
Declarative CAD Feature Recognition

— an efficient approach

By

Zhibin Niu

SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT

CARDIFF UNIVERSITY

SCHOOL OF COMPUTER SCIENCE & INFORMATICS

OCTOBER 2015

i

Declaration

This work has not been submitted in substance for any other degree or award at this

or any other university or place of learning, nor is being submitted concurrently in

candidature for any degree or other award.

Signed . (candidate) Date .

Statement 1

This thesis is being submitted in partial fulfillment of the requirements for the degree

of PhD.

Signed . (candidate) Date .

Statement 2

This thesis is the result of my own independent work/investigation, except where oth-

erwise stated. Other sources are acknowledged by explicit references. The views ex-

pressed are my own.

Signed . (candidate) Date .

Statement 3

I hereby give consent for my thesis, if accepted, to be available online in the Univer-

sity’s Open Access repository and for inter-library loan, and for the title and summary

to be made available to outside organisations.

Signed . (candidate) Date .

Statement 4

I hereby give consent for my thesis, if accepted, to be available online in the Univer-

sity’s Open Access repository and for inter-library loans after expiry of a bar on access

previously approved by the Academic Standards & Quality Committee.

Signed . (candidate) Date .

Dedication ii

To my parents
for their patience and support.

iii

Abstract

Feature recognition aids CAD model simplification in engineering analysis and ma-

chining path in manufacturing. In the domain of CAD model simplification, classic

feature recognition approaches face two challenges: 1) insufficient performances; 2)

engineering features are diverse, and no system can hard-code all possible features in

advance.

A declarative approach allows engineers to specify new features without having to

design algorithms to find them. However, naive translation of declarations leads to

executable algorithms with high time complexity. Inspired by relational database man-

agement systems (RDBMS), I suppose that if there exists a way to turn a feature dec-

laration into an SQL query that is further processed by a database engine interfaced to

a CAD modeler, the optimizations can be utilized for “free”.

Testbeds are built to verify the idea. Initially, I devised a straightforward translator to

turn feature declarations into queries. Experiments on SQLite show it gives a quasi-

quadratic performance for common features. Then it is extended with a new translator

and PostgreSQL. In the updated version, I have made a significant breakthrough – my

approach is the first to achieve linear time performance with respect to model size for

common features, and acceptable times for real industrial models. I learn from the

testbeds that PostgreSQL uses hash joins reduce the search space enable a fast feature

finding.

Besides, I have further improved the performance by: (i) lazy evaluation, which can be

Abstract iv

used to reduce the workload on the CAD modeler, and (ii) predicate ordering, which

reorders the query plan by taking into account the time needed to compute various

geometric operations. Experimental results are presented to validate their benefits.

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisors

Ralph Martin and Frank Langbein. They provided very excellent guidance. Ralph

taught me how to question what I was doing, and how to express ideas clearly. Frank

taught me to think about alternatives. I always got timely and patient feedback from

them, sometimes even very late at night.

I feel very honored to also have had supervision from Malcolm Sabin. My work is

based on his and his previous Ph.D. student Paul James Gibson’s work. He provided

not just insights about research, but also about life.

I also would like to thank Henry Bucklow and others at ITI TranscenData, who pro-

vided CADfix software, CADfix API training, and models. They also provided help

with transportation and accommodation when I was visiting.

I wish to express my gratitude to the European Commission and Marie Curie Actions.

This work was supported by Framework Programme 7 Initial Training Network Fund-

ing under Grant No. 289361. This support enabled my Ph.D. study, as well as co-work

with so many excellent partners in the INSIST project and to gain experience at the

University of California, Berkeley and Johannes Kepler University. I would like to

thank Prof. Vadim Shapiro, Prof. Sara Mcmains, and Prof. Bert Juttler who provided

me with many insightful suggestions when I was visiting.

I would like to thank colleagues in Cardiff University Visual Computing group. I am

grateful for the advice and discussions with Xianfang Sun, Yukun Lai, Jing Wu and

Acknowledgements vi

others.

I would like to specially thank my parents for their constant support and encourage-

ment.

vii

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Publications xii

List of Acronyms xiii

1 Introduction 1

1.1 Background . 1

1.2 Research Motivation . 3

1.3 Research Hypothesis and Objectives 5

1.4 Thesis Organisation . 6

2 Related work 7

2.1 Introduction . 7

2.2 Classic Feature Recognition Approaches 7

Contents viii

2.2.1 Graph-Based Methods . 8

2.2.2 Volume Decomposition Methods 10

2.2.3 Hint-based Methods . 12

2.2.4 Landmark Declarative Feature Recognition Systems 13

2.3 Feature Finding as Data Retrieval . 14

2.4 SQL Syntax . 15

2.5 Relational Query Optimization . 18

2.5.1 Overview . 18

2.5.2 Performance Model . 20

2.5.3 Generalizing Join Sequencing to Reduce CPU Cost 21

2.5.4 Scan Methods to Reduce I/O 21

2.5.5 Join Processing to Reduce CPU Cost 24

2.6 Gibson’s Declarative Approach and Optimizations 27

2.7 Gibson’s Optimizations and DB Query Optimization 33

3 Declarative Feature Definition 36

3.1 Introduction . 36

3.2 Data . 38

3.3 Syntax . 40

3.4 Predicates . 41

3.4.1 Topological Predicates . 43

3.4.2 Geometric Predicates . 44

Contents ix

3.5 Ways to Define Features . 45

3.5.1 Definition by Primitives . 46

3.5.2 Definition by Sub-features 48

3.6 Discussion . 50

3.6.1 Expressive Power . 50

3.6.2 The Compiler . 51

4 Feature Recognizer Architecture 53

4.1 Overview . 53

4.2 Manipulation Language . 55

4.3 Main Modules . 56

4.3.1 DB Query Optimizer . 56

4.3.2 Translator . 58

4.3.3 CAD Modeler . 59

4.4 Optional Modules . 59

4.5 Summary . 61

5 SQLite Implementation and Quasi-quadratic Performance 62

5.1 Overview . 62

5.2 Testbed Implementation Details . 62

5.3 Translation . 65

5.3.1 Data Model . 65

5.3.2 Translation Rules . 67

Contents x

5.4 Experiments . 72

5.4.1 Performance Measurements 73

5.4.2 Benefits of Database Optimization 75

5.4.3 Definitions Affect Performance 80

5.4.4 Real Industrial Models . 82

5.5 Theoretical Analysis . 86

5.5.1 Execution Plan . 86

5.5.2 Time Complexity . 89

5.6 Summary and Conclusions . 91

6 PostgreSQL Implementation and Linear Performance 92

6.1 Overview . 92

6.1.1 Testbed Implementation Details 93

6.1.2 SQLite Approach Fails with PostgreSQL 95

6.1.3 Assumptions . 96

6.2 Translation . 97

6.2.1 Data Model . 97

6.2.2 Translation Rules . 100

6.3 Discussion . 108

6.4 Experiments . 110

6.4.1 Old and New Translation Using SQLite 113

6.4.2 New translation using SQLite and PostgreSQL 114

Contents xi

6.4.3 Real World Performance . 117

6.5 Summary . 120

7 Further Improvements Using Lazy Evaluation and Predicate Ordering 122

7.1 Overview . 122

7.1.1 Lazy Evaluation . 124

7.1.2 Predicate Ordering . 126

7.2 Experiments . 131

7.2.1 Lazy Evaluation and Caching 131

7.2.2 Predicate Ordering . 139

7.3 Summary . 146

8 Discussion 147

8.1 Conclusion . 147

8.2 Contribution . 149

8.3 Limitations and Future Work . 150

8.4 A Feature Recognition Architecture 154

Bibliography 158

xii

List of Publications

The work described in this thesis has also appeared in the following publications:

• Zhibin Niu, Ralph R. Martin, Frank C. Langbein, and Malcolm A. Sabin.

Rapidly finding CAD features using database optimization.

Computer-Aided Design, 69, 35–50, 2015.

DOI: 10.1016/j.cad.2015.08.001.

• Zhibin Niu, Ralph R. Martin, Malcolm A. Sabin, Frank C. Langbein, Henry

Bucklow.

Applying Database Optimization Technologies to Feature Recognition in CAD.

Computer-Aided Design and Applications 12 (3), 373–382, 2015.

DOI: 10.1080/16864360.2014.981468.

xiii

List of Acronyms

AFR automatic feature recognition

AAG attributed face adjacency graph

ASV alternating sum of volumes

ASVP Alternating sum of volumes with partitioning

CAD Computer-aided design

CAM computer-aided manufacturing

CAE computer-aided engineering

CAPP computer-aided process planning

CNC computer numerical control

DB Database

DBP Definition-by-primitives

DBS Definition-by-subfeatures

EAAG extended attributed adjacency graph

FAG face adjacency graph

FEA finite element analysis

List of Acronyms xiv

MAG mid-surface adjacency graph

MFAG manufacturing face adjacency graph

MCSG minimal condition subgraph

LE lazy evaluation

PO predicate ordering

RDBMS relational database management systems

1

Chapter 1

Introduction

1.1 Background

Computer-aided design (CAD) aims to represent real or imaginary objects truly, com-

pletely and unambiguously [TDM+10]. Since the first CAD systems appeared in the

mid 1960s, CAD technology has evolved, and is now extensively applied in various

field of industry: in design, designers create digital models using geometrical con-

structs. In mechanical manufacturing, it is integrated with computer-aided manufac-

turing (CAM), especially in computer-aided process planning (CAPP). Recently, CAD

has become much closer to finite element analysis (FEA) in computer-aided engineer-

ing (CAE). CAD technology plays an essential role in modern manufacturing indus-

tries. It was estimated in 2014 that the overall CAD industry was a $8 billion busi-

ness [Jon15].

Features in CAD refer to certain substructures associating with certain engineering op-

erations of a solid model. Currently, they are manually identified by engineers using

CAD/CAM systems. Features are at an intermediate level between low-level entities

(vertices, edges or faces) and high-level entire objects (models). Fig. 1.1, which ex-

tends a figure from [LG05], gives some typical (simple) industrial features.

Features play a key, and increasing importantly, role beyond design. Fig. 1.2 gives a

typical process flow from model design to manufacturing in industry. In CAD-CAM

integration, a typical CAPP system extracts features from a part model and automat-

1.1 Background 2

(a) Through-hole (b) Cone (c) Buttress (d) Fin

(e) Pocket (f) Pyramid (g) T-junction (h) X-junction

(i) I-beam (j) C-beam (k) Rib (l) Notch

Figure 1.1: Common industrial features, including some noted in [LG05]

ically generates computer numerical control (CNC) code. In CAD-CAE integration,

models are simplified by removing small features before meshing for analysis. How-

ever, many legacy industrial models exist without explicit feature information, or it is

absent for other reasons. Even if the model is designed in terms of manufacturing fea-

tures (Design-by-features in Fig. 1.2) in modern CAD systems [TDM+10], engineering

analysis features may be different, and engineers may still have to analyse models for

different kinds of features than those used for design.

Feature recognition is a reverse engineering task to extract meaningful features from

1.2 Research Motivation 3

CAPP CAMCAD

CAEPost
Processing Meshing Remove

Features

Design by
Features

Design

Analysis

Feature
Feature Recognition

Manufacturing

Figure 1.2: Features play a key role in design, analysis and manufacturing

history-free models using computer methodes. Since the seminal work on geometric

model analysis and classification by Kyprianou [Kyp80], extensive research has been

performed during the past thirty years [ZM02, MNS96, HPR00]. These works are

introduced in detail in Chapter 2.

1.2 Research Motivation

Feature engineering has always been driven by real industrial demand. From the start of

the 1980s to the end of twentieth century, the major motivation for feature recognition

is in CAPP, where feature recognition is used to generate CNC instruction sequences

for manufacturing [BNM08]. A lot of work were published and during this stage the

main challenge is how to recognize interacted features [HR97, SAKJ01, BNM08].

Recent years, the trend of integrating CAD with CAE has led to a requirement for

model simplification [HCB05]. As much as 80% of overall analysis time can be spent

on mesh generation in the automotive, aerospace, and shipbuilding industries [HCB05,

Cot09]. By removing (typically small) features that have little effect on the analysis

results, simplified models can be meshed more quickly and robustly for finite ele-

1.2 Research Motivation 4

ment analysis, and in turn analysed more quickly, as the meshes are simpler [HLGF04,

LAPL05, GZL+10, LZM14]. In practice, features are manually found, which is te-

dious, and in extreme cases, infeasible to carry out reliably, as complex models may

have tens of thousands of small features, or more, of many types and forms. Traditional

automatic feature recognition (AFR) algorithms face several challenges:

Firstly, features are diverse, and different applications need to find different features.

Parts of a shape that are important for machining may be quite different to those which

can be ignored during engineering analysis. For example, in manufacturing, a user

may want to find through-hole features (see Fig. 1.1 (a)) to generate CNC code. Such

features are standard, and can already be handled by commercial software. On the

other hand, our partner, the Transcendata company, needed to find notch features (see

Fig. 1.1 (l)) during engineering analysis. While such features are also simple, they are

rare, and there is no existing software that can reliably find such features in a model.

Extra code had to be written to recognize them. In fact, most existing work on fea-

ture detection concerns fixed algorithms for finding predetermined features [SAKJ01].

However, in practice, it is infeasible to hard-code all possible useful features for all

possible domains in advance.

A second issue is that many approaches to feature finding have high computational

complexity: times taken to find features can rapidly increase when dealing with com-

plex features and large, detailed models [HR97, SAKJ01].

Thirdly, feature’s ambiguity by feature interactions. Interacted features has a different

structure/composition comparing to the original features, how to recognize them has

always been a tough problem.

The first issue above is challenging as it is difficult for engineering end users to define

effective algorithms for finding features. One solution is to use a declarative approach:

this allows users of a feature finder to simply state what properties a feature has, and

how a feature is composed, rather than having to give a algorithm to find instances of

the feature.

1.3 Research Hypothesis and Objectives 5

The performance issue has become a significant bottleneck in industrial CAD-CAE in-

tegration, especially as engineering designs are becoming rapidly more complicated. A

nuclear submarine may contain 300 times as many parts as an automobile; and for the

latter, it can take about four months to prepare a mesh from the CAD model [HCB05].

It is known that classic approaches to finding complex features based on techniques

such as subgraph pattern matching, forward chaining using frame-based reasoning,

and pattern-matching techniques are high computational complexity [GP92, RGN97].

Recent works on efficient subgraph matching in graph database improved the perfor-

mance greatly [SWW+12, HLL13]. In graph dabase systems, the subgraph pattern

matching problem is either to be solved by breaking the graph into large set of small

graphs or to use parallel and distributed computation to accelerate the query on the

large graph [SWW+12]. They may provide new theory basis for feature recogni-

tion in future. In a declarative approach, naively turning such a definition into an

algorithm results in a series of nested loops, which takes far too long to execute for

any non-trivial feature. Henderson and Anderson pioneered such a declarative ap-

proach [HA84]. Jami Shah and others published a serial of work on declarative ap-

proach [SAR94, SBRU95, MSDS04]. Gibson considered six specific optimizations

that could be used to transform the naive code into a faster algorithm [GISH97, GIS99].

He used this approach to solve various 2D feature recognition problems. His work will

be discussed in more detail in Chapter 2. However, 3D problems involving complex

features and large detailed models require further optimization. I sought the required

ideas in database query optimization, which is also based on a declarative language.

1.3 Research Hypothesis and Objectives

The hypothesis of this research is that efficient declarative feature recognition can be

achieved if the feature declaration is first turned into an SQL query and then processed

by the feature recognizer that is built around relational database systems and a CAD

modeler.

1.4 Thesis Organisation 6

The Objectives of the research are:

1. To devise a feature language that can describe features declaratively;

2. To devise translation rules by which feature definitions can be turned into SQL

queries in a general way;

3. To build testbeds to verify the hypothesis, and demonstrate the performance of

the feature recognizer;

4. To investigate the execution plan of using database systems to recognize features,

this will help to build a standalone feature recognizer without using database

systems;

5. To investigate other optimizations beyond database system built-in approaches;

1.4 Thesis Organisation

The rest of this thesis is organized as follows. Chapter 2 discusses previous work.

Chapter 3 gives the declarative feature definition language syntax and Chapter 4 overviews

the architecture. Chapter 5 presents the SQLite based feature recognizer testbed, ex-

periments on it, and an analysis of how its performance is achieved. Chapter 6 presents

the PostgreSQL based feature recognizer testbed, corresponding experiments and per-

formance analysis. Further performance improvements based on lazy evaluation and

predicate ordering optimizations are presented in Chapter 7. Conclusions, contribu-

tions, limitations and future work are discussed, and a stand-alone feature recognizer

is proposed in Chapter 8.

7

Chapter 2

Related work

2.1 Introduction

Since the seminal work on geometric model analysis and classification by Kypri-

anou [Kyp80], much work has considered feature recognition. Feature recognition

research was relatively more active during the 1980s and 90s, while several reviews

were published early in the 21st Century. Following the main classifications used in

these reviews [HPR00, SAKJ01, BNM08], the historical work are briefly summarize

in this chapter. As noted in Section 1.2, the need for feature recognition is perhaps

greater now than ever before. This chapter will first review previous work on feature

recognition.

I choose to use declarative approach to recognize features, as does Gibson [GIS99];

I also investigate whether DB query optimization techniques can help to find features

more quickly. Thus, in this chapter, the SQL syntax, DB query optimization, and

Gibson’s optimization as relevant background ideas will be introduced.

2.2 Classic Feature Recognition Approaches

Classic feature recognition systems can be categorized into graph based, volumetric

decomposition based, and hint based approaches [HPR00, BNM08]. In this section, I

2.2 Classic Feature Recognition Approaches 8

F5

F6 F10F9F7 F8

F3

F1 F2F4

concave edge
convex edge

W1 B W2

W1, W2 : wall face
B: bottom face

Figure 2.1: Left: graph for model with a slot feature, right: slot template

introduce the main ideas of these classic approaches and examine the performance of

various landmark declarative feature recognizers.

2.2.1 Graph-Based Methods

Many successful feature recognition systems are based on graphs [MK90, CC91, FA94,

SKG97, LG05, GZL+10]. A fundamental advance was the attributed face adjacency

graph (AAG) introduced by Joshi [JC88]. Here, nodes represent faces while arcs de-

note edges of the solid model. Joshi made an important observation: for depression

features, a face whose incident edges are all convex does not form part of a feature. He

thus decomposes the model graph into subgraphs by deleting all such nodes. The target

feature is represented via an AAG; face nodes with all convex incident arcs are deleted.

This turns feature recognition into a subgraph isomorphism problem. Fig. 2.1, redrawn

from [HPR00], gives an example of how to use a graph template to find features. After

removing all convex incident nodes, the model graph only contains nodes {7,8,9}, and

is recognized as the same as the template on the right.

Joshi’s idea is a graph-based method; it inspired a large amount of work in this field.

One main trend was to enrich the expressiveness of the feature graph to solve some

2.2 Classic Feature Recognition Approaches 9

issues with the initial approach. Important advances included: Marefat and Kashyap

extended the AAG to include geometric constraints on the orientations of faces, and

used virtual links to help recognise interacting features [MK90]. However, generating

the virtual links is very slow [SAKJ01]. Fields and Anderson extended the AAG to

an oriented face adjacency graph (FAG), where edges record exterior/interior infor-

mation, enabling a faster algorithm [FA94]. Gao and Shah extended AAG to include

several geometric attributes of the nodes and arcs of the graph, improving the ability

to recognise interacting features [GS98]. Lock et al. performed graph matching on a

mid-surface representation, allowing the recognition of features for which the classic

approach fails, e.g. because they are composed of complex freeform faces, and not se-

quentially machined [LG05]. Corney proposed a tailored graph search algorithm for

depression/protrusion feature recognition [Cor93].

Graph-based methods can successfully benefit from the well-developed mathematics

of graph theory. However, they still have several drawbacks.

Firstly, they are less successful at coping with interacting features and features with

variable topologies, such as n-sided bosses for arbitrary n. Several hints may be added

to help recognize interacting features; I will discuss this idea later.

Secondly, they are slow. Performance is important real in engineering tasks, espe-

cially as real engineering designs become increasingly complex. In general, subgraph

isomorphism is an NP-hard problem so typically exhibits worst-case exponential com-

plexity [VR04]. Graph matching based methods have long been criticized for their

high computational complexity, and various methods have been proposed to overcome

this problem.

Traditionally, a feature template has fixed upper bounds on its size so that the graph can

be processed [HPR00]—a typical graph template has at most six face nodes [TK94].

Beyond this size, some partitioning strategy or hints may be used [SAKJ01], but even

then times can be too long for large models or complex features. Other approaches

are also used to improve performance. Field [FA94] defined five classes of machining

2.2 Classic Feature Recognition Approaches 10

feature and used oriented face adjacency graph search to achieve linear performance.

However, the system only supports prismatic machined features. Regli exploited dis-

tributed computing to provide a system with complexity between O(n2) and O(n5),

depending on the particular configuration of geometric entities and implementation

details [RGN97]. Feature vectors can also be used to optimize graph-based matching,

achieving O(n3) performance [VR04]. The approach first turns subgraphs into ad-

jacency matrices, and then groups and orders different elements, finally encoding or-

dered adjacency matrices as vectors, reducing subgraph isomorphism problems to ones

involving three nested loops. Simple declarative approaches also suffer from similar

performance problems, as a naive execution plan involves multiple nested for-loops, as

previously noted. Recent development of graph database provides new ideas of how

to use parallel computing to achieve efficient subgraph matching [SWW+12, HLL13],

however such a system are usually rather sophisticated and aims for exploring heavy

web-scale graph data. Most recently (10th November 2015), Babai at the University

of Chicago announced that a new algorithm efficiently solves the graph isomorphism

problem [Bab16]. This provides new theoretical foundation for the classic graph based

feature recognition.

Thirdly, it is difficult to extend the approach to real industrial tasks involving complex

geometry and topology [RGN97].

2.2.2 Volume Decomposition Methods

Volume decomposition approaches are also quite general, but better at dealing with

interacting features [LCCT98]. Such methods usually decompose a CAD model into

a set of intermediate volumes which are then classified to produce features [HPR00].

A key idea is the convex hull decomposition approach [Woo82, Kim92, SD96] which

aims to generate CNC machine steps for machine features. It usually uses four consec-

utive steps:

2.2 Classic Feature Recognition Approaches 11

1. Alternating sum of volumes with partitioning (ASVP) decomposition. Firstly,

determine a polyhedral convex hull around the part. Then recursively define

the alternating sum of volumes (ASV) as the difference in volume between the

part and its convex hull. Using a remedial partitioning procedure— ASV with

partitioning (ASVP)—for curved shapes, the method converges [Kim92]. Math-

ematically, for a machined model P , as it is usually machined from its convex

hull, a point exists set satisfying:

CH(P) = P −∗ CHD(P)

where CH(P) means the convex hull of P , the smallest convex point set that

contains the model, CHD(P) means convex hull difference, and the symbol −∗

is defined as the regularized set difference. The first step is to generate a tree of

convex hulls.

2. Find form features (form features are just shapes, while machining features have

functional or manufacturing properties). The ASVP components are classified

to form features if they have two or more transitively connected original faces.

This step can recognize basic features such slots, ribs, and bosses. However, this

method may fail for several special cases [HPR00].

3. Generating primitive machining features.

4. Aggregating machining features.

The ASVP approach finds features by applying different rules to decomposed convex

hulls. However, the main issue is that in each step it may generate features that cannot

be machined.

Another important approach in volume decomposition methods is cell based decompo-

sition [SC93, SC94]. This approach usually first decomposes delta volumes of a model

into cells and then composes them into recognizable features. However, deciding how

2.2 Classic Feature Recognition Approaches 12

to combine the large amount of cells into suitable features is not easy, and this has

exponential time complexity [HPR00].

2.2.3 Hint-based Methods

Hint-based approaches were proposed to deal with feature interaction problems [HPR00].

Vandenbrande and Requicha [VR93] define a series of minimal unavoidable presence

rules based on the hypothesis that any machined feature must leave traces produced

by machining operations even for intersecting features [HPR00]. Typical hints include

nominal geometries, design features, tolerances, etc. Hint-based approaches are com-

putationally efficient for small features but depend on the generation and definition of

hints [FOL+03], and refer to hard-coded features—it is not easy for end users to mod-

ify them or define new features [SAKJ01]. Key papers include [VR93, GS98, BDS08].

The most recent important hint based approach is [GS98]. Here, Gao extended the

FAG to an extended attributed adjacency graph (EAAG) by adding several attributes.

For example, for edges he added convexity, existence, loops, geometry and blend types,

while for faces he added source, convex hull, the number of loops, split status, and ge-

ometry. The manufacturing face adjacency graph (MFAG) is defined as a connected

subgraph of the EAAG of a part, in which no node represents either a stock face or

a convex hull face. The minimal condition subgraph (MCSG) is defined as the max-

imal sub-EAAG of a feature that remains in the EAAG of the part. The MCSGs are

used as hints when performing graph matching. They report the time complexity to be

O(M ∗ N ∗ T ∗ (M + N)) where M is the maximum number of edges per face, T is

the maximum number of arcs per MFAG, and N is the maximum number of nodes per

MFAG.

Various other approaches have also been suggested for recognizing features, e.g. using

octrees to identify assembly features based on spatial and contact face adjacency re-

lationships [SCC01], artificial neural networks to assist in the recognition of complex

features [PH92, ÖÖ01, SP09], etc.

2.2 Classic Feature Recognition Approaches 13

2.2.4 Landmark Declarative Feature Recognition Systems

The outstanding key challenges in CAD-CAE integration, as noted, are performance,

and the need for end users to be able to define their own features. The latter arises as

engineers who understand what a feature is may not be expert in devising geometric

algorithms to find such features. Among the various methods, the declarative approach

has the advantage that the end user does not need to be an expert in graph algorithm

design. This section will describe research on declarative feature finding and perfor-

mance achieved.

Martino [DMFG94] developed a teaching by example technique for form feature recog-

nition, which first recognizes the protrusions and depressions of the component using

syntactic pattern matching then performs graph matching. Suh [SW97] defined fea-

tures textually in terms of a set of fundamental features and their spatial configura-

tions represented by fundamental spatial relationships, turning the feature extraction

problem into a constraint satisfaction problem. This replaces the usual face adjacency

graph search by a hint-based constraint-graph traversal. They also investigated sev-

eral optimizations to reduce the search space. Performance has worst-case time com-

plexity of O(mn2) where m is the number of nodes of the relationship graph, and

n is the number of fundamental features in the part. The idea to use a declarative

approach has been considered previously. N-rep was a declarative system based on

EXPRESS [SS91, MSDS04]; it used a graphical interface to allow users to define fea-

tures by selecting necessary entities. A tailored system for locating turning features in

mill-turn parts was developed based on N-rep, with overall O(n2) complexity where

n is the number of machining faces [LS07]. However, its feature recognition perfor-

mance more generally is unclear. Gibson also considered a declarative approach and

six optimizations [GIS99]; I will analyze them in detail in Section 2.6.

2.3 Feature Finding as Data Retrieval 14

2.3 Feature Finding as Data Retrieval

If treating a feature definition as a query and the procedure of feature recognition is ap-

plying the query to the data (CAD model), feature finding can be viewed as a structured

data retrieval problem. Retrieval must:

1. find all features, and must not miss any,

2. find features which exactly match the definition.

These requirements necessitate an exhaustive search of the CAD model.

Data retrieval can be achieved using various approaches: using Prolog to describe the

problem, using relational database systems or graph database systems as the backend

to retrieval, or making a stand alone data retrieval system. Prolog– a declarative lan-

guage, use similar optimizations like relational database systems [wik15e] are used a

lot in artificial intelligence problems including feature recognition [HA84], also re-

fer to section 3.6.2 for reasons why I do not choose to use Prolog as the backend of

the feature recognizer. Graph database systems are good at dealing with the subgraph

matching problems from large graph data, however, they usually requires parallel com-

puting facilities and have various customized query languages for different implemen-

tations. I observed that relational DB systems have long been used as the main way

of storing and retrieving large amounts of related data. DB systems use a declarative

language—SQL—to retrieve information via queries. DB systems typically achieve

good performance by automatically choosing low-cost execution plans. I note that

SQL queries also require, in principle, exhaustive search.

Inspired by relational DB systems, I hoped that if I built a feature recognizer around

a DB kernel and a CAD modeler that provides data to the DB, features can be found

quickly and the mature DB query optimization technology can be used for ‘free’. How-

ever, there are several key issues in such an idea, for example, how to turn feature

definitions into queries? Can this be made to work for all kinds of features? Will the

2.4 SQL Syntax 15

approach be efficient enough? I designed and implemented testbeds to answer these

questions. Later I will give implementation details, but here I first explain some basic

concepts of SQL and DB query optimization.

2.4 SQL Syntax

In the approach, feature definitions are translated into SQL queries. As some notation

and properties of SQL are used in the translations and explanations, I explain the basic

concepts of SQL in this section.

I first explain the syntax of SQL. In the discipline of relational algebra, relational DB

systems model data and perform queries using set operators. The actual query language

is SQL, which is a high-level declarative language used to implement relational alge-

bra [Mel93]. A typical SQL query is a SELECT statement which retrieves data from

one or more tables. Listing 2.1 gives a typical SQL query used to retrieve information

from a database:

1 SELECT c.tstamp

2 FROM commits c, actions a

3 WHERE a.file IN

4 (SELECT id FROM files WHERE path = ...)

5 AND a.commit_id = c.id

6 AND c.id>5

7 GROUP BY c.tstamp

8 HAVING agg();

Listing 2.1: Example SQL query

A full query is composed of the following clauses:

Target list clause : between SELECT and FROM. It names the information the user

wishes to retrieve from the database. It corresponds to a projection operation in

relational algebra.

2.4 SQL Syntax 16

Range table clause : between FROM and WHERE. It lists the relations involved in the

query by referring to named range tables. These tables are the source of the tar-

get information. This clause corresponds to a Cartesian product operation in rela-

tional algebra. Since computing a Cartesian product (or CROSS JOIN) is slow

and would often require a prohibitively large amount of memory space to store,

the DB query optimizer analyzes the qualification clause and turns it into an

INNER JOIN if possible. Other set operations allow the user to determine dif-

ferent search spaces for the query, e.g. OUTER (LEFT, RIGHT, FULL), but

are not used in this thesis. For more details, see [Cod70]. In SQL, INNER JOIN

operations are often performed implicitly. For example, in Listing 2.1, the term

a.commit_id=c.id specifies an INNER JOIN query where tables c and a

are linked together via join attributes commit_id and id. Such a form is the

one used in my proposed approach.

Qualification clause : the statement after WHERE. It specifies conditions the selected

elements should satisfy and corresponds to selection predicates in relational al-

gebra. The predicates may be combined using the logical connectives AND, OR

and NOT.

GROUP BY HAVING clause : The GROUP BY subclause indicates the columns (

must be the same with the target list clause) to group the results and the HAVING

subclause consists of the conditions under which a group will be included in the

final results. The HAVING subclause consists of the same conditions that can

be used in qualification clause. Both subclauses are optional to the main query,

however, the HAVING subclause must follow the GROUP BY clause in a query.

If the GROUP BY subclause is specified, the output is divided into groups of

rows and if there is HAVING subclause, it eliminates groups that do not satisfy

the given condition. This reminds us a hidden property that is the constraints

in WHERE clauses are evaluated on all tuples, generating a temporary target list,

while the HAVING clause further aggregates the temporary (grouped) target list

2.4 SQL Syntax 17

to produce the final results. I will use this idea later.

The target list and range table clauses may sometimes use aliases. For example, renam-

ing relations and attributes can be done using AS via old-name AS new-name.

Qualification and having aggregate clauses mainly fall into one of the following four

categories:

Subquery Queries can be nested so that the results of one query can be used in another

query via a relational operator or aggregation function. A nested query is also

known as a subquery. Listing 2.1 contains the example:

a.file IN (SELECT id FROM files WHERE path = ...).

Different predicates are optimized in different ways. A subquery is a multiblock

query (having multiple SELECT operations) and is usually turned into JOIN

queries, as explained later.

Access predicate This is a predicates that links two relations together. For example,

the term a.commit_id=c.id in Listing 2.1 is an access predicate. Such pred-

icates cause data to be accessed either via index operations or join operations in

DB systems.

Index filter predicate This places a constraint on a column which has an index. An

example is c.id>5 in Listing 2.1, assuming there is an index on column id.

Table level filter predicate This places a constraint not involving an index, so a full

table scan must be performed to exclude irrelevant data. If there were no index

on column id in Listing 2.1, c.id>5 would be a table level filter predicate.

Every id would have to be checked in turn.

Access predicates and filter predicates are different:

1. Access predicates specify starting and stopping conditions for relation traversal,

so that only tables meeting conditions in the predicate (requiring an index al-

gorithm) or when matching the columns that join two tables (requiring a join

2.5 Relational Query Optimization 18

algorithm) are retrieved. Filter predicates (using indexes of whole tables) con-

sider the column data during a single table traversal only. Filter predicates do

not contribute to the start and stop conditions, so do not narrow the scanned

range [Win15].

2. Access predicates lead to better performance as discard rows before they are

retrieved from disk or memory, while filter predicates discard rows after they are

retrieved.

In my testbed, I explored how to translate feature definitions into SQL queries, and

I consider the differing performances achieved using subqueries, filter predicates, or

access predicates.

2.5 Relational Query Optimization

Last section introduced basic SQL query syntax; and this section will discuss the com-

piler for the language. I first give an overview, then introduce the performance model

and finally, describe some classic query optimization technologies.

2.5.1 Overview

Fig. 2.2 gives a typical relational DB query processing flow. Briefly, the parser checks

syntax and verifies existence and correctness of relations, attributes, and others items.

The translator turns relations into a relational algebra expression. The optimizer finds a

good (if not necessarily the fastest) execution plan and sends it to the evaluation engine.

When the query is executed,the query optimizer is used to determine a suitable plan,

or algorithm, from the declarative form of the query. Considerable effort may be put

into query planning, as the savings over straightforward plans may be significant, and

indeed turn an infeasible query into a feasible one. Query optimization is a mature

2.5 Relational Query Optimization 19

SQL Query Parser Translator
Relational
Algebra

Expression

Rewrite
Cost Based

Planner

Execution
Plan

Evaluation
Engine

Query
Result

DB

Query
Optimizer

Figure 2.2: Typical RDBMS query processing

field [Ioa96]. Normally, a declarative query is first turned into a relational calculus

expression, and the query optimizer then generates various execution paths with equiv-

alent results, using two stages: rewriting, and planning [Ioa96].

The former rewrites the declarative query in the expectation that the new form may be

more efficient. An example of this approach is sargable rewriting (i.e. a transformation

to take advantage of an index). In this stage, a multi-block query that includes several

select-from-where structures in a single query may be converted to a single block query

via view merging, nested subquery merging and semijoin-like techniques; for details

of these operations see [Cha98].

Planning transforms the query at a procedural level, via relational algebra transforma-

tions. A cost (I/O and CPU cost) based planner is used to choose the plan predicted

to be fastest based on statistical information about the database. System-R, one of the

earliest databases to support SQL, pioneered such optimzation [Cha98]. Its use of dy-

namic programming to select the best query plan has been adopted by most commercial

2.5 Relational Query Optimization 20

Disk Memory Cache
Disk I/O Memory I/O Cache I/O

CPU cost

Figure 2.3: Data processing cost model

databases [Ioa96].

For further discussion of query optimization technology see [Mol00].

2.5.2 Performance Model

Data processing performance depends upon I/O and CPU costs. Thus the objective of

query optimization is to minimize the cost function:

IO cost+ CPU cost.

I/O cost refers to the time moving data between different kinds of memory. Fig. 2.3

gives the main costs for typical computers. Specifically they are:

• Disk I/O: Moving/writing a block between disk and a main memory buffer, per-

haps taking 10–30 ms/MB;

• Memory I/O: Moving instructions/data between cache and main memory, per-

haps taking 10–100 ns/MB;

• Cache I/O: Reading/writing data between cache and processor, perhaps taking

10 ns/MB or less;

For a whole data processing procedure, disk I/O dominates other I/O costs. Usually,

the number of hard disk block accesses is used to approximate the overall I/O cost.

Thus, reducing disk I/O improves performance. A better algorithm requires a smaller

number of disk block accesses.

2.5 Relational Query Optimization 21

CPU costs in database processing refer to the time spent evaluating WHERE statements.

These usually involve comparing keys/records, and sorting keys. The overall cost is de-

cided by the number of records, and the cost of evaluating each record. Thus reducing

the number of records and the cost of evaluating each record can improve performance.

The former requires shrinking the search space, and is performed at the software level,

while the latter one usually needs some improvement to the hardware, for example,

using solid-state drives to replace the hard disk.

2.5.3 Generalizing Join Sequencing to Reduce CPU Cost

Many queries involve multiple joins. This step finds an efficient execution order in

which to process them. Because join tuples are not necessarily symmetric, and the

operations are commutative and associative, a translated execution tree with Cartesian

products may result in poor performance for some orders of evaluation [Cha98]. One

approach is to turn asymmetric one-sided outer joins into equivalent but re-orderable

expressions [RGL90] by shuffling GROUP BY and JOIN [CS95] clauses, an impor-

tant optimization supported by most current database systems [Hip15, The15a, Bur10,

DuB05]. In explaining optimizations of scan methods in JOIN processing, I assume

that the joins are ordered.

2.5.4 Scan Methods to Reduce I/O

Database systems use various methods, including sequential scans, index scans, and

bitmap index scans, to scan tables. Index and bitmap index scanning are much more

efficient than sequential scanning because only parts of the table have to be consid-

ered [The15a]. The planner chooses an appropriate scan method based on selectivity, a

quantity that determines the effectiveness of an index in terms of the proportion of the

data filtered out [Mom12].

2.5 Relational Query Optimization 22

Sequential Table Scan

A sequential scan reads in each row of the table and checks the columns encountered

for the validity of conditions in sequential (serial) order. Note that if data are not in

memory, the time will also include moving data from hard disk to memory, and it takes

longer time than manipulating data in main memory. A sequential scan is I/O cost

intensive.

Index Scan

An index is a data structure recording some property of the records. Using an index

enables us to quickly find records having that property [Mol00]. Indexes are primarily

used to enhance database performance by significantly reducing the number of I/O read

operations. Indexing is essentially a kind of lookup table technology. An index must

be created prior to executing the main query. After doing so, finding an entry with a

certain value does not need to sequentially scan all rows of the table—it can be quickly

located by consulting the index table. See [Mol00]. Index scanning often outperforms

a table scan, but it requires additional writes and storage space to maintain the index

data structure.

The most commonly used index is a B-tree (balanced search tree), which keeps data

sorted and allows searches, sequential access, insertions, and deletions in logarithmic

time. Other index types are supported by various DB implementations. Table 2.1

gives details for several mainstream DB systems (Oracle, MySQL, PostgreSQL, and

SQLite). Even different versions of a single DB system may support different index

types. For example, MySQL only supported R-tree indexes prior to version 5.5 using

the MyISAM storage engine, while later versions support hash indexes. For more

details please refer to [wik15b, MyS15a, MyS15b].

Table 2.1 provides basic information which is of use in choosing a DB engine. In my

feature recognizer implementations, I first chose to use SQLite as it is lightweight and

usually achieves good performance. Later I moved to PostgreSQL for the reason that it

2.5 Relational Query Optimization 23

Table 2.1: Index supported by various DB systems
Oracle MySQL PostgreSQL SQLite

B tree Y Y Y Y

R tree Y Part Y Y

Hash Cluster Tables Part Y N

Expression Y N Y N

Partial Y N Y Y

Reverse Y N Y Y

Bitmap Y N Y N

Gist N N Y N

Gin N N Y N

Full text Y Part Y Y

Spatial Y Part PostGis SpatialLite

supports more advanced kinds of indexes and joins. The only index used in this thesis

is the B-tree index.

Some DB systems can automatically create an index. For example, when there is no

index available to aid the evaluation of a query, SQLite might create an automatic index

(which lasts only for the duration of a single SQL statement). Constructing an index

takes O(n log(n)) time where n is the number of entries in the table, while a full table

scan takes O(n). Thus only when the lookup takes more than O(log(n)) time does

SQLite create an index. For example, the query below retrieves all tuples of table t1

and t2 satisfying an access predicate (t1.a=t2.c).

1 SELECT * FROM t1, t2 WHERE t1.a=t2.c;

If both tables t1 and t2 have approximately n rows, then without any indexes, the

algorithm will need nested for-all loops, so takes O(n2) time. Creating an index on

table t2 takes O(n log(n)) time, the algorithm now uses a t1 full table scan and a

t2 index scan, giving a retrieval time of O(n log(n)). Together constructing index

2.5 Relational Query Optimization 24

and performing the query requires overall time O(n log(n)). SQLite determines that

constructing an automatic index is the cheaper approach.

Other DB systems do not support automatic indexing and require users to create ex-

plicitly an index. For example, in PostgreSQL, the user has to create an index using a

command of the form below [Pos15].

1 CREATE [UNIQUE] INDEX [CONCURRENTLY] [name] ON table [USING method]

2 ({ column | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [

NULLS { FIRST | LAST }] [, ...])

3 [WITH (storage_parameter = value [, ...])]

4 [TABLESPACE tablespace]

5 [WHERE predicate]

2.5.5 Join Processing to Reduce CPU Cost

A JOIN operation in SQL is translated into a procedural algorithm by the query op-

timizer. The main algorithms which can be used include a nested loop join, a hash

join, or a merge join. Nested loops are normally used for small tables, but the other

approaches work much better for large tables [Mom12], and are widely used in main-

stream database systems [The15a, Bur10, DuB05].

Suppose there are two relations R(a, b) and S(b, c). The JOIN between them is

σCL = (R× S)

CL = C1 AND C2 . . . OR . . . NOT . . .
(2.1)

where σ is a SELECT operator with a condition list (CL) which contains conditions

connected by Boolean operators. SELECT produces a new relation from the old one.

Here, × denotes the PRODUCT operation, generating a new relation consisting of at-

tributes of R and S. The above expression also has a short form (R ./ S) where ./ is

the join operator.

The query planner can translate such a query in various ways:

2.5 Relational Query Optimization 25

Nested Loop Join

A nested loop join is a naive algorithm to process a JOIN operation. It joins two sets

by using two nested loops.

1 For each r in R do

2 For each s in S do

3 if r.a = s.b then

4 output r,s pair

Listing 2.2: Nested Loop Join algorithm

A nested loop join algorithm has O(nk) CPU cost where k is the number of nested

loops. However, if the inner loop is replaced by an index scan, the performance can be

improved.

Hash Join

Hash joins were developed in [BE77, DG85]. In SQL, a hash join algorithm is usually

used to turn a join operation into an algorithm based on access predicates. Thus it

only effective for a query involving equality of two relations. The idea is to join two

tuples only if their hash values are the same, giving a reduced search space for other

constraints’ evaluation. A classic hash join algorithm has two steps:

Build stage build a hash table of tuples from the smaller relation R on the joining

attribute. For example, the join in Eq. 2.1 has access predicate (r.a = s.b), and

the system creates a hash table on column R.a.

Probe stage scan relation S sequentially. Compute the hash value for each tuple in S,

and use the hash value to probe the hash table of R. If a match is found, output

the pair, and if not then drop the tuple from S and continue scanning S.

1 //Build stage:

2 //hash on join attributes r(a)

3 For each tuple r in R do

4 put tuple r into the hash table, based on the value of hash(r.a);

5

6 //Probe stage:

2.5 Relational Query Optimization 26

7 //hash on join attributes s(b)

8 for each tuple s in S do

9 if value of hash (s.b) is a nonempty bin of hash table for R

10 //if s hash key matches any r in bucket concatenate r and s

11 then output s, {r} pair.

12 ({r} are all tuples whose value of hash (r.a) fall to the same bin with s);

Listing 2.3: Hash join algorithm

A full analysis of time complexity is given by [Sha86]. Usually, the complexity is

O(m+n) where m is the number of entries in the hash table for R and n is the number

of entries in the lookup table for S.

(Sort) Merge Join

Merge join, or sort join, is a typical two-pass algorithm which means data is first read

into main memory, processed, written out to disk and then reread from disk to complete

the operation. The main idea is that if tables are sorted by the join attribute, the system

just need to scan each table only once to find joined tuples. It usually includes two

steps: sorting tables and joining them.

Listing 2.4 gives pseudo code code for merge join, where a<-b denotes assignment of

the value of b to a and |R| denotes the number of tuples in R, etc.

1 (1) if R and S are not already sorted, sort them on the join attribute;

2 (2) i <- 1; j <- 1;

3 while (i <= |R|) AND (j <= |S|) do

4 if R[i].a = S[j].b then outputtuples

5 else if R[i].a > S[j].b then j <- j+1

6 else if R[i].a < S[j].b then i <- i+1

7

8 //outputtuples procedure

9 while (R[i].a = S[j].b) AND (i <= |R|) do

10 k <- j;

11 while (R[i].a = S[k].b) AND (k <= |S|) do

12 output R[i], S[k] pair;

13 k <- k + 1;

14 i <- i + 1;

Listing 2.4: Merge join algorithm

2.6 Gibson’s Declarative Approach and Optimizations 27

A full analysis of time complexity is again given by [Sha86]. The overall time is the

sum of times to sort both tables plus time to scan them. Usually the complexity is

O(m log(m)+n log(n)) where m and n are the numbers of entries in tables as before.

As for indexes, various DB implementations have different join support. Table 2.2

gives the mainstream DB system support for join algorithms. From the table, it can be

concluded that PostgreSQL supports fewer join algorithms than Oracle while MySQL

and SQLite only support join ordering and no other join processing. Thus, for access

predicates, PostgreSQL and Oracle can use a join algorithm or an index algorithm

while SQLite and MySQL can only use an index algorithm.

2.6 Gibson’s Declarative Approach and Optimizations

As my work builds on Gibson’s, I next describe his contribution in more detail. He

suggested that a declarative approach to feature definition could be an effective solution

to the problem of allowing user-defined features [GISH97, GIS99, GIS97]. He also

noted that naive translation of the declarative form into an execution plan leads to very

inefficient algorithms and that optimization is necessary.

He defined features in a language with similarities to EXPRESS [SS91]. Features are

based on entities (faces, edges, vertices or subfeatures), and predicates that link them.

Such a declaration can be easily rewritten as an algorithm using a set of nested FOR

loops, one per entity in the definition, and IF statements, one per predicate. Executing

Table 2.2: Join algorithms supported by various DBMS
Join Ordering Nested Loop Hash Join Merge Join Cluster

Oracle Y Y Y Y Y

MySQL Y N N N N

PostgreSQL Y Y Y Y N

SQLite Y N N N N

2.6 Gibson’s Declarative Approach and Optimizations 28

this takes exponential time in the number of entities in the feature definition, so is infea-

sible for anything but trivial features. Gibson investigated six strategies for optimizing

this basic plan; they are clearly related to those used in database optimization, although

Gibson did not consider this point of view. His strategies belong to four categories with

respect to their effect on time complexity:

1) Strength reduction and loop re-sequencing Both methods aim to reduce time

spent inside each nested loop. For example, suppose A,B and C are each an entity of

specific type, and |A|, |B| and |C| are the numbers of that type. Suppose the feature

has to satisfy some conditions: condition(a, b) and condition(b, c). The naive nested

for-all loop algorithm is shown in Listing 2.5. In this case, the time complexity is

O(n3) assuming O(|A|) = O(|B|) = O(|C|) = n.

1 For each a in A do

2 for each b in B do

3 for each c in C do

4 if (condition(a,b)==TRUE)

5 if (condition(b,c)==TRUE)

6 output (a,b,c)

Listing 2.5: Naive procedure code

Strength reduction moves conditions which have no reference to the loop variable out

of loops. Here, this rewrite reduces the number of tests of constraint condition(a, b)

from |A||B||C| to |A||B|. But the condition(b, c) will still be tested |A||B||C| times.

2.6 Gibson’s Declarative Approach and Optimizations 29

1 For each a in A do

2 for each b in B do

3 if (condition(a,b)==TRUE)

4 for each c in C do

5 if (condition(b,c)==TRUE)

6 output (a,b,c)

Listing 2.6: Strength reduction

Loop re-sequencing also reduces the number of tests: it is effective only when com-

bined with strength reduction. For example, when |A| = |B| > |C|, the algorithm in

Listing 2.6 has same result as Listing 2.7, but in the latter algorithm, condition(b, c) is

tested |C||B| times while condition(a, b) is tested |A||B||C| times.

1 For each c in C do

2 for each b in B do

3 if (condition(b,c)==TRUE)

4 for each a in A do

5 if (condition(a,b)==TRUE)

6 output (a,b,c)

Listing 2.7: Loop re-sequencing

Table 2.3 compares these algorithms. It is clear that when |C| < |A|, the loop re-

sequencing is an improvement, subject to condition(a, b) and condition(b, c) taking the

same CPU cost.

Overall, strength reduction and loop re-sequencing adjust the search space. Thus the

number of conditions tested is reduced, but the overall time complexity remains un-

changed: both optimizations only improve performance by a constant factor.

Strength reduction is also used in DB optimization and is performed in the rewritinge

stage (see Fig. 2.2). The rewriter usually performs such a transformation at the declar-

Table 2.3: Test times of various algorithm
Naive algorithm Strength reduction Loop re-sequencing

condition(a, b) |A| × |B| × |C| |A| × |B| |A| × |B| × |C|

condition(b, c) |A| × |B| × |C| |A| × |B| × |C| |B| × |C|

2.6 Gibson’s Declarative Approach and Optimizations 30

ative level. Loop re-sequencing optimization also exists in DB optimization but is

performed during query planning. Because it uses statistics, the query planner usually

carries out join ordering optimization as discussed in Section 2.5.3. For more details

of this optimization, please refer to [HS93].

2) Entity classification and featuretting These both use the idea of splitting a fea-

ture definition into several parts and treating them separately. The result is that the

whole search is split into several smaller scale searches, improving performance. The

difference between the two algorithms is how to split a declarative definition into parts.

Entity classification removes an entity involved in a condition out of the definition,

saving the results as a list (thus entities are classified into useable and useless ones).

The corresponding conditions are now implemented as list lookup. For example, start-

ing from the naive nested loop algorithm in Listing 2.8, using entity classification,

Listing 2.9 can be obtained.

In this example, list_b has a reduced search space, reducing overall algorithm time

for testing.

1 For each a in A do

2 for each b in B do

3 if condition(b) == TRUE do

4 if condition (a,b) == TRUE do

5 output a,b

Listing 2.8: Naive nested loop algorithm

1 For each b in B do

2 if condition (b) == TRUE do

3 add b to list_b

4

5 For each a in A do

6 for each b in list_b do

7 if condition(a,b) == TRUE do

8 output a,b

Listing 2.9: Entity classification

2.6 Gibson’s Declarative Approach and Optimizations 31

Table 2.4: Test times are reduced after entity classification
Naive algorithm Entity classification

condition(b) |A| × |B| |B|

condition(a, b) |A| × |B| |A| × |B|

Table 2.4 gives the number of tests for both the naive algorithm and the entity classi-

fication based algorithm. Again, the overall computational complexity is unchanged.

Overall, the entity classification splits the query into several parts, computes the most

simple conditions,and caches the results to provide a reduced search space for other

constraints.

Featuretting refers to splitting a feature into subfeatures. Unlike entity classification

that focuses on extracting the most simple entity out of the main loop, featuretting

optimization extractssubstructures out of the main loop. Thus, a whole query can be

split into several simpler ones, with reduced complexity. Gibson proposed complicated

rules on how to divide the main query in [GIS99]. Here, I only illustrate his ideas using

an example:

1 For each a in A do

2 for each b in B do

3 for each c in C do

4 for each d in D do

5 for each e in E do

6 if condition (a,c) == TRUE do

7 if condition (b,d) == TRUE do

8 if condition (a,b,e) == TRUE do

9 output a,b,c,d,e

Listing 2.10: Naive algorithm

1 For each a in A do

2 for each c in C do

3 if condition (a,c) == TRUE do

4 add a,c to list_ac

5

6 For each b in B do

7 for each d in D do

8 if condition (b,c) == TRUE do

2.6 Gibson’s Declarative Approach and Optimizations 32

9 add b,c to list_bd

10

11 For each e in E do

12 for each ac in list_ac do

13 for each bd in list_bd to

14 if condition (a,b,c) == TRUE

15 output a,b,c,d,e

Listing 2.11: Featuretting optimization

Table 2.5 gives the number of tests before and after featuretting optimization. In the

naive algorithm, each condition is evaluated |A||B||C||D||E| times, while after opti-

mization, condition(a, c) and condition(b, d) are evaluated many fewer times. Also,

condition(a, b, e) is evaluated many fewer times as in practice the number of entries in

listac and listbd will be many fewer than |A||C| and |B||D|.

Overall, featuretting optimization reduces the time complexity from O(nk) to

O(max(nk1
1 , . . . , n

km
m)) where m is the number of parts and ni is the number of entities

in part i. Database systems do not typically automatically split queries into several

simpler queries—queries are usually performed on all tuples of the search space, so

the database engine optimizer can not do this. However, if the user defines features in

terms of subfeatures (a natural divide-and-conquer approach to problem solving), such

a split is achieved manually, reducing time complexity.

Featuretting is similar to entity classification, where a subfeature query and the main

query are executed separately. The difference is that featuretting rewrites a feature

definition as a root (common) feature and a group of featurettes (subfeatures), and

performs searches locally, while entity classification aims to separate the most simple

Table 2.5: Test times are reduced after Featuretting optimization
Naive algorithm Featuretting optimization

condition(a, c) |A| × |B| × |C| × |D| × |E| |A| × |C|

condition(b, d) |A| × |B| × |C| × |D| × |E| |B| × |D|

condition(a, b, e) |A| × |B| × |C| × |D| × |E| |E| × (|A| × |C|)× (|B| × |D|)

2.7 Gibson’s Optimizations and DB Query Optimization 33

condition (with only one constraint), put the entity into a lookup table, and perform

another query.

3) Indexing Precomputing an index allows relevant entities to be directly retrieved,

rather than having to check all entities during query processing. This effective tech-

nique is used both in Gibson’s approach and database engines. In Section 2.5.4, I

already gave a detailed analysis of indexing. Time improvements depend on the selec-

tivity of the index.

4) Assignment This approach narrows the search space by finding WHERE state-

ments containing equalities and associated conditions. The key idea is to replace an

inner loop by results satisfying outer loop conditions, reducing the time complexity.

1 For each a in A do

2 for each b in B do

3 if a == condition (b) do

4 output a,b

Listing 2.12: Naive algorithm

1 For each b in B do

2 output condition(b), b

Listing 2.13: Assignment optimization

2.7 Gibson’s Optimizations and DB Query Optimiza-

tion

There are similarities in nature between Gibson’s declarative feature recognition and

DB queries. Both perform exhaustive search for certain structured data, and both lead

to nested for-all loops if naively translated. Here, I classify Gibson’s optimizations into

two categories and compare them with DB query optimizations.

2.7 Gibson’s Optimizations and DB Query Optimization 34

Single query optimization Gibson’s approaches to optimize the for-all loop are strength

reduction, entity classification, indexing, and assignment. It is clear that strength

reduction and loop re-sequencing still lead to nested loops. but with reduced

numbers of tests. Both optimizations improve performance by a certain factor.

Using the index in a nested loop, the full algorithm uses a full scan for outside-

loop-entries, while inside-loop-entries uss table lookup, reducing the order of

complexity of the nested loops. Similarly in assignment optimization, a nested

loop becomes a full scan and a function call, again reducing the complexity order

is reduced.

Query split optimization Gibson’s other approaches (featuretting and entity classifi-

cation) are different ways to split a for-all loop into several parts, which again

can reduce the complexity order.

DB systems focus on optimizations for a single query, and usually it is the user’s

responsibility to split a query into several parts if deemed useful or necessary. The main

automatic optimizations are join reordering, indexing, and choice of join algorithm.

Join ordering is similar to Gibson’s loop resequencing but more powerful: DB reorder-

ing of join optimization allows use of an index to reduce the time complexity of nested

loops. Gibson’s loop resequencing has to be used together with strength reduction and

its motivation is to avoid some unnecessary tests in the nested loop. Obviously, the

former can achieve better performance.

Indexing is effective in both DB optimization and Gibson’s approach. In practice, DB

systems support various indexes (see Table 2.1), which may be effective for various

types of data; some DB systems can automatically establish indexes based on statistics

and choose to use the cheapest one. Again, these are more powerful than Gibson’s

approach.

The join algorithm is another major difference. DB join optimization turns the naive

for-all nested loop into a hash join or merge join. Both have lower time complexity

2.7 Gibson’s Optimizations and DB Query Optimization 35

than nested loops. Using such join algorithms, the search space is reduced greatly,

while Gibson’s single query processing is limited to a nested for-all loop search space.

On the other hand, Gibson’s query split optimizations do not exist in DB query opti-

mization. By splitting a complex nested loop into several smaller ones, and each is

performed in a smaller search space, the time complexity is also reduced. In this case,

his single query optimization can also be applied to the smaller tasks. Obviously, these

are useful in practice.

I choose to use a DB query optimizer as the kernel of the feature recognizer as it

provides more powerful single query optimizations, which I assume will be useful

for a feature recognizer intended to process large 3D models. It is also noted that

Gibson’s query split optimizations can be used as preprocessing to help achieve better

performance. In the testbed, I simply permit users to define a feature in terms of

subfeatures.

36

Chapter 3

Declarative Feature Definition

3.1 Introduction

A programming language, in terms of the theory of computation, is a formally con-

structed language designed to communicate instructions to a machine [wik15d]. Pro-

gramming languages may be categorized as imperative and declarative. Imperative

programming requires explicit execution steps and describes computation in terms of

statements that change a program state, and includes procedural, and object-oriented

languages. In contrast, declarative programming expresses the logic of a computa-

tion without describing its control flow. It includes functional and logical program-

ming languages. Declarative programming describes what computation should be per-

formed without saying how to compute it, as an algorithm. For more details please

refer to [RH04, AU92].

Most classic approaches to feature recognition are imperative approaches, but in prac-

tice, engineers may wish to find unusual or application specific features that are not

hard-coded in systems. A declarative approach enables them to define as a feature

whatever they choose, without needing to consider how to find it. As noted in Chap-

ter 2, some classic works on feature recognition explored describing features declara-

tively [MSDS04, GIS99]. In such an approach, a feature is defined using instances and

their relations or attributes; a feature recognizer can then automatically find instances

from the model, without explicit instruction on how to solve the problem.

3.1 Introduction 37

I choose to use the declarative approach to find features (the original feature definition

was provided by Dr.Malcolm Sabin) and in this chapter, I explain the feature recog-

nition language. The language is expanded from Gibson’s declarations [GIS99] and

EXPRESS [Wik15a]. Like Gibson’s language, ours is also incremental and respects

a strict declare-before-use convention (this is the main difference between Gibson’s

language and EXPRESS). I enhanced Gibson’s definitions in the following ways:

1. I adjusted the syntax slightly: (i) I simplified Gibson’s language by removing

repeated tokens, for example, WITH and WHERE, (ii) I changed the language

structures to make it simpler for users to understand, and (iii) I replaced tokens

to make it more intuitive for user to define features.

2. It supports real data types. 3D model feature recognition encountered in real

industrial engineering is challenging because it has more complex spatial struc-

tures, and the objectives are diverse. Supporting more data type can enhance the

expressive power of the domain specific language, but may bring more complex

optimization problems.

3. It supports predicates that may be practical constraints in engineering, while

Gibson only uses abstract words such as links.

Later, I will show how to generate optimized algorithms for various predicates. I will

discuss how to enhance the expressive power in other ways at the end of this chapter.

Assuming that any target feature has a fixed number of entities, thus, the user must

be able to define exactly what he/she wants using named entities and relations. For

example, a pocket could include three or more vertical faces, but in the approach the

user must restrict his definition to a precise number of such faces, as well as other

constraints in the definition. Processing features with a variable number of entities is

left to future work.

In this chapter, I clarify the data involved, give the syntax of the domain specific lan-

guage, illustrate operations that describe instance’s relations and attributes, and finish

3.2 Data 38

with a discussion.

3.2 Data

Data types are given in Table 3.1. I first clarify the two concepts used in feature def-

inition: name and id. When defining a feature, the end-user (i.e. engineer) gives each

entity in the definition a name so he/she can refer to the entities involved in a feature.

Each name has a type, for example, f1 may represent an instance of the face type.

These are formal names. I defined four type of formal names: vertex, edge, face,

body; each type consists of an id and some other attributes as specified in Table 3.1.

The CAD modeler gives each primitive an id so the user can distinguish each face,

vertex, etc,. These are actual ids. When the feature recognizer looks for a feature, it

matches the formal names to the actual ids when seeking feature instances. Subfea-

tures are substructures that are composed from vertex, edge and face and can construct

to the target feature. Using subfeatures help to define a feature more easily. Subfeature

can be any substructures that are defined by the user, for example, it can be a loop or a

lump.

Other data types in Table 3.1 are mainly used when specifying constraints. For exam-

ple, one may require the normal of a face to be (approximately) in a certain direction,

in which case the normal is compared to a vector, and the difference is measured by

an angle. The enumerated types of convexitytype, edgetype and facetype are defined

according to the CADfix API [ITI15], which is the modeler interfaced with the feature

finder. Other CAD modelers may support or require different data.

3.2 Data 39

Table 3.1: Data types in predicates
Data Type Data

vertex

each vertex has an id and several other attributes (may be directly

imported from or computed by the CAD modeler), e.g. coordinates

or UV parameters which locate the vertex in the parametric plane.

edge

each edge has an id and several other attributes (may be directly im-

ported from or computed by the CAD modeler). Attribute edgetype

has enumerate values: straight, arc, intersection, Nurbs, poly_node,

set_track. Attribute convexitytype has enumerate values: convex,

concave, mixed, tangential.

face

each face has an id and several other attributes (may be directly im-

ported from or computed by the CAD modeler). Attribute facetype

has enumerate values: plane, sphere, cylinder, cone, ellipsoid, torus,

Nurbs, blend, frog.

body
each body has an id and several other attributes (may be directly

imported from or computed by the CAD modeler), e.g. the volume.

subfeature

a table in database with each column is a primitive (vertex, edge,

face or body) name. Subfeatures as a kind of variable data type are

generated as intermediate results and the column names are decided

by the feature definition such as loops or lumps.

real/int scalar value defined by user.

point [x, y, z], a coordinate in 3D space.

vector [x, y, z]′ where x,y,z are scalar values.

box [x_lower, x_upper, y_lower, y_upper, z_lower, z_upper]′

uv_box [x_lower, x_upper, y_lower, y_upper]′

angle angle is defined using radians, with domain (−π, π).

3.3 Syntax 40

3.3 Syntax

The syntax of the language is illustrated in Listing 3.1. A feature definition is composed

of three clauses that are separated by system reserved tokens in uppercase; the rest is

written in lowercase.

1 DEFINE <feature> AS

2 <entity_type1: name11, name12...>

3 <entity_type2: name21, name22...>

4 ...

5 SATISFYING

6 <predicate1(name11, name22)>

7 <predicate2(name21, value)>

8 ...

9 EXPORT

10 <name11 as alias1>

11 <name12 as alias2>

12 ...

13 END

Listing 3.1: Language structure

System reserved tokens (DEFINE, AS, SATISFYING, EXPORT, END) demarcate the

basic structure of the feature definition. The definition consists of several entities and

conditions. The feature, with the name of <feature>, contains the entities listed, of

various types, which must satisfy several conditions (predicates).

An entity can be a

Primitive, which refers to the basic entities in the feature, for example, a vertex, edge,

or face; each instance has a name and a type as Listing 3.1 shows.

Subfeature, which refers to a substructure of the feature. The approach allows a fea-

ture declaration to be built up hierarchically using subfeatures. A subfeature

must be defined before using it in a definition. For example, a triangular face is

a possible subfeature of the notch in Fig. 3.1.

3.4 Predicates 41

Figure 3.1: Entity naming for a notch.

Different entity types are defined in one line. For each type, the type and instances

are separated using a colon. The instances are separated using commas. Each instance

in the feature has a name. This name is used as a formal argument in predicates, for

example edge: e1,e2 means e1 and e2 are edgetype data, and that all edges of

the model should be considered as candidates for e1 and e2.

The clauses between SATISFYING and EXPORT are predicates. Predicates are atomic

operands of the language. They indicate various constraints that the entities should

satisfy. A more comprehensive explanation of predicates will be given in the next

section.

The clauses between EXPORT and END are optional. They are used to define which

entities the end-user would like to identify, when this kind of feature is to be used as a

subfeature in a further feature definition. See the example in Listing 3.5 later.

3.4 Predicates

Predicates are Boolean-valued functions. Eq. 3.1 gives the basic form of predicates.

They may have several arguments (an argument is either a variable or a constant), and

return True or False. The variables are symbols capable of taking any constant as value.

A predicate is an atomic operand in declarative programming languages, and provides

3.4 Predicates 42

much greater power to express ideas formally than propositional variables [AU92].

Boolean = Predicate(arg1, arg2, ...) (3.1)

Predicate logic has proved expressive enough to form the basis of some useful pro-

gramming languages, such as Prolog and SQL [AU92]. However, as a domain specific

declarative language, the coverage of the predicates determines the expressive power of

the language. In practice, it is hard to give a complete set of predicates to describe ev-

ery attribute a feature may have as the real situation is rather complicated. No classical

declarative feature recognition work has fully discussed what an adequate, complete

set of predicates might be [Sha91, LS07, GIS99].

Nevertheless, I attempt to predefine some predicates that might be useful in practice.

Following the Djinn API [Arm00], I divide the predicates into topological constraints

and geometric constraints. Different kinds of predicates require different kinds of

translation strategies in the feature recognizer. I note that:

1. The expressive power of any predicate-based declaration is limited by the rich-

ness of the CAD modeler’s API. Various systems may support different predi-

cates.

2. Ideally, it should be possible for the a programmer (not necessarily the end user)

to define additional predicates using the CAD modeler’s API.

3. The predicates here involve primitives, as they are more flexible and commonly

used in practice than subfeatures. A commercial system could in principle sup-

port predicates that understand the structure of a subfeature.

In the next two subsections, I will explain in detail topological and geometric predi-

cates.

3.4 Predicates 43

3.4.1 Topological Predicates

Its topological structure is a fundamental property of a CAD model. Conventionally,

B-rep based modelers provide topological information such as which vertices bound

each edge, which edges bound each face, or which edges are incident to each ver-

tex. The topological constraints provide powerful expressions of how the feature is

constructed. Important topological predicates are shown in Listing 3.2. In the listing,

predicate Bounds_VEmeans vertex v forms one end boundary of the edge e; predicate

Bounds_EF means edge e forms one boundary of the face f ; Vertex_valency

means there are i edges crossed at vertex v and Face_valency means the face is

composed of i edges.

1 Bounds_VE(vertex:v, edge:e)

2 Bounds_EF(edge:e, face:f)

3

4 Vertex_valency(edge:f, degree:i)

5 Face_valency(face:f, degree:i)

6

7 Same_id (face: f1, face: f2)

8 Different_id(face:f1, face:f2)

9 Greater_id(face:f1, face:f2)

10 Lower_id(face:f1, face:f2)

11 // and the same for vertex_id, edge_id and body_id types

12

13 Face_has_number_of_vertices(face:f, int:imin, int:imax)

14 Face_has_number_of_edges(face:f, int:imin, int:imax)

15

16 Body_has_number_of_faces(body:b, int:imin, int:imax)

17 Body_has_number_of_edges(body:b, int:imin, int:imax)

18 Body_has_number_of_vertices(body:b, int:imin, int:imax)

Listing 3.2: Topology related predicates

3.4 Predicates 44

3.4.2 Geometric Predicates

Geometric constraints are frequently required in engineering, for instance, a geometric

constraint might require some part to have a certain size, or to have a specific type,

such as being spherical. Geometric constraints that might be found useful in CAE can

be found in [HCB05].

Geometric predicates can be divided into at least the following three categories:

1. Geometric attribute predicates, which specify geometric constraints such as

the shape of a face or an edge.

2. Geometric relationship predicates, which specify some geometric comparison

between geometric primitives.

3. Approximate geometric predicates, which specifies measurement constraints

that are approximately defined, so lead to range-like constraints. For example,

engineers may need to find cylinders whose axis is in a certain direction, within

a certain tolerance.

The geometric predicates are given in Listing 3.3.

1 //Geometry attributes

2 Convexity_is(edge:e1, convexitytype:type)

3 Edge_has_geometry(edge:e1, edgetype:type)

4 Face_has_geometry(face:f1, facetype:t)

5

6 //Geometric relationships

7 Edge_longer_than(edge:e1, edge:e2)

8 Face_larger_than(face:f1, face:f2)

9

10 //Approximate geometry

11 Vertex_near_vertex(vertex:v1, vertex:v2, real: rmin, real: rmax)

12 Vertex_near_edge(vertex:v1, edge:v2, real: rmin, real: rmax)

13 Vertex_near_face(vertex:v1, face:v2, real: rmin, real: rmax)

14

15 Vertex_contained_in_box(vertex:v, box:b)

16 Edge_contained_in_box(edge:e, box:b)

3.5 Ways to Define Features 45

17 Face_contained_in_box(face: f, box: b)

18 Body_contained_in_box(body:b, box:b)

19

20 Face_contained_in_uvbox(face:f, uvbox:uv)

21

22 Face_area_in_range(face:f, real:rmin, real:rmax)

23 Edge_length_in_range(edge:e, real:rmin, real:rmax)

24 Body_volume_in_range(body:b, real:rmin, real:rmax)

25

26 Sphere_centre_near(face:f, point:p, real:r)

27 Torus_centre_near(face:f, point:p, real :r)

28

29 Plane_normal_aligned_within(face:f, vector:v, angle: a)

30 Cylinder_axis_aligned_within(face:f, vector:v, angle:a)

31 Cone_axis_aligned_within(face:f, vector:v, angle:a)

32 Ellipsoid_axis_aligned_within(face:f1, vector:v1, angle:a1,vector:v2, angle:a2)

33 Torus_axis_aligned_within(face:f, vector:v, angle:a)

34

35 Sphere_radius_in_range(face:f, real:rmin, real:rmax)

36 Cylinder_radius_in_range(face:f, real:rmin, real:rmax)

37 Cone_min_radius_in_range(face:f, real:rmin, real:rmax)

38 Cone_max_radius_in_range(face:f, real:rmin, real:rmax)

39 Torus_radii_in_range(face:f, real:rmin1, real:rmax1, real:rmin2, real:rmax2)

40 Ellipsoid_radii_in_range(face:f, real:rmin1, real:rmax1, real:rmin2, real:rmax2,

real:rmin3, real:rmax3)

Listing 3.3: Geometry related predicates (Simple primitive)

A key consideration in defining these predicates is that they are carefully chosen to be

simple. This both aids the user who is writing feature definitions, and in translating the

definitions into queries. For example, by using Bounds_EF(edge:e,face:f),

the user does not need to think in terms of following all edges around the boundary of

a face, but simply in terms of which edges belong to that boundary.

3.5 Ways to Define Features

Solid models are generally designed hierarchically; they could be built from basic

points, lines and so on, but are more typically constructed by combining or modify-

3.5 Ways to Define Features 46

ing simpler models. Similarly, the users are allowed to express a feature in terms of

primitives or by using subfeatures.

3.5.1 Definition by Primitives

Definition-by-primitives (DBP) is the most direct way to describe a feature. It requires

all related primitives and their constraints (including topological and geometric con-

straints) to be listed. Primitives in a feature can be divided into:

• Component primitives: these make up the feature. For example, in Fig. 3.1, f1,

f2, and E1 are the main components of the notch feature—they are component

primitives of the feature.

• Support primitives: these are adjacent to the component primitives. For ex-

ample, in Fig. 3.1, f3, f4, e2, e3, e4, and e5 are adjacent to the component

primitives, and are support primitives.

In practice, end-users need to include both component and support primitives into the

definition, and specify corresponding topological and geometric constraints. For ex-

ample, the notch feature in Fig. 3.1 can be defined in this way as in Listing 3.4.

1 DEFINE notch AS

2 face: f1,f2,f3,f4

3 edge: e1,e2,e3,e4,e5

4 SATISFYING

5 //the *_id predicates will be omitted in the new approach in chapter 6.

6 Lower_id(f1,f2) //symmetry result breaking, see below

7 Lower_id(f3,f4)

8 Different_id(e2,e1) //prevent unwanted solutions, see below

9 Different_id(e3,e1)

10 Different_id(e4,e1)

11 Different_id(e5,e1)

12 Bounds_EF(e1,f1) // local neighbourhood constraints

13 Bounds_EF(e1,f2)

14 Bounds_EF(e2,f2)

15 Bounds_EF(e2,f3)

3.5 Ways to Define Features 47

16 Bounds_EF(e3,f1)

17 Bounds_EF(e3,f4)

18 Bounds_EF(e4,f1)

19 Bounds_EF(e4,f3)

20 Bounds_EF(e5,f2)

21 Bounds_EF(e5,f4)

22 Convexity_is(e1,concave) //boundary edge convexity constraints

23 Convexity_is(e2,convex)

24 Convexity_is(e3,convex)

25 Convexity_is(e4,convex)

26 Convexity_is(e5,convex)

27 END

Listing 3.4: Notch feature definition via DBP

In the definition, all edges and faces of the notch feature must be present, as must be

the adjacent support faces. Only if all five edges and four faces agree with the various

predicates can the feature finder declare the presence of a notch feature. There are four

types of predicates used in the notch feature definition:

1. The Bounds_EF predicate is a common topological predicate. It rejects edges

of the model that do not belong to notch faces.

2. The Lower_id predicate is also a common topological predicate. They are used

here to prevent the same notch from being found multiple times by symmetry

(permuting the labeling of edges and faces would otherwise result in the same

notch being found with different identifications for the various edges and faces

involved).

3. The Different_id predicates prevent unwanted solutions where the same

entity is found for things that should obviously be distinct. Without the predi-

cates, results with coincident entities or subfeatures may be found, and in most

cases, they are not what the end-user wants. For example, a valid notch does

not include two copies of the same triangle face. It is noted that Lower_id and

Different_id predicates are defined manually, and verified that they are nec-

essary by experiments (it can be an interactive feature recognizer if the approach

3.5 Ways to Define Features 48

is efficient enough, so that end users can update his or her feature definitions

based on output). The automatic Lower_id feature definition are discussed in

chapter 8 and the automatic Different_id are discussed in chapter 6.

4. The Convexity_is predicate is a common geometric predicate, which is an

essential character. For example, in the notch finding, the convexity of e1 deter-

mines whether it is a notch or a diamond protrusion.

3.5.2 Definition by Sub-features

Definition-by-subfeatures (DBS) is a more intuitive way to define features where fea-

tures are constructed from some subfeatures. For example, a notch feature includes two

adjacent triangular faces. It can be defined that a ‘triangle-face-pair’ as a subfeature.

Triangular faces are further subfeatures of a triangle-face-pair, as Listing 3.5 shows.

1 DEFINE triangle AS

2 face: f

3 edge: e1,e2,e3

4 SATISFYING

5 Different_id(e1,e2)

6 Different_id(e1,e3)

7 Different_id(e2,e3)

8 Face_valency(f,3)

9 Bounds_EF(e1, f)

10 Bounds_EF(e2, f)

11 Bounds_EF(e3, f)

12 EXPORT

13 f AS f

14 e1 AS e1

15 e2 AS e2

16 e3 AS e3

17 END

18

19 DEFINE tripair AS

20 triangle: t1, t2

21 SATISFYING

22 Same_id(t1.e1,t2.e1)

23 Different_id(t1.e2,t2.e2)

24 Different_id(t1.e3,t2.e2)

3.5 Ways to Define Features 49

25 Convexity_is(t1.e1, concave)

26 EXPORT

27 t1.e1 AS e0

28 t1.e2 AS e1

29 t1.e3 AS e2

30 t2.e2 AS e3

31 t2.e3 AS e4

32 END

33

34 DEFINE notch AS

35 tripair: n

36 SATISFYING

37 Convexity_is(n.e1, convex)

38 Convexity_is(n.e2, convex)

39 Convexity_is(n.e3, convex)

40 Convexity_is(n.e4, convex)

41 EXPORT

42 n.e0 AS e0

43 n.e1 AS e1

44 n.e2 AS e2

45 n.e3 AS e3

46 n.e4 AS e4

47 END

Listing 3.5: Define by subfeature for notch feature

In DBS, when finding a feature, the subfeatures are found and remembered in a table,

and the information is propagated back up the hierarchy. Such an approach has similar

effects to Gibson’s (automatic) featuretting, an optimization technique used to ensure

that each search only applies to a local domain. By doing so, later searches only need

to consider a smaller set of entities, resulting in lower computational complexity.

In summary, in a declarative approach, the same feature may be defined in more than

one way, and without optimization, different definitions may lead to faster or slower

ways of returning the same results. If the query optimizer were powerful enough, all

definitions would be optimized to the same optimal plan taking the same time. In

practice, this does not happen (as I will show later), and so how the engineer writes

a definition may have an impact on execution time. A similar problem exists in the

declarative programming language Prolog, where programmers must consider proce-

3.6 Discussion 50

dural aspects of their programs as well as the declarative meanings. A natural way in

which the engineer can produce a more efficient definition is to define features in terms

of subfeatures. Doing so also helps the engineer break the complex task of feature def-

inition into smaller subtasks. This approach helps to filter the original entities level by

level, leaving only feature-relevant data for the next stage of processing.

3.6 Discussion

3.6.1 Expressive Power

As a domain specific declarative programming language, the fundamental capabilities

and limitations depend on the completeness of the chosen set of predicates. I give

useful predicates that may be useful in practice in Listings 3.2–3.3. Hopefully they

will satisfy a large proportion of the requirements of end-users. Although there are

many other possible predicates, the set detailed in this Chapter is sufficient to support

the experimental investigation of the feasibility.

In real engineering, one may still have difficulty in special cases. A more powerful

system might also consider the following:

1. Supporting more predicates by introducing more geometric tools. For example,

the medial axis has proven useful in various fields in solid modeling, such as mo-

tion planning, shape matching, etc. Some complex features might be expressed

most naturally in terms of the medial axis. For example, the thickness of a beam

can be obtained quickly in such a way. Ideally, the feature definition language

would provide a mechanism for writing new predicates using the CAD system’s

API.

This thesis does not cover medial axis because the performance of predicates

is limited by the CAD modeler and is task specific. Here, I only focus on the

optimizations that are independent of the specific predicates used.

3.6 Discussion 51

2. Supporting arbitrary functions, not just predicates, would allow expression of

ideas in a functional way and thus enhance the expressive power of the language.

For example, if a task required the determination of whether the curvature of an

edge at a parametric position is in a certain range, it might not be easy for an

end-user to provide the desired parameter precisely, but it might be possible for

the user to provide a coordinate of some point in space near his target position.

A function could then project this point to the nearest point on the edge before

calculating the curvature:

1 Curvature_within(get_projection_point(edge_id, point), rmin, rmax);

The function (get_projection_point) allows the end-user to express his

intentions more conveniently.

In this thesis, I only consider predicates, and not more general functions. Al-

though including the latter would be more powerful, doing so is more a matter

of software engineering matters than one that concerns optimization.

3.6.2 The Compiler

The feature recognition language gives end-users a powerful language for defining fea-

tures. However, I have no intention to implement a brand new programming language

from the bottom up; instead, I would like to make best use of existing achievements.

I assume that the feature definition language is first turned into an internal representa-

tion that is also declarative, and then the latter’s compiler could be adapted to solve the

task. Various declarative languages exist, and each has its merits. I explain here why

choosing SQL instead of Prolog as the internal representation for the test beds.

Prolog, the first predicate logic declarative language, is widely used in education and

research. Prolog supports various optimizations to process declarations, including

hashing, indexing, tail recursion, etc,. However, it has not had a significant impact on

the computer industry [SHCK95], and it is criticised for its poor performance [wik15e].

3.6 Discussion 52

Another issue is Prolog is not purely declarative: the order of clauses has a significant

impact on execution [DEGV01].

SQL, a relational predicate logic declarative language, is by far the most widely used

database language. In contrast to Prolog, it is widely used in industry. SQL has various

successful implementations including PostgreSQL, MySQL, Oracle, DB2, etc. The

SQL compiler turns the declarations into imperative algorithms. A large amount of

research has been done on how to choose the cheapest execution plan to give the best

performance.

It would be possible to use either SQL or Prolog as the internal representation and

corresponding compiler as the basis for this research. Both SQL and Prolog are based

on relational algebra, and the query processing ideas are more or less the same. In the

testbed, I choose to use SQL query as the internal representation because its success in

the industry and the well-developed optimizations that it provides.

Both SQL querying and feature recognition are essentially exhaustive methods when

expressed at the procedural level. In other words, to achieve the objective—users say

what they want, not how to get it—the relational declarative approach has to perform

a complete traversal of the possible solution space. The ability to reduce the search

space and access data of interest quickly is the key issue. Database systems are good

at retrieving structured results from a large amount of data, due to the query planner

which first generates several execution plans and then chooses the cheapest one.

As noted in Chapter 2, high time complexity has been one of the toughest challenges

for classic feature recognition approaches. I now investigate how to turn a feature

definition into an SQL query in a general way, so that the DB query optimizer can

choose a cheap algorithm for feature finding. I will give a conceptual architecture for

this in Chapter 4 and two different solutions in Chapters 5 and 6.

53

Chapter 4

Feature Recognizer Architecture

I have defined a new domain-specific feature recognition language in the last chapter.

A feature recognizer, like a compiler, turns the high-level language into a series of

execution instructions. The feature definition is first turned into an internal represen-

tation (a SQL query), then a DB engine chooses the cheapest execution plan based on

cost estimation. Beyond investigating the power of DB query optimization, I also ex-

plored how two other possible optimizations (lazy evaluation and predicate ordering)

can help to further improve the performance. This chapter will first give an overview of

my feature recognizer architecture, then discusses each module at a high level. Further

implementation details of the internal representations will be given in Chapters 5 and

6; lazy evaluation and predicate ordering optimization implementation details will be

given in Chapter 7.

4.1 Overview

I now describe the system architecture. Fig. 4.1 shows the conceptual design of the

feature finder. The central rectangle encloses all main components of the recognizer.

It consists of a translator, a DB query optimizer, and an executor as the main modules.

The translator turns the declarative feature definition into an SQL query, the DB query

optimizer turns it to execution plan (an imperative algorithm), the executor executes the

instructions using either data cached in the database or computed directly by the CAD

4.1 Overview 54

User
Command

DB

CAD Modeler

Translator

Feature
Definition

SQL
Query DB Query

Optimiser

Feature Recogniser

LE
Optimiser

PO
Optimiser Executor

Execution
plan

Figure 4.1: Feature recognition architecture. LE: lazy evaluation, PO: predicate

ordering.

modeler. In more detail, I have modified the DB query optimizer to support predicate

ordering, and developed my own translator and lazy evaluation optimizer to make up

the feature recognizer.

Beyond just using best results provided by the DB optimizer, two other optimizations

are explored expected to provide further performance improvements: lazy evaluation

and predicate ordering. As they were not used in the initial experiments, these modules

are drawn in dotted lines. The lazy evaluation is done by SQL rewriting, which happens

between the translator and the DB query optimizer. Predicate ordering is deeper and at

a lower level—it is performed by the modified DB query optimizer. More details will

be given later.

Dynamically, recognizing features including four kinds of interactions:

1. With the end-user: accepting the user’s manipulation commands

2. With the definition repository: reading and writing feature definitions

3. With CAD modeler: evaluating and loading data, and highlight the feature on the

4.2 Manipulation Language 55

CAD model, this allows validation by inspection, refer to example in Fig. 6.5.

4. With DB: caching intermediate data to a local database

These interactions are executed by various modules. For example, the user’s manipu-

lation commands are processed by a command analyzer. The translator turns the def-

inition into an SQL query, while the executor takes care of exchanging data between

the CAD modeler and DB.

In Figure 4.1, I have omitted some further more detailed modules. They are, firstly,

a parser, lexer, and command analyzer. Although they are essential components of

the system, they are not relevant to query optimizations; Secondly, I omit a predicate

ordering training module, a data import module, etc. Such implementation details will

be discussed as needed in Chapter 6.

4.2 Manipulation Language

Following SQL, besides the feature definition language, a complementary feature ma-

nipulation language is designed to allow end-users to operate the feature recognizer.

Table 4.1 gives its commands, which are closely related to the four kinds of interaction

mentioned above. A command analyzer turns the commands into routines. End-users

can ask the feature recognizer to OPEN a specified CAD model, LIST all existing

feature definitions, DEFINE, SAVE, and LOAD, new feature definitions, and to SHOW

and PRINT found features.

A typical work flow involves the user issuing a FIND command, assuming a corre-

sponding feature definition has been entered. The definition is translated into an SQL

query, and then sent to the database engine to process. The end-user can use the PRINT

command to output textual details of the features found, or SHOW to highlight the fea-

tures on a drawing of the original 3D model.

4.3 Main Modules 56

OPEN read in a specified CAD model.

LIST show existing feature definitions.

DEFINE input a new feature definition.

SAVE save a feature definition to disk.

LOAD read a feature definition from disk.

FIND find instances of a feature in the model.

SHOW draw the entities making up a found feature.

PRINT print details of a found feature.

Table 4.1: Manipulation language

4.3 Main Modules

The essential modules include DB query optimizer, translator and CAD modeler. In

this section, I discuss the main considerations of them.

4.3.1 DB Query Optimizer

As noted in the last chapter, the feature definitions are first turned into an internal

representation—SQL—that is also declarative, allowing us to adapt its compiler, and

the corresponding optimizer and execution engine for the task. Feature recognition is

in nature similar to a DB query: both involve exhaustive searching. Using SQL as

the internal representation and building the testbeds on an existing DB engine instead

of writing my own DB query optimizer saved a lot of work, enabling us to focus on

optimizations.

The DB query optimizer turns a declarative query into an efficient imperative algo-

rithm. Initially, I chose SQLite as the DB engine for the feature recognizer for the

pragmatic reasons that it is free, open source and has clearly structured code that facil-

itates linking it to the CAD modeler to build a feature recognizer. SQLite supports a

range of query optimization approaches, such as reordering joins, automatic indexing,

4.3 Main Modules 57

and subquery flattening. It is easy to revise the code to turn optimizations on and off,

to assess their effects.

In my later implementation, PostgreSQL was used as the database engine—it is also

free, and open source, which aids understanding of its query optimizer. The changing

of the engine has the reasons below:

1. I wanted a general translation approach which is applicable to all ((or most)

mainstream DB systems; I would like to know whether the translation approach

and insights gained from the SQLite testbed were applicable to other DB sys-

tems. If not, I would have to reconsider to get a more general translation.

2. I wanted highly efficient translated queries that can achieve good performance

via the query optimization, and PostgreSQL provides more powerful optimiza-

tions than SQLite. There was more chance to obtain better performance using

PostgreSQL as the kernel: see Sections 2.5.4 and 2.5.5. The most significant

advantages of the query optimizations supported by PostgreSQL over SQLite

include:

(a) Alternative ways to access data using sequential scans, bitmap index scans,

or index scans according to filter selectivity (using statistics obtained by

ANALYZE).

(b) Alternative ways of processing JOIN operations by shrinking the search

space and reducing time complexity, using nested loops, hash joins, and

merge joins.

(c) Reordering join sequences. PostgreSQL’s optimizer uses System R’s dy-

namic programming approach when the number of tables is small, but

switches to a genetic algorithm to solve the join ordering problem when

there is a large number of FROM tables [Mom01, GS01].

4.3 Main Modules 58

4.3.2 Translator

The translator turns feature definitions into an internal representation (an SQL query).

This is a transformation at the declarative level: both are declarations. It also needs to

generate efficient SQL, as the DB query optimizer cannot really generate an optimal

query, but only possibly improve the input query; it may do better at improving some

input queries than others. Besides, the translator needs to find a general way to finish

the declarative rewriting. Specifically it is required that:

1. The translator should be able to process all valid feature definitions.

2. The translated query should be effectively optimisable by the majority of DB

systems, not just the ones used in my testbeds.

The first requirement needs a thorough analysis of feature definitions, followed by

generating a unified translation framework. The second one urged us to think how

to bridge the gap between definitions and queries, while avoiding dependence on any

particular DB kernel.

In the initial implementation (the SQLite based feature recognizer), I proposed a straight-

forward translation approach—the definition is turned an SQL query in which all con-

ditions are expressed as EXISTS based subqueries. As SQLite effectively performs

indexing optimization, this allows simple features to be found in time approximately

O(n2) for models with n entities, as shown in Chapter 5.

However, on replacing SQLite with PostgreSQL, I found that this approach led to very

poor performance. PostgreSQL uses a strategy based on cross-joins via a Cartesian

product. Such optimization fails to reduce the complexity of nested loops correspond-

ing to multiple predicates, and even for simple models, could take days to return results.

This led us to rethink the way translation was performed. For flexibility, the translator

should work in a way that leads to good query processing times independently of the

choice of the underlying database engine used. As a result, I developed an inner-join

4.4 Optional Modules 59

based approach to translation, which is generally applicable to all mainstream DBs, as

shown in Chapter 6.

4.3.3 CAD Modeler

The CAD modeler is linked to the feature recognizer, passing model data and results of

calculations to the feature recognizer and DB tables. The CAD modeler is responsible

for loading shape models, answering geometric and topological queries, etc. The data

computed by the CAD modeler are cached but at different stages; I will give details in

the testbed chapters.

In my implementations, CADfix [ITI15, BS96] was used as the CAD modeler. It is a

commercial geometry translation and repair package primarily intended for 3D model

data exchange between different engineering systems and applications. It already pro-

vides some defeaturing tools, although I do not make use of these. CADfix (via its

API) is used to load CAD models (and repair them to ensure consistent, connected

topology), and to interrogate their topology and geometry. It is also used to draw the

features found.

4.4 Optional Modules

The basic feature recognizer consists of a translator and DB query optimizer / executor

as specified in Fig. 4.1. However, for more sophisticated cases, the end-user may want

to find features with certain numerical properties involving angles, areas, distances,

etc. in geometric predicates. The required calculations are time-consuming.

It is an obvious fact that it is unnecessary to compute the predicates for all entity in-

stances. Based on this idea, lazy evaluation and predicate ordering optimizations are

introduced to gain additional speed. They are regard as optional as they are only useful

for computationally-intensive cases.

4.4 Optional Modules 60

Lazy evaluation is a strategy that delays the evaluation of an expression until its value

is needed, and which also avoids repeated evaluation [Hud89]. In feature recognition,

some information is derived data that must be deduced from the CAD model by a com-

putation. Listings 3.2–3.3 give many predicates that require numerical computations,

and they may be slow. A better strategy is first to generate a candidate set that satisfies

other predicates and then perform such numerical computations only on the candidate

set—this will save a lot of unnecessary computing. A general way to turn a feature

definition into an SQL query is discovered, but while executing, some constraints are

evaluated on all instances while others are evaluated on a candidate set that satisfies

other constraints. More details will be given in Chapter 7.

Predicate ordering is a further optimization beyond lazy evaluation. In the testbed,

not all data predicates required are pre-loaded: some are computed at runtime when

needed (lazy evaluation). However, different predicates may take various times to

compute, and the probabilities they return True may differ. For example, in Listing 3.3,

Face_area_in_range is almost always faster to evaluate than Face_larger_than

as the second one needs to analyze two faces. Evaluating these two predicates in

this given order will typically be faster than the converse, as the former predicate

can quickly reject many faces, thus reducing the workload performed by the latter

predicate. In practice, not only each predicate’s cost but also the probability that this

predicate returns True are considered. More details will be given in Chapter 7.

Lazy evaluation and predicate ordering are general optimization approaches and not

dependent on any particular DB system. In practice, these ideas are only implemented

in the PostgreSQL based feature recognizer. Both approaches are also applicable to

SQLite, any other mainstream DB systems, or even a stand-alone feature recognition

system.

4.5 Summary 61

4.5 Summary

This chapter has considered the architecture of the feature recognizer. The key point is

that it turns a declarative feature description into an efficient imperative algorithm (an

executor executes the algorithm). The transformation includes several stages: firstly,

the feature declaration is turned into an SQL query. If there are some computationally

intensive predicates, they are rewritten to ensure lazy evaluation. Secondly, the SQL

query is sent to the DB query optimizer where if there are multiple computationally

intensive predicates, a predicate ordering optimizer will shuffle the order of predicates

based on a metric I discuss later. Thirdly, the DB query optimizer chooses a cheapest

execution path (imperative algorithm) based on static analysis of the data. Fourthly,

the execution path is turned into machine instructions and executed.

62

Chapter 5

SQLite Implementation and

Quasi-quadratic Performance

5.1 Overview

Having discussed the aims and architecture, I now turn to implementations, and the

tests performed upon them. To verify the ideas, a basic feature recognition testbed

(only composed of a translator, a DB engine, and an executor) around SQLite and

CADfix is built initially. The core question in this chapter is “Can database optimiza-

tions help to find features quickly?” with subquestions

1. How should the translator work?

2. What performance is observed in practice?

3. Can the performance are understood by looking at the query plan?

5.2 Testbed Implementation Details

Using the detailed architecture in Fig. 5.1, an SQLite based feature recognizer is im-

plemented. I start by introducing my testbed and then go into translation details. My

implementation of Fig. 5.1 is built upon SQLite [SQL15b] by modifying its source

code. Here, I give a brief explanation of the workflow.

5.2 Testbed Implementation Details 63

Core

Accessories

Language compiler

Tokenizer

Utilities

Interface

Parser

Code
Generator

Command
Processor

Virtual
Machine

Backend

Pager

OS
Interface

B-tree

CAD modeler

CADfix

Translator

Legend

Module modified
from SQLite

Module newly devised/added

Module, unchanged
from SQLite

Figure 5.1: SQLite based testbed

The language compiler takes a feature definition in text form, then the tokenizer and

parser split it and recast in the form of a parse tree. The translator analyzes the parse

tree and turns it into an SQL query that is input to a command processor. The SQL

statement is validated by the tokenizer. When the parser reads in the query, it first

checks to see if the necessary tables for the entities involved have already been created

in the local database (for example, to find instances of a different feature). If not, it

issues the necessary SQL CREATE commands to generate the tables, and then calls

CAD modeler API functions to import the data needed to populate these tables. The

CADfix [ITI15] is used as the CAD modeler, as explained in Section 5.3.1. Then the

SQL query is again processed by the parser to generate a parser tree.

5.2 Testbed Implementation Details 64

Query optimizations are performed in the code generator, whose sole job is to convert

the parser tree into an algorithm (low level instructions understood only by SQLite)

and hand it off to the virtual machine for execution. The accessories module deals with

memory allocation and caseless string comparison routines (see [SQL15b] for more

detailed explanations of SQLite modules).

As the Figure shows, some SQLite modules are modified, some new modules are added

for feature recognition. Specifically, I have:

1. Modified SQLite’s tokenizer and parser to support the feature definitions.

2. Added a translator module, which is in charge of turning the feature definition

into an SQL query.

3. Modified the interface to the SQLite engine, enabling batch processing for scal-

ing performance experiments.

4. Modified the SQLite backend interface to enable exchanging data with CAD

modeler.

5. Modified the command processor, to allow its built-in optimization approaches

(re-ordering joins, subquery flattening, and automatic indexing) to be turned off

and on, to understand their effects on performance.

The main query optimizations of SQLite come after the command processor module

(in the code generator). It has a compact but effective query optimizer [Hip15], which

provides sargable rewriting in order to use indexes, and provides algebraic space and

method-structure space transformations such as reordering joins, subquery flattening,

automatic indexing and group-by optimizations (also using indexing).

5.3 Translation 65

5.3 Translation

The translator turns the feature definition into an SQL query. Intuitively, the translation

can be straightforward, as both are expressed declaratively. As SQL queries have a

close relationship with the data model (range tables), I explain how the geometric data

are modeled before describing the translation algorithm.

5.3.1 Data Model

In SQL queries, all relations are expressed as tables. How the data are modeled affects

the form of the query expression. The feature definition contains entities and con-

straints; correspondingly, there are two types of DB tables: entity tables and constraint

tables. Entity tables can refer to primitives (faces, edges or vertices) or subfeatures.

They are the source relations from which the feature is extracted. The constraints ta-

bles (bounds_ef, bounds_ve, convexity, face geometry, etc,.) are the relations used to

represent predicates. These models used are as follows:

• primitive entities are modeled as a single column (named as id) table and popu-

lated by all instances’ id of this type;

• subfeature entities are modeled as a multi-column table where each column is a

primitive entity;

• constraints are modeled as a multi-column table where the columns may be a

primitive id, and attributes or further primitive ids;

Listing 5.1 gives some examples of these tables. In the entity tables, the id is an

integer value imported from CAD modeler. Each entity table includes all instances of

this type of entity in the model. In the constraint tables, the attributes have data types

defined in Table 3.1.

5.3 Translation 66

1 //entity tables:

2 faces (id int);

3 edges (id int);

4 vertexes (id int);

5 slot(id1 int, id2 int ...);

6 //constraint tables:

7 bounds_ef (edge int, face int);

8 convexity(edge int, type int);

9 face_has_geometry(face int, geometry int);

Listing 5.1: Entity and constraints are modeled as DB tables

There are various ways to populate the tables, including:

Method 1 Extract required data from the CAD model and load it into tables, then just

use the tables in normal SQLite queries.

Method 2 Make some virtual tables, but change SQLite so that when it requests data

from a virtual table, it instead gets it from CADfix.

Method 3 Do the above, but also cache data as it is retrieved, for efficiency.

In the testbed, for simplicity Method 1 is used as this basic approach let us focus on

how the query is optimized when the data are local tables. The updated PostgreSQL

based testbed uses either Method 2 or Method 3 to populate tables, as explained in

Chapter 7.

In practice, the tables are populated at runtime. As noted in Section 5.2, when the tok-

enizer reads declarations that require use of some appropriate range table, it determines

whether the corresponding table exists. If not, it issues the necessary SQL CREATE

commands to generate the tables, and then calls CAD modeler API functions to import

the data needed to populate these tables. This approach is equivalent to Method 1 in

essence, but avoids the need to create tables and populate them manually.

The constraint tables are also loaded using Method 1. The attributes are computed once

and all relevant data are cached. For example, if the user asks for the geometry of one

face, the geometry of all faces is imported to the table.

5.3 Translation 67

5.3.2 Translation Rules

The strategy used to translate the feature definition into an SQL query is to map it part

by part. The form of a feature delaration is repeated here for convenience, in more

detail.

1 DEFINE <feature> AS

2 <entity_type1: name11, name12...>

3 <entity_type2: name21, name22...>

4 ...

5 SATISFYING

6 <predicate1(name11, name22)>

7 <predicate2(name21, value)>

8 ...

9 EXPORT

10 <name11 as alias1>

11 <name12 as alias2>

12 ...

13 END

Listing 5.2: Feature definition

A feature definition has the following four parts:

1. <feature> between DEFINE and AS is the target feature name. It is used

as the name of the table that stores found instances of the feature. The table’s

column names are determined from the <output> clause.

2. <input> is the clause between AS and SATISFYING. It lists the input entities

used to define a feature. These could be primitives (vertices, edges, or faces) or

subfeatures.

3. <constraints> is the clause between SATISFYING and EXPORT. These

are the basic conditions the feature must satisfy.

4. <output> is the clause between EXPORT and END. It is used to give cer-

tain primitives of this feature an alias, and cause information about them to be

recorded. It is useful when other features use this feature as a subfeature.

5.3 Translation 68

A table named after the feature are generated to cache the found features. Then the

<input> are translated into a range table clause, <output> into a target list clause

and the <constraints> into a qualification clause (see Section 2.4 for more de-

tails). Finally, the three clauses are concatenated to generate the complete SQL query.

Pseudocode for this process is shown in Listing 5.3. It is noted that the pseudocode

shows the basic idea but does not cover all kinds of predicates (may have more than 3

arguments).

1 set root query="CREATE TABLE <feature> AS";

2 set target_list_clause="SELECT";

3 set range_table_clause="FROM";

4 set predicate_clause="WHERE";

5

6 //generate range clause

7 for each input

8 append range_table_clause with ’<input> AS <alias_input>’;

9 end

10 //generate target list clause

11 for each output

12 append target_list with ’<alias_input>.column AS <feature.column>’

13 end

14 //translate predicates

15 for each constraint

16 if (Same_id (v1,v2)) append qualification_clause with v1=v2;

17 // and similar translation for Different_id, Greater_id, Lower_id

18 if (predicate(v1,v2)) append qualification_clause with ’EXISTS (SELECT <

constraint>.col1 from <constraint> where <constraint>.col1= v1 and <constraint>.

col2=v2) AND’);

19 if (predicate (v1, rmin, rmax)) append qualification_clause with ’predicate (v1,

rmin, rmax)) AND’)

20 end

21

22 query = append(target_list, range_table_list, predicate_list);

Listing 5.3: Pseudocode for translation

In detail, translation includes the following steps:

1. Lines 1–4. Define basic SQL query fragments for the target list, range table, and

qualification clauses. The root query creates a table called as <feature>. Fur-

5.3 Translation 69

ther steps of the translation complete the target list, range table, and qualification

clauses separately and combine them with the root query.

2. Generate the range table clause by traversing all <input> statements. Range ta-

bles contain the source entities the feature is extracted from. As feature recogni-

tion requires an exhaustive search, all candidates of each entity type must be con-

sidered. Thus, in an SQL query, the same table may be used multiple times, once

for each entity of that type mentioned in the feature declaration. They are given

different names and, in general, treated differently. Translation of the range ta-

ble clause gives the entity table an alias name (entity_name) for each named

entity, for use in the SQL query. For example, edge: e1, e2; in the declara-

tion becomes edges as e1, edges as e2 in the SQL query. The range

table can also be a subfeature table, for instance triangle_face as t1.

The qualifications and target list clause are expressed using the alias names.

3. Generate the target list clause by traversing all <output> statements. The tar-

get list statements make up the result table (<feature>) by specifying each

column. As lines 10–12 show, the column of the range table (<alias_input>)

that user would like to use in other feature definition is given an alias

<feature.column>.

4. Generate the qualification clause by traversing all constraints. The constraints are

translated into condition statements in the qualification clause. The translation is

also straightforward. There are three categories of predicates:

(a) Same_id(v1,v2) and similar predicates. These compare the ids of dif-

ferent entities. They are turned into mathematical expressions, for exam-

ple, v1=v2, where v1, v2 are the column names of the relations. An

example using subfeatures is Same_id(s1.f1,f1) which is translated

into s1.id1=f1.id where s1 is an alias name of a slot subfeature (see

Listing 5.1).

5.3 Translation 70

(b) Predicate(v1,v2). In such predicates v2 can be an entity name or a

real value. They describe relations between two entities, or state an attribute

that the entity v1 should have. Such predicates are turned into existence test

subqueries, using EXISTS based subqueries. For example, the constraint

Bounds_EF(e1,f1) is translated into EXISTS(SELECT bounds_ef

.edge from bounds_ef where bounds_ef.edge=e1 and

bounds_ef.face=f1).

The <constraint> table must exist before performing the query (in

practice, as noted in Section 5.2, the parser will check for the existence

of the table when it reads in a query, and if the relation does not exist, it

issues the necessary SQL CREATE commands to generate the tables, and

then calls CAD modeler API functions to import the data needed to popu-

late these tables.

(c) Predicate (v1, rmin, rmax). Such constraints concern approxi-

mate relationshipsin which some property should lie in a target range. They

are translated into arbitrary functions that interact with the CAD modeler

and return True or False. They are implemented in the SQLite based testbed

as in this version I was focusing on optimization of basic feature recogni-

tion. They are supported in the PostgreSQL based feature recognition as

explained in Chapter 7.

Listing 5.4 and Listing 5.5 shows the results of translation of the notch definition in

Listing 3.4 and in Listing 3.5; also see Fig. 3.1.

1 CREATE TABLE notch AS

2 SELECT f1.id AS f1, f2.id AS f2, f3.id AS f3, f4.id AS f4,

3 e1.id AS e1, e2.id AS e2, e3.id AS e3, e4.id AS e4, e5.id AS e5

4 FROM faces AS f1, faces AS f2, faces AS f3, faces AS f4,

5 edges AS e1, edges AS e2, edges AS e3, edges AS e4, edges AS e5

6 WHERE f1.id < f2.id

7 AND f3.id < f4.id

8 AND e2.id <> e1.id

9 AND e3.id <> e1.id

5.3 Translation 71

10 AND e4.id <> e1.id

11 AND e5.id <> e1.id

12 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

13 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e1.id)

14 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

15 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e1.id)

16 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

17 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e2.id)

18 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

19 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e2.id)

20 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

21 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e3.id)

22 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

23 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e3.id)

24 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

25 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e4.id)

26 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

27 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e4.id)

28 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

29 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e5.id)

30 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

31 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e5.id);

32 AND EXISTS (SELECT convexity.edge FROM convexity

33 WHERE convexity.type = 1 AND convexity.edge = e1.id)

34 AND EXISTS (SELECT convexity.edge FROM convexity

35 WHERE convexity.type = 2 AND convexity.edge = e2.id)

36 AND EXISTS (SELECT convexity.edge FROM convexity

37 WHERE convexity.type = 2 AND convexity.edge = e3.id)

38 AND EXISTS (SELECT convexity.edge FROM convexity

39 WHERE convexity.type = 2 AND convexity.edge = e4.id)

40 AND EXISTS (SELECT convexity.edge FROM convexity

41 WHERE convexity.type = 2 AND convexity.edge = e5.id)

Listing 5.4: Notch definition (DBP) as SQL

1 CREATE TABLE triangle AS

2 SELECT f.id as f, e1.id as e1,e2.id as e2, e3.id as e3

3 FROM faces AS f, edges AS e1, edges AS e2, edges AS e3

4 WHERE e1.id <> e2.id

5 AND e1.id <> e3.id

6 AND e2.id <> e3.id

7 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

8 WHERE bounds_ef.face = f.id AND bounds_ef.edge = e1.id)

9 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

10 WHERE bounds_ef.face = f.id AND bounds_ef.edge = e2.id)

5.4 Experiments 72

11 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

12 WHERE bounds_ef.face = f.id AND bounds_ef.edge = e3.id)

13 AND EXISTS (SELECT valency.face FROM valency

14 WHERE valency.degree = 3 AND valency.face = f.id)

15

16 CREATE TABLE tripair AS

17 SELECT t1.e1 AS e0, t1.e2 AS e1, t1.e3 AS e2, t2.e2 AS e3, t2.e3 AS e4

18 FROM triangle AS t1, triangle AS t2

19 WHERE t1.e1 = t2.e1

20 AND t1.e2 <> t2.e2

21 AND t1.e3 <> t2.e2

22 AND EXISTS (SELECT convexity.type FROM convexity

23 WHERE convexity.type = 1 AND convexity.edge = t1.e1)

24

25 CREATE TABLE notch AS

26 SELECT n.e0 AS e0, n.e1 AS e1, n.e2 AS e2, n.e3 AS e3, n.e4 AS e4

27 FROM tripair AS n

28 WHERE EXISTS (SELECT convexity.type FROM convexity

29 WHERE convexity.type = 2 AND convexity.edge = n.e1)

30 AND EXISTS (SELECT convexity.type FROM convexity

31 WHERE convexity.type = 2 AND convexity.edge = n.e2)

32 AND EXISTS (SELECT convexity.type FROM convexity

33 WHERE convexity.type = 2 AND convexity.edge = n.e3)

34 AND EXISTS (SELECT convexity.type FROM convexity

35 WHERE convexity.type = 2 AND convexity.edge = n.e4)

Listing 5.5: Notch definition (DBS) as SQL

5.4 Experiments

I now describe various experiments carried out to determine if an approach to feature

finding based on database optimization is viable, and in particular whether the auto-

matic query optimizer in SQLite can enable features to be found at a reasonable speed.

In particular, I consider three questions. Does database optimization help, and if so

how much? How powerful is SQLite database optimization? Is this relevant to real

models?

5.4 Experiments 73

5.4.1 Performance Measurements

I clarify performance measurements for feature recognition in this section. Feature

recognition includes various operations, and time is spent on at least:

1. computing by the CAD modeler and loading data from it,

2. the DB executing ANALYZE to generate statistics for tables (a necessary step

before executing a query, as the query optimizer uses the statistics to choose

cheapest execution plan),

3. the query optimizer generating possible execution paths;,

4. the query optimizer generating costs of the paths,

5. the query optimizer choosing the cheapest execution plan,

6. the executor generating machine instructions for the execution plan,

7. executing the plan.

In practice, some time costs such as ANALYZE and query planning time are more or

less fixed. Other costs are beyond my control, e.g. how long it takes the modeler to

load the model. Indeed, it is neither necessary nor possible to collect all these times.

Instead, I simply consider the feature recognizer as:

1. generating an imperative algorithm, then

2. executing the imperative algorithm.

The first stage turns declarations into algorithms, and it is usually fast. The first step

can generate various algorithms, and they may have different performance. I am more

concerned with the second stage of performance of the imperative algorithm, as this

will become more significant for larger models. The imperative algorithm execution

5.4 Experiments 74

Figure 5.2: Model with 8 notched blocks

time affects the end-user experience directly. Here, I assume that all DB tables can

be imported quickly, and ignore the time taken to execute ANALYZE or CAD mod-

eler computation time. Thus, I only consider features that are described by topological

predicates (Table 3.2), and geometric predicates (Table 3.3). More complicated cases

(when one has to consider CAD modeler computation time) will be discussed in Chap-

ter 7.

Two aspects of feature finding performance are considered: absolute times and scaling

performance (time complexity). Absolute time gives a baseline that an end-user may

experience. However, the absolute time may be dependent on the specific hardware and

software. Scaling performance is more important when deciding whether the algorithm

is useful or not.

The scaling performance are obtained by experiments on special designed artificial

models, and later, by theoretical analysis of execution plans. The performance shown

for finding basic features (such as notches, slots and through holes) is discussed in

this chapter. Such features are the most common ones engineers need to find in indus-

try [BNM08, SAKJ01]. I explain my artificial models here, as the scaling experiments

in this chapter, and the next chapter, were all performed on such models.

5.4 Experiments 75

Table 5.1: Test platform configuration
Model Thinkpad W530

CPU Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz

Memory 8GB

OS Debian GNU/Linux 6.0.10 (squeeze)

Compiler GCC 4.8.2

SQLite version 3.7.16.2

The artificial models were generated recursively: initially, a model is generated with

only one block having only one feature, as shown in Fig. 3.1. Then it is repeatedly

duplicated to generate new models with 2, 4, 8, etc. blocks, each with one feature. In

this way, a series of models whose edges and faces, and number of features, increasing

geometrically are obtained. Fig. 5.2 shows an example after duplicating the model

three times. A sequence of such models is named as a feature model family in this

thesis.

In experiments, it can be estimated the scaling performance using these artificial mod-

els. A log-log plot is chosen, in which the vertical t-axis is time taken to find the

features of the given type in each model, and the horizontal n-axis is the total number

of edges in that model. Assuming that the time taken for feature finding is dominated

by t = αnp, fiting a straight line to the log data, its slope gives the exponent p indicating

the time complexity.

The test platform configuration is given in Table 5.1

5.4.2 Benefits of Database Optimization

The first experiment aimed to see whether feature recognition can gain benefits from

DB query optimization, and if so, how it is achieved.

As already noted, a declarative approach, if naive translated using nested loops, has

5.4 Experiments 76

time complexityO(nk) for a model with n entities, and a feature composed of k entities

(for simplicity ignoring the fact that entities have different types). Clearly, for large

models, and any realistic value of k, this is infeasible, and the question is whether the

database optimization techniques can significantly improve upon this.

The feature finder was tested on a notch model family (see Fig. 5.2). More experiments

on slot and step-rib model family please refer to Fig. 6.4 and Table 6.4. In this section,

I focus on using notch family to illustrate the performance and optimizations. The

single notch definition in Listing 3.4 has nine entities and seventeen predicates; clearly,

naive translation has high complexity. In practice, it represent a typical requirement in

engineering analysis: it is simple but rare, and no existing (as far as known) CAD

modeler has hard-coded such features; however, engineers may want to remove them

before meshing.

The source code of the SQLite query optimizer (the code generator in Fig. 5.1) was

modified to enable SQLite’s optimizations (reordering joins, indexing and subquery

flattening) to be turned on and off. All are disabled but one optimization off to find the

benefits of each, and performed an experiment on the feature family. Fig. 5.3 gives the

performances for the notch family. It is clear that when all optimizations are turned

off, the feature recognizer gives the worst performance, while turning all optimizations

on is best, as hoped.

Firstly, the absolute time. With full optimization, the program can analyze a model

with 18000 edges in about 5 minutes, which is a realistic, acceptable value for a real

feature-finding application. However, in the same time, it can only analyze a model

with 1100 edges if the only optimization used is reordering joins, dropping to a model

of 70 edges if no optimization is used. Subquery flattening shows little effect in this

experiment and the curve when it is the only optimization used is little better than

the unoptimized result. Theoretical analysis shows that although the query consists of

subqueries, subquery flattening optimization has not proved effective.

Secondly, the scaling performance. Table 5.2 gives slopes for the notch feature and

5.4 Experiments 77

-3

-2

-1

 0

 1

 2

 3

 4

 1 1.5 2 2.5 3 3.5 4 4.5

lo
g 1

0(
T

im
e

ta
ke

n
in

 s
ec

on
ds

)

log10(Number of edges)

Full optimization
Enable reorder joins

Enable automatic index
Enable subquery flattening

Disable all optimization

Figure 5.3: Query optimization performance compare (notch)

through-hole (see Listing 5.6) feature using different optimization approaches. It is

clear that the fully optimized program has (approximately) a time complexity O(n2)

for the notch feature, while the un-optimized one has a much higher complexity, about

O(n6). Reordering joins by itself helps significantly, reducing the slope to about 3,

while automatic indexing by itself has less impact, reducing the slope to about 5. It can

be loosely said that, for notch features, that getting 1 order of complexity of benefit

from indexing and 3 orders from reordering joins. For through-hole features (defined

in Listing 5.6 which is translated as Listing 5.7), the query optimization provided less

benefit, due to the somewhat different definition used, reducing complexity from about

O(n3.7) to O(n2.3).

The estimated slopes allow us to predict how the time taken varies as model size in-

creases. For the unoptimized algorithm (indexing, reordering joins and subquery flat-

tening optimizations disabled), a model with a single notch takes about 5 seconds to

process, while a model with 8 notches (Fig. 5.2) would take 5×86 seconds≈ 2 weeks,

5.4 Experiments 78

Optimization Notch Throughhole

All 2.0 2.3

Reorder joins 2.8 3.4

Automatic indexing 5.0 2.6

Subquery flattening 6.0 3.5

None 6.0 3.7

Table 5.2: Slopes for various optimizations (notch and throughhole)

confirming my assertion that a declarative approach without optimization is infeasible.

On the other hand, with all optimizations turned on, the 8 notches model in Fig. 5.2

takes about 32 ms. The much larger model (with about 18000 edges) can be analyzed

in a feasible time (about 5 minutes) by the full optimized program while the unopti-

mized program did not return result after hours. Reordering joins is the most powerful

optimization, and automatic indexing is also useful, but subquery flattening shows little

effect.

1 DEFINE throughhole AS

2 face: f1,f2,f3,f4

3 edge: e1,e2,e3,e4,e5,e6

4 SATISFYING

5 Greater_id(f1,f2)

6 Greater_id(e2,e1)

7 Greater_id(f4,f3)

8 Bounds_EF(e1,f1)

9 Bounds_EF(e1,f3)

10 Bounds_EF(e2,f1)

11 Bounds_EF(e2,f4)

12 Bounds_EF(e3,f2)

13 Bounds_EF(e3,f3)

14 Bounds_EF(e4,f2)

15 Bounds_EF(e4,f4)

16 Bounds_EF(e5,f3)

17 Bounds_EF(e5,f4)

18 Bounds_EF(e6,f4)

19 Bounds_EF(e6,f3)

20 Convexity(e1,convex)

21 Convexity(e2,convex)

5.4 Experiments 79

22 Convexity(e3,convex)

23 Convexity(e4,convex)

24 Convexity(e5,tangential)

25 Convexity(e6,tangential)

26 Face_has_geometry(f3,cylinder)

27 Face_has_geometry(f4,cylinder)

28 EXPORT

29 e1 as e1, e2 as e2, e3 as e3, e4 as e4, e5 as e5,

30 f1 as f1, f2 as f2, f3 as f3, f4 as f4

31 END

Listing 5.6: Through-hole definition

1 CREATE TABLE throughhole AS

2 SELECT f1.id AS f1, f2.id AS f2, f3.id AS f3, f4.id AS f4,

3 e1.id AS e1, e2.id AS e2, e3.id AS e3, e4.id AS e4, e5.id AS e5, e6.id AS e6

4 FROM faces AS f1, faces AS f2, faces AS f3, faces AS f4, edges AS e1,

5 edges AS e2, edges AS e3, edges AS e4, edges AS e5, edges AS e6

6 WHERE f2.id < f1.id

7 AND e1.id < e2.id

8 AND f3.id < f4.id

9 AND EXISTS (SELECT face FROM face_has_geometry

10 WHERE face = f3.id AND geometry = 2006)

11 AND EXISTS (SELECT face FROM face_has_geometry

12 WHERE face = f4.id AND geometry = 2006)

13 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

14 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e1.id)

15 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

16 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e1.id)

17 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

18 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e2.id)

19 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

20 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e2.id)

21 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

22 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e3.id)

23 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

24 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e3.id)

25 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

26 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e4.id)

27 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

28 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e4.id)

29 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

30 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e5.id)

31 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

32 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e5.id)

5.4 Experiments 80

33 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

34 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e6.id)

35 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

36 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e6.id)

37 AND EXISTS (SELECT convexity.edge FROM convexity

38 WHERE convexity.type = 2 AND convexity.edge = e1.id)

39 AND EXISTS (SELECT convexity.edge FROM convexity

40 WHERE convexity.type = 2 AND convexity.edge = e2.id)

41 AND EXISTS (SELECT convexity.edge FROM convexity

42 WHERE convexity.type = 2 AND convexity.edge = e3.id)

43 AND EXISTS (SELECT convexity.edge FROM convexity

44 WHERE convexity.type = 2 AND convexity.edge = e4.id)

45 AND EXISTS (SELECT convexity.edge FROM convexity

46 WHERE convexity.type = 3 AND convexity.edge = e5.id)

47 AND EXISTS (SELECT convexity.edge FROM convexity

48 WHERE convexity.type = 3 AND convexity.edge = e6.id)

Listing 5.7: Throughhole definition as SQL

5.4.3 Definitions Affect Performance

A declarative approach enables end-user to define features as they like. In Chapter

3, two ways are given to define features: define by entity and define by subfeature.

Different ways to define features may induce different SQL query translation and they

may lead to different performance, as optimization is not likely to be perfect. In this

section, I show how defining features by subfeature affects the performance.

A second experiment is conducted to determine to what extent the input feature def-

inition affects the final optimized performance. Again the notch family models are

used. Query optimization was turned on or off for both definitions discussed earlier

(see Listings 3.4 and 3.5). Fig. 5.4 and Table 5.3 give the results of this test.

Clearly, the original all-in-one definition was highly inefficient, and query optimiza-

tion has significantly improved it. However, a subfeature definition based approach is

better still. The number of entities in a feature determines the level of loop nesting.

The original notch definition is made up of 9 of entities, so the all-in-one definition if

5.4 Experiments 81

-3

-2

-1

 0

 1

 2

 3

 4

 1 1.5 2 2.5 3 3.5 4 4.5

lo
g 1

0(
T

im
e

ta
ke

n
in

 s
ec

on
ds

)

log10(Number of edges)

Full optimization-Origianl definition
Full optimization-Subfeature definition
No optimization-Subfeature definition

No optimization-Original definition

Figure 5.4: Using alternative notch feature definitions

Optimization Definition Slope

None All-in-one 6.0

Full All-in-one 2.0

None Subfeatures 1.81

Full Subfeatures 1.76

Table 5.3: Slopes for various definitions

executed naively would have time complexity O(n9); in practice, the results are some-

what lower. The subfeature approach has naive time complexity of O(n6), and again

see better in practice, even with optimization turned off.

Nevertheless, it can be seen that, as expected, the subfeature definition is more efficient

than the all-in-one definition. Secondly, for the subfeature approach, query optimiza-

tion has still improved upon the input query, but much less than for the all-in-one

approach, as it was more efficient to start off with.

5.4 Experiments 82

From this experiment, two further conclusions can be drawn. Firstly, although database

optimization can speed up feature finding, it does not turn the input query into an opti-

mal query: even after database optimization was used, the two definitions took different

times to find features. (This is certainly true for SQLite; other database engines may

be better at optimization).

Secondly, this in turn implies that the engineer must construct his feature definition

carefully. While database optimization can turn a poor definition into a much better

execution plan, and can also slightly improve even a good plan, careful thought when

constructing the feature definition is also beneficial.

5.4.4 Real Industrial Models

The earlier experiments only considered artificial models, while real industrial models

may be very complex and cause feature finders to behave differently. For example, in

the previous tests, the number of features went up with model size, but this may or may

not happen in real models—there may just be a few features of a given kind on a very

complex model.

To explore how the feature finder system performs on at least some simple real indus-

trial models, it is used to find slot features (defined in Listing 5.8, and translated as in

Listing 5.9) on a CPU heat sink, a carbine, and a switch, as shown in Fig. 5.5. All slot

feature are found correctly, results are summarized in Table 5.4.

5.4 Experiments 83

Figure 5.5: CPU heatsink, Carbine and Switch

Absolute time is considered here. For the simplest model, the carbine, optimized fea-

ture finding took only 0.05 s; without optimization the time taken was over 14 hours.

The more complex switch and CPU heat sink models required 0.2 s and 7 s respec-

tively, and would have taken too long to process without optimization. Using database

optimization in combination with a declarative approach to feature definition is thus

potentially applicable to real world problems.

1 DEFINE slot AS

2 face: f1,f2,f3,f4,f5

3 edge: e1,e2,e3,e4,e5,e6,e7,e8

4 SATISFYING

5 Greater_id(e2,e1)

6 Greater_id(e4,e3)

5.4 Experiments 84

Model CPU heatsink Carbine Switch

Number of edges 2388 84 330

Number of slots 24 6 9

Optimized query 6.94 s 0.05 s 0.22 s

Unoptimized query — 14.47 hours —

Table 5.4: Time taken to find slots in real models

7 Different_id(f1,f5)

8 Different_id(f1,f4)

9 Face_valency(f1,4)

10 Bounds_EF(e1,f1)

11 Bounds_EF(e1,f2)

12 Bounds_EF(e2,f1)

13 Bounds_EF(e3,f1)

14 Bounds_EF(e4,f1)

15 Bounds_EF(e3,f3)

16 Bounds_EF(e4,f2)

17 Bounds_EF(e5,f2)

18 Bounds_EF(e8,f2)

19 Bounds_EF(e2,f3)

20 Bounds_EF(e6,f3)

21 Bounds_EF(e7,f3)

22 Bounds_EF(e3,f4)

23 Bounds_EF(e5,f4)

24 Bounds_EF(e6,f4)

25 Bounds_EF(e7,f5)

26 Bounds_EF(e4,f5)

27 Bounds_EF(e8,f5)

28 Convexity(e1,convex)

29 Convexity(e2,convex)

30 Convexity(e5,convex)

31 Convexity(e6,convex)

32 Convexity(e7,convex)

33 Convexity(e8,convex)

34 Convexity(e3,concave)

35 Convexity(e4,concave)

36 EXPORT

37 e1 as e1, e2 as e2, e3 as e3, e4 as e4, e5 as e5, e6 as e6,

38 e7 as e7, e8 as e8, f1 as f1, f2 as f2, f3 as f3, f4 as f4, f5 as f5

5.4 Experiments 85

39 END

Listing 5.8: Slot definition

1 CREATE TABLE slot AS

2 SELECT f1.id as f1, f2.id as f2, f3.id as f3, f4.id as f4, f5.id as f5, e1.id as e1,

3 e2.id as e2, e3.id as e3, e4.id as e4, e5.id as e5, e6.id as e6, e7.id as e7,

4 e8.id as e8

5 FROM faces AS f1, faces AS f2, faces AS f3, faces AS f4, faces AS f5, edges AS e1,

6 edges AS e2, edges AS e3, edges AS e4, edges AS e5, edges AS e6, edges AS e7,

7 edges AS e8

8 WHERE e1.edge < e2.edge

9 AND e3.edge < e4.edge

10 AND f1.face <> f5.face

11 AND f1.face <> f4.face

12 AND EXISTS (SELECT face FROM face_valency

13 WHERE degree = 4 AND valency.face = f1.id)

14 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

15 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e1.id)

16 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

17 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e2.id)

18 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

19 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e3.id)

20 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

21 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e4.id)

22 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

23 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e1.id)

24 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

25 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e5.id)

26 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

27 WHERE bounds_ef.face = f2.id AND bounds_ef.edge = e8.id)

28 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

29 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e2.id)

30 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

31 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e6.id)

32 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

33 WHERE bounds_ef.face = f3.id AND bounds_ef.edge = e7.id)

34 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

35 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e3.id)

36 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

37 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e5.id)

38 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

39 WHERE bounds_ef.face = f4.id AND bounds_ef.edge = e6.id)

40 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

41 WHERE bounds_ef.face = f5.id AND bounds_ef.edge = e7.id)

5.5 Theoretical Analysis 86

42 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

43 WHERE bounds_ef.face = f5.id AND bounds_ef.edge = e4.id)

44 AND EXISTS (SELECT bounds_ef.edge FROM bounds_ef

45 WHERE bounds_ef.face = f5.id AND bounds_ef.edge = e8.id)

46 AND EXISTS (SELECT convexity.edge FROM convexity

47 WHERE convexity.type = 2 AND convexity.edge = e1.id)

48 AND EXISTS (SELECT convexity.edge FROM convexity

49 WHERE convexity.type = 2 AND convexity.edge = e2.id)

50 AND EXISTS (SELECT convexity.edge FROM convexity

51 WHERE convexity.type = 2 AND convexity.edge = e5.id)

52 AND EXISTS (SELECT convexity.edge FROM convexity

53 WHERE convexity.type = 2 AND convexity.edge = e6.id)

54 AND EXISTS (SELECT convexity.edge FROM convexity

55 WHERE convexity.type = 2 AND convexity.edge = e7.id)

56 AND EXISTS (SELECT convexity.edge FROM convexity

57 WHERE convexity.type = 2 AND convexity.edge = e8.id)

58 AND EXISTS (SELECT convexity.edge FROM convexity

59 WHERE convexity.type = 1 AND convexity.edge = e3.id)

60 AND EXISTS (SELECT convexity.edge FROM convexity

61 WHERE convexity.type = 1 AND convexity.edge = e4.id)

Listing 5.9: Slot definition as SQL

5.5 Theoretical Analysis

This section discusses the imperative algorithm that the query optimizer chooses and

discuss its theoretical performance.

5.5.1 Execution Plan

To determine what imperative algorithm the query planner generated, command ANALYZE

is executed, which gathers statistics about tables and indices, and stores the collected

information in internal tables of the database. Then command EXPLAIN QUERY PLAN

(other DB systems may support different styles of interrogation) is executed. Dur-

ing execution, the query optimizer uses this statistical information for query plan-

ning [SQL15a]. The output provides us with information about the execution plan.

5.5 Theoretical Analysis 87

It is discovered that for common features (notch, slot, and through-hole) the execu-

tion plans chosen by the query optimizer were similar. This enabled us to conclude

some execution choices by analyzing typical tasks. Listing 5.10 gives a query frag-

ment for the slot feature; Listing 5.11 shows the corresponding execution plan. The

numbers indicated are the table (or its index) lengths estimated by SQLite [Hip13].

These are generated automatically by the SQLite query planner, and change case by

case. Valency in the query means the number edges for a face. The testbed was based

on SQLite version 3.7.16.2; newer versions of SQLite do not show the estimated table

length [Hod14].

1 EXISTS (SELECT valency.face FROM valency

2 WHERE valency.degree=4 and valency.face=f1.face) AND

3 EXISTS (SELECT convexity.edge FROM convexity

4 WHERE convexity.type=2 AND convexity.edge=e1.edge) AND

5 EXISTS (SELECT bounds_ef.edge FROM bounds_ef

6 WHERE bounds_ef.face=f1.face AND bounds_ef.edge=e1.edge) AND

Listing 5.10: Slot query fragment

1 0|0|0|SCAN TABLE faces AS f1 (~500000 rows)

2 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 1

3 1|0|0|SEARCH TABLE valency USING AUTOMATIC

4 COVERING INDEX (DEGREE=? AND FACE=?) (~7 rows)

5 0|1|5|SCAN TABLE edges AS e1 (~250000 rows)

6 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2

7 2|0|0|SEARCH TABLE convexity USING AUTOMATIC

8 COVERING INDEX (TYPE=? AND EDGE=?) (~7 rows)

9 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 3

10 3|0|0|SEARCH TABLE bounds_ef USING AUTOMATIC

11 COVERING INDEX (FACE=? AND EDGE=?) (~7 rows)

Listing 5.11: Execution plan for slot query

SQLite’s three main query optimizations are indexing, reorder joins, subquery flatten-

ing. I next discuss what optimizations are adopted by the query planer.

First, consider subquery flattening optimization. Subqueries are multi-block queries

(See section 2.4). Sometimes, they can be turned into single block queries by merging

any subqueries into the main query body. Such optimization is called subquery flatten-

5.5 Theoretical Analysis 88

ing in SQLite. It can be determined whether subquery flattening is taking effect from

the query plan: if flattening optimization is applied, the execution plan does not show a

SCAN SUBQUERY: record. Instead, the execution plan shows that the top level query

is implemented using a nested loop join of tables. Listing 5.12 shows an example when

subquery flattening works [SQL15c].

1 sqlite> EXPLAIN QUERY PLAN SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1;

2 0|0|0|SEARCH TABLE t2 USING INDEX i4 (c=?)

3 0|1|1|SCAN TABLE t1

Listing 5.12: With subquery flattening

If the flattening optimization is not applied, SQLite executes the subquery and stores

the results in a temporary table. It then uses the contents of the temporary table in

place of the subquery to execute the parent query. This is also shown in the output of

query plan by substituting a SCAN SUBQUERY record for the SCAN TABLE record.

Listing 5.13 gives an example:

1 sqlite> EXPLAIN QUERY PLAN SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a

) GROUP BY x;

2 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2

3 0|0|0|SCAN SUBQUERY 1

4 0|0|0|USE TEMP B-TREE FOR GROUP BY

Listing 5.13: Without subquery flattening

It is clear that in query plan (Listing 5.11), there is no subquery flattening optimization

for EXISTS subqueries. Instead, a temporary table is used to cache the data.

Inside each subquery’s execution, records show that a covering index is used to access

data. This is consistency with the artificial model’s scaling performance experiments:

the index has some effect on performance while subquery optimization shows little

impact.

In the full query plan, the order of range tables is shuffled with respect to the definition,

meaning that join ordering optimization is taking effect.

5.5 Theoretical Analysis 89

5.5.2 Time Complexity

I now analyze the query plan to estimate its time complexity (Listing 5.11).

The query (5.9) consists of three correlated subqueries: inner queries depend on outer

queries, and the inner tables have references to the outer table. Consider the Valency

query first. The executor executes the outer table scan on faces, taking time O(f)

where f is the number of faces, and then executes the inner scan on the valency table

using an automatically created covering index. This a temporary index just used in

this query to find tuples satisfying subquery predicates. It incurs a cost of O(f log(f)),

as the valency table has the same number of entities as the face table, and sorting is

needed to make the index.

Then, similarly, the outer query goes through all edge rows, and for each row, searches

in an index. This takes time O(e log(e) + fe log(b))) where b is the size of the bounds

table; the convexity table is the same size as the edge table. However, the bounds table

contains 2e entries, as each edge has 2 faces, so the overall time is O(fe log e).

Now, as models get more complex, generally, the individual faces do not get more

complex, there are just more of them. Typically, faces have a small fixed maximum

number of edges. This observation, used with Euler’s formula, means that in complex

models, as the number of faces grows, the number of edges approximately grows in

proportion, i.e. O(e) = O(f) = O(n) where n is the number of entities in the model.

Overall, then, processing EXISTS takes time O(n2 log(n)): subqueries correspond to

outer tables each running an inner scan over a unique index. As log(n) varies slowly,

this explains the quasi-quadratic performance empirically observed.

1 for each face

2 index_access(valency), where face=?

3 for each edge

4 index_access(convexity), where edge=?;

5 index_access(bounds_ef), where edge=? and face=?

6 end

5.5 Theoretical Analysis 90

7 end

Listing 5.14: Pseudocode for the execution plan

Based on the insights above, the general feature recognition performance can be esti-

mated. The Bounds_EF has two inputs (face and edge) and both have a search do-

main. In the translation, the nested for-all loop is turned into an algorithm in which the

outer loop uses a sequential scan and the inner loop uses index access. The observations

suggest that, for most features, Bounds_EF and convexity are the most important

predicates: Bounds_EF imposes topological constraints while convexity also de-

notes essential attributes of a feature, for example, the notch feature 3.1 would be a

diamond protrusions if E1 was convex. If considering the most basic situation where

the feature is described only using Bounds_EF and convexity, the algorithm is as

given in Listing 5.15:

1 for each face

2 for each edge

3 index_access(convexity), where edge=?;

4 index_access(bounds_ef), where edge=? and face=?

5 end

6 end

Listing 5.15: Algorithm for definition using only Bounds_EF and convexity

Following the above reasoning, the complexity isO(n(n(log(n)+log(n)))) = O(n2 log(n)).

In a more general case, some predicates with input of face or edge are inserted into

the outer loop or inner loop, they will be turned into index based algorithm. Thus, each

adding an time complexity of O(log(n)). For example, the case of Listing 5.16 has

overall time complexity ofO(n(log(n)+n(log(n)+log(n)+log(n)))) = O(n2 log(n)).

1 for each face

2 index_access(face_attribute), where face=?;

3 for each edge

4 index_access(edge_attribute), where edge=?;

5 index_access(convexity), where edge=?;

6 index_access(bounds_ef), where edge=? and face=?

7 end

5.6 Summary and Conclusions 91

8 end

Listing 5.16: Algorithm example

5.6 Summary and Conclusions

I illustrated how a basic feature recognizer testbed can be devised: a translator that

turns feature definitions into SQL queries, using a CAD modeler coupled with a database

engine to enable feature recognition in an acceptable time. An advantage of this ap-

proach over the similar earlier approach by Gibson is to get “for free” all the insight

that has gone into database optimization.

A general and straightforward way is given for declarative level transformations into

SQL. The performance are discussed in terms of absolute time and scaling. Experi-

ments show that, as hoped, database optimization provides significant improvements

to the time complexity of feature finding, leading to results in an acceptable time. A

typical execution plan is given and time complexity of the imperative algorithm is dis-

cussed.

However, optimization does not always provide an optimal result: different ways of

defining the same feature have different performance even after optimization. It is

noted that SQLite is a lightweight database and does not support some advanced fea-

tures such as recursive SQL and various kinds of advanced indexing. In next chapter,

a more powerful PostgreSQL based testbed will be introduced and the benefits of its

stronger optimizations will be investigated.

92

Chapter 6

PostgreSQL Implementation and

Linear Performance

6.1 Overview

After the initial experiments with an SQLite testbed, I have developed a fully functional

feature recognition testbed according to the conceptual architecture (Fig. 4.1). The

database engine is replaced by PostgreSQL with the following reasons:

Firstly, to see whether the optimizations provided by SQLite could be replicated and to

determine whether different database engines would arrive at similar query execution

plans when used for feature recognition.

Secondly, to further investigate how much performance improvement could be achieved

by using a more advanced DB system that has more advanced query optimizations (re-

fer to Tables 2.1 and 2.2).

In this chapter, I will discuss the enhanced feature recognizer (composed of transla-

tor, lazy evaluation optimizer, predicate ordering optimizer, DB engine, and executor)

based around PostgreSQL and CADfix. This chapter focuses on translation rules, while

further details about lazy evaluation and predicate ordering will be discussed in the next

chapter.

With reference to the SQLite based testbed, the core question in this chapter is “Can

6.1 Overview 93

PostgreSQL DB query optimization help to find features more quickly than SQLite?”

with subquestions

1. How should the translator work?

2. What performance is observed in practice?

3. Can the performance be understood by looking at the query plan?

6.1.1 Testbed Implementation Details

The testbed is built around PostgreSQL, which is claimed to be the most advanced

open source DB system [od15]. As the architecture (see Fig. 6.1) shows, the recognizer

now has a client-server architecture, following how PostgreSQL works. The end-user

can send feature manipulation commands, SQL data manipulation commands, or SQL

queries from the client terminal to the server. The main part of the code (i.e. the server)

turns the SQL query into an efficient algorithm.

Some modules of PostgreSQL are modified and some new modules are added to enable

feature recognition. Specifically, they are:

1. modified PostgreSQL’s client subsystem to recognize the feature manipulation

language,

2. added a translator module, which turns feature definitions into SQL queries,

3. added an LE optimizer module, for lazy evaluation rewriting,

4. added a PO optimizer module, for predicate ordering optimization,

5. added a PO trainer module, for offline training of parameters for lazy evaluation,

based on a set of training data,

6. added an importer module, which loads bounding relationships into tables, and

6.1 Overview 94

Postgres Server

Client

Parser Rewriter Planner
Executor

Feature
definitions

PO Trainer CAD Modeler

Training
set

Model

Translator LE
optimizer

Command Results

DB Tables

PO
optimizer

Module modified
from PostgreSQL Module newly devisedModule, unchanged

from PostgreSQL

Legend

Importer

Command

Figure 6.1: PostgreSQL based testbed. LE: lazy evaluation, PO: predicate order-

ing.

7. added a CAD modeler interface to read models and pass data to the feature rec-

ognizer.

The main body of the feature recognizer processes definitions in a similar way to the

SQLite testbed. Details are left out here as they are very similar to the methods used

in Chapters 4 and 5. Instead, the main differences to the SQLite testbed include:

1. the translator was moved outside the tokenizer and parser (refer to Fig. 5.1), due

to the different internal structures of PostgreSQL and SQLite;

2. a new translator with different translation rules to the one in Chapter 5 is imple-

mented, as SQL queries generated by the SQLite testbed have bad performance

in PostgreSQL, as explained in Section 6.1.2.

6.1 Overview 95

3. lazy evaluation (LE) and predicate ordering (PO) optimization modules (as well

as a PO training module) are added into the system. These gives further per-

formance improvements when the CAD modeler has to do extensive numerical

computations, as shown in Chapter 7.

I now state the function of the data exchange between different modules:

1. Parser–Feature definitions: look up feature definitions,

2. Parser–DB tables: look up table definitions,

3. Rewriter–DB tables: look up rules/view definitions,

4. Planner–DB tables: look up statistics,

5. Planner (PO optimizer)–PO Trainer: look up predicate ordering parameters,

6. Executor–DB tables: fetch/store user data,

7. Executor–CAD modeler: import CAD data or draw results on views of CAD

models.

6.1.2 SQLite Approach Fails with PostgreSQL

Rules are proposed to turn a feature definition into an existence test subquery based

SQL query in Chapter 5. The SQLite based testbed uses automatic indexing (see Sec-

tion 2.5.4 for how SQLite creates automatic indices) to turn a nested for-all loop into

an outer loop using sequential scan and an inner loop using index access 5.5.2. List-

ing 6.1 gives an example of the translation. Both experiments and theoretical analysis

show it gives a quasi-quadratic performance for common features.

1 Definition: Bounds_EF(e1, f1);

2 SQL fragment: EXISTS (SELECT bounds_ef.edge FROM bounds_ef

3 WHERE bounds_ef.face = f1.id AND bounds_ef.edge = e1.id)

4 Range table: bounds_ef(edge int, face int);

Listing 6.1: Old translation for relation predicates

6.1 Overview 96

I reimplemented this translator (to which will be refered as the old translator) in the

PostgreSQL based feature recognizer to see whether such translation is general enough

to work in other DB systems. However, using PostgreSQL, unexpected results were

obtained. Even for simple models, PostgreSQL could take days to return results.

The reason is that PostgreSQL has no automatic indexing mechanism, and the user has

to create any needed indexes manually [IND15]. Thus, PostgreSQL does not process

such queries in the same way that SQLite does. PostgreSQL apparently does not have

EXISTS subquery optimization [ml15] (the reference is rather old, but, no newer doc-

ument about such optimization was found; I also did not find any related comments in

the PostgreSQL source code). Thus, PostgreSQL can only turn the query into nested

for-all loops, equivalent to naive translation of the feature definition, with resulting

high time complexity.

This led us to rethink the way translation was performed. For flexibility, the translator

should work in a way that leads to efficient query processing independent of the choice

of the underlying DB engine.

6.1.3 Assumptions

Before giving the new translation approach, I first discuss two assumptions: firstly, as-

suming that the models input to the feature recognizer are manifold solid objects. An

n-dimensional manifold requires each point to have a neighborhood to n-dimensional

Euclidean space [wik15c]. Solid models are usually restricted to 2-manifold geom-

etry, thus requiring the mathematical neighborhood of each point to be topologically

equivalent to a 2-D disk [McM00]. In the B-rep model of a 2-manifold, each edge is

shared by exactly two faces, on opposite sides; this is a necessary, but not a sufficient,

condition for manifoldness [McM00].

Many classic works on solid modeling were built upon the assumption of manifold

models [LG05]. This is because, in a graph based approach, the widely used FAG

6.2 Translation 97

is suitable for representing a manifold solid model’s topology but not those for non-

manifold objects [GS98]. To cope with non-manifold objects, Lockett extended the

FAG to a mid-surface adjacency graph (MAG) to represent both the faces and edges

of the model as nodes on the graph, with the graph arcs representing the connectivity

between those faces and edges [LG05]. McMains alternatively showed how to parti-

tion a non-manifold into 2-manifold sub-models by splitting non-manifold edges and

vertices [MHS01].

The approach depends on the solid model being manifold in the new translation algo-

rithm, as the full-edge data model requires an edge to exactly have two adjacent faces.

The approach could in principle support non-manifold models by preprocessing them

as described above.

Secondly, assuming that the goal is to recognize connected features. This means

all primitives of the feature are connected locally. For example, in the notch fea-

ture(Fig. 3.1), all primitives are connected within the feature. Disconnected features

have two or more subfeatures that are physically isolated, for example, a pair of par-

allel faces. When devising this new approach, it was observed that most features of

importance are made of sets of connected entities, e.g. machining features such as

slots, holes, pockets, etc. These are the most common features in manufacturing or

engineering analysis. Unless saying otherwise, in the rest of this Chapter, and Chapter

7, only features of this kind are considered. Chapter 8 will return to how to find more

general kinds of features.

6.2 Translation

6.2.1 Data Model

The declarative approach has two modeling steps: firstly, the CAD model features are

represented as a text-based feature definition; secondly, the feature definition is then

6.2 Translation 98

represented textually as an SQL query. Thus, ultimately, the CAD model features are

modeled using SQL queries, and it is the translator’s job to turn a feature definition

into an SQL query.

It is clear that there are various ways to model CAD model features using SQL queries.

In Chapter 5, single-column tables are chosen to model the primitive entities in a fea-

ture definition. There is a direct mapping from a primitive instance in a feature defini-

tion to a single-column table in an SQL query. Although a feature can also be defined

using subfeatures, subfeatures are still built from primitives: see for example List-

ing 3.5. However, queries based on existence test subqueries cannot be directly opti-

mized by PostgreSQL 6.1.2. In fact, SQL queries usually model data using relations,:

this is the basis of relational database management systems. How to use relations

(multiple-column tables) to model feature definitions are explored in this chapter.

I propose to use full-edge relations as range tables in SQL queries to model face-edge

relationships; a similar approach is used to model edge-vertex relationships. Starting

by considering the former, the definition is

full_edge(e, fa, fb, convexity) (6.1)

In Definition 6.1, e is an edge id of the manifold model, its convexity is denoted in the

fourth column (possible values are defined in Table 3.1), and fa and fb are the ids of

the two faces which are adjacent to e.

The full-edge relation contains rich information, including each edge’s local topolog-

ical information and each edge’s convexity. The complex topology of a model can

be expressed in terms of connected local topological structures. The convexity in-

formation is important for defining a feature: consider for example the notch feature

(Listing 3.1). If edge E1 is convex instead of concave, it becomes a diamond protru-

sion feature instead. Again, edge convexity information is the only distinction between

a square boss and a square pocket. The topology and convexity can be efficiently im-

ported from CAD models without computation by the modeler, as it is stored directly

be the B-rep model.

6.2 Translation 99

Clearly, a full-edge relation includes more information than a single-column primitive

table. Using the latter, subqueries are used to express and test whether a condition is

satisfied. The experiments showed that PostgreSQL cannot efficiently process trans-

lation based on existence test subqueries (see Section 2.4). The advantage of using

the full-edge data model is that the constraints a feature must satisfy can be expressed

via an access predicate or a filter predicate (see Section 2.4). Both predicates can be

efficiently processed by mainstream DB systems. Section 6.2.2 explains the details.

I next explain the strategy to populate the tables used to find instances of features:

1. The parser sends a command to create the full-edge table as soon as the parser

reads any Bounds_EF predicates. The importer in the executor then retrieves

all edge’s face adjacency and convexity information from the CAD modeler, cre-

ates the tuples (e, fa, fb, convexity) and (e, fb, fa, convexity), and inserts them

into the full_edge table. Both tuples are stored, the reason is the translator gives

an order (fa or fb) of the two faces when translate the Bounds_EF (see List-

ing 6.5). The order is inherent property inferred from feature definition. Thus,

both tuples have to be stored to find the ones satisfy the definition 6.1.

2. All other predicates are translated into arbitrary functions that interact with the

CAD modeler and return True or False. When the function is executed the first

time, the feature recognizer creates a table. When the function is evaluated for

a given id, the function first checks whether the id has a value in the table. If

the tuple is empty, the function calls the CAD modeler evaluate the result, and

it is stored in the table, otherwise it is returned from the table. This caching is

detailed in Chapter 7.

It is noted that the full-edge relation is one possible data model for the translated SQL

query, and it is possible to use other relations in CAD models as the range tables.

However, the relations must link a fixed number of entity instances so that they can

be expressed as a table with a fixed number of columns. For example, in a manifold

6.2 Translation 100

model, an edge has exactly two adjacent faces, so this relation can be expressed using a

four-column table (e, fa, fb, convexity). In non-manifold models, the number of faces

adjacent to an edge is not fixed, so a table with a fixed number of columns can not be

used to express such relations.

Another kind of topological relationship is the vertex-edge relation. In the CAD model,

each edge has exactly two vertices, so this relation can be modeled using a four-column

table (e, va, vb, convexity). If a feature is defined using Bounds_VE, edge-vertex rela-

tions are loaded in the same way as for face-edge relations. Like the full-edge relations,

they can be expressed as access predicates, and filter predicates using similar rules to

those in Section 6.2.2. Next subsection will explain how to translate the constraints of

Bounds_EF using the full-edge range table; feature definitions using Bounds_VE

can be translated in the same way.

6.2.2 Translation Rules

Again, the goal is to map a feature definition into an SQL query. From the SQLite-

based testbed, it is learned that EXISTS based subqueries are inefficient as filters.

I thus avoid such subqueries by using a filter predicate or an access predicate (see

Section 2.4). Some predicates can be more easily mapped to filters than others, and

they need to be treated differently according to whether they are relational predicates

or attribute predicates.

Relational Predicate Translation Rules

A relational predicate has two (or more) entities, and describes a condition between

them. It could be a

1. comparative predicate, for example Greater_id(id1, id2).

2. topological relation predicate, for example Bounds_EF(e,f).

6.2 Translation 101

Comparative predicates can be translated in a straightforward way. For example,

Greater_id(id1, id2) is translated into id1>id2. However, topological re-

lation predicates cannot be expressed in such a way as there is no built-in symbol to

express Bounds_EF or Bounds_VE. They are thus turned into access predicates,

which can be readily optimised in an SQL query. I next explain how this is done using

Bounds_EF predicates, and again Bounds_VE can be translated using a similar way.

The Bounds_EF predicate indicates local neighborhood connectivity of the model. It

is one of the most important predicates, and is used in almost every feature definition.

As explained in Section 2.4, the qualification subclause in WHERE can be a subquery,

an index filter predicate, a table level filter predicate or an access predicate. Us-

ing an EXISTS subquery results in processing as nested loops in PostgreSQL. As

Bounds_EF involves two entities, it cannot be directly expressed as a filter. Instead,

using the full-edge data model 6.2.1, the topological relation predicates are expressed

using access predicates.

An access predicate specifies two tables are linked together by a key; in feature defi-

nitions, for manifold models, it is common that there exist at least two Bounds_EF

predicates referring to the same face. The approach next explained is inspired by the

similarity.

In manifold models, each edge is adjacent to two and only two faces. If defining a

triplet as edge-face1-face2, then the Bounds_EF predicate can be replaced as a set of

triplets, in which, there always exists a key linking a pair of them. Taking the notch

definition for example:

1 Bounds(E1,F1)

2 Bounds(E1,F2)

3 Bounds(E2,F2)

4 Bounds(E2,F3)

5 Bounds(E3,F1)

6 Bounds(E3,F4)

7 Bounds(E4,F1)

8 Bounds(E4,F3)

9 Bounds(E5,F2)

6.2 Translation 102

10 Bounds(E5,F4)

Listing 6.2: Bounds constraints in Notch feature

Step1: traverse the Bounds constraints and generate triples, in order to discover the

link (key for access predicate):

1 T1={E1,F1,F2}

2 T2={E2,F2,F3}

3 T3={E3,F1,F4}

4 T4={E4,F1,F3}

5 T5={E5,F2,F4}

Listing 6.3: Triplet description

Step2: traverse the triples, generate access predicates.

1 T1.fa=T3.fa

2 T1.fb=T2.fa

3 T2.fb=T4.fb

4 T3.fb=T5.fb

5 T4.fa=T3.fa

6 T5.fa=T2.fa

Listing 6.4: Access predicates

The transformation above turns relational constraints into access predicates which can

be readily optimized in all mainstream DB systems [The15a, Bur10, DuB05]. How-

ever, this may be done using an index access key or a hash join key (see Section 2.4).

As shown in experiments, SQLite uses an index access algorithm, giving a quasi-linear

performance for common features, while PostgreSQL uses a hash join algorithm, giv-

ing linear performance.

The pseudocode is given in Listing 6.5 for the transformation (predicate Bounds_VE

can be translated in the same way). It has two traversals, the first one to generate triplets

and the second one to determine the access predicate keys.

1 //1. Generate Triples from Bounds_EF

2 for each b[i] in Bounds_EF

3 for each b[j] in Bounds_EF

4 if b[i].edge=b[j].edge_EF

6.2 Translation 103

5 store T(b[i].edge,b[i].face,b[j].face)

6 store T(b[i].edge,b[j].face,b[i].face)

7 end

8 end

9 end

10 //2. Generate relation list

11 for each T[i] in triples

12 for each T[j] in triples

13 if T[i].fa=T[j].fa

14 output access predicate T[i].fa=T[j].fa

15 else if t[i].fa=t[j].fb

16 output access predicate T[i].fa=Tt[j].fb

17 else if T[i].fb=T[j].fa

18 output access predicate T[i].fb=T[j].fa

19 else if T[i].fb=T[j].fb

20 output access predicate T[i].fb=T[j].fb

21 end

22 end

23 end

Listing 6.5: Pseudocode for relational predicates transformation

In practice, it is possible a feature is defined with an edge with only one face, users can

make the following processing: add an extra Bounds_EF(e4,f_generated_xxxx,e4)

to the definition before translating it, where f_generated_xxxx is some arbitrary

unique name. When finding features, and report them, do not report (or draw) and

faces with names f_generated_xxxx.

6.2 Translation 104

Attribute Predicate Translation Rules

Attribute predicates have only a single entity and some attribute constraints. List-

ing 6.6 gives two example:

1 Face_has_number_of_edges(face:f, int:imin, int:imax)

2 Face_contained_in_box(face:f, box:b)

Listing 6.6: Example attribute predicates

In practice, some attribute predicates are commonly used in almost all feature defini-

tions; an example is edge convexity: see for example, Listings 3.4 and 3.5. Others are

rare and used only in special tasks. They may take much longer time to compute, for

instance, finding a feature for which the area of a particular face lies in a certain range.

They are treated separately. Edge convexity information are stored in the full-edge

tables, and turn these predicates into filters. For example:

1 Definition: Convexity_is(edge, convex)

2 SQL fragment: AND full_edge_e.convexity=convex

Such a filter might be treated as an index filter predicate or a table level filter predicate

(see Section 2.4), based on statistical analysis performed by the query planner.

Other unusual or slow attribute predicates are turned into Boolean built-in functions.

These functions (or remote predicates) call the CAD modeler to do the calculation and

return True or False. For example:

1 Definition: Face_area_in_range(f, vmin, vmax)

2 SQL fragment: AND face_area_in_range(f, vmin, vmax)

Such function translation makes us ask the following questions:

1. If functions are computed for all possible inputs, and they are slow, the perfor-

mance is obviously decreased. Can the work load be reduced to improve the

performance?

2. Can the idea of caching be used to avoid recreated function calls?

6.2 Translation 105

3. if there are multiple filters, the order in which they are applied may affect perfor-

mance a lot. The DB engine does not have statistics needed to optimize this. Can

they be obtained and provided to the query planner to generate a better execution

plan?

The answers to the above questions, involve use of lazy evaluation and predicate or-

dering optimization, as will explained in the next chapter. In this chapter, I mainly

focus on basic local features which can be described by relational predicates and edge

convexity attributes, such as notches, slots, etc.

Full Definition Translation

Having explained how each kind of predicate is translated, I now show to generate the

full query in Listing 6.7. I assume that only Bounds_EF bounding is used; features

defined using Bounds_VE can be translated similarly. This approach only works for

local features composed of connected faces and edges, without isolated entities. Most

manufacturing features required in engineering are this type [SW95, HPR00]. I will

give an architecture for a stand-alone feature recognizer in Chapter 8, which is general

enough to recognize non-local features.

The pseudocode in Listing 6.7 also does not cover features that are defined by subfea-

ture. Because usually their translation is rather straightforward: firstly, the subfeatures

defined by Bounds are translated using algorithms described in Listing 6.7; secondly,

translate the feature using subfeatures. In the translation, the target list subclause is

translated from the EXPORT statement of the definition, the relation list subclause is

generated using the subfeature tables and the qualification subclause is generated by

straightforwardly translating the attribute constraints of the these subfeatures into filter

predicates.

1 set query="CREATE TABLE <feature> AS";

2 set target_list_subclause="SELECT";

3 set relation_list_subclause="FROM";

6.2 Translation 106

4 set qualifications_subclause="WHERE";

5 //transform bounds predicates

6 [APS,FS,ES]=transform_bounds_ef(definition);

7 APS: access predicate set;

8 FS: set of {f_i, full_edge_e_m.f_a/b} where f_i is the face id in

9 definition, its internal name is full_edge_em.f_a/b;

10 ES: set of e_m, full_edge_e_m_edge where e_m is the edge id in

11 definition, its internal name is full_edge_e_m.edge;

12 //transform edge convexity predicates

13 [ECPS]=transform_edge_convexity(definition, ES);

14 ECPS: edge convexity predicate set;

15 //transform other attribute predicates

16 [OAPS]=transform_attributes(definition, FS, ES);

17 OAPS: other attribute predicates set;

18 //generate target list, relation, qualification subclause

19 qualifications_subclause=append(qualifications, APS, ECPS, OAPS);

20 relation_list_subclause=append(relation_list_subclause, ES);

21 target_list_subclause=append(target_list_subclause, full_edge_e_m.f_a/b AS f_i,

full_edge_e_m.edge AS e_m;

22 //complete the query

23 query=append(query, target_list_subclause,relation_list_subclause,

qualifications_subclause);

Listing 6.7: Full query translation

Firstly, traversing relational predicates, producing three result sets: an access predicate

set, a face-name set describing the face ida in the definition, and a similar edge-name

set. As explained in Section 6.2.1, each face and edge has an internal name that is

used to express the SQL query. The face-name set and edge-name set give the internal

names of entities in the feature definition. Listing 6.5 generates the APS in the function

transform_bounds_ef .

Secondly, producing convexity predicates using the edge-name set and the definition.

Thirdly, traversing other attribute predicates, producing functions using the face-name

set and edge-name set.

Fourthly, producing the relation list, target list and qualification clause separately (see

Section 2.4 for definitions).

6.2 Translation 107

Finally, concatenating the three clauses to generate the final query.

An example is shown for the notch feature in Fig. 3.1. Using the new translation rules,

the query generated is:

1 CREATE TABLE notch AS

2 SELECT full_edge_e1.edge AS e1, full_edge_e2.edge AS e2, full_edge_e3.edge AS e3,

3 full_edge_e4.edge AS e4, full_edge_e5.edge AS e5, full_edge_e1.face1 AS f1,

4 full_edge_e1.face2 AS f2, full_edge_e2.face2 AS f3, full_edge_e3.face2 AS f4

5 FROM full_edge full_edge_e5, full_edge full_edge_e4, full_edge full_edge_e3,

6 full_edge full_edge_e2, full_edge full_edge_e1

7 WHERE full_edge_e1.face2=full_edge_e2.face1

8 AND full_edge_e1.face1=full_edge_e3.face1

9 AND full_edge_e1.face1=full_edge_e4.face1

10 AND full_edge_e1.face2=full_edge_e5.face1

11 AND full_edge_e2.face2=full_edge_e4.face2

12 AND full_edge_e2.face1=full_edge_e5.face1

13 AND full_edge_e3.face1=full_edge_e4.face1

14 AND full_edge_e3.face2=full_edge_e5.face2

15 AND full_edge_e1.convexity=1 AND full_edge_e2.convexity=2

16 AND full_edge_e3.convexity=2 AND full_edge_e4.convexity=2

17 AND full_edge_e1.face1 < full_edge_e1.face2

18 AND full_edge_e2.face2 < full_edge_e3.face2

19 AND full_edge_e3.face2<>full_edge_e2.face2

20 AND full_edge_e3.face2<>full_edge_e1.face2

21 AND full_edge_e3.face2<>full_edge_e1.face1

22 AND full_edge_e2.face2<>full_edge_e1.face2

23 AND full_edge_e2.face2<>full_edge_e1.face1

24 AND full_edge_e1.face2<>full_edge_e1.face1

25 AND full_edge_e5.edge<>full_edge_e4.edge

26 AND full_edge_e5.edge<>full_edge_e3.edge

27 AND full_edge_e5.edge<>full_edge_e2.edge

28 AND full_edge_e5.edge<>full_edge_e1.edge

29 AND full_edge_e4.edge<>full_edge_e3.edge

30 AND full_edge_e4.edge<>full_edge_e2.edge

31 AND full_edge_e4.edge<>full_edge_e1.edge

32 AND full_edge_e3.edge<>full_edge_e2.edge

33 AND full_edge_e3.edge<>full_edge_e1.edge

34 AND full_edge_e2.edge<>full_edge_e1.edge

Listing 6.8: Notch query: new translation

6.3 Discussion 108

6.3 Discussion

With the declarative approach, a feature is described using a set of constraints and

finding the feature requires testing all entity combinations to generate some sets of

entities that are candidate target features. However, the constraints have different roles

in the feature definition. The constraints in Listings 3.2–3.3 can be classified into the

following six categories (again, I also only consider locally connected features):

1. Bounds constraints

2. Edge convexity constraints

3. Entity uniqueness constraints

4. Entity id rank constraints

5. Geometric constraints such as face shape

6. Other numerical constraints such as area, length, angle, etc.

Bounds constraints are local neighborhood relationship conditions. Local neighbor-

hood adjacency relations are the most common constraints in feature definitions. Many

features can be described using a set of Bounds_EF predicates (and possibly other

predicates). In this Chapter, bounds constraints are turned into access predicates which

can readily be optimized in mainstream DB systems.

Edge convexity is used to describe many manufacturing features [HPR00]. For exam-

ple, convexity is a necessary constraint to tell a square pocket from a square boss; or it

could be used to distinguish whether a feature is open or blind.

Entity uniqueness constraints are generated automatically by the translator, in order

to reject result sets that may satisfy other constraints but are not able to construct a

meaningful solid. For example, in Fig. 6.2, without entity uniqueness constraints, the

circle loop C1 on the side face of the hole also obeys the hole definition that is defined

6.3 Discussion 109

C1

Figure 6.2: Circle recognized as a hole feature

just using bounds, edge convexity and face geometry constraints. In fact, this issue

arises in almost all feature definitions. The solution is to assume that, in most cases, if

a feature definition mentions e.g. two faces f1 and f2, it is the engineer’s intent that

they should be distinct. Thus, the translator automatically inserts SQL fragments like

f1<>f2 into the final query for each pair of entities of the same kind. The user no

longer needs to write Different_id clauses as in the SQLite testbed, as they are

now automatically generated.

In practice, users are allowed override this assumption by adding clauses of the form

ALLOWING f1=f2 to state that some particular entities may be the same. For exam-

ple, if the task is to find a through hole in a sphere, the uses has to add this statement

into Definition 5.6, otherwise, no results will be returned.

Entity rank constraints refers to entity ids, for example, Greater_id. They can be

used to remove topologically symmetric results. As source data (the full-edge range

tables in Section 6.2.1) has two tuples (e, fa, fb, convexity) and (e, fb, fa, convexity)

for each edge are imported. In the result, both tuples (e, fa, fb) and (e, fb, fa) are

kept—this is a topological symmetry. The logic leads to repeatedly finding the same

solution in which the names of the entities are permuted. For example, see the notch

in Fig. 3.1: interchanging the roles of faces f1 and f2, and f3 and f4 (as well as

6.4 Experiments 110

Table 6.1: Topological symmetry result for notch feature
Feature primitives e1 e2 e3 e4 e5 e6

Feature 1 14 13 17 18 16 15

Feature 2 13 14 17 18 16 15

Feature 3 13 14 15 16 17 18

various edges) gives another interpretation of the same notch. Table 6.1 gives actual

output for finding a single notch feature if the feature is defined without entity rank

constraints. The first row in the table labels the primitives of the feature; rows 2–4

show three features have been found, where each column gives the id of some edge

primitive. Clearly, features 1–3 are the same feature, except with different assignments

of actual faces to those in the definition.

Typically, it is more efficient not to generate such toplogically symmetric results than

to remove them later. One way to do this is to give a direction to the graph representing

the feature. For example, if the user adds Lower_id(f1, f2), it will prevent notch

features from being reported twice. However, it is still not clear how to automatically

generate these constraints. I give the control to end-users, and it remains as future work

to explore an automatic approach.

Other numerical constraints such as area, length, angle, etc., are specially useful for

engineering analysis features. They are translated into arbitrary functions, whose nu-

merical output is cached in order to save recomputing it if it is needed again later.

Relevant details will be explained in Chapter 7.

6.4 Experiments

The SQLite based testbed achieved approximately O(n2) performance for basic fea-

tures (notch, slot, through-hole) [NMS+15]. However, when the database engine is

replaced by PostgreSQL, still using the original translation strategy, the performance

6.4 Experiments 111

(a) Notch (b) Slot (c) Step-rib

Figure 6.3: Artificial models for performance testing

was much worse; indeed no feature finding results were returned in any reasonable

time. Analysis of the cause led to the new translation approach given here. The ques-

tions below are considered:

1. Does the new approach perform better than the previous approach? If so, why?

2. Can the new approach be optimized by both DB optimizers? If they do not give

the same improvement, why?

In order to determine scaling performance, The same test family models as used for

the SQLite testbed are used: the models comprise an increasing number of blocks (2n

where n = 0, . . . , 11). Notch, slot and step-rib feature are used here. Such models can

give how the performance scales when models increase in complexity in a regular way.

Fig. 6.3 shows the models for n = 2.

The old and new translation approaches using the same database engine (SQLite) are

compared first; the experiments show that the expected improved computational com-

plexity is observed. Secondly, the relative performance of two different database en-

gines (SQLite and PostgreSQL) are compared.

The test platform used in Chapters 6 and 7 is described in Table 6.2.

6.4 Experiments 112

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

lo
g 10

(T
im

e
ta

ke
n

in
 m

s)

log
10

(Number of edges)

Notch_Old translation
Slot_Old translation
Notch_New translation
Slot_New translation
Step−rib_New translation

Figure 6.4: Performance comparison between new and old translation using

SQLite.

Table 6.2: Test platform
CPU Intel(R) Core(TM) i7-3930K CPU @ 3.20GHz

Memory 32GB

OS Debian GNU/Linux 8.0 (jessie)

Compiler GCC 4.9.2

PostgreSQL version 3.7.16.2

6.4 Experiments 113

Figure 6.5: Features are drawn on the CAD model to valid the result

Translation Approach Notch Slot Step-rib

Old 1.98 1.98 —

New 0.89 0.90 2.12

Table 6.3: Exponent of performance of old and new translations using SQLite

6.4.1 Old and New Translation Using SQLite

The old and new translators with SQLite are compared; the former beings the older ex-

istence test subquery translation based approach, and the latter being the newer access

predicate translation described in this chapter. The translators turn the same definition

into different queries, and the experiments here aim to give which one achieves better

performance.

Three kinds of models –notch, slot and step-rib feature recognition are performed on

the artificial family model set. Features are drawn on the CAD model to valid the result

as Fig. 6.5 shows. The log-log plot is given in Fig. 6.4 which gives the time taken in

milliseconds to find all features of the given type in each model, versus the total num-

ber of edges in that model (step-ribs took too long to find using the old approach, so

no results are presented in that case). Performance in the log-log plot approximately

follows a straight line relationship in each case, indicating that time taken to find fea-

tures is reasonably modeled as t = αnp where p is the slope of the line, and n is the

number of entities. (As noted earlier, the number of edges is roughly proportional to

the number of entities). In practice, in order to obtain the asymptotic behavior of the

algorithms (for larger models), the slope past the point at which the slope seems to

stabilize are measured. The slopes are given in Table 6.3.

6.4 Experiments 114

Database Engine Notch Slot Step-rib

SQLite 0.89 0.90 2.12

PostgreSQL 0.91 0.94 0.95

Table 6.4: Performance of new translation using SQLite and PostgreSQL

From the time complexity table, it is clear that, although both translations are effec-

tively optimized by the database engine, the computational complexity is quite differ-

ent. The old approach results in approximately O(n2) performance for notch and slot

features. For step-rib features the system failed to return results in an acceptable time—

step-ribs contain many more entities (9 faces and 12 edges) than notches (4 faces and 5

edges) or slots (5 faces and 8 edges). In contrast, the new translation approach results

in roughly linear performance for notch and slot features, and approximately quadratic

performance for step-rib features.

6.4.2 New translation using SQLite and PostgreSQL

Next, the new translator with both SQLite and PostgreSQL are used to answer the

question of for the same SQL query, which engine performs better and how the query

is executed. The same families of models are used and the corresponding slopes are

given in Table 6.4. Approximately linear complexity is achieved using PostgreSQL,

for all cases.

This result is significant, as it implies that a system based on these ideas should scale

to very large industrial models. As far as I know, no other published feature finder

displays linear performance; indeed many papers note the exponential complexity of

graph based feature finders [SAKJ01].

Both query optimizations in SQLite and PostgreSQL give a nearly linear performance

for the simplest features, but SQLite can exhibit worse performance for more com-

plex features. To further understand why PostgreSQL achieves linear performance for

6.4 Experiments 115

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

2

3

4

5

6

lo
g 10

(T
im

e
ta

ke
n

in
 m

s)

log
10

(Number of edges)

Notch_SQLite
Slot_SQLite
Step−rib_SQLite
Notch_PostgreSQL
Slot_PostgreSQL
Step−rib_PostgreSQL

Figure 6.6: Performance of new translation using SQLite and PostgreSQL

step-ribs while SQLite does not, the optimizations used by each database engine are

analyzed. They are quite different.

Firstly, considering how SQLite processes the query. Fig. 6.7 shows part of a typical

SQLite query plan for slot feature recognition. SQLite optimizes the query mainly

by the use of automatic covering indexes, and no changes are made to the order of

joins. As temporary index creation requires sorting, the time taken must be at least

O(n log n). Detailed considerations of the query plans reveal that although notch, slot,

and step-rib features all use a covering index, they are used quite differently. For step-

ribs, execution steps like the below are used:

6.4 Experiments 116

Scan table

full_edge_e8

Search table

full_edge_e7

Search table

full_edge_e6
USING AUTOMATIC
COVERING INDEX

USING AUTOMATIC
COVERING INDEX

Figure 6.7: New translation query plan in SQLite

1 0|0|11|SCAN TABLE full_edge AS full_edge_e1 (~50000 rows)

2 0|1|0|SEARCH TABLE full_edge AS full_edge_e12 USING AUTOMATIC COVERING INDEX (

convexity=?) (~7 rows)

where table full_edge is defined as

1 full_edge(edge INTEGER, face1 INTEGER, face2 INTEGER, convexity INTEGER)

While SQLite processes convexity using a covering index, almost all tuples satisfy the

convexity constraint, so the result is almost a sequential scan of all tuples, leading to

O(n2) overall performance. This is not the case for notch and slot features. Experi-

ments show that if creating face and edge indexes explicitly, SQLite can also achieve

quasi-linear performance for step-ribs.

Let us now consider the execution plan used by PostgreSQL, as illustrated in Fig. 6.8.

Here, first the order of range tables is shuffled allowing join re-ordering optimization.

Tables are accessed sequentially before pairs are jointly processed by hash joins. The

simplest kind of hash join includes two steps: first the smaller relation is used to con-

struct a hash table, and then the larger relation’s tuples are used to probe the hash table

to find matches. To understand the performance, consider the simplest situation: two

(unindexed) relational tables, both with O(n) tuples. The cost is composed of four

linear components: reading the inner table, hashing the inner table, reading the outer

table, and probing the hash table, giving a total cost of O(n). This expectation is veri-

fied in the experiments. The PostgreSQL query optimization is more powerful and the

6.4 Experiments 117

Scan table

full_edge_e8

Hash join

Scan table

full_edge_e6

Hash

Hash join

Scan table

full_edge_e3

Hash

Figure 6.8: New translation query plan using PostgreSQL

Figure 6.9: Carbine

significant result is that simple features can now be found in linear time.

6.4.3 Real World Performance

Real industrial CAD models are more challenging: models may include hundreds of

thousands or even millions of entities. In this case, performance is potentially a serious

problem. In real models, there are more types of entities, including subfeatures, and

features are more complex than the simple ones used in earlier tests. All of these are

big challenges for traditional algorithms. In this section, I show tests on several larger

models to help assess the potential of the approach for industrial use.

Firstly, the performance of the new approach with the previous work are compared, us-

ing increasingly complex models of a carbine, switch and CPU heat sink (see Figs. 6.9–

6.4 Experiments 118

Figure 6.10: Switch

Figure 6.11: CPU heatsink

6.11); the features to be found were again open slots, blind slots, and through holes.

Feature finding (see Table 6.5) took much less time than when using the previous ap-

proach for the CPU heat sink and switch. Similar times were achieved for the carbine,

probably due to its simplicity. This is in agreement with the earlier experimental find-

ing that the new approach has lower time complexity—it scales up better to larger

models. These results are very encouraging, and show that the current approach can

rapidly find features in models of realistic complexity. Feature finding took just 0.1 s

even for the heat sink, which has over 2000 edges.

6.4 Experiments 119

Model Carbine Switch CPU heatsink

Number of edges 84 330 2388

Number of slots 6 9 24

Unoptimized query 15 hours - -

Old translation (SQLite) 50 ms 220 ms 6940 ms

New translation (PostgreSQL) 47 ms 69 ms 107 ms

Table 6.5: Time taken to find slots in real models

Figure 6.12: Reducer

It is also performed that further experiments on real industrial models to assess perfor-

mance. Fig. 6.12 shows a moderately complex reducer model obtained from [Gra15],

with 17774 edges. It includes hundreds of open slots, blind slots, through-holes, and

other features. The feature recognizer can find such features in this model in a fraction

of a second: see Table 6.6.

6.5 Summary 120

Feature Open slot Blind slot Throughhole

Number of features 140 146 164

Time taken 168 ms 176 ms 87 ms

Table 6.6: Time taken to find various features on a reducer model with 17774

edges.

More complex features can be defined using subfeatures—features can often be de-

composed into several similar sub-structures. Finding such substructures first and

then combining them into a complete feature simplifies the writing of feature defi-

nitions. For example, if defining an adjacent-pair-of-blind-slots feature, and seeking it

in the reducer model. This new feature comprises two round corner blind slots that are

connected by short edges. It can be first to find the slot features (with 17 edges and

10 faces), and then to determine which of those are adjacent and connected by short

edges. It takes 168ms to find all 5 round corner blind slots and another 56ms to find

pair-slot features. More generally, however, regular features with arbitrary numbers

of elements, such as a ring of holes, a gear, or a row of slots, are most easily defined

recursively. This in turns needs a database that can handle recursive SQL queries; I

intend to investigate such an approach in the future work.

6.5 Summary

It is discovered that SQLite and PostgreSQL take very different approaches to query

optimization. The old translator turns constraints into existence test subqueries that

might not be very efficiently evaluated, while the new translator processes predicates

differently: relational predicates are turned into access predicates while others are

turned into filter predicates or Boolean functions.

It is discussed that how to write an effective feature definition and how the constraints

6.5 Summary 121

are transformed equivalently.

It is shown that the significant result using the new translator can find simple features in

linear time on PostgreSQL or approximately linear time on SQLite. It is also explored

that the execution plans and learned that for the same access predicates, SQLite uses an

index to access data of interest while PostgreSQL uses a hash join algorithm to reduce

the search space for optimization.

122

Chapter 7

Further Improvements Using Lazy

Evaluation and Predicate Ordering

7.1 Overview

The new translator turns relational predicates (in feature definitions) into access pred-

icates (in SQL queries) and expensive attribute predicates into Boolean function calls

to the CAD modeler to do the calculation. There are well-developed DB algorithms to

handle access predicates or filters (see Section 2.4). However, the attribute predicates

are not transparent to the query optimizer, and thus cannot be optimized directly. Such

functions make us consider the following questions:

1. If the attribute predicates are evaluated for all tuples in the range table, the per-

formance will be obviously slow if the predicates are expensive to compute. Can

the number of function evaluations be reduced to improve the performance?

2. Can the idea of caching be applied to avoid repeated evaluation of the same

function results?

3. If there are multiple attribute predicates acting as filters, the execution order may

(or may not) have a strong effect on performance. The DB engine does not have

statistics allowing it to optimize this order. Can they be obtained and provided

to the query planner to generate a better execution plan?

7.1 Overview 123

The work is extended using lazy evaluation and predicate ordering optimizations to

answer these questions. By introducing lazy evaluation, expensive functions are eval-

uated only when they are definitely needed, avoiding unnecessary computing. As well

as lazy evaluation together with the idea of caching are adopted. Specifically, the com-

puted numerical results calculated by the attribute functions are cached, so that during

each call to find features, the expensive functions are executed only when a local table

does not already have the corresponding results, avoiding repeated function calls. By

automatic predicate reordering, the function calls are executed in order with minimal

cost, achieving a further performance improvement.

As the PostgreSQL based feature recognizer testbed architecture (Fig. 6.1) shows, the

lazy evaluation optimizer is part of the translator. When it reads in a feature definition,

it firstly rewrites the query to permit use of lazy evaluation (still as an SQL query).

Specifically, it moves the attribute functions into the HAVING clause of the query,

as shown in Listing 7.8. Next, the SQL query is transformed into an algorithm by the

query planner. When the algorithm is executed, the functions in the HAVING clause are

evaluated on the target list (see Section 2.4) which only contains those results satisfying

all constraints in the WHERE clause. Lazy evaluation is achieved by rewriting the query

based on the approach above. Thus, it is an optimization at the declarative level.

On the other hand, the predicate ordering optimizer uses statistics concerning the at-

tribute predicates and selects the optimal order in which to apply these as filters. such

predicate ordering is part of the query planner and is a procedural level optimization.

In this chapter, I first explain the theory and then give experiments to illustrate the

performance improvements achieved. It is discovered that both are of greatest benefit

when finding complex features that involve more than Bounds and edge convexity

predicates.

7.1 Overview 124

7.1.1 Lazy Evaluation

The idea of lazy evaluation is to avoid computing things until the very moment that

they are definitely needed—there is no point in computing things that may later turn

out to be unnecessary. For example, suppose p(x) and q(y) are predicates, which

may be expensive to evaluate. Consider the expression p(x) AND q(y). Both will

be evaluated and the final result is computed using logical AND. However, if p(x) is

False, the overall expression must be False, and q(y) do not to be computed at all,

saving unnecessary work. (This assumes that the predicates have no side-effects).

Lazy evaluation can help to ensure that the predicates are only evaluated on a small

candidate set. For example, when finding features such as small pockets, only the areas

of faces definitely belonging to pockets are needed to be computed. In the feature

finder, predicates are evaluated at runtime either by local lookup in cache tables, or

remotely by the CAD modeler; sometimes the latter may take a long time.

Lazy evaluation is realized in the system by steps in the translation stage: expensive

predicates are expressed as foreign SQL functions and evaluated during execution, by

calling the CAD modeler directly.

The following property of SQL queries (also explained in Chapter 2) are used: pred-

icates placed in WHERE clauses are evaluated on all tuples of the range tables, while

predicates placed in HAVING clauses are only evaluated on temporary results that fulfil

the conditions in the WHERE clauses. Thus, the translator puts potentially expensive

predicates into HAVING clauses for efficiency. The only predicates placed into WHERE

clauses are relational predicates (which can be optimized as access predicates) and

edge convexity attribute predicates (which work as filters).

Furthermore, memoization (caching) is used: each time, when evaluating the function

that is translated from the predicate, first to see if it is already available in a local table.

If not, a remote call is made to CADfix to calculate the result, which is then also placed

in the local table. Caching it can save recomputing the result if it is needed again later.

7.1 Overview 125

Table 7.1: Caching tables for constant attribute predicates
Predicate Table required * meaning

*_valency *_valency(* int, degree int) face, vertex

Face_has_number_of_*
face_has_number_of_* (* int, num-

ber int)
vertices, edges

Body_has_number_of_ *
body_number_of_*(body int, num-

ber int)

vertices, edges,

faces

*_has_geometry *_has_geometry(* int,*type int) Edge, Face

Similar gains are provided for other feature definitions involving expensive predicates.

In practice, all attribute predicates except convexity are translated into functions

that are lazy evaluated. The attribute predicates in Listing 3.2 and Listing 3.3 are

classified into three categories based on how they are translated and how the data are

cached.

• constant attribute predicates, which are about constant topological or geometric

attributes. They are translated into the same name functions, which use the same

name two-column tables (id, attribute) to memorize the computed values. For

example, the predicate Face_has_number_of_edge requires us to cache

the boundary edge number of faces into the table face_has_number_of_edges

(face int, number int). Once the predicate is evaluated, it first checks whether

the edge numbers are cached in the face_has_number_of_edges table, if ex-

isting, it tests whether it is equal to the value that the user defined and returns

True or False correspondingly; else it computes the edge numbers first, caches it

into the table face_has_number_of_edges and then compute the True or False;

Table 7.1 gives the caching tables for constant attribute predicates;

• range attribute predicates, which test whether the attribute of an entity is in a

certain range. These predicates are translated into the same name functions;

they also use the same name two-column tables (id, attribute) to memorize the

7.1 Overview 126

computed values. For example, the predicate Face_contained_in_box re-

quires us to cache the bounding box of faces into the table face_box(face int, box box).

Once the predicate is evaluated, it first check whether the bounding box is cached

in the face_box table, and if existing, it checks whether the bounding box of the

face is inside the user defined box and returns True or False correspondingly,

else it returns the bounding box first and caches it into the table face_box; and

then compute the True or False. The range attribute predicates are usually more

computation intensive than constant attribute predicates. Thus, they have better

performance improvement using lazy evaluation and caching. Table 7.2 gives

the caching tables for range attribute predicates;

• miscellaneous predicates, are mainly about distance and angle related constraints.

These predicates are translated into the same name functions. However, they may

use multi-column tables to memorize the computed values. For example, the

predicate Cylinder_axis_aligned_within requires us to cache the axis

of the cylinder and the angle with a vector into the table Cylinder_axis_angle

(face int, axis vector, v vector, angle real). Once the predicate is evaluated,

it first checks whether the axis is cached in the Cylinder_axis_angle table, if

existing, it checks whether the axis of the cylinder face aligned the user defined

vector within a certain angle and returns True or False correspondingly, else it

computes the axis and the angle with the vector and caches them into the table

Cylinder_axis_angle; and then checks the True or False. The system builders

may need to tailor a table used for caching for more sophisticated predicates.

Table 7.3 gives the caching tables for miscellaneous predicates;

7.1.2 Predicate Ordering

The other (optional) optimization is predicate ordering. This is also used to reduce

the workload performed by CAD modeler. In lazy evaluation, expensive calculations

7.1 Overview 127

Table 7.2: Caching tables for range attribute predicates
Predicate Table required * meaning

*_contained_in_box *_box(* int, box box)
Vertex, Edge,

Face, Body

*_contained_in_uvbox *_uvbox(* int, uvbox uvbox) face

*_in_range *(edge int, length real)

Edge_length,

Face_area,

Body_volume

*_radius_in_range *_radius(* int, radius real)

Sphere, Cylinder,

Cone_min/max,

Torus, Ellipsoid

*_than *(edge int, length real)
Edge_longer,

Face_larger

Table 7.3: Caching tables for miscellaneous predicate
Predicate Table required * meaning

Vertex_near_*
vertex_*_distance (vertex int, * int,

distance real)
vertex, edge, face

*_centre_near
*_point_distance(face int, p point,

distance real)
Sphere, Torus

*_aligned_within
*_angle(face int, * vector, v vector,

angle real)

Plane_normal,

Cylinder_axis,

Cone_axis, El-

lipsoid_axis,

Torus_axis

are performed on the result set, but the order of the calculations affects the overall

time taken. For example, suppose the feature is defined as “all faces satisfying p1 and

p2”, where p1 and p2 are two predicates. Let us assume for example that it costs 3

7.1 Overview 128

time units (3U) to evaluate p1, and it costs 10 time units (10U) to evaluate p2 (for

simplicity, assuming this is constant for each entity—in relaity it will depend on the

data). Secondly, suppose that typically, p1 is true 10% of the time and p2 is true 50%

of the time. Both these relative costs, and the probability of rejection by the predicate

when used as a filter, may be estimated by evaluating the predicate for a training set of

models, as will be explained later.

Here are various query plans, for this example, together with the estimations of how

long each takes.

1 s1 = Select from all faces those satisfying p1.

2 s2 = Select from all faces those satisfying p2.

3 result = s1 intersect s2.

Listing 7.1: Evaluation 1

1 s1 = Select from all faces those satisfying p1.

2 result = Select from s1 those satisfying p2.

Listing 7.2: Evaluation 2

1 s2 = Select from all faces those satisfying p2.

2 result = Select from s2 those satisfying p1.

Listing 7.3: Evaluation 3

The approach in Listing 7.1 takes expected time 3U+10U = 13U (neglecting the time

to do the set operation, which assuming is quick); the approach in Listing 7.2 takes

expected time 3U + 0.1 ∗ 10U = 4U and approach in Listing 7.3 takes expected time

10U + 0.5 ∗ 3U = 11.5U . Comparing these plans, It can be seen that the second plan

is the best, and so is the one chosen for execution.

I thus use an automatic predicate ordering approach to provide speed gains, based on

offline training. It is noted that predicate ordering works for all remote predicates

(the ones requiring CAD modeler computation), and thus concerns not only the lazily

evaluated predicates but including the ones in WHERE statements. However, as the

latter usually do not take much time, the performance gain mainly comes from the

lazily evaluated predicates.

7.1 Overview 129

Query optimization in database systems includes reordering subtasks in a query to

make it more efficient—if a series of filters is applied, the ideal situation is the first

filter to reject as much as possible so that subsequent filters have fewer data to pro-

cess. Standard database query optimization chooses an approach based on statistical

information, including the fraction of column entries that are null, the average size of

column entries, whether the number of distinct values is likely to increase as the ta-

ble grows or not, and so on [The15b]. It is usually assumed that retrieving each data

item takes a constant amount of time, whereas in the system, some information must be

computed by the CAD modeler, and so the time taken may vary considerably according

to the predicate involved. I, therefore, modify the standard database query optimizer to

take this into account.

My approach is based on the idea of retention, the probability that a given predicate will

return True. In a HAVING clause with multiple predicates, they may be evaluated in

any order without affecting the result. If all predicates took the same time to evaluate,

for efficiency, they should thus be evaluated in increasing order of retention, to reject

as much as possible early on. However, some take longer to evaluate, which should

also be taken into account: if all predicates were equally likely to be false, the fastest

ones should be evaluated first to reduce the number of slower evaluations. These two

requirements can be combined into an overall optimal order of evaluating the predicates

by defining expense, E = r ∗ c, where r is the retention of a predicate, and c is the

expected time taken to evaluate it. The fastest way to evaluate a clause is to evaluate

the predicates in order of increasing expense. Specifically, the quickest ones and the

ones most likely to return False should be evaluated first.

However, in general, neither the retention nor the cost of executing a given predicate

for a given model are known. Nevertheless, these quantities can be estimated by a

prior offline analysis of a collection of CAD models. Ideally these would be models

of a similar kind to the one being considered—a collection of similar water pumps, for

example, for finding features in a water pump.

7.1 Overview 130

Let P (a1, . . . , an) be a predicate with n arguments, which for simplicity is taken to

be discrete values. Suppose the training set has M models. The retention for the kth

model taken individually is

rk = Ok/Ik, (7.1)

where Ok is the number of entities (vertices, edges, faces or subfeatures) in model k

for which the predicate P is true, and Ik is the number of entities in model k that P can

be applied to. The average retention of this predicate over the whole training set is

E(r) =
M∑
1

Ok/
M∑
1

Ik. (7.2)

When predicates involve continuous values, the definition of retention needs to be mod-

ified somewhat. For example, face area is a continuous variable, with a corresponding

predicate that checks if it is within a given range:

face_area_in_range(face:int, rmin:real, rmax:real).

Selectivity is now

r =

∫ rmax

rmin

P (A) dA (7.3)

where P (A) is the probability density that an arbitrary face has a certain area. In

practice, this may be estimated by constructing a histogram of face areas for all models.

The average time for executing each predicate can also be estimated by processing the

same collection of models offline.

Suppose a query has two predicates p1 and p2, with average costs c1 and c2 and average

retentions r1 and r2. Suppose there are W data items returned by WHERE. The times

taken to execute these in different orders can be estimated to be:

p1 then p2 : t12 = Wc1 +Wr1c2 (7.4)

p2 then p1 : t21 = Wc2 +Wr2c1,

and choose the order of execution accordingly. This analysis may be readily gener-

alised to larger numbers of predicates.

7.2 Experiments 131

7.2 Experiments

7.2.1 Lazy Evaluation and Caching

Lazy evaluation is expected to be most effective for features with expensive CAD mod-

eler calculations. In this section, I show the effectiveness by comparing the perfor-

mance of eager and lazy evaluation, with caching or not.

Take a recognition task with a face area constraint, for example. There are five alterna-

tive ways below to find feature instances:

1. Eager evaluation (a). Pre-calculate and cache all areas in a local table, and trans-

late the corresponding constraint into a filter predicate in a WHERE clause.

2. Eager evaluation (b). Express area computations as remote CAD functions,

translate constraints into filter predicates in WHERE clauses, and evaluate all area

computations at execution time by calling CADfix.

3. Eager evaluation (c). Express area computations as remote CAD functions, and

translate constraints into filter predicates in WHERE clauses. A local table is used

to memoize returned areas so that CADfix is only asked to compute them once.

4. Lazy evaluation (a). Express area computations as remote CAD functions, trans-

late them via HAVING clauses, and evaluate all area computations at execution

time by calling CADfix.

5. Lazy evaluation (b). Express area computations as remote CAD functions, trans-

late them via HAVING clauses. A local table is used to memoize returned areas

so that CADfix is only asked to compute them once.

This leads, for example, to the following different ways of finding large through-hole

features:

7.2 Experiments 132

1 CREATE TABLE throughhole AS

2 SELECT full_edge_e1.edge AS e1, full_edge_e2.edge AS e2, full_edge_e3.edge AS e3,

3 full_edge_e4.edge AS e4, full_edge_e5.edge AS e5, full_edge_e6.edge AS e6,

4 full_edge_e1.face1 AS f1, full_edge_e3.face1 AS f2, full_edge_e1.face2 AS f3,

5 full_edge_e2.face2 AS f4

6 FROM full_edge full_edge_e6, full_edge full_edge_e5, full_edge full_edge_e4,

7 full_edge full_edge_e3, full_edge full_edge_e2, full_edge full_edge_e1,

8 face_area fa, face_area fb

9 WHERE full_edge_e1.face1=full_edge_e2.face1

10 AND full_edge_e1.face2=full_edge_e3.face2

11 AND full_edge_e1.face2=full_edge_e5.face1

12 AND full_edge_e1.face2=full_edge_e6.face2

13 AND full_edge_e2.face2=full_edge_e4.face2

14 AND full_edge_e2.face2=full_edge_e5.face2

15 AND full_edge_e2.face2=full_edge_e6.face1

16 AND full_edge_e3.face1=full_edge_e4.face1

17 AND full_edge_e3.face2=full_edge_e5.face1

18 AND full_edge_e3.face2=full_edge_e6.face2

19 AND full_edge_e4.face2=full_edge_e5.face2

20 AND full_edge_e4.face2=full_edge_e6.face1

21 AND full_edge_e1.convexity=2 AND full_edge_e2.convexity=2

22 AND full_edge_e3.convexity=2 AND full_edge_e4.convexity=2

23 AND full_edge_e5.convexity=3 AND full_edge_e6.convexity=3

24 AND full_edge_e3.face1<>full_edge_e2.face2

25 AND full_edge_e3.face1<>full_edge_e1.face2

26 AND full_edge_e3.face1<>full_edge_e1.face1

27 AND full_edge_e2.face2<>full_edge_e1.face2

28 AND full_edge_e2.face2<>full_edge_e1.face1

29 AND full_edge_e1.face2<>full_edge_e1.face1

30 AND full_edge_e6.edge<>full_edge_e5.edge

31 AND full_edge_e6.edge<>full_edge_e4.edge

32 AND full_edge_e6.edge<>full_edge_e3.edge

33 AND full_edge_e6.edge<>full_edge_e2.edge

34 AND full_edge_e6.edge<>full_edge_e1.edge

35 AND full_edge_e5.edge<>full_edge_e4.edge

36 AND full_edge_e5.edge<>full_edge_e3.edge

37 AND full_edge_e5.edge<>full_edge_e2.edge

38 AND full_edge_e5.edge<>full_edge_e1.edge

39 AND full_edge_e4.edge<>full_edge_e3.edge

40 AND full_edge_e4.edge<>full_edge_e2.edge

41 AND full_edge_e4.edge<>full_edge_e1.edge

42 AND full_edge_e3.edge<>full_edge_e2.edge

43 AND full_edge_e3.edge<>full_edge_e1.edge

44 AND full_edge_e2.edge<>full_edge_e1.edge

7.2 Experiments 133

45 AND fa.face=full_edge_e1.face2 AND fb.face=full_edge_e2.face2

46 AND fa.area > 100 AND fb.area > 100;

Listing 7.4: Eager evaluation (a)

1 CREATE TABLE throughhole AS

2 SELECT full_edge_e1.edge AS e1, full_edge_e2.edge AS e2, full_edge_e3.edge AS e3,

3 full_edge_e4.edge AS e4, full_edge_e5.edge AS e5, full_edge_e6.edge AS e6,

4 full_edge_e1.face1 AS f1, full_edge_e3.face1 AS f2, full_edge_e1.face2 AS f3,

5 full_edge_e2.face2 AS f4

6 FROM full_edge full_edge_e6, full_edge full_edge_e5, full_edge full_edge_e4,

7 full_edge full_edge_e3, full_edge full_edge_e2, full_edge full_edge_e1

8 WHERE full_edge_e1.face1=full_edge_e2.face1

9 AND full_edge_e1.face2=full_edge_e3.face2

10 AND full_edge_e1.face2=full_edge_e5.face1

11 AND full_edge_e1.face2=full_edge_e6.face2

12 AND full_edge_e2.face2=full_edge_e4.face2

13 AND full_edge_e2.face2=full_edge_e5.face2

14 AND full_edge_e2.face2=full_edge_e6.face1

15 AND full_edge_e3.face1=full_edge_e4.face1

16 AND full_edge_e3.face2=full_edge_e5.face1

17 AND full_edge_e3.face2=full_edge_e6.face2

18 AND full_edge_e4.face2=full_edge_e5.face2

19 AND full_edge_e4.face2=full_edge_e6.face1

20 AND full_edge_e1.convexity=2 AND full_edge_e2.convexity=2

21 AND full_edge_e3.convexity=2 AND full_edge_e4.convexity=2

22 AND full_edge_e5.convexity=3 AND full_edge_e6.convexity=3

23 AND full_edge_e3.face1<>full_edge_e2.face2

24 AND full_edge_e3.face1<>full_edge_e1.face2

25 AND full_edge_e3.face1<>full_edge_e1.face1

26 AND full_edge_e2.face2<>full_edge_e1.face2

27 AND full_edge_e2.face2<>full_edge_e1.face1

28 AND full_edge_e1.face2<>full_edge_e1.face1

29 AND full_edge_e6.edge<>full_edge_e5.edge

30 AND full_edge_e6.edge<>full_edge_e4.edge

31 AND full_edge_e6.edge<>full_edge_e3.edge

32 AND full_edge_e6.edge<>full_edge_e2.edge

33 AND full_edge_e6.edge<>full_edge_e1.edge

34 AND full_edge_e5.edge<>full_edge_e4.edge

35 AND full_edge_e5.edge<>full_edge_e3.edge

36 AND full_edge_e5.edge<>full_edge_e2.edge

37 AND full_edge_e5.edge<>full_edge_e1.edge

38 AND full_edge_e4.edge<>full_edge_e3.edge

39 AND full_edge_e4.edge<>full_edge_e2.edge

40 AND full_edge_e4.edge<>full_edge_e1.edge

7.2 Experiments 134

41 AND full_edge_e3.edge<>full_edge_e2.edge

42 AND full_edge_e3.edge<>full_edge_e1.edge

43 AND full_edge_e2.edge<>full_edge_e1.edge

44 AND calc_area(full_edge_e1.face2)>100

45 AND calc_area(full_edge_e2.face2)>100;

Listing 7.5: Eager evaluation (b)

1 CREATE TABLE throughhole AS

2 SELECT full_edge_e1.edge AS e1, full_edge_e2.edge AS e2, full_edge_e3.edge AS e3,

3 full_edge_e4.edge AS e4, full_edge_e5.edge AS e5, full_edge_e6.edge AS e6,

4 full_edge_e1.face1 AS f1, full_edge_e3.face1 AS f2, full_edge_e1.face2 AS f3,

5 full_edge_e2.face2 AS f4

6 FROM full_edge full_edge_e6, full_edge full_edge_e5, full_edge full_edge_e4,

7 full_edge full_edge_e3, full_edge full_edge_e2, full_edge full_edge_e1

8 WHERE full_edge_e1.face1=full_edge_e2.face1

9 AND full_edge_e1.face2=full_edge_e3.face2

10 AND full_edge_e1.face2=full_edge_e5.face1

11 AND full_edge_e1.face2=full_edge_e6.face2

12 AND full_edge_e2.face2=full_edge_e4.face2

13 AND full_edge_e2.face2=full_edge_e5.face2

14 AND full_edge_e2.face2=full_edge_e6.face1

15 AND full_edge_e3.face1=full_edge_e4.face1

16 AND full_edge_e3.face2=full_edge_e5.face1

17 AND full_edge_e3.face2=full_edge_e6.face2

18 AND full_edge_e4.face2=full_edge_e5.face2

19 AND full_edge_e4.face2=full_edge_e6.face1

20 AND full_edge_e1.convexity=2 AND full_edge_e2.convexity=2

21 AND full_edge_e3.convexity=2 AND full_edge_e4.convexity=2

22 AND full_edge_e5.convexity=3 AND full_edge_e6.convexity=3

23 AND full_edge_e3.face1<>full_edge_e2.face2

24 AND full_edge_e3.face1<>full_edge_e1.face2

25 AND full_edge_e3.face1<>full_edge_e1.face1

26 AND full_edge_e2.face2<>full_edge_e1.face2

27 AND full_edge_e2.face2<>full_edge_e1.face1

28 AND full_edge_e1.face2<>full_edge_e1.face1

29 AND full_edge_e6.edge<>full_edge_e5.edge

30 AND full_edge_e6.edge<>full_edge_e4.edge

31 AND full_edge_e6.edge<>full_edge_e3.edge

32 AND full_edge_e6.edge<>full_edge_e2.edge

33 AND full_edge_e6.edge<>full_edge_e1.edge

34 AND full_edge_e5.edge<>full_edge_e4.edge

35 AND full_edge_e5.edge<>full_edge_e3.edge

36 AND full_edge_e5.edge<>full_edge_e2.edge

37 AND full_edge_e5.edge<>full_edge_e1.edge

7.2 Experiments 135

38 AND full_edge_e4.edge<>full_edge_e3.edge

39 AND full_edge_e4.edge<>full_edge_e2.edge

40 AND full_edge_e4.edge<>full_edge_e1.edge

41 AND full_edge_e3.edge<>full_edge_e2.edge

42 AND full_edge_e3.edge<>full_edge_e1.edge

43 AND full_edge_e2.edge<>full_edge_e1.edge

44 AND get_area(full_edge_e1.face2)>100

45 AND get_area(full_edge_e2.face2)>100;

Listing 7.6: Eager evaluation (c)

In this query, the remote CAD predicate get_area is defined as:

1 CREATE OR REPLACE FUNCTION get_area (face integer) RETURNS

2 float AS $$ DECLARE RSLT float;

3 BEGIN

4 SELECT area INTO rslt FROM face_area WHERE face_area.face=$1;

5 IF NOT FOUND THEN

6 rslt:= calc_area ($1);

7 INSERT INTO face_area VALUES ($1,rslt);

8 END IF;

9 RETURN rslt;

10 END;

11 $$ LANGUAGE plpgsql;

Listing 7.7: Function call with memoization

1 CREATE TABLE throughhole AS

2 SELECT full_edge_e1.edge AS e1, full_edge_e2.edge AS e2, full_edge_e3.edge AS e3,

3 full_edge_e4.edge AS e4, full_edge_e5.edge AS e5, full_edge_e6.edge AS e6,

4 full_edge_e1.face1 AS f1, full_edge_e3.face1 AS f2, full_edge_e1.face2 AS f3,

5 full_edge_e2.face2 AS f4

6 FROM full_edge full_edge_e6, full_edge full_edge_e5, full_edge full_edge_e4,

7 full_edge full_edge_e3, full_edge full_edge_e2, full_edge full_edge_e1

8 WHERE full_edge_e1.face1=full_edge_e2.face1

9 AND full_edge_e1.face2=full_edge_e3.face2

10 AND full_edge_e1.face2=full_edge_e5.face1

11 AND full_edge_e1.face2=full_edge_e6.face2

12 AND full_edge_e2.face2=full_edge_e4.face2

13 AND full_edge_e2.face2=full_edge_e5.face2

14 AND full_edge_e2.face2=full_edge_e6.face1

15 AND full_edge_e3.face1=full_edge_e4.face1

16 AND full_edge_e3.face2=full_edge_e5.face1

17 AND full_edge_e3.face2=full_edge_e6.face2

18 AND full_edge_e4.face2=full_edge_e5.face2

7.2 Experiments 136

19 AND full_edge_e4.face2=full_edge_e6.face1

20 AND full_edge_e1.convexity=2 AND full_edge_e2.convexity=2

21 AND full_edge_e3.convexity=2 AND full_edge_e4.convexity=2

22 AND full_edge_e5.convexity=3 AND full_edge_e6.convexity=3

23 AND full_edge_e3.face1<>full_edge_e2.face2

24 AND full_edge_e3.face1<>full_edge_e1.face2

25 AND full_edge_e3.face1<>full_edge_e1.face1

26 AND full_edge_e2.face2<>full_edge_e1.face2

27 AND full_edge_e2.face2<>full_edge_e1.face1

28 AND full_edge_e1.face2<>full_edge_e1.face1

29 AND full_edge_e6.edge<>full_edge_e5.edge

30 AND full_edge_e6.edge<>full_edge_e4.edge

31 AND full_edge_e6.edge<>full_edge_e3.edge

32 AND full_edge_e6.edge<>full_edge_e2.edge

33 AND full_edge_e6.edge<>full_edge_e1.edge

34 AND full_edge_e5.edge<>full_edge_e4.edge

35 AND full_edge_e5.edge<>full_edge_e3.edge

36 AND full_edge_e5.edge<>full_edge_e2.edge

37 AND full_edge_e5.edge<>full_edge_e1.edge

38 AND full_edge_e4.edge<>full_edge_e3.edge

39 AND full_edge_e4.edge<>full_edge_e2.edge

40 AND full_edge_e4.edge<>full_edge_e1.edge

41 AND full_edge_e3.edge<>full_edge_e2.edge

42 AND full_edge_e3.edge<>full_edge_e1.edge

43 AND full_edge_e2.edge<>full_edge_e1.edge

44 GROUP BY full_edge_e1.edge, full_edge_e2.edge, full_edge_e3.edge,

45 full_edge_e4.edge, full_edge_e5.edge, full_edge_e6.edge,

46 full_edge_e1.face1, full_edge_e3.face1, full_edge_e1.face2,

47 full_edge_e2.face2

48 HAVING calc_area(full_edge_e1.face2)>100 AND calc_area(full_edge_e2.face2)>100;

Listing 7.8: Lazy evaluation (a)

1 CREATE TABLE throughhole AS

2 SELECT full_edge_e1.edge AS e1, full_edge_e2.edge AS e2, full_edge_e3.edge AS e3,

3 full_edge_e4.edge AS e4, full_edge_e5.edge AS e5, full_edge_e6.edge AS e6,

4 full_edge_e1.face1 AS f1, full_edge_e3.face1 AS f2, full_edge_e1.face2 AS f3,

5 full_edge_e2.face2 AS f4

6 FROM full_edge full_edge_e6, full_edge full_edge_e5, full_edge full_edge_e4,

7 full_edge full_edge_e3, full_edge full_edge_e2, full_edge full_edge_e1

8 WHERE full_edge_e1.face1=full_edge_e2.face1

9 AND full_edge_e1.face2=full_edge_e3.face2

10 AND full_edge_e1.face2=full_edge_e5.face1

11 AND full_edge_e1.face2=full_edge_e6.face2

12 AND full_edge_e2.face2=full_edge_e4.face2

7.2 Experiments 137

13 AND full_edge_e2.face2=full_edge_e5.face2

14 AND full_edge_e2.face2=full_edge_e6.face1

15 AND full_edge_e3.face1=full_edge_e4.face1

16 AND full_edge_e3.face2=full_edge_e5.face1

17 AND full_edge_e3.face2=full_edge_e6.face2

18 AND full_edge_e4.face2=full_edge_e5.face2

19 AND full_edge_e4.face2=full_edge_e6.face1

20 AND full_edge_e1.convexity=2 AND full_edge_e2.convexity=2

21 AND full_edge_e3.convexity=2 AND full_edge_e4.convexity=2

22 AND full_edge_e5.convexity=3 AND full_edge_e6.convexity=3

23 AND full_edge_e3.face1<>full_edge_e2.face2

24 AND full_edge_e3.face1<>full_edge_e1.face2

25 AND full_edge_e3.face1<>full_edge_e1.face1

26 AND full_edge_e2.face2<>full_edge_e1.face2

27 AND full_edge_e2.face2<>full_edge_e1.face1

28 AND full_edge_e1.face2<>full_edge_e1.face1

29 AND full_edge_e6.edge<>full_edge_e5.edge

30 AND full_edge_e6.edge<>full_edge_e4.edge

31 AND full_edge_e6.edge<>full_edge_e3.edge

32 AND full_edge_e6.edge<>full_edge_e2.edge

33 AND full_edge_e6.edge<>full_edge_e1.edge

34 AND full_edge_e5.edge<>full_edge_e4.edge

35 AND full_edge_e5.edge<>full_edge_e3.edge

36 AND full_edge_e5.edge<>full_edge_e2.edge

37 AND full_edge_e5.edge<>full_edge_e1.edge

38 AND full_edge_e4.edge<>full_edge_e3.edge

39 AND full_edge_e4.edge<>full_edge_e2.edge

40 AND full_edge_e4.edge<>full_edge_e1.edge

41 AND full_edge_e3.edge<>full_edge_e2.edge

42 AND full_edge_e3.edge<>full_edge_e1.edge

43 AND full_edge_e2.edge<>full_edge_e1.edge

44 GROUP BY full_edge_e1.edge, full_edge_e2.edge, full_edge_e3.edge,

45 full_edge_e4.edge, full_edge_e5.edge, full_edge_e6.edge,

46 full_edge_e1.face1, full_edge_e3.face1, full_edge_e1.face2,

47 full_edge_e2.face2

48 HAVING get_area(full_edge_e1.face2) > 100 AND get_area(full_edge_e2.face2)>100;

Listing 7.9: Lazy evaluation (b)

The following three experiments are performed to determine the impact of lazy evalua-

tion; Table 7.4 gives the numbers of features found and Table 7.5 gives the times taken

to find these features in the reducer model in Fig. 6.12.

7.2 Experiments 138

Task 1. Find open slots with side face area greater than 20 units, and bottom face area

greater than 2 units;

Task 2. Find all through-holes with side face area less than 550 units and bore area

smaller than 50 units;

Task 3. Find all through-holes with cylindrical faces area greater than 100 units;

Task Task 1 Task 2 Task 3

Number of features, any size 140 164 164

Number of features, specified size 35 18 142

Table 7.4: Feature finding results for various tasks

As Table 7.5 shows, lazy evaluation approach (b) achieved the best performance in

each case, being about 6 to 8 times faster than eager evaluation approach (a), and much

better than eager evaluation approaches (b) and (c). It is also about twice as fast as lazy

evaluation approach (a). Using eager evaluation (a) takes about the same time for each

task, because of the similar procedure—first calculate areas of all faces, memoize them

in a local table and then perform a filter-based query; time is dominated by the area

calculations. Eager evaluation (b) is slowest: the area of each face is evaluated multiple

times. Eager evaluation (c) is better, as caching means that areas are only computed

Experiment Task 1 Task 2 Task 3

Eager evaluation (a) 1216 1323 1314

Eager evaluation (b) 40311 51286 53309

Eager evaluation (c) 11399 15471 144262

Lazy evaluation (a) 228 1279 401

Lazy evaluation (b) 163 210 156

Table 7.5: Feature finding times (in milliseconds) for the reducer models, using

different evaluation strategies, and different tasks.

7.2 Experiments 139

Figure 7.1: Examples from CPU heatsink training set

Figure 7.2: Model for finding small fins, and detail

once. For the same reason, lazy evaluation approach (b) outperforms lazy evaluation

approach (a).

7.2.2 Predicate Ordering

More complicated features may be defined by multiple expensive attribute predicates.

In this section, I show further experiments that not only use lazy evaluation but also

predicate ordering.

Determining average times and retention requires offline training on a large model set.

For this, I use 826 real industrial models of CPU heat sinks downloaded from [Ltd15].

Examples of these models are shown in Fig. 7.1.

The model in which features are to be found is shown in Fig. 7.2, which, like other

CPU heat sinks, includes a large base and fins of several different sizes. Each fin is

composed of two cylindrical faces with two tangentially connected side faces, a top

face and a bottom edge loop.

7.2 Experiments 140

Predicate average execution time average retention

area_in_range 1 ms 0.2231

perimeter_in_range 0.003 ms 0.0084

Table 7.6: Retention and cost of target predicates

The feature recognition task here is to find small fins, defined as fins whose side face

area is between 10 and 20 square units, and whose top face has perimeter between 18.5

and 18.7 units. This requires the predicates

1 area_in_range(full_edge_e4.face2, 10, 20)

2 perimeter_in_range(full_edge_e1.face1, 18.5, 18.7);

In the feature finder, these range predicates are translated to enable PostgreSQL to

use lazy evaluation with memoization; the function calc_area is a remote CAD

function call to CADfix.

1 CREATE OR REPLACE FUNCTION area_in_range(face int, lv float, hv float) RETURNS boolean

AS

2 $$ DECLARE

3 RSLT float; VAL boolean;

4 BEGIN

5 SELECT area INTO rslt

6 FROM face_area

7 WHERE face_area.face=$1;

8 IF NOT FOUND

9 THEN rslt:= calc_area ($1);

10 INSERT INTO face_area VALUES ($1,rslt);

11 END IF;

12 RETURN ((rslt > $2) and (rslt < $3)) ;

13 END;

14 $$ LANGUAGE plpgsql;

To estimate the cost and retention of the area and perimeter functions, offline training

was performed on the set of training models. The area and perimeter distributions are

shown in Fig. 7.3. Average times to compute these properties, and their retention for

the particular ranges of values used in the test, are given in Table 7.6.

The target query used to find small fins is as follows, where the two predicates in the

7.2 Experiments 141

−6 −4 −2 0 2
0

1

2

3

4

5

6

7
x 10

4

C
ou

nt
s

log
10

(area/mean)
−3 −2 −1 0 1 2
0

2

4

6

8

10

12
x 10

4

C
ou

nt
s

log
10

(perimeter/mean)

Figure 7.3: Histograms of face areas and perimeters for training model dataset

HAVING clause are the ones being considered for reordering:

1 SELECT full_edge_e1.edge AS e1, full_edge_e2.edge AS e2, full_edge_e3.edge AS e3,

2 full_edge_e4.edge AS e4, full_edge_e5.edge AS e5, full_edge_e6.edge AS e6,

3 full_edge_e7.edge AS e7, full_edge_e8.edge AS e8, full_edge_e9.edge AS e9,

4 full_edge_e10.edge AS e10, full_edge_e11.edge AS e11,

5 full_edge_e12.edge AS e12, full_edge_e1.face1 AS f1,

6 full_edge_e1.face2 AS f2, full_edge_e4.face2 AS f3,

7 full_edge_e3.face2 AS f4, full_edge_e2.face2 AS f5,

8 full_edge_e9.face2 AS f6

9 FROM full_edge full_edge_e12, full_edge full_edge_e11, full_edge full_edge_e10,

10 full_edge full_edge_e9, full_edge full_edge_e8, full_edge full_edge_e7,

11 full_edge full_edge_e6, full_edge full_edge_e5, full_edge full_edge_e4,

12 full_edge full_edge_e3, full_edge full_edge_e2, full_edge full_edge_e1

13 WHERE full_edge_e1.face1=full_edge_e2.face1

14 AND full_edge_e1.face1=full_edge_e3.face1

15 AND full_edge_e1.face1=full_edge_e4.face1

16 AND full_edge_e1.face2=full_edge_e5.face1

17 AND full_edge_e1.face2=full_edge_e6.face1

18 AND full_edge_e1.face2=full_edge_e9.face1

19 AND full_edge_e2.face1=full_edge_e3.face1

20 AND full_edge_e2.face1=full_edge_e4.face1

21 AND full_edge_e2.face2=full_edge_e5.face2

22 AND full_edge_e2.face2=full_edge_e8.face2

23 AND full_edge_e2.face2=full_edge_e12.face2

24 AND full_edge_e3.face1=full_edge_e4.face1

25 AND full_edge_e3.face2=full_edge_e7.face2

26 AND full_edge_e3.face2=full_edge_e8.face1

27 AND full_edge_e3.face2=full_edge_e11.face1

28 AND full_edge_e4.face2=full_edge_e6.face2

7.2 Experiments 142

29 AND full_edge_e4.face2=full_edge_e7.face1

30 AND full_edge_e4.face2=full_edge_e10.face2

31 AND full_edge_e5.face1=full_edge_e6.face1

32 AND full_edge_e5.face2=full_edge_e8.face2

33 AND full_edge_e5.face1=full_edge_e9.face1

34 AND full_edge_e5.face2=full_edge_e12.face2

35 AND full_edge_e6.face2=full_edge_e7.face1

36 AND full_edge_e6.face1=full_edge_e9.face1

37 AND full_edge_e6.face2=full_edge_e10.face2

38 AND full_edge_e7.face2=full_edge_e8.face1

39 AND full_edge_e7.face1=full_edge_e10.face2

40 AND full_edge_e7.face2=full_edge_e11.face1

41 AND full_edge_e8.face1=full_edge_e11.face1

42 AND full_edge_e8.face2=full_edge_e12.face2

43 AND full_edge_e9.face2=full_edge_e10.face1

44 AND full_edge_e9.face2=full_edge_e11.face2

45 AND full_edge_e9.face2=full_edge_e12.face1

46 AND full_edge_e10.face1=full_edge_e11.face2

47 AND full_edge_e10.face1=full_edge_e12.face1

48 AND full_edge_e11.face2=full_edge_e12.face1

49 AND full_edge_e1.convexity=2 AND full_edge_e2.convexity=2

50 AND full_edge_e3.convexity=2 AND full_edge_e4.convexity=2

51 AND full_edge_e5.convexity=3 AND full_edge_e6.convexity=3

52 AND full_edge_e7.convexity=3 AND full_edge_e8.convexity=3

53 AND full_edge_e9.convexity=1 AND full_edge_e10.convexity=1

54 AND full_edge_e11.convexity=1 AND full_edge_e12.convexity=1

55 AND full_edge_e12.edge<>full_edge_e11.edge

56 AND full_edge_e12.edge<>full_edge_e10.edge

57 AND full_edge_e12.edge<>full_edge_e9.edge

58 AND full_edge_e12.edge<>full_edge_e8.edge

59 AND full_edge_e12.edge<>full_edge_e7.edge

60 AND full_edge_e12.edge<>full_edge_e6.edge

61 AND full_edge_e12.edge<>full_edge_e5.edge

62 AND full_edge_e12.edge<>full_edge_e4.edge

63 AND full_edge_e12.edge<>full_edge_e3.edge

64 AND full_edge_e12.edge<>full_edge_e2.edge

65 AND full_edge_e12.edge<>full_edge_e1.edge

66 AND full_edge_e11.edge<>full_edge_e10.edge

67 AND full_edge_e11.edge<>full_edge_e9.edge

68 AND full_edge_e11.edge<>full_edge_e8.edge

69 AND full_edge_e11.edge<>full_edge_e7.edge

70 AND full_edge_e11.edge<>full_edge_e6.edge

71 AND full_edge_e11.edge<>full_edge_e5.edge

72 AND full_edge_e11.edge<>full_edge_e4.edge

7.2 Experiments 143

73 AND full_edge_e11.edge<>full_edge_e3.edge

74 AND full_edge_e11.edge<>full_edge_e2.edge

75 AND full_edge_e11.edge<>full_edge_e1.edge

76 AND full_edge_e10.edge<>full_edge_e9.edge

77 AND full_edge_e10.edge<>full_edge_e8.edge

78 AND full_edge_e10.edge<>full_edge_e7.edge

79 AND full_edge_e10.edge<>full_edge_e6.edge

80 AND full_edge_e10.edge<>full_edge_e5.edge

81 AND full_edge_e10.edge<>full_edge_e4.edge

82 AND full_edge_e10.edge<>full_edge_e3.edge

83 AND full_edge_e10.edge<>full_edge_e2.edge

84 AND full_edge_e10.edge<>full_edge_e1.edge

85 AND full_edge_e9.edge<>full_edge_e8.edge

86 AND full_edge_e9.edge<>full_edge_e7.edge

87 AND full_edge_e9.edge<>full_edge_e6.edge

88 AND full_edge_e9.edge<>full_edge_e5.edge

89 AND full_edge_e9.edge<>full_edge_e4.edge

90 AND full_edge_e9.edge<>full_edge_e3.edge

91 AND full_edge_e9.edge<>full_edge_e2.edge

92 AND full_edge_e9.edge<>full_edge_e1.edge

93 AND full_edge_e8.edge<>full_edge_e7.edge

94 AND full_edge_e8.edge<>full_edge_e6.edge

95 AND full_edge_e8.edge<>full_edge_e5.edge

96 AND full_edge_e8.edge<>full_edge_e4.edge

97 AND full_edge_e8.edge<>full_edge_e3.edge

98 AND full_edge_e8.edge<>full_edge_e2.edge

99 AND full_edge_e8.edge<>full_edge_e1.edge

100 AND full_edge_e7.edge<>full_edge_e6.edge

101 AND full_edge_e7.edge<>full_edge_e5.edge

102 AND full_edge_e7.edge<>full_edge_e4.edge

103 AND full_edge_e7.edge<>full_edge_e3.edge

104 AND full_edge_e7.edge<>full_edge_e2.edge

105 AND full_edge_e7.edge<>full_edge_e1.edge

106 AND full_edge_e6.edge<>full_edge_e5.edge

107 AND full_edge_e6.edge<>full_edge_e4.edge

108 AND full_edge_e6.edge<>full_edge_e3.edge

109 AND full_edge_e6.edge<>full_edge_e2.edge

110 AND full_edge_e6.edge<>full_edge_e1.edge

111 AND full_edge_e5.edge<>full_edge_e4.edge

112 AND full_edge_e5.edge<>full_edge_e3.edge

113 AND full_edge_e5.edge<>full_edge_e2.edge

114 AND full_edge_e5.edge<>full_edge_e1.edge

115 AND full_edge_e4.edge<>full_edge_e3.edge

116 AND full_edge_e4.edge<>full_edge_e2.edge

7.2 Experiments 144

117 AND full_edge_e4.edge<>full_edge_e1.edge

118 AND full_edge_e3.edge<>full_edge_e2.edge

119 AND full_edge_e3.edge<>full_edge_e1.edge

120 AND full_edge_e2.edge<>full_edge_e1.edge

121 AND face_geometry_is(full_edge_e1.face2,2006)

122 AND face_geometry_is(full_edge_e3.face2,2006)

123 GROUP BY full_edge_e1.edge, full_edge_e2.edge, full_edge_e3.edge,

124 full_edge_e4.edge, full_edge_e5.edge, full_edge_e6.edge,

125 full_edge_e7.edge, full_edge_e8.edge, full_edge_e9.edge,

126 full_edge_e10.edge, full_edge_e11.edge, full_edge_e12.edge,

127 full_edge_e1.face1, full_edge_e1.face2, full_edge_e4.face2,

128 full_edge_e3.face2, full_edge_e2.face2, full_edge_e9.face2

129 HAVING area_in_range(full_edge_e4.face2, 10, 20)

130 AND perimeter_in_range(full_edge_e1.face1, 18.5, 18.7);

Listing 7.10: Query to find small fins

Results obtained using the system based on the PostgreSQL engine with lazy evalua-

tion, with and without predicate reordering are compared. The test was repeated 100

times to give an averaged performance result. Each time the PostgreSQL server was

restarted, warmed up and the OS caches (pagecache, dentries and inodes) were cleared.

For both versions, the SQL query with the predicates given in either possible order are

both timed: area then perimeter, or perimeter then area. With reordering, the query

planner always chooses the predicate ordering perimeter then area, whichever order-

ing the predicates are initially provided in: the much higher cost of computing areas

compared to perimeters far outweighs the differences in retention. Without reordering,

predicates are simply executed in the sequence given.

Fig. 7.4 give the times taken to find features in each of the 100 runs in each case, using

the different strategies. Without reordering, the approaches take different times accord-

ing to which predicate is evaluated first. Computing area first, most runs take 350–400

ms, while if the perimeter is computed first, most runs take 490–530 ms. However, if

reordering is used, no matter how the predicates are ordered in the original definition,

the times taken in both cases have closely similar ranges and distributions. Average

times are given in Table 7.7. As expected, the optimizer-chosen perimeter-then-area

7.2 Experiments 145

NA NP RA RP
0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n

NA NP RA RP
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n

Time taken between 350 and 400 ms
Time taken between 400 and 450 ms
Time taken between 450 and 490 ms
Time taken between 490 and 530 ms

Figure 7.4: Times taken for for each of 100 runs. N = No reordering of predicates.

R = Reordering of predicates. A = Area first. P = Perimeter first. .

Method Area then perimeter Perimeter then area

No predicate reordering 498 ms 393 ms

With predicate reordering 392 ms 392 ms

Table 7.7: Average feature finding times with and without predicate reordering

optimization.

ordering is faster than the alternative area-then-perimeter ordering. The overhead re-

quired to perform the retention calculation is negligible.

As an effective translation and lazy evaluation already greatly improve performance,

predicate ordering only makes a worthwhile difference for large models. Most of the

time spent is running the query itself, rather than the CAD computations, so the saving

is not much (21% in this case). Nevertheless, for other more complex predicates that

the CAD modeler takes longer to process, the savings could be greater.

In summary, the best approach for a feature recognition which involves numerical at-

7.3 Summary 146

tribute predicates is

1. lazily evaluate these attributes to reduce the workload performed by the CAD

modeler,

2. memoize the results of function calls, to avoid repeatedly making the same call

to the CAD modeler;

3. order the function calls according to execution cost and retention, to minimize

the workload performed on the CAD modeler.

7.3 Summary

The approach is extended to incorporate lazy evaluation with memoization and predi-

cate ordering optimizations in this chapter. Lazy evaluation essentially requires query

rewriting at the declarative level while predicate ordering is a transformation in al-

gebraic space using statistical information. The optimizations are most effective for

(multiple) expensive predicates and do not have much effect for basic features (defined

only using bounds and edge convexity predicates). Instead of time complexity im-

provements, both give a constant factor improvement. Clearly, the cost of the predicate

affects the effectiveness of lazy evaluation, and the similarity between the test model

and the training set is likely to determine the effectiveness of predicate ordering.

147

Chapter 8

Discussion

8.1 Conclusion

The thesis has presented an approach to quickly find features in CAD models using

DB query optimizations. Firstly, I summary the works addressed in this thesis.

Declarative feature definitions when naively translated into the procedural code leads

to nested for-all loops to exhaustively find entities satisfying requirements. Such an

algorithm is too expensive for real use. When relational DB systems answer queries,

they have much in common with a declarative feature recognition task: (i) they use a

declarative language (SQL) to express the query and (ii) the query performs an exhaus-

tive search for all tuples in tables. Much research has gone into query optimization to

ensure that DB kernels return results quickly. I have demonstrated that if building a

testbed around a DB kernel and a CAD modeler, it is able to use query optimization to

find features quickly.

Initially, an SQLite based testbed is built to verify the idea. The feature recognizer

consists of a translator (to turn a feature definition into an SQL query), an SQLite query

optimizer (to turn the SQL query into an algorithm) and a CAD modeler (to read in the

model and pass the necessary data to tables). I proposed a straightforward translation

in which all predicates (excluding rank predicates such as Lower_id(e1,e2)) in

the feature definition are turned into existence test clauses. Experiments show that

this approach can find features in approximately O(n2) time; examining the query

8.1 Conclusion 148

execution plan shows that SQLite uses index access optimizations to achieve this.

I next replaced the database engine with PostgreSQL to see whether the optimizations

provided by SQLite could be replicated, and to determine whether different database

engines would arrive at similar query execution plans when used for feature recogni-

tion. However, the performance observed on SQLite was not repeatable with Post-

greSQL, as it does not have automatic indexing optimization. I thus developed a

new translation approach in which, instead of using existence test subqueries, predi-

cates are first transformed into an internal form and then turned into access predicates

or filter predicates. Experiments show that (i) the resulting algorithm generated by

PostgreSQL has O(n) time complexity, while (ii) the algorithm generated by SQLite

has O(n log(n)) complexity. Both achieve much better performance than the original

SQLite testbed. Execution plans show that PostgreSQL turns the access predicates into

a hash join algorithm which can reduce the search space greatly, and on the other hand

SQLite uses the access predicates as index keys, allowing it to access tuples of interest

quickly. Although they choose different algorithms, both perform very well. It is noted

that such access predicates and filter predicates can be optimized by all mainstream

DB systems using indexing or join algorithms.

During translation, attribute predicates are turned into functions executed by the CAD

modeler and return True or False; in some cases they may be expensive to compute.

Performing such a calculation on all entities is likely to be very slow. Further experi-

ments showed that lazy evaluation and predicate ordering are effective techniques for

reducing the workload for expensive predicates.

The current approach has two prerequisites: it requires a manifold model, and features

to be connected, both of which are likely to be satisfied for most real world problems.

Nevertheless, I have also discussed how these limitations may be overcome.

The state-of-the-art performance for feature recognition has been improved, and the

first linear complexity feature finder has been demonstrated. Nevertheless, some limi-

tations remain. It is hard to write definitions for complicated features, topological sym-

8.2 Contribution 149

metries can result in the same feature being reported multiple times, and the method

works no better than previous methods in the presence of interacting features. I hope

to consider these problems in future.

In summary, the hypothesis are verified and the aims proposed in section 1.3 are

achieved. Specifically:

1. Declarative feature definition language syntax and predicates are defined. End

users can describe what he/she want using the declarations; expressive power of

the domain specific language is discussed;

2. Various translation rules that turn feature definitions into SQL queries in a gen-

eral way are discussed;

3. Testbeds based on SQLite and PostgreSQL are devised to verify the hypothesis,

linear performance feature recognition is achieved;

4. The execution plans behind the performances are investigated, based on the un-

derstanding, a stand alone feature recognizer without using the database systems

are proposed in the following subsections.

5. Beyond the database built-in query optimizations, Lazy evaluation with caching

and predicate ordering are investigated how to further improve performance for

features that are defined using both topological and graphical constraints.

8.2 Contribution

The novel contributions of this work are as follows:

• Definition and validation of architecture for SQL driven feature recognition. It

is demonstrate that database query optimization technologies can provide fast

8.3 Limitations and Future Work 150

feature recognition if using a translator that turns a feature definition into an

SQL query, with a CAD modeler providing the model data to it.

• Automatic declarative feature representation to SQL translator. It is investigated

that how a general translator can be achieved using existence test subqueries,

access predicates or filter predicates.

• It is demonstrated that linear performance for common feature recognition can

be achieved using access predicates based translator and PostgreSQL optimiza-

tion engine based testbed. This outperforms the prior state-of-the-art.

• It is demonstrated that beyond database system build-in optimizations, further

performance improvement can be achieved by 1). lazy evaluation and caching

to reduce the work performed by the CAD modeler. 2). Estimates of the time

taken to compute various geometric operations can be used to further improve

the query plan by reordering filtering operations.

• It is demonstrated that the approach can find features in complex real world

engineering objects in acceptable time.

8.3 Limitations and Future Work

Although the proposed approach shows great promise, there are several limitations and

issues that warrant further investigation.

Firstly, the PostgreSQL based approach described in Chapter 6 is targeted at features

with connected entities, such as the faces which make up a pocket. It requires features

to be defined using Bounds_EF or Bounds_VE. Nevertheless,

• recognizing such features is the major feature recognition task in CAM, CAPP

and CAE;

8.3 Limitations and Future Work 151

• using a full-edge data model, Bounds_EF and Bounds_VE can be turned into

access predicates in SQL queries, which in turn are readily-optimized by main-

stream DB systems.

In practice, features are not always defined using relational predicates and may not

be connected features, e.g. a parallel-faces feature as defined in Listing 8.1: almost-

parallel faces could be suitable for a robot to grip an object; parallel faces may be

required for symmetry analysis in CAE. The definition includes no relation predicates,

only one determining the angle between two face normals.

1 DEFINE parallel-faces AS

2 face: f1, f2

3 SATISFYING

4 Face_has_geometry(f1, plane)

5 Face_has_geometry(f2, plane)

6 Plane_normal_angle_between(f1, f2, 0.01)

7 END

Listing 8.1: Parallel-faces feature

In order to recognize general features, the system can support using primitives as

range tables, as does the SQLite based testbed. DB systems can efficiently turn the

full_edge table into face and edge tables. In this case, the feature definition can

be translated into the naive nested for-all loop algorithm, e.g.,

1 for each f1 in face do

2 for each f2 in face do

3 if Face_has_geometry(f1, plane) &&

4 Face_has_geometry(f1, plane) && (Plane_normal_angle_between(f1,f2) < 0.01)

5 add to results (f1, f2)

Listing 8.2: Algorithm for parallel-faces feature

As the computation (Plane_normal_angle_between) is performed on every

pair of faces, it is an exhaustive method. As time is mainly spent on function execution,

not on the nested for all loop, thus, the only way to improve performance is to avoid

computing the function for pairs of faces that have significantly different orientations.

8.3 Limitations and Future Work 152

It is well known that spatial indexes are useful in solid modeling [AK91, Tan92,

SM95], and can help to reduce the complexity of such nested loops. For example,

an octree can be used to answer spatial queries such as find the nearest object [BR09a,

BR09b]. I intend to explore such indexes and other tools such as medial objects [PSB95]

for such purposes.

Secondly, the form of declarations the testbed supported do not currently permit fea-

tures with variable numbers of elements, such as a ring of holes, a gear with a variable

number of teeth, or a row of slots. These are most easily defined recursively. Some

variants of SQL also allow recursive queries, which indicates a potential way of gener-

alizing the method.

Thirdly, automatically identifying topological symmetry, and preventing the same fea-

ture being returned multiple times is also a tricky issue. For example, Table 6.1 is the

topological symmetry results for a notch feature. Manually defining features (see List-

ing 3.4) using comparison relation predicates like Greater_id(id1, id2) can

be tedious and error-prone. Adding clauses automatically to remove all symmetries

without also throwing away some desired results is difficult, yet writing correct decla-

rations to do so manually is also difficult. A simple approach, but one that is almost

certainly suboptimal, is instead to ignore topological symmetry in the feature defini-

tion, and to check for and delete additional copies of the same feature in the returned

results. Methods are needed which do not have excessive complexity as the number of

entities in a feature, or the number of multiple copies, grows.

Fourthly, use of the full-edge form assumes that the models are manifold. However,

it seems plausible that the approach could be generalised to work for non-manifold

models, as there will in general only be a small number of faces around each edge,

and few non-manifold edges. Alternatively, there is some mature work to change non-

manifold models into manifold ones [MHS01, McM00].

Fifthly, different modelers use different internal representations. For example, one

modeler may use multiple cylindrical faces to represent a complete cylindrical surface,

8.3 Limitations and Future Work 153

while another modeler may use just one. Unfortunately, this means that the engineer

writing a feature definition must understand the internal representation used by the

particular modeler a definition is intended for: feature definitions are unlikely to be

interchangeable between modelers. This is, of course, a problem for any feature finder

which works on a boundary representation. While merging such cylindrical surfaces

may be a useful step in overcoming this particular problem, the general problem is

probably as hard as the one of translating CAD data between different systems, which

is notoriously tricky [KSL97, RHJ+01, MB08].

Writing declarative definitions can still be a complex task for end users, even if less

difficult than devising algorithms. Complicated features may have tens of faces and

edges, and it is not easy to label them, write, and debug a correct and complete dec-

laration. A better approach based on a point-and-click interface may help to alleviate

this burden, and I intend to investigate it in future.

Finding complex features in the presence of interacting features perhaps remains the

outstanding problem in feature recognition. It is far from clear that even an assisted

declarative approach will let engineers do this effectively—it may be just too hard to

take into account all possible interactions. This will only become clear if and when

engineers start using such a declarative approach in practice; industrial feedback is

needed to clarify this issue. As always, dealing with interacting features is difficult,

and the current work offers no clear way to help in this area. More work is needed

to understand how to define features in a way that takes interactions into account, and

report instances of interacting features in a way that is useful to the user. Possible solu-

tions may require incorporating hint based predicates to define features. Classic works

on hint based automatic feature recognition [HR97, GS98] may provide knowledge

basement in the declarative feature recognizer.

8.4 A Feature Recognition Architecture 154

8.4 A Feature Recognition Architecture

The experiments with DB engines gave good performance in Chapters 5 and 6, and the

corresponding execution plans have also let us understand how that good performance

was obtained. As a result, a feature recogniser to directly use these methods without

any longer needing the database engine can be implemented. The DB engines were

a tool for understanding, and not a necessary component of a fast feature recognition

system. In this section, I propose a stand-alone feature recognizer architecture, which

1. can recognize general features, both connected features and disconnected fea-

tures, and

2. does not need a DB kernel, just the knowledge gained from the two testbeds.

DB systems usually include hundreds of thousands or millions of lines of source

code, many of which are irrelevant in a feature recognizer. A standalone feature

recognizer is more concise and may provide better performance.

The standalone declarative feature recognizer includes two main modules: a language

compiler and an executor. The compiler turns a feature declaration into several algo-

rithms and the executor executes them.

The workflow of the language compiler is illustrated in Fig. 8.1. The primitive classi-

fier reads in all primitives in the feature definition, compares them with a lookup table

and classifies them as type R or type Q (I omit the subfeature here as their transla-

tion are rather straightforward). Type R refers to the primitives referred by relational

predicates; while type Q are others. In practice, a feature can be defined using entities

of only type R, or of type Q, or both. Relational predicates only take effect on type R

while attribute predicates can work on both entity types.

I classify the primitives into the two types because the associated predicates use dif-

ferent data models. For example, if features are defined using Bounds_EF, the system

needs to pre-load full_edge(e, fa, fb, convexity) relations (similarly for Bounds_VE)

8.4 A Feature Recognition Architecture 155

Hash Join Algorithm
Generator

Algorithm 1 Algorithm 2

Primitive
Classifier

Feature
Definition

Nested Loop
Algorithm Generator

Algorithm 3

List R/Q

List R

Predicate Ordering
Algorithm Generator

List Q

Figure 8.1: Workflow for language compiler

so that hash join algorithm can be used to translate the feature definition. If the feature

is defined without type R, the data models should be single column primitive tables,

for example edges(e), and a naive nested loop algorithm must be used to translate the

feature definition, although in future a spatial index may be a better alternative.

Next, different algorithm generators use the corresponding primitives and predicates to

generate procedural algorithms. Specifically:

1. A hash join algorithm generator uses listR and relation predicates (Bounds_EF

and Bounds_VE) to generate a hash join algorithm. This approach corresponds

to the optimization described in Chapter 6. The key idea is that the hash join

8.4 A Feature Recognition Architecture 156

algorithm reduces the search space which satisfies the access predicates. Pseu-

docode is given in Listing 2.3.

2. A predicate ordering algorithm generator uses lists R, Q and all attribute pred-

icates to generate an algorithm in which all numerical attribute predicates are

turned into functions which call the CAD modeler to do the time-consuming

calculations. More importantly, the function calls are ordered so that the over-

all cost of CAD modeler work is minimized. This approach corresponds to the

predicate ordering optimization described in Chapter 7.

3. A nested loop algorithm generator uses list Q to generate naive for-all nested

loop algorithms. This algorithm is mainly responsible for non-local parts of def-

initions, as in the parallel-face feature. Gibson’s optimizations [GIS97, GISH97,

GIS99] can be used to optimize the nested loops; they can also be speed up by

spatial indexing as discussed earlier.

The workflow of the executor is shown in Fig. 8.2. All candidate primitives and pred-

icates in the feature definition are filtered by Algorithms 1 and 3, generating a much

smaller candidate set. The smaller set of data is further processed by the functions

which are ordered by Algorithm 2. Execution uses lazy evaluation as described in

Chapter 7.

next, I briefly analyze the complexity of this approach. In practice, the most likely sce-

nario is to recognize local features, defined using type R primitives and Bounds_EF

or Bounds_VE. The extreme case is to recognize non-local features, e.g. parallel-

faces which are defined using type Q primitives. In between, some features have both

R and Q. The first case has linear performance as explained in Chapter 6, while the

second case has the highest complexity as it is a nested loop algorithm. For the most

common third case, when applying Algorithms 1 and 3 in order, the total complexity

is O(nl) where l is the number of primitives in list Q.

8.4 A Feature Recognition Architecture 157

Start

Entity
Classifier

Algorithm 1

Algorithm 2

Algorithm 3

End

Type R Type Q

Figure 8.2: Workflow for executor

In the stand-alone feature recognizer, the DB systems can be replaced using hash tables

directly. By using separate lists of local and non-local predicates, it can be avoid

that everything going into nested loops. The approach proposed is based on what I

have learned from the PostgreSQL testbed, so it should achieve the same performance.

Although it is not implemented, I believe it provides a sound basis for interested system

builders.

158

Bibliography

[AK91] S Anand and Kenneth Knott. An algorithm for converting the boundary

representation of a CAD model to its octree representation. Computers &

Industrial Engineering, 21(1):343–347, 1991.

[Arm00] Cecil Armstrong. Djinn: a geometric interface for solid modelling:

specification and report. Information Geometers, 2000. ISBN: 978-

1874728139.

[AU92] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science.

Computer Science Press, Inc., New York, NY, USA, 1992. ISBN: 978-

0716782841.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time iii: The

Split-or-Johnson routine. http://people.cs.uchicago.edu/~laci/

quasipoly.html, 2016. Retrieved 20 January 2016.

[BDS08] Emmanuel Brousseau, Stefan Dimov, and Rossitza Setchi. Knowledge

acquisition techniques for feature recognition in CAD models. Journal of

Intelligent Manufacturing, 19(1):21–32, 2008.

[BE77] Mike W. Blasgen and Kapali P. Eswaran. Storage and access in relational

data bases. IBM Systems Journal, 16(4):363–377, 1977.

http://people.cs.uchicago.edu/~laci/quasipoly.html
http://people.cs.uchicago.edu/~laci/quasipoly.html

BIBLIOGRAPHY 159

[BNM08] Bojan Babic, Nenad Nesic, and Zoran Miljkovic. A review of automated

feature recognition with rule-based pattern recognition. Computers in

Industry, 59(4):321–337, 2008.

[BR09a] André Borrmann and Ernst Rank. Specification and implementation of

directional operators in a 3D spatial query language for building informa-

tion models. Advanced Engineering Informatics, 23(1):32–44, 2009.

[BR09b] André Borrmann and Ernst Rank. Topological analysis of 3D building

models using a spatial query language. Advanced Engineering Informat-

ics, 23(4):370–385, 2009.

[BS96] Geoffrey Butlin and Clive Stops. CAD data repair. In Proceedings of the

5th International Meshing Roundtable, pages 7–12. Citeseer, 1996.

[Bur10] Donald K Burleson. Oracle tuning: the definitive reference. Rampant

TechPress, 2010. ISBN: 978-0982306130.

[CC91] J Corney and Doug ER Clark. Method for finding holes and pockets

that connect multiple faces in 2 1/2D objects. Computer-Aided Design,

23(10):658–668, 1991.

[Cha98] Surajit Chaudhuri. An overview of query optimization in relational

systems. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, PODS ’98, pages

34–43, New York, NY, USA, 1998. ACM.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Pi-

oneers & Their Contributions to Software Engineering, 13(6):377–387,

1970.

[Cor93] Jonathan Roy Corney. Graph-based feature recognition. PhD thesis,

Heriot-Watt University, 1993.

BIBLIOGRAPHY 160

[Cot09] J Cottrell. Isogeometric analysis toward integration of CAD and FEA.

Wiley, Chichester, West Sussex, U.K. Hoboken, NJ, 2009. ISBN: 978-

0470748732.

[CS95] Surajit Chaudhuri and Kyuseok Shim. An overview of cost-based opti-

mization of queries with aggregates. IEEE Data Engineering Bulletin,

18(3):3–9, 1995.

[DEGV01] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.

Complexity and expressive power of logic programming. ACM Comput-

ing Surveys (CSUR), 33(3):374–425, 2001.

[DG85] David J. DeWitt and Robert H. Gerber. Multiprocessor hash-based join

algorithms. In Proceedings of the 11th International Conference on Very

Large Data Bases - Volume 11, VLDB ’85, pages 151–164. VLDB En-

dowment, 1985.

[DMFG94] T De Martino, B Falcidieno, and F Giannini. An adaptive feature recogni-

tion process for machining contexts. Advances in Engineering Software,

20(2):91–105, 1994.

[DuB05] Paul DuBois. MySQL (3rd Edition) (Developer’s Library). Sams, Indi-

anapolis, IN, USA, 2005. ISBN: 0672326736.

[FA94] Malcolm C Fields and David C Anderson. Fast feature extraction for

machining applications. Computer-Aided Design, 26(11):803–813, 1994.

[FOL+03] MW Fu, Soh-Khim Ong, Wen Feng Lu, IBH Lee, and Andrew YC Nee.

An approach to identify design and manufacturing features from a data

exchanged part model. Computer-Aided Design, 35(11):979–993, 2003.

[GIS97] Paul Gibson, Hossam Ismail, and Malcolm Sabin. A feature recognition

project. In Product Modeling for Computer Integrated Design and Man-

ufacture, pages 179–190. Chapman & Hall, Ltd., 1997.

BIBLIOGRAPHY 161

[GIS99] P Gibson, HS Ismail, and MA Sabin. Optimization approaches in feature

recognition. International Journal of Machine Tools and Manufacture,

39(5):805–821, 1999.

[GISH97] P Gibson, HS Ismail, MA Sabin, and KKB Hon. Interactive pro-

grammable feature recogniser. CIRP Annals on Manufacturing Technol-

ogy, 46(1):407–410, 1997.

[GP92] Rajit Gadh and Fritz B Prinz. Recognition of geometric forms using the

differential depth filter. Computer-Aided Design, 24(11):583–598, 1992.

[Gra15] GrabCAD. GrabCAD Free CAD Models. https://grabcad.com/

library, 2015. Retrieved 11 March 2015.

[GS98] Shuming Gao and Jami J Shah. Automatic recognition of interacting ma-

chining features based on minimal condition subgraph. Computer-Aided

Design, 30(9):727–739, 1998.

[GS01] Ewald Geschwinde and Hans-Juergen Schonig. PostgreSQL Developer’s

Handbook. Sams Publishing, Indianapolis, IN, USA, 2001. ISBN: 978-

0672322609.

[GZL+10] Shuming Gao, Wei Zhao, Hongwei Lin, Fanqin Yang, and Xiang Chen.

Feature suppression based CAD mesh model simplification. Computer-

Aided Design, 42(12):1178–1188, 2010.

[HA84] Mark R Henderson and David C Anderson. Computer recognition and

extraction of form features: a cad/cam link. Computers in Industry,

5(4):329–339, 1984.

[HCB05] Thomas JR Hughes, John A Cottrell, and Yuri Bazilevs. Isogeometric

analysis: CAD, finite elements, NURBS, exact geometry and mesh re-

finement. Computer Methods in Applied Mechanics and Engineering,

194(39):4135–4195, 2005.

https://grabcad.com/library
https://grabcad.com/library

BIBLIOGRAPHY 162

[Hip13] Richard Hipp. SQLite explain query. http://www.sqlite.org/eqp.

html, 2013. Retrieved 9 July 2015.

[Hip15] D. Richard Hipp. The SQLite query planner. https://www.sqlite.

org/optoverview.html, 2015. Retrieved 11 March 2015.

[HLGF04] Okba Hamri, Jean-Claude Leon, Franca Giannini, and Bianca Falcidieno.

From CAD models to FE simulations through a feature-based approach.

In ASME 2004 International Design Engineering Technical Conferences

and Computers and Information in Engineering Conference, pages 377–

386. American Society of Mechanical Engineers, 2004.

[HLL13] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turbo iso: towards ul-

trafast and robust subgraph isomorphism search in large graph databases.

In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, pages 337–348. ACM, 2013.

[Hod14] Isaac Hodes. A deep dive into unexpectedly slow SQLite

queries. http://blog.isaachodes.io/p/deep_dive_into_slow_

sqlite3_queries/, 2014. Retrieved 9 July 2015.

[HPR00] JungHyun Han, Mike Pratt, and William C Regli. Manufacturing feature

recognition from solid models: a status report. IEEE Trans. Robotics and

Automation, 16(6):782–796, 2000.

[HR97] JungHyun Han and Aristides AG Requicha. Integration of feature based

design and feature recognition. Computer-Aided Design, 29(5):393–403,

1997.

[HS93] Joseph M. Hellerstein and Michael Stonebraker. Predicate migration: Op-

timizing queries with expensive predicates. In Proceedings of the 1993

ACM SIGMOD International Conference on Management of Data, SIG-

MOD ’93, pages 267–276, New York, NY, USA, 1993. ACM.

 http://www.sqlite.org/eqp.html
 http://www.sqlite.org/eqp.html
https://www.sqlite.org/optoverview.html
https://www.sqlite.org/optoverview.html
 http://blog.isaachodes.io/p/deep_dive_into_slow_sqlite3_queries/
 http://blog.isaachodes.io/p/deep_dive_into_slow_sqlite3_queries/

BIBLIOGRAPHY 163

[Hud89] Paul Hudak. Conception, evolution, and application of functional pro-

gramming languages. ACM Computing Surveys (CSUR), 21(3):359–411,

1989.

[IND15] PostgreSQL: CREATE INDEX. PostgreSQL index. http:

//www.postgresql.org/docs/9.4/static/sql-createindex.html,

2015. Retrieved 9 July 2015.

[Ioa96] Yannis E Ioannidis. Query optimization. ACM Computing Surveys,

28(1):121–123, 1996.

[ITI15] ITI Transcendata. CADfix. http://www.transcendata.com/

products/cadfix, 2015. Retrieved 11 March 2015.

[JC88] Sanjay Joshi and Tien-Chien Chang. Graph-based heuristics for recogni-

tion of machined features from a 3D solid model. Computer-Aided De-

sign, 20(2):58–66, 1988.

[Jon15] Jon Peddie Research. 2015 CAD report. http://jonpeddie.com/

publications/cad_report, 2015. Retrieved 20 October 2015.

[Kim92] Yong Se Kim. Recognition of form features using convex decomposition.

Computer-Aided Design, 24(9):461–476, 1992.

[KSL97] F.-L. Krause, C. Stiel, and J. Lüddemann. Processing of CAD-data –

conversion, verification and repair. In Proceedings of the Fourth ACM

Symposium on Solid Modeling and Applications, SMA ’97, pages 248–

254, New York, NY, USA, 1997. ACM.

[Kyp80] L K Kyprianou. Shape classification in computer-aided design. PhD

thesis, University of Cambridge, 1980.

[LAPL05] KY Lee, Cecil G Armstrong, Mark A Price, and JH Lamont. A small

feature suppression/unsuppression system for preparing B-rep models for

http://www.postgresql.org/docs/9.4/static/sql-createindex.html
http://www.postgresql.org/docs/9.4/static/sql-createindex.html
http://www.transcendata.com/products/cadfix
http://www.transcendata.com/products/cadfix
http://jonpeddie.com/publications/cad_report
http://jonpeddie.com/publications/cad_report

BIBLIOGRAPHY 164

analysis. In Proc. 2005 ACM Symp. Solid and Physical Modeling, pages

113–124. ACM, 2005.

[LCCT98] Gordon Little, Doug ER Clark, Jonathan R Corney, and JR Tuttle. Delta-

volume decomposition for multi-sided components. Computer-Aided De-

sign, 30(9):695–705, 1998.

[LG05] Helen L Lockett and Marin D Guenov. Graph-based feature recognition

for injection moulding based on a mid-surface approach. Computer-Aided

Design, 37(2):251–262, 2005.

[LS07] Shiqiao Li and Jami J Shah. Recognition of user-defined turning features

for mill/turn parts. Journal of Computing and Information Science in

Engineering, 7(3):225–235, 2007.

[Ltd15] Alpha Company Ltd. CPU heat sink. http://www.micforg.co.jp/en,

2015. Retrieved 18 March 2015.

[LZM14] Ming Li, Bo Zhang, and Ralph R Martin. Second-order defeaturing error

estimation for multiple boundary features. Int. J. Numerical Methods in

Engineering, 100(5):321–346, 2014.

[MB08] Kenton McHenry and Peter Bajcsy. An overview of 3D data content, file

formats and viewers. National Center for Supercomputing Applications,

1205, 2008.

[McM00] Sara Anne McMains. Geometric algorithms and data representation for

solid freeform fabrication. PhD thesis, University of California, Berkeley,

2000.

[Mel93] Jim Melton. Understanding the new SQL : a complete guide. Morgan

Kaufmann Publishers, San Mateo, Calif, 1993. ISBN: 978-1558602458.

[MHS01] Sara McMains, Joseph M Hellerstein, and Carlo H Séquin. Out-of-core

build of a topological data structure from polygon soup. In Proceedings

http://www.micforg.co.jp/en

BIBLIOGRAPHY 165

of the sixth ACM symposium on Solid modeling and applications, pages

171–182. ACM, 2001.

[MK90] Michael Marefat and Rangasami L. Kashyap. Geometric reasoning for

recognition of three-dimensional object features. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 12(10):949–965, 1990.

[ml15] PostgreSQL mailing list. PostgreSQL EXISTS optimization.

http://www.postgresql.org/message-id/25339.1174686582@

sss.pgh.pa.us, 2015. Retrieved 9 July 2015.

[MNS96] Martti Mäntylä, Dana Nau, and Jami Shah. Challenges in feature-based

manufacturing research. Communications of the ACM, 39(2):77–85,

1996.

[Mol00] Hector Molina. Database system implementation. Prentice Hall, Upper

Saddle River, N.J, 2000. ISBN: 978-0130402646.

[Mom01] Bruce Momjian. PostgreSQL: Introduction and Concepts. Addison-

Wesley New York, 2001. ISBN: 978-0201703313.

[Mom12] Bruce Momjian. Explaining the PostgreSQL query optimizer. http://

pgday.ru/files/pgmaster14/bruce.momjian.optimizer.pdf, 2012.

Retrieved 11 March 2015.

[MSDS04] Madhu S Medichalam, Jami J Shah, and Roshan D Souza. N-rep: a neu-

tral feature representation to support feature mapping and data exchange

across applications. In ASME 2004 International Design Engineering

Technical Conferences and Computers and Information in Engineering

Conference, pages 599–609. American Society of Mechanical Engineers,

2004.

http://www.postgresql.org/message-id/25339.1174686582@sss.pgh.pa.us
http://www.postgresql.org/message-id/25339.1174686582@sss.pgh.pa.us
http://pgday.ru/files/pgmaster14/bruce.momjian.optimizer.pdf
http://pgday.ru/files/pgmaster14/bruce.momjian.optimizer.pdf

BIBLIOGRAPHY 166

[MyS15a] MySQL. Creating spatial indexes. http://dev.mysql.com/doc/

refman/5.0/en/creating-spatial-indexes.html, 2015. Retrieved 9

July 2015.

[MyS15b] MySQL. Mysql v5.6.4 release notes. http://dev.mysql.com/doc/

relnotes/mysql/5.6/en/news-5-6-4.html, 2015. Retrieved 9 July

2015.

[NMS+15] Zhibin Niu, Ralph R Martin, Malcolm Sabin, Frank C Langbein, and

Henry Bucklow. Applying database optimization technologies to fea-

ture recognition in CAD. Computer-Aided Design and Applications,

12(3):373–382, 2015.

[od15] PostgreSQL official document. Postgresql advantages. http://www.

postgresql.org/about/, 2015. Retrieved 9 July 2015.

[ÖÖ01] Nursel Öztürk and Ferruh Öztürk. Neural network based non-standard

feature recognition to integrate CAD and CAM. Computers in Industry,

45(2):123–135, 2001.

[PH92] Shashikanth Prabhakar and Mark R Henderson. Automatic form-feature

recognition using neural-network-based techniques on boundary repre-

sentations of solid models. Computer-Aided Design, 24(7):381–393,

1992.

[Pos15] PostgreSQL. The PostgreSQL index. http://www.postgresql.org/

docs/9.1/static/sql-createindex.html, 2015. Retrieved 11 March

2015.

[PSB95] Mark Price, Clive Stops, and Geoffrey Butlin. A medial object toolkit

for meshing and other applications. In Proceedings of 4th International

Meshing Roundtable, pages 219–229. Citeseer, 1995.

http://dev.mysql.com/doc/refman/5.0/en/creating-spatial-indexes.html
http://dev.mysql.com/doc/refman/5.0/en/creating-spatial-indexes.html
http://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-4.html
http://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-4.html
http://www.postgresql.org/about/
http://www.postgresql.org/about/
http://www.postgresql.org/docs/9.1/static/sql-createindex.html
http://www.postgresql.org/docs/9.1/static/sql-createindex.html

BIBLIOGRAPHY 167

[RGL90] Arnon Rosenthal and Cesar Galindo-Legaria. Query graphs, implement-

ing trees, and freely-reorderable outerjoins. ACM SIGMOD Record,

19(2):291–299, 1990.

[RGN97] William C Regli, Satyandra K Gupta, and Dana S Nau. Towards multipro-

cessor feature recognition. Computer-Aided Design, 29(1):37–51, 1997.

[RH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of

Computer Programming. MIT Press, Cambridge, MA, USA, 2004. ISBN:

978-0262220695.

[RHJ+01] Jeffrey Ricker, David Hurst, David Jakopac, Yerasi Chandrasekhara

Reddy, and Kevin Kail. Data interchange format transformation method

and data dictionary used therefor, July 2 2001. US Patent App.

09/896,125.

[SAKJ01] Jami J Shah, David Anderson, Yong Se Kim, and Sanjay Joshi. A dis-

course on geometric feature recognition from CAD models. J. Computing

and Information Science in Engineering, 1(1):41–51, 2001.

[SAR94] JJ Shah, A Ali, and MT Rogers. Investigation of declarative feature mod-

eling. Computers in Engineering, 1:1–1, 1994.

[SBRU95] Jami J Shah, G Balakrishnan, Mary T Rogers, and Susan D Urban. Com-

parative study of procedural and declarative feature based geometric mod-

eling. In Advanced CAD/CAM Systems, pages 105–123. Springer, 1995.

[SC93] Hiroshi Sakurai and Chia-Wei Chin. Defining and recognizing cavity and

protrusion by volumes. Computers in Engineering, pages 59–59, 1993.

[SC94] Hiroshi Sakurai and C Chin. Definition and recognition of volume fea-

tures for process planning. Manufacturing Research and Technology,

20:65–65, 1994.

BIBLIOGRAPHY 168

[SCC01] Raymond CW Sung, Jonathan R Corney, and Doug ER Clark. Automatic

assembly feature recognition and disassembly sequence generation. Jour-

nal of Computing and Information Science in Engineering, 1(4):291–299,

2001.

[SD96] Hiroshi Sakurai and Parag Dave. Volume decomposition and feature

recognition, Part II: curved objects. Computer-Aided Design, 28(6):519–

537, 1996.

[Sha86] Leonard D Shapiro. Join processing in database systems with large main

memories. ACM Transactions on Database Systems (TODS), 11(3):239–

264, 1986.

[Sha91] Jami J Shah. Conceptual development of form features and feature mod-

elers. Research in Engineering Design, 2(2):93–108, 1991.

[SHCK95] Zoltan Somogyi, Fergus Henderson, Thomas Conway, and Richard

Keefe. Logic programming for the real world. In Proceedings of the

ILPS, volume 95, pages 83–94. Citeseer, 1995.

[SKG97] Ratnaker Sonthi, Girish Kunjur, and Rajit Gadh. Shape feature deter-

mination usiang the curvature region representation. In Proc. 4th ACM

Symposium on Solid Modeling and Applications, pages 285–296. ACM,

1997.

[SM95] Jami J Shah and Martti Mäntylä. Parametric and feature-based CAD/-

CAM: concepts, techniques, and applications. John Wiley & Sons, 1995.

ISBN: 978-0471002147.

[SP09] VB Sunil and SS Pande. Automatic recognition of machining features

using artificial neural networks. The International Journal of Advanced

Manufacturing Technology, 41(9-10):932–947, 2009.

BIBLIOGRAPHY 169

[SQL15a] SQLite. Sqlite analyze. https://sqlite.org/lang_analyze.html,

2015. Retrieved 1 September 2015.

[SQL15b] SQLite. Sqlite architecture. https://www.sqlite.org/arch.html,

2015. Retrieved 9 July 2015.

[SQL15c] SQLite. Sqlite subquery flattening optimization. https://www.sqlite.

org/eqp.html, 2015. Retrieved 1 September 2015.

[SS91] Philip Spiby and Doug Schenck. EXPRESS language reference manual.

ISO TC184/SC4 Document N, 14, 1991.

[SW95] Somashekar Subrahmanyam and Michael Wozny. An overview of au-

tomatic feature recognition techniques for computer-aided process plan-

ning. Computers in Industry, 26(1):1–21, 1995.

[SW97] Yong Seok Suh and Michael J Wozny. Interactive feature extraction for

a form feature conversion system. In Proceedings of the fourth ACM

symposium on Solid modeling and applications, pages 111–122. ACM,

1997.

[SWW+12] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li.

Efficient subgraph matching on billion node graphs. Proceedings of the

VLDB Endowment, 5(9):788–799, 2012.

[Tan92] Zesheng Tang. Octree representation and its applications in CAD. Journal

of Computer Science and Technology, 7(1):29–38, 1992.

[TDM+10] Stefano Tornincasa, Francesco Di Monaco, et al. The future and the evo-

lution of CAD. In Proceedings of the 14th international research/expert

conference: trends in the development of machinery and associated tech-

nology, pages 11–18, 2010.

[The15a] The PostgreSQL Global Development Group. PostgreSQL. http://www.

postgresql.org/about/, 2015. Retrieved 11 March 2015.

https://sqlite.org/lang_analyze.html
https://www.sqlite.org/arch.html
https://www.sqlite.org/eqp.html
https://www.sqlite.org/eqp.html
http://www.postgresql.org/about/
http://www.postgresql.org/about/

BIBLIOGRAPHY 170

[The15b] The PostgreSQL Global Development Group. PostgreSQL statis-

tical information. http://www.postgresql.org/docs/9.1/static/

view-pg-stats.html, 2015. Retrieved 11 March 2015.

[TK94] Sanjeev N Trika and Rangasami L Kashyap. Geometric reasoning for

extraction of manufacturing features in iso-oriented polyhedrons. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 16(11):1087–

1100, 1994.

[VR93] Jan H Vandenbrande and Aristides AG Requicha. Spatial reasoning for

the automatic recognition of machinable features in solid models. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 15(12):1269–

1285, 1993.

[VR04] AK Verma and S Rajotia. Feature vector: a graph-based feature recogni-

tion methodology. Int. J. Production Research, 42(16):3219–3234, 2004.

[Wik15a] Wiki. Express data modeling language. https://en.wikipedia.org/

wiki/EXPRESS_(data_modeling_language), 2015. Retrieved 21 Au-

gust 2015.

[wik15b] wikipedia. Comparison of relational database management systems.

http://en.wikipedia.org/wiki/Comparison_of_relational_

database_management_systems, 2015. Retrieved 9 July 2015.

[wik15c] wikipedia. Manifold concept. https://en.wikipedia.org/wiki/

Manifold, 2015. Retrieved 21 August 2015.

[wik15d] wikipedia. Programming language. https://en.wikipedia.org/wiki/

Programming_language, 2015. Retrieved 21 August 2015.

[wik15e] wikipedia. Prolog. https://en.wikipedia.org/wiki/Prolog, 2015.

Retrieved 21 August 2015.

http://www.postgresql.org/docs/9.1/static/view-pg-stats.html
http://www.postgresql.org/docs/9.1/static/view-pg-stats.html
https://en.wikipedia.org/wiki/EXPRESS_(data_modeling_language)
https://en.wikipedia.org/wiki/EXPRESS_(data_modeling_language)
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Prolog

BIBLIOGRAPHY 171

[Win15] Markus Winand. Oracle execution plan operations. http://

use-the-index-luke.com/sql/explain-plan/oracle/operations,

2015. Retrieved 16 August 2015.

[Woo82] Tony C Woo. Feature extraction by volume decomposition. In Conference

on CAD/CAM technology in mechanical engineering, pages 76–94, 1982.

[ZM02] H Zhu and CH Menq. B-rep model simplification by automatic

fillet/round suppressing for efficient automatic feature recognition.

Computer-Aided Design, 34(2):109–123, 2002.

http://use-the-index-luke.com/sql/explain-plan/oracle/operations
http://use-the-index-luke.com/sql/explain-plan/oracle/operations

	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Acronyms
	Introduction
	Background
	Research Motivation
	Research Hypothesis and Objectives
	Thesis Organisation

	Related work
	Introduction
	Classic Feature Recognition Approaches
	Graph-Based Methods
	Volume Decomposition Methods
	Hint-based Methods
	Landmark Declarative Feature Recognition Systems

	Feature Finding as Data Retrieval
	SQL Syntax
	Relational Query Optimization
	Overview
	Performance Model
	Generalizing Join Sequencing to Reduce CPU Cost
	Scan Methods to Reduce I/O
	Join Processing to Reduce CPU Cost

	Gibson's Declarative Approach and Optimizations
	Gibson's Optimizations and DB Query Optimization

	Declarative Feature Definition
	Introduction
	Data
	Syntax
	Predicates
	Topological Predicates
	Geometric Predicates

	Ways to Define Features
	Definition by Primitives
	Definition by Sub-features

	Discussion
	Expressive Power
	The Compiler

	Feature Recognizer Architecture
	Overview
	Manipulation Language
	Main Modules
	DB Query Optimizer
	Translator
	CAD Modeler

	Optional Modules
	Summary

	SQLite Implementation and Quasi-quadratic Performance
	Overview
	Testbed Implementation Details
	Translation
	Data Model
	Translation Rules

	Experiments
	Performance Measurements
	Benefits of Database Optimization
	Definitions Affect Performance
	Real Industrial Models

	Theoretical Analysis
	Execution Plan
	Time Complexity

	Summary and Conclusions

	PostgreSQL Implementation and Linear Performance
	Overview
	Testbed Implementation Details
	SQLite Approach Fails with PostgreSQL
	Assumptions

	Translation
	Data Model
	Translation Rules

	Discussion
	Experiments
	Old and New Translation Using SQLite
	New translation using SQLite and PostgreSQL
	Real World Performance

	Summary

	Further Improvements Using Lazy Evaluation and Predicate Ordering
	Overview
	Lazy Evaluation
	Predicate Ordering

	Experiments
	Lazy Evaluation and Caching
	Predicate Ordering

	Summary

	Discussion
	Conclusion
	Contribution
	Limitations and Future Work
	A Feature Recognition Architecture

	Bibliography

