotted against the expanded CAG repeat length. 

C) Age at death plotted against age at onset for individuals where both are known. 

In each panel, each circle represents a unique HD subject. The red trend line represents a statistical model 

based on all data points prior to quality control analysis, describing the relationship between natural log 

transformed age at onset and expanded CAG repeat length (A), between natural log transformed age at 

death and expanded CAG repeat length (B) and between age at death and age at onset (C). A summary of 

a model, including model formula, sample number (N), and model's adjusted R-squared value (Adj.R2) is 

provided inside of each plot. The larger variance in age at onset (A) compared to age at death (B) is not due 

to statistical artifacts related to sample size as the R-squared values for age at onset models based on 

randomly picked 1,165 subject sample sets (mean, 0.6537) were similar to that of the original model using 

all data points. 

 

Figure 2. Distribution of disease duration by HTT CAG repeat length.  

A) Models for age at death (Table 1, Model 2) and age at onset 12 were constructed using normally 

distributed samples with gender covariate. For the age at onset model, gender was included in the model 

described previously.12 Blue and red lines represent statistical models for males and females, respectively. 

Solid and dotted lines means the CAG - age at death model and the CAG - age at onset model, 

respectively. 

B) Distribution of disease duration for each expanded CAG repeat was plotted using boxplot format. Open 

circles are outliers defined by a standard interquartile outlier identification method.  
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Figure 3. Non-parametric analyses to test effects of CAG repeat size on duration. 

A) Sample sizes were plotted against expanded CAG repeats for statistical modeling of duration.  

Duration values were plotted against either expanded CAG (B), or normal CAG (C).  

D) A generalized linear model (GAM) was constructed to test effects of expanded CAG repeat, normal CAG 

and gender on duration in the non-normally distributed data. Expanded CAGs with sample sizes greater 

than 2 were used (CAG 38-63).  P-values of independent variables are provided. E) In addition, Spearman's 

rank correlation analysis was performed to determine whether duration values correlated with the sizes of 

either expanded or normal CAG repeats. 

 

Figure 4. HD subjects with adult onset and juvenile onset have similar duration.  

HD subjects with adult age at onset (>20 years; N=823) or juvenile age at onset (< 21 years; N=55) were 

compared for their expanded CAG repeats (A), age at onset (B), age at death (C) and duration (D) using the 

Mann-Whitney U test. In each panel, a box plot summarizes the distribution of the test object (left) with a 

summary statistics table provided (right).  

 

Figure 5. Duration is not associated with rs146353869. 

Based on recent genome-wide association (GWA) analysis results, we tested whether duration is altered by 

a strong genetic modifier tagged by SNP rs146353869 on chromosome 15. HD subjects with the minor 

allele of this SNP developed clinical symptoms significantly (~6 years) earlier than subjects with comparable 

expanded CAG length but without the minor allele of rs146353869.  

A) Among samples used in our GWA analysis aimed at identifying age at onset modifiers, 654 individuals 

have both age at onset and age at death data. Disease duration (i.e., age at death minus age at onset) was 
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plotted against residual age at onset. Grey (636 subjects) and red circles (18 subjects) represent HD 

subjects without and with a minor allele for rs146353869. 

Residual age at onset (B) and duration (C) of HD subjects without (Genotype 0) or with (Genotype 1) a 

minor allele for rs146353869 are plotted. Black horizontal lines represent the mean. Mann-Whitney U tests 

were performed to compare residual age at death (p-value, 0.01) and duration (p-value, 0.37) between the 

two groups of HD subjects differentiated by the rs146353869 genotype.  
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Table 1. Summary of statistical models to test effects of CAG repeat sizes on age at death in HD. 

 

 Sample size 

Expanded CAG 

Estimate 

(p-value) 

Normal CAG 

Estimate 

(p-value) 

Gender (male) 

Estimate 

(p-value) 

Adjusted R2 

(%) 

Model 1 1,019 
-0.056722   

(< 2e-16) 

-0.001636 

(0.134840) 

-0.026275 

(0.000288) 
66.9  

Model 2 1,019 
-0.056723   

(< 2e-16) 
Not tested 

-0.026240 

(0.000296) 
66.9 

Model 3 1,165 
-0.0363498 

(< 2e-16) 

-0.00259 

(0.06007) 

-0.0288 

(0.00157) 
74.8% 

 

Two different statistical models were constructed to test the impact of CAG repeats on age at death of HD 

subjects using QC-passed data points. Natural log transformed age at death was modeled as a function of 

expanded CAG, normal CAG, and gender using QC passed data points (Model 1). After confirming the lack 

of influence of the normal CAG, Model 2 was constructed by using only the expanded CAG repeat and 

gender. Finally, to evaluate the impact of samples excluded in Models 1 and 2, Model 3 was fitted to data 

including all HD subjects with age at death data. Interaction between expanded and normal CAG repeats 

was not significant, and therefore was excluded from modeling.  



A CB

Log (AO) ~ CAG

N 4,161

Adj.R2 65.4%

Log (AD) ~ CAG

N 1,165

Adj.R2 74.5%

AD ~ AO

N 878

Adj.R2 77.5%
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Figure S1. Evaluation of normality of age at death data. 1 

Data normality was evaluated by comparing distribution of age at death for a given expanded CAG repeat 2 

length (histogram) to a theoretical normal distribution based on the mean and standard deviation of age at 3 

death (red line). The expanded CAG repeat length and sample size are indicated at the top of each plot. 4 

Histograms inside of the boundary in blue (CAG 40-52) resembled theoretical normal distributions.   5 
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Figure S2. Variance and outliers in age at death data. 1 

A) Variance of age at death was evaluated by plotting standard deviation of age at death against the expanded 2 

CAG repeat length. B) To resolve the non-constant variance problem in age at death data for subsequent 3 

parametric modeling, age at death was transformed into log scale (natural log), and standard deviation was re-4 

calculated for each expanded CAG. C) Log transformed age at death was plotted against expanded CAG 5 

repeat on a box plot to identify phenotypic outliers. Outliers were identified by a standard interquartile method 6 

for each CAG repeat as described previously12 , and indicated open circles. 7 
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Figure S3. Model diagnostic plots. 1 

For the QC dataset used to generate the Model 2 and a model using all samples (Model 3) in Table 1, we 2 

determined whether the requirements of linear models were met. Specifically, we checked variance (A and D), 3 

normality (B and E), and leverage (C and F). In a model using only QC-passed data, variance and normality 4 

were greatly improved compared to those of model using all data points (A vs. D; B vs. E), supporting its 5 

reliability. A and D) Residuals calculated from a model using normally distributed samples are compared to 6 

fitted values. B and E) Normality of the model using normally distributed samples was assessed by comparing 7 

actual residuals to theoretical residuals in a quantile-quantile plot. C and F) To identify influential data points in 8 

the model using normally distributed samples, standardized residuals were plotted against leverage and shown 9 

with the Cook’s distance (red dotted contour lines). Leverage is commonly used to identify observations that 10 

have a disproportionate effect on the regression model, and a data point with high leverage indicates that that 11 

observation is distantly located from the center of the measurements. Cook’s distance estimates the influence 12 

of data points on a model fit by measuring the effect of deleting a given observation. Red lines in plots 13 

represent LOWESS regression smoothed lines, based on locally-weighted polynomial regression models 14 

describing trends between values on the X-axis and Y-axis.  15 
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Figure S4. Normal CAG repeat does not explain age at death.  1 

To test whether data points excluded as outliers show evidence of an influence of the normal CAG allele on 2 

age at death, residuals of all samples were calculated from the minimal adequate model described in Table 1 3 

(Model 2). Subsequently, residuals were modeled as a function of normal CAG repeat length. The red line 4 

represents the model with an adjusted R-squared value of 0.2648%, indicating that there is no significant 5 

relationship between normal CAG repeat length and age at death (p-value, 0.0521). 6 
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Figure S5. Extreme age at death samples do not differ in normal CAG repeat lengths.  1 

To test whether the 10% extremes of residual of age at death based on the model described in Table 1 (Model 2 

2) had different normal CAG repeat lengths, 105 samples representing to top 10% and 105 samples 3 

representing the bottom 10% of residuals were identified.  4 

A) Residual of age at death was plotted against expanded CAG repeat length and the 10% extremes shown as 5 

blue and red circles. B) Normal CAG repeat lengths (Y-axis) were compared between the 10% extremes from 6 

panel A, and did not differ (Mann-Whitney U test p-value, 0.06414) 7 
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Figure S6. Age at death is determined by expanded CAG repeat length in a fully dominant fashion in 1 

samples with expanded CAG > 52.  2 

To test whether normal CAG repeats had significant effects on age at death in HD subjects with expanded 3 

CAG repeats greater than 52 units, 97 such subjects were identified.  4 

A) Log transformed age at death of HD subjects with expanded CAG repeats greater than 52 was plotted 5 

against expanded CAG repeat length. B) Log transformed age at death of the same subjects was plotted 6 

against normal CAG repeat. C) A multiple regression model to fit the data was generated. In this model, log 7 

transformed age at death of HD subjects with expanded CAG > 52 was modeled as a function of expanded 8 

CAG repeat, and normal CAG repeat. 9 
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Figure S7. Non-normal distribution of duration. 1 

Relative frequencies (density on Y axis) of age at onset of motor signs (A; 4,161 samples), age at death (B; 2 

1,165 samples), and duration (C; 878 samples) for each CAG repeat were plotted in histograms. All data 3 

without quality control analysis were plotted. Red lines represent theoretical normal distributions based on the 4 

means and standard deviations of data. 5 
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Figure S8. Evaluation of normality of duraton data. 1 

Data normality for each CAG repeat was evaluated by comparing the observed distribution of duration values 2 

for a given expanded CAG repeat length to a theoretical normal distribution based on the mean and standard 3 

deviation of data (red line). The expanded CAG repeat length and sample size are indicated at the top of each 4 

plot.  5 
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 Figure S9. HD disease duration is independent of HTT expanded CAG repeat length.  1 

A) To test whether HD subjects with smaller expanded CAG repeats had different duration values from those 2 

with larger expanded CAG repeats, disease duration was compared for 247 HD subjects with expanded CAG 3 

< 43 (blue circles) and 305 HD subjects with expanded CAG > 45 (red circles). B) Distributions of disease 4 

duration for the individuals in Panel A are summarized. A Mann-Whitney U test revealed no significant 5 

difference in disease duration between the two groups (p-value, 0.484). In addition, duration values between 6 

different CAG bins such as CAG < 44 vs. CAG > 44 or CAG < 42 vs. CAG > 46 were not significantly different 7 

(p-value, 0.96 and 0.77, respectively). C) To test whether expanded CAG repeat lengths of HD subjects in the 8 

top or bottom 10% extremes of disease duration differed, the 87 HD subjects in each group were identified. 9 

Blue and red bars represent HD subjects with the shortest and longest disease duration, respectively. D) 10 

Distributions of expanded CAG repeats in the individuals from Panel C are summarized. A Mann-Whitney U 11 

test revealed no significant difference in CAG repeat length between the two groups (p-value, 0.897).  12 
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Figure S10. Simulation analysis.   1 

Various statistical analyses consistently supported that CAG repeat length does not influence disease duration 2 

in typical adult onset HD subjects. Simulation analysis was performed in order to evaluate the pattern of 3 

relationship between CAG length and duration that would have been observed if CAG repeat length had a 4 

significant impact on duration. Duration values of 855 HD subjects (for more information refer to the legend of 5 

Figures S7) were randomly permuted to generate simulated data, in which the size of expanded CAG explains 6 

pre-specified amounts of variation in duration (B-F). A) Mean values of observed duration were plotted against 7 

CAG repeat sizes. Expanded CAG repeats explained 0.045% of variance of duration in observed data.  8 

Data permutation was performed until pre-specified regression model's R square value was achieved (B, 20%; 9 

C, 10%; D, 5%; E, 2%; F, 1%), and then the mean of permuted duration values for a given CAG length was 10 

plotted by CAG length. Representative plots are shown. Each open circle represent mean of duration values 11 

for a given CAG length. 12 
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