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Abstract  
 
 Tumour Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL) is a known 
anti-cancer agent which exhibits cancer cell specificity.  Its efficacy in breast cancer is 
limited, however, as illustrated by the resistance demonstrated in a number of cell 
lines.  Cellular FLICE-Like Inhibitory Protein (c-FLIP) has been demonstrated to play a key 
role in TRAIL resistance in these cell line models, through its competitive interference 
with caspase-8 recruitment to the death inducing signalling complex (DISC).  Our lab has 
demonstrated that breast cancer 'stem cells', the cells proposed to be responsible for 
disease recurrence and metastasis, can be eliminated by combination of c-FLIP 
suppression, by siRNA, and TRAIL treatment.  While it has been proposed that 
suppression of c-FLIP could improve TRAIL efficacy in breast cancer, there are no 
pharmacological c-FLIP specific inhibitors available.  
 The purpose of this study therefore was to design and validate novel 
pharmacological inhibitors of c-FLIP and to determine their tumour efficacy in models of 
breast cancer.  Using in silico modelling, we have modelled the structure of c-FLIP and 
associated proteins, and, using virtual pharmacophore screening, we have identified 19 
potential small molecule c-FLIP inhibitors.  In vitro cell viability assays demonstrated 3 of 
these inhibitors to sensitise TRAIL resistant MCF-7 and BT474 breast cancer cell lines to 
TRAIL (p<0.05) at micromolar concentrations, with several additional compounds 
showing a partial ability to sensitise to TRAIL. Each of the three lead inhibitors were 
shown to be acting via caspase-8 and therefore in a TRAIL specific manner.  Two of the 
lead compounds in combination with TRAIL significantly reduced tumoursphere forming 
potential in an in vitro assay which represents breast cancer stem cell like traits.  The 
ability of our primary compound to target cells with breast CSC-like traits was further 
supported using a colony forming assay, which demonstrated a significant reduction in 
the potential for clonal expansion of breast cancer cells following treatment with the 
novel agent in combination with TRAIL.   
 Acceptor-photobleaching FRET was successfully utilised to show the mechanism 
of action of our lead inhibitors to indeed be based on interfering with the c-FLIP FADD 
interaction.  TALEN-mediated targeting of c-FLIP is being optimised to allow for further 
evaluation of these agents in addition to performing mutagenesis studies in a c-FLIP null 
background to further delineate the role and mechanism of c-FLIP in the sensitization of 
breast cancer stem cells to TRAIL.   
 Here we have identified several small molecule c-FLIP inhibitors which are able 
to specifically sensitise resistant breast cancer cells to TRAIL induced apoptosis via 
interfering with c-FLIP FADD interaction at the DISC, and thus allowing caspase-8 
mediated apoptosis to occur.  These early results show promise for our lead compounds 
as potential therapeutics in breast cancer, via sensitisation to TRAIL. 
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Chapter 1: General Introduction  

1.1 Breast Cancer 
 

1.1.1 Introduction  

 Cancer is one of the leading causes of mortality worldwide, accounting for 

around 8.2 million deaths in 2012 (WHO Statistics Ferlay et al., 2012).  Lung, liver, 

stomach, colorectal and breast cancer are the five cancers which contribute most to this 

statistic, although the occurrence of these cancers differs between males and females 

(WHO Statistics: Bray et al., 2013).  Breast cancer, despite almost exclusively affecting 

women, is the most common cancer in the UK and the second most common cancer 

worldwide (Hutchinson, 2010).  The disease, in fact the most prevalent cancer in 

women, is diagnosed in around 50,000 people each year in the UK alone (NCIN, 2011) 

and resulted in over 500,000 deaths worldwide in 2012; 130,000 of these being 

European cases (CRUK Statistics, Accessed October 2014).  Despite these statistics, 

improved options for therapy over the past 40 years has resulted in an increases of 

around 15, 35 and 40% in net survival over 1, 5 and 10 years respectively (Figure 1.1) 

(CRUK Statistics, Accessed October 2014).  
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Figure 1.1: Net Breast Cancer Survival rates for Women in Wales and England from 
1971-2011. 
1, 5 and 10 year survival rates of breast cancer patients in Wales and England over several 
diagnosis periods spanning 40 years (Figure adapted from CRUK Stats, 2014, Accessed 30 
November 2014). 
 

 
 Although statistics for breast cancer survival are improving, with a 10 year 

survival of approximately 80% (Rachet et al., 2009), drug resistance and disease relapse 

remain problematic for breast cancer treatment.  Further research into breast cancer 

including focussing on new therapeutics to target cancer cells specifically and to prevent 

the spread and relapse of the disease, is imperative in order to continue to improve on 

these statistics. 

 

1.1.2 Risk Factors and Causes of Breast Cancer 

 The exact initial cause of the cancer is often difficult to identify and one may be 

able to elucidate several plausible features of a patient’s lifestyle or genetics which have 

had large contributions in the development of breast cancer. 

 One of the greatest risk factors in breast cancer is increasing age and indeed 

around 80% of those diagnosed are women over the age of 50 (McPherson et al., 2000).  

The strong trend seen with increasing age and risk of breast cancer is likely to be due a 

link with hormonal status as the levels of sex hormones, including oestrogen, 
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progesterone and testosterone alters with age, with the biggest changes occurring post-

menopause.  The observed increase around age 50 may also be partly due to the fact 

that this is the age around which women are invited to attend breast cancer screening 

clinics, and thus more cases may be detected (McPherson et al., 2000). 

 As with the vast majority of cancers there are many lifestyle and environmental 

factors which can increase the risk of developing breast cancer although the correlation 

is not as strong as, for example, perhaps the most well-known example of lung cancer 

and smoking.  Excessive alcohol consumption, for example, is thought to slightly 

increase risk through mechanisms such as decreasing the efficiency of DNA repair 

(Vogel, 2000).  A similar, relatively modest link to increase in risk, has been identified 

with smoking tobacco (Terry and Rohan, 2002).  Other environmental factors include a 

person’s weight and height, and thus, their body mass index (BMI): post-menopausal 

women who are overweight have a higher than average risk of breast cancer 

(McPherson et al., 2000). 

 Genetics can play a large part in the risk of developing breast cancer, with 

susceptibility of an individual significantly increased if a first degree relative has had the 

disease.  Furthermore, genetically inherited cancer genes exist which are well-

documented to significantly increase risk of developing breast cancer. Perhaps the most 

well-known genetically inherited breast cancer genes are the breast cancer 1 and 2 

(BRCA) genes.  The BRCA genes, BRCA1 and BRCA2, are important for producing tumour 

suppressor proteins which are involved the repair of in double-stranded DNA breaks, 

thus, mutations in these genes can cause cells to grow abnormally (O'Donovan and 

Livingston, 2010).  The lifetime risk of breast cancer can be as much as 80% in families 

with BRCA1 mutations, although slightly lower at 45% for BRCA2 mutations (Milne and 

Antoniou, 2011).  Additional gene mutations which can be inherited and thus increase 

risk of breast cancer include ATM, TP53, PTEN and CHEK2, amongst several others, 

although these are much less common than the BRCA mutations (Ripperger et al., 

2009).   
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1.1.3 Tumorigenesis: Breast Cancer Development and Progression 

 The development of all cancers essentially results from the aberrant, 

uncontrolled proliferation of cells which have obtained mutations in genes important 

for cell growth and survival.  The acquisition of such mutations gives these cells certain 

properties, or ‘hallmarks’ which deem them to be cancerous.  Initially, six hallmarks of 

cancer were defined which are thought to be exhibited by most of all cancers.  These 

properties included: resistance to programmed cell death (PCD); self-sufficiency in 

growth signals; anti-growth signal evasion, ability to invade tissue and metastasise; 

unlimited replicative potential; and sustained angiogenesis (Hanahan and Weinberg, 

2000).  More recently, however, these cancer-common properties have been expanded 

to include four additional features: dysregulation of cellular energetics; genomic 

instability and mutation; tumour-promoting inflammation; and evasion of immune 

destruction (Hanahan and Weinberg, 2011).   

 Breast cancer, as with other cancers, develops as a result of a multistep process 

involving the acquisition of mutations in genes representing the key hallmarks of 

cancer, enabling the implicated cells to evade the body’s innate anti-cancer 

mechanisms.  In order to fully understand the process of breast cancer tumorigenesis, it 

is useful to have basic knowledge of the normal mammary gland structure. 

 

1.1.3.1 Mammary Gland Structure 

 The mammary gland is a complex secretory organ which is made up of a 

multitude of cell types all coordinating to facilitate the secretion of milk.  Epithelial cells 

grow out from the nipple into an adipocyte formed fat pad, which is infiltrated by 

several cell types including vascular endothelial cells, fibroblasts and various immune 

cells.  The mammary epithelium is comprised of basal and luminal cells.  Cells of the 

basal epithelium, i.e. the outer layer of the gland, consist primarily of myoepithelial cells 

and a smaller quantity of stem cells, present to generate the different cell types.  Ducts 

and secretory alveoli are formed from the luminal epithelium which is comprised of 

cells expressing different hormone receptors.  The myoepithelium and luminal 

epithelium combine to effectively generate a structure able to synthesize, secrete and 

deliver milk during lactation (Macias and Hinck, 2012).   
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1.1.3.2 Tumorigenesis of the Mammary Gland 

 Over 80% of adult cancers originate from the transformation of epithelial cells, 

which have over-proliferated to form an adenoma, to malignant cancerous cells, 

deeming them carcinomas (Dimri et al., 2005).  Almost all breast cancers also develop as 

carcinomas, in the mammary gland, with the initial conversion of a normal human 

mammary epithelial cell (HMEC), which lines the milk-forming ducts of the mammary 

gland, into a cancerous cell (Dimri et al., 2005; Taylor-Papadimitriou et al., 1993).  The 

process of epithelial transformation to malignancy has multiple steps, is governed by a 

multitude of environmental, genetic and dietary factors and will involve a number of 

key mutated genes (Hanahan and Weinberg, 2000).  

 Cells of the mammary gland are usually under tight control, with a finite life span 

which prevents their over-proliferation.  Mammary cell tumorigenesis involves several 

steps that cause the loss of the control of cell senescence leading, essentially, to HMEC 

immortalisation (Dimri et al., 2005).  Initial carcinoma-causing transformations in the 

mammary gland usually occur either in the ducts, specifically in the terminal ductal-

lobular units (TDLUs) or in the lobes, leading to the two histologically distinct subtypes 

of breast cancer; ductal or lobular carcinomas respectively (Bombonati and Sgroi, 2011).    

 The more common of the two histological subtypes, ductal carcinoma, is 

described to progress through several stages of epithelial transformation from normal 

through to flat epithelia, followed by atypical ductal hyperplasia and continuing through 

to ductal carcinoma in situ (DCIS) resulting in the most common form of breast cancer, 

invasive ductal carcinoma (IDC) (Bombonati and Sgroi, 2011).  Essentially, epithelia 

situated on the basement membrane of a mammary gland start to proliferate 

abnormally, due, for example, to a mutation in a tumour suppressor gene such as p53.  

The resulting carcinoma may be altered due to additional epigenetic or genetic changes 

which deem it a carcinoma in situ, i.e. one that is still present on the basement 

membrane (Lopez-Garcia et al., 2010).  The development of slower-growing mammary 

lobular carcinomas is a similar multi-step process of transformation from normal lobular 

epithelium, to transformed atypical hyperplasia which leads to lobular carcinoma in situ, 

the precursor of invasive lobular carcinoma (Bombonati and Sgroi, 2011; Simpson et al., 

2003).   
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1.1.4 Metastatic Spread 

 Metastasis is the spread of cancer from one part of the body to another and can 

occur at some point during tumorigenesis of the original tumour.  Metastasis in 

mammary carcinomas occurs as a result of disruption and fragmentation of the 

underlying basement membrane allowing the carcinoma cells to metastasise or migrate 

and become invasive through the acquisition of additional cellular and genetic changes 

(Siegal et al., 1981). The migration of cells from a primary site, i.e. metastasis, is 

proposed to be driven by the process of epithelial-mesenchymal transition (EMT) a 

process involving a cellular phenotypic switch between epithelial and mesenchymal 

morphology via the loss of epithelial cell contact (Thiery, 2003; Moreno-Bueno et al., 

2008).   Interestingly, it is thought that EMT is reversible through the process of 

mesenchymal-epithelial transition (MET) whereby cells regain their contact-dependence 

through the expression of E-cadherin (Liu et al., 2013).  Metastasis, potentially driven by 

EMT, can therefore result in the formation of a secondary tumour site which is said to 

be driven by the process of MET (Thiery, 2002).  EMT will be discussed in further detail 

in Section 1.1.7. 

 

1.1.5 Breast Cancer Heterogeneity 

 In both pathology and molecular profile, human breast cancers tend to be 

hetereogenous.  Cell type diversity between and within breast cancer tumours is a 

relatively novel area of research, facilitated by technological advances, such as whole-

genome sequencing, which allow for a more thorough analysis of tumour properties 

(Burtucci and Birnbaum, 2008).  It appears that, similar to blood cancers, breast cancers 

can initiate in multiple different cell types and that not one sole pathway is responsible 

for tumour progression (Weigelt et al., 2010; Polyak, 2007), as is the case in colon 

cancer, for example (Stingl and Caldas, 2007).   Breast cancers often have a significant 

amount of intra- and inter- tumoral genetic variations which are only now being fully 

explored (Hutchinson, 2010). 

 Breast cancer is often thought to progress in a non-linear manner through the 

clonal expansion of initial transformed cells, via multiple acquisitions of genetic and 

epigenetic alterations, which add to the overall heterogeneity of the resulting tumour 
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or tumours (Polyak, 2008; Almendro and Fuster, 2011).  Additionally, breast cancer 

heterogeneity may be, in part, due to the presence of cancer ‘stem-like’ cells (CSCs)  

(Section 1.1.7) which are thought to be the reason that many tumours relapse after 

treatment and so are an important yet difficult target in research for more efficient 

therapies (Lawson et al., 2009).  CSCs may have a role in heterogeneity primarily due to 

their ability to produce all cell types (Stingl and Caldas, 2007).  Indeed, some evidence 

does exist to support this theory where CSCs isolated from multiple cancer types, 

including breast cancer, have given rise to cancers which are very similar to and contain 

all the different cell types of the original tumour (Pietras, 2011; Al-Hajj et al., 2003).  In 

contrast, non-stem cancer cells generate either no tumours or tumours which lack many 

of the original cancer's features (Al-Hajj and Clarke, 2004; Al-Hajj et al., 2003). 

 

1.1.6 Subtypes of Breast Cancer  

 Given the prevalence, heterogeneity and potential severity of breast cancer, 

accurate methods of classification which assess various aspects of the cancer are vital in 

order to help diagnose and treat the disease, as well as helping to progress scientific 

research.   

 Although several common genetic mutations can indeed be identified in breast 

cancer cases, there are a vast number of other, less common, potential mutations in 

breast cancer giving rise to a large variation in mutational status between individual 

cases.  Awareness of the many subtypes and heterogeneity of this malicious disease is 

vital in order to tailor patient treatment strategies.   

1.1.6.1 Histopathology 

 The traditional method of classification relies on visual assessment of the 

morphology of tumour cells and their orientation or organisation within a tumour.  An 

initial differentiation of the cancer is utilised which defines a cancer as in situ carcinoma 

or invasive carcinoma.  The former subtype can subsequently be classified as ductal or 

lobular, via assessment of cell growth and morphology.  As mentioned in section 

1.3.1.2, DCIS cases are far more common than lobular carcinoma in situ (LCIS).  DCIS is 

sub-classified by the spatial organisation of cells into five architectural subtypes:  

Comedo, Cribiform, Micropapillary, Papillary and Solid (Malhotra et al., 2010).   
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 Modern diagnoses tend not to rely solely on this method due to the potential 

confounding factors including assessor subjectivity, regions of interest or distinct 

morphologies within a tumour in addition to the fact that it does not take into account 

any genetics or molecular markers of the particular case.  As a consequence, oncologists 

and researchers will take into account other features of the cancer to make a final 

diagnosis. 

 

1.1.6.2 Hormone Receptor Status 

 Immunohistochemical markers, primarily assessing the cancers’ hormone 

receptor status, may also be used as diagnostic and prognostic tools in breast cancer 

(Subramaniam and Isaacs, 2005; Walker, 2008).   

 Immunohistochemistry (IHC) has facilitated the assessment of molecular 

markers, specifically, of hormone receptor expression levels.  The cancer cell's 

oestrogen receptor (ER), progesterone receptor (PR) and human epidermal growth 

factor receptor (HER2) status further allows the categorisation of breast cancer (Althius 

et al., 2004).  Cells which overexpress a receptor, and so will proliferate when 

stimulated by the specific hormone ligand are described as receptor-‘positive’.  

‘Negative’ expressers do not respond to the specific hormone since they do not exhibit 

the appropriate receptor.  According to this IHC method of characterisation, cells are 

described as ‘ER-positive’, ‘ER-negative’, ‘PR-positive’, ‘PR-negative’, ‘HER2-positive’ or 

‘HER2-negative’.  Additionally, cancers can be negative for all receptors and are thus 

deemed ‘triple-negative breast cancer’ (TNBC).  ER/PR-positive cancers tend to be the 

most common, representing around 60% of all cases (Buzdar, 2009), whereas HER2 and 

TNBC cases are less common and form approximately 20% of cases each (Anders and 

Carey, 2009).  As a general rule, breast cancers which are positive for hormone 

receptors have a better prognosis due to the presence of hormone- or hormone-

receptor targeting agents as first line treatment options.  TNBC is a more difficult target 

for treatment due to the inefficacy of hormone therapies on cells which lack hormone 

receptor expression.    

 Breast cancer cells often have a mixed receptor expression pattern, e.g. ER-

negative, HER2-positive, or may lack expression of all of these receptors as is the case 

TNBC (Cleator et al., 2007).  In addition to individual cells expressing different 
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combinations of receptor, the heterogeneity of breast cancer means that an individual 

patient’s cancer may be made up of a collection of cells which have varied hormone 

expression status between cells, and thus some cells may respond to treatment, whilst 

others remain unaffected.  Although hormone receptor classification does provide a 

great advantage in selecting the first line therapy, it is often not reflective of this 

heterogeneity and thus treatments may not be as effective as expected. 

 

1.1.6.3 Molecular subtypes 

 The molecular subtypes of breast cancer, determined by gene expression 

profiling and microarray analysis which analyse the levels of mRNA expression of 

specific genes, can be defined as: luminal A; luminal B; basal; ErbB2 (HER2) 

overexpressing and normal-like (Sorlie et al., 2001; Brenton et al., 2005), with each 

subtype exhibiting differing risk factors for incidence, treatment responsiveness, disease 

progression and potential to metastasise (Polyak, 2011).  An additional, sixth molecular 

subtype was defined as claudin-low, which has facilitated further differentiation 

between the molecular subtypes (Prat et al., 2010).  This method of classification in 

combination with histological data on morphology has enabled for correlations in 

certain gene subsets to be identified, further aiding with diagnoses and prognoses 

(Stingl and Caldas, 2007; Malhotra et al., 2010). 

 Genetic screening and gene-expression profiling can be utilised in order to 

establish a prognosis (Sotiriou et al., 2006) and aid in the identification of individuals 

who are expected to be at a higher initial risk of developing breast cancer, for example, 

those with a known family history of the disease.  Mutations in the autosomal dominant 

genes BRCA1, BRCA2, phosphatase and tensin homolog (pTEN) and p53 increase the risk 

of developing certain types of breast cancer by 5-10%.  BRCA1 and 2 mutations are the 

leading cause of hereditary breast cancer (Mincey, 2003).  

 It is not feasible, however, to perform microarray analysis as a routine measure 

as the procedures involved are quite costly.  There are such benefits from having such 

in-depth molecular classification, however, that a 50-gene signature, known as PAM50, 

has been determined.  The PAM50 provides a way of way of classifying tumours using 

varied molecular subtypes by utilising quantitative real time PCR (qRT-PCR) and has 
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been demonstrated to greatly enhance the ability to predict risk of relapse (Parker et 

al., 2009). 

 A combination of the different forms of diagnosis and prognosis methods is the 

best approach in order to fully establish the characteristics of the individual case, 

including gaining the best representation of the heterogeneity of the cancer (Kreike et 

al., 2007). 

 

1.1.6.4 Experimental Models of Breast Cancer  

 Immortalised breast cancer cell lines are commonly used as an in vitro model of 

breast cancer which provide, in effect, ‘unlimited’, self-replicating models of breast 

cancer with no terminal differentiation.  The available cell lines, which include both 

animal and human derived cells, quite accurately represent the many different 

molecular subtypes of breast cancer (Neve et al., 2006).  These cell lines are able to 

replicate some of the heterogeneity of breast cancer due to gene expression variations 

that develop in some cells (Neve et al., 2006).  The cell lines used, as they have been 

initially extracted from patients, represent different breast cancer subtypes with varying 

hormone receptor status’, gene expression levels, mutations, cellular compositions and 

many other features which define particular cancers (Kao et al., 2009) and so provide a 

valuable resource for research into potential treatment targets and strategies. 

 

1.1.7 Breast Cancer Stem-like Cells 

 The mammary gland contains a subset of multipotent mammary stem cells 

which initiate the development of the gland at the early stages of embryogenesis and 

maintain it throughout life (Williams and Daniel, 1983; Blanpain et al., 2011).  It has 

been shown that a single mammary epithelial cell is capable of producing an entire 

mammary gland, demonstrating a multipotent phenotype of these cells and elucidating 

their stem cell-like behaviour (Blanpain et al., 2011). Following on from this knowledge, 

the most recent models of cancer initiation and progression revolve around the 'CSC 

hypothesis', which was in fact first proposed around 150 years ago (Wicha et al., 2006), 

with relatively little mention of it for decades until the mid 1990’s.  The hypothesis 

states that cancers originate from progenitor, stem-like cells which have surpassed the 
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normal self-renewal regulation processes.  The resulting tumours, therefore, are said to 

contain a subsection of cells which retain these stem-like properties, including self-

renewal and differentiation (Wicha et al., 2006) and thus contribute to the maintenance 

and spread of disease.  Additionally, it is thought that these tumour-initiating or CSCs 

are slower growing and more resistant to chemotherapy and thus are often a cause of 

disease relapse. 

 The interest in CSCs is growing within cancer research due to the potential for 

these cells to drive tumour metastasis and contribute largely to drug resistance and 

disease relapse.  Although fairly difficult to prove the existence of CSCs in patients 

directly, via use of cell surface proteins, recent studies have been able to provide both 

in vitro and in vivo evidence in support of the idea of CSCs by utilising techniques which 

measure properties such as self-renewal (Al-Hajj and Clarke, 2004; Al-Hajj et al., 2003, 

Pietras, 2011).   

 

1.1.7.1 Epithelial-Mesenchymal Transition 

 The idea of CSCs goes hand in hand with the concept of EMT (mentioned in 

section 1.1.4), which is also thought to play a key role in organism development (Thiery 

et al., 2009).  EMT is a type of cell plasticity which involves the loss of adherens 

junctions between epithelial cells and the gain of properties exhibited by mesenchymal 

cells, including increased motility and altered gene expression (Kalluri and Neilson, 

2003).  Multiple signalling pathways have been identified that are shared between EMT 

or EMT-like processes in normal and tumour development, helping to facilitate an 

understanding of the process and further implicating its role in tumour development 

(Thiery, 2002).   

1.1.7.2 Breast Cancer Stem Cell Plasticity 

 Plasticity, in breast cancer, describes the conversion of non-stem breast cancer 

cells to breast CSCs and is thought to occur via the processes of EMT and MET 

(Thompson and Haviv, 2011; Liu et al., 2013) (Section 1.1.7.1).  The roles of EMT and 

MET in embryogenesis, wound healing and tumorigenesis in particular give evidence for 

their likely roles in plasticity (Drasin et al., 2011; Luo et al., 2015).  Plasticity may occur 

within a population of tumour cells that facilitates their adaptation when certain 

conditions, for example when undergoing therapy, drive their need to change in order 
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to survive.  Essentially, only in a situation where a certain stem-like trait should newly 

arise in a subset of cells which did not previously have this trait could plasticity be 

declared as having truly occurred.  A study such as this has been performed in human 

mammary epithelial cells, whereby plasticity was demonstrated to be occurring in both 

untransformed and cancerous cell subsets (Chaffer et al., 2011). 

1.1.7.3 Experimental Models of Breast Cancer Stem Cells 

 Cell lines have been used as a tool for studying cancer stem cells in vitro for 

many years, due to the observations that, like primary tissue, they contain a small 

population of cells with stem cell-like properties, as evaluated using stem-cell like 

markers and further evidenced with in vivo tumour initiation experiments.  Although 

not as representative as primary tissue or in vivo studies, it is often beneficial to utilise 

cell lines for studying CSCs, in particular, for relatively high-throughput drug screening 

studies due to their availability, ease of handling and relatively low cost.  Utilising cell 

lines to study cancer stem cells in vitro will reduce the requirement on in vivo 

experiments for studying a very interesting and important aspect of cancer, with 

particular emphasis on the potential for studying CSC targeted therapeutics.  The 

primary disadvantage of using cell lines in vitro in general, and for studying CSCs, is the 

loss of the inter-relationships between cells and between cells, the heterogeneity of a 

tumour, and the existence of a tumour microenvironment that would exist in vivo 

(Holliday and Speirs, 2011).  Ideally, cell lines would be utilised to perform initial screens 

to evaluate drug effects on CSCs, which would be followed up with work on primary 

cells and tumour initiation in vivo, when a potential drug candidate or candidates have 

been identified. 

The in vivo mouse xenograft tumour initiation assay is considered the ‘gold 

standard’ experimental model of CSCs.  Essentially, human cancer cells are serial 

transplanted at different doses into immunocompromised mice and assessed at several 

time points for tumour formation.  Once formed, cells from the tumour are extracted 

and grafted into a second animal to evaluate their self-renewal ability (Han et al., 2013).   

Although possibly the closest representation to a human tissue in situ, these studies are 

often difficult to reproduce, require specific strains of mouse and sites of implantation 

and therefore are often not the most cost effective and accurate way to evaluate 

therapeutic strategies for targeting CSCs. 
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 Some key in vitro models which aim to isolate breast CSCs do also exist, 

however, and although many were initially developed using primary tissue, they have 

been also shown effective at isolating CSCs when utilising immortalised breast cancer 

cell lines as a basis (Iglesias et al., 2013).  These in vitro models require much less time 

and resources than animal models and facilitate a more high-throughput screening 

process for compound testing.  Ideally, in order to draw complete conclusions on cell-

stemness, in vitro assays would ideally need to be backed-up by an in vivo experiment.    

The optimal in vitro assay would provide quantitative, specific data and be able to 

measure low frequency stem cells, whilst also being relatively high-throughput.   

 Perhaps the most well-known and utilised in vitro model is the tumoursphere 

assay, developed by Dontu et al. (Dontu et al., 2003).  This protocol was developed by 

making appropriate modifications to the neurosphere assay which was designed and 

developed by Reynolds and Weiss to culture cells that exhibit stem cell properties from 

the adult brain (Reynolds and Weiss, 1992).  The tumoursphere assay involves the 

formation of non-adherent 'tumourspheres' which are enriched in cells which exhibit 

the functional characteristics of stem cells, specifically, their ability to survive in 

suspension culture compared to non-stem cells. When established cell lines are plated 

in single cell suspension in non-adherent conditions, achieved using reduced-serum 

media and low-attachment cell culture plates, the non-stem cells will die and only the 

breast cancer ‘stem cells’ will remain due to their anoikis resistance.  After 

approximately 7 days, the breast CSCs will have formed clusters of cells which are 

termed ‘tumourspheres’ (Dontu et al., 2003).  Tumourspheres, which contain both stem 

and non-stem cells, are counted to obtain a quantity of tumoursphere forming units and 

then broken-up to be re-processed in the same was as initially in order to assay the self-

renewal ability of the population, another key property of CSCs (Figure 1.2).   
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Figure 1.2:  Steps involved in the tumoursphere forming assay.   
1) Adherent breast cancer cells are plated in non-adherent conditions, using a specific media 
and cell culture plate.  2) Non-stem cells will be unable to survive, leaving only the breast cancer 
stem cells to survive. 3) After approximately 7 days, the breast cancer stem cells will have 
formed clusters of cells, termed 'tumourspheres' which are counted under light microscope. 4) 
Tumourspheres contain a mixture of stem- and non-stem cells which are broken up and 
repassaged to assay for self-renewal. 

 

 An additional assay for progenitor-like, rather than specifically cancer stem-like 

cells is the colony forming assay, also known as the clonogenic or CFU assay.  The assay 

is often interpreted as a clonal and proliferation assay (Zhang and Waxman, 2010).  The 

CFU assay been routinely used to evaluate cell reproductive death after radiation, but 

has more recently been use to test cytotoxic agents.  Some studies suggest that single 

cells, obtained by plating at low densities, which are capable of forming colonies of over 

32 cells are representative of stem cells.  The colonies that form in this assay are 

deemed 'holoclones' and are thought to represent stem cells due to the expression of 

certain survival and self-renewal genes (Barrandon and Green, 1987), including p63 

(Pellegrini et al., 2001) and BMI-1 (Claudinot et al., 2005).  Essentially, cells are plated in 

adherent conditions at a very low density in order to monitor their ability to exhibit 

these properties under different assay conditions, for example in the presence or 

absence of a drug, or different treatment regime.   
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 Label-retention assays are also often utilised to measure cancer stem-like cells in 

vitro, although the process does not facilitate high-throughput testing, of, for example, 

therapeutic agents (Clarke et al., 2006). 

  

 

1.1.8 Breast Cancer Treatment 

 Breast cancer screening consists of a combination of patient history, clinical 

examination, mammography results and ultrasound assessment (Howard and Bland, 

2012).  Once diagnosed, treatment for breast cancer, like any cancer type, depends 

primarily on the stage and grade of the case.  A review of the molecular, histological and 

clinical features (Section 1.1.6) of the cancer will be performed in order to select the 

most suitable treatment strategy (Malhotra et al., 2010).   

 For a long time, the primary and almost exclusive treatment method for breast 

cancer involved the use of cytotoxic chemotherapeutics but developments in research 

have enabled a more targeted approach often using multiple treatment options (Tinoco 

et al., 2013).  In general, treatment will begin using a combination of surgery, to remove 

the cancerous mass, with radiotherapy to treat the surrounding tissue and prevent 

recurrence, although individual cases may require a different initial treatment strategy.  

Treatment tailoring will be most important at this stage whereby hormone or chemo- 

therapy will usually follow surgery in order to attempt to further reduce the cancer 

whilst also aiming to help prevent relapse (Section 1.1.8.2) (Tinoco et al., 2013).   

 Ultimately, all cancer treatment aims to reduce or eliminate cancerous cells, 

either via physical removal or through the induction of cell death, thus preventing their 

growth and metastasis.  The target of the treatment will vary between cancer cases: 

from targeting the physical mass to specifically hitting particular gene targets. 

 

1.1.8.1 Treatment Targets in Breast Cancer  

 Many targets exist in breast cancer; from hormones and their receptors, to 

oncogenes and specific proteins in signalling pathways.  Hormone receptor positive 

tumours, which make up around 60% of all cases (Clarke et al., 1984), will generally be 

treated using endocrine therapy, i.e. hormone targeting agents.  TNBC cancers or cases 
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where a tumour has become resistant to endocrine therapy will be primarily targeted 

using radiotherapy and cytotoxic chemotherapy.   

 ER-positive cancers are the earliest example of a successful targeted therapy in 

breast cancer, through targeting expression of the ER itself (Jordan and Murphy, 1990).   

Tamoxifen, for example, is a non-steroidal ER blocker, which acts via binding to and 

inducing conformational changes in the ER-receptor (McDonnell and Wardell, 2010).  

More recently, however, aromitase inhibitors, which reduce levels of the hormone 

oestrogen are becoming more widely prescribed for ER positive cancers (Fabian, 2007).  

The HER2 receptor has also proved a viable target for drug development, with the 

production of the HER2-targeting agent trastuzumab (brand name Herceptin), a 

monoclonal antibody which binds to and blocks a portion of HER2.  Although these 

drugs are highly specific to their hormonal targets, they are still commonly used in 

combination with chemotherapeutic agents in order to produce the greatest anti-cancer 

effects and attempt to overcome the resistance that can occur due to upregulation of 

different signalling pathways (Schlotter et al., 2008; Leary et al., 2007) (Section 1.1.8.2).   

 Chemotherapeutics generally target highly proliferating cells, often impairing 

such processes as mitosis (Table 1.1).  Chemotherapeutic agents such as Paclitaxel and 

Cisplatin are highly cytotoxic drugs which are associated with multiple side effects from 

relatively mild, yet unpleasant effects of nausea and vomiting, to more substantial 

issues including neuropathy, thrombosis and myalgia (Partridge et al., 2001).  These 

drugs are effective at killing some cancer cells, but their non-specific cytotoxicity means 

these side effects are common and thus research is more focused into generating or 

improving compounds in order to exhibit more specificity and selectivity for cancer cells 

(Chari, 2008).   
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Table 1.1: Summary of Chemotherapeutic Drugs 

(Hassan et al., 2010; Cardoso et al.., 2014; Senkus et al., 2013) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type Mechanism Cancer Targets Examples 
Alkylating agents Direct DNA damage 

– prevent cell 
reproduction 

Leukaemia, 
lymphoma, 
Hodgkin disease, 
multiple 
myeloma, 
sarcoma, lung, 
breast, ovary 

Cyclophosphamide 

Antimetabolites Interfere with DNA 
and RNA production 

Leukaemia, 
breast, ovary, 
intestinal 

5-fluorouracil, 
gemcitabine, 
methotrexate 

Anti-tumour 
antibiotics e.g. 
Anthracyclines 

Interfere with 
enzymes involved in 
DNA replication 

Breast, leukaemia, 
lymphoma, 
bladder, Hodgkin 
disease, lung 
cancer 

Doxorubicin, 
Epirubicin 

Topoisomerase 
inhibitors 

Interfere with 
topoisomerase 
enzymes involved in 
DNA separation in S-
phase of cell cycle 

Leukaemias, lung, 
ovarian, 
gastrointestinal 

Topo I inhibitors: 
Topotecan, 
Irinotecan 
Topo II inhibitors: 
Etoposide 

Mitotic Inhibitors Stop mitosis in M 
phase of cell cycle 
and can prevent 
enzymes producing 
proteins needed for 
cell reproduction 

Breast, lung, 
myeloma, 
lymphoma, 
leukaemia 

Taxanes: Paclitaxel & 
docetaxel Vincristine 

Platinum Agents Inhibition of DNA, 
RNA and protein 
synthesis 

Ovarian, lung, 
breast (TNBC). 

Cisplatin, carboplatin 
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 Some agents which are thought to target CSCs have been evaluated, although 

many failed at early stages of research, some showing serious side effects which may be 

due to harming normal stem cells required for normal cell regenerative processes (Hu 

and Fu, 2012).  Some agents have, however, made it on to the market.  Vismodegib, for 

example, a hedgehog-signalling inhibitor has been approved for use in basal cell 

carcinoma.  The specificity for Vismodegib, however, in targeting the stem cell 

population has not been clearly established; therefore it is not necessarily a true CSC-

targeting agent (Sandhiya et al., 2013).  Tarextumab is a monoclonal antibody, targeting 

Notch pathway proteins.  Results from a safety study using a combination of 

Tarextumab and conventional pancreatic cancer drugs were overall very positive, with 

83% of 29 patients' pancreatic tumours stabilising or shrinking over 8 weeks to one 

year.  This drug is now in phase II trials for pancreatic and lung cancer (Yen et al., 2015).  

Verastem is a company set up by Dr Max Wicha which exists to screen already licensed 

drugs for the ability to block focal adhesion kinase, an enzyme highly implicated in 

cancer progression and metastases due to its ability to aid cell adhesion and cancer 

stem cell survival.  The first FAK inhibitor candidate did not show promising results in 

clinical trials, however, another agent, Reparixin, which was initially developed to target 

transplant rejection, appeared to eliminate cancer cells through blocking a receptor 

involved in their growth.  Reparixin demonstrated early promise in a safety study on 

triple-negative breast cancer, and is now in a phase II trial of breast cancer (Kaiser, 

2015). 

1.1.8.2 Combination Therapies in Breast Cancer 

 The idea of using several different chemotherapeutics in combination as a 

treatment regime in cancer was first proposed in 1970s (Bonadonna et al., 1976).  

Combination therapies have been increasingly common in the treatment of breast 

cancer, especially in advanced, metastatic stages of the disease (Carrick et al., 2009; 

Overmoyer, 2003).  Several commonly used chemotherapeutic combinations include 

‘FEC’ – 5-Flurouracil (5-FU), Epirubicin and Cyclophosphamide (Zamagini et al., 1991), 

‘AC’ – Doxorubicin (brand name Adriamycin) and Cyclophosphamide (Fisher et al., 

1990), and ‘CMF’ – Cyclophosphamide, Methotrexate and 5-FU (Bonadonna et al., 

1976).   The drugs used in these combination therapies have varied mechanisms of 



Chapter 1: General Introduction 
 

 O A Hayward   20 
 

action thus allowing them to target different pathways and features of cancerous cells.  

These wide acting therapies are compiled in order to help facilitate an increased chance 

of successful treatment, i.e., long-term disease-survival (Buzdar et al., 1982) and 

attempt to overcome issues of resistance and relapse.   

 Combination therapies can also include the co-treatment of a patient using 

chemotherapy and hormonal therapies, as mentioned in section 1.1.8.2, surgery and 

radiotherapy.  Drugs with different mechanisms of action may be utilised as adjuvant 

therapies after the initial treatment has begun, or occasionally as neoadjuvant therapy, 

before the primary treatment has begun (Mauri et al., 2004).  Ultimately, this will lead 

to a combination therapy treatment course with drugs administered at different stages, 

the schedule of administration being particularly important since the effects of these 

drugs are often schedule-dependent (Fujimoto-Ouchi et al., 2001).    

1.1.8.3 Treatment Challenges in Breast Cancer 

 Despite some treatments being successful in breast cancer, resistance and 

relapse are a common occurrence.  Both resistance and relapse can be explained by the 

presence of CSCs (Section 1.1.7) which exhibit promoting properties of self-renewal; 

apoptosis resistance; independent growth abilities; and metastatic potential, thus 

allowing cancers to survive treatments and reseed at different locations.  CSCs share 

many properties of normal stem cells, i.e., they exhibit properties which facilitate a long 

lifespan such as: relative quiescence; resistance to drugs and toxins (due to the 

expression of ATP-binding cassette (ABC) transporters); ability to repair DNA damage; 

apoptosis resistance (Dean et al., 2005).  CSCs are therefore generally resistant to 

cancer drugs, in addition to radiotherapy, surviving even after a rigorous treatment 

regime which may successfully eliminate the bulk cells.  CSCs therefore provide an 

important yet challenging target in the search for more efficient therapies which 

prevent the successful seeding of new tumours and slow the growth of already 

developed ones by removing their self-renewal potential (Figure 1.3) (Lawson et al., 

2009).   
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Figure 1.3: Cancer Stem Cell Targetted Therapies aim to Significantly Reduce the Risk 
of Relapse 
A) Most current treatments are able to successfully eliminate a large proportion of the bulk 
tumour cells, although do not act on the CSC population.  B) CSC targetted treatments, in 
combination with conventional bulk targetting agents, aim to elimminate the CSC population, 
thus signifcantly reducing the risk of relapse (Adapted from Verastem, Accessed 2015). 

 

 Heterogeneity (Section 1.1.5) is a major consideration for cancer therapeutics, 

and although combination therapies provide some means to target multiple cell types 

within a tumour, heterogeneity still remains a challenge as cancers mutate and change 

throughout the course of disease and often become more difficult to define and 

therefore treat, as is the case in TNBC (Hutchinson, 2010).   

 An additional challenge is the fact that most anti-cancer agents or regimes do 

not target only the cancer cell population, thus, the therapeutic efficacy of these 

treatments is limited by their additional toxicity to ‘normal’ healthy cells and so the 

patient is left weak and immunocompromised, often experiencing highly unpleasant 

side effects (Chari, 2008).   

A 
 
    
 
 
 
 
 
 
B 
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 These challenges mean that treatment and research into treatment is evolving 

to become more target based in order to achieve a higher specificity and a lower 

general toxicity of the therapeutics and ultimately provide new and refined treatment 

strategies (Binkley et al., 2012).  Additional treatment strategies in cancer include 

agents which aim to target one of the hallmarks of cancer, apoptosis evasion, by 

inducing apoptosis in cancer cells, allowing for a more cancer-cell targeted effect 

(Discussed in Section 1.2.2). 

 

1.2 Apoptosis 

1.2.1 Introduction 

 Apoptosis, or programmed cell death (PCD) is a crucial process for the 

maintenance of tissue homeostasis and therefore of normal organism development 

(Shirley and Micheau, 2010).  The process is characterised by a series of precisely 

regulated mechanisms observed in mammalian cells during the genetically defined cell 

suicide.  Apoptosis initiation may occur due to an immune reaction, response to disease 

(Norbury and Hickson, 2001), cellular aging, or by chemical agents, hormones and drugs 

(Elmore, 2007).  Broadly, apoptosis is divided into the intrinsic, i.e. dependent on 

intracellular signals and mitochondria-mediated, and the extrinsic pathway, which 

requires the binding of death ligands to death receptors (DRs) present on the surface of 

cells. 

 The intrinsic pathway, sometimes known as the mitochondrial pathway, involves 

non-receptor mediated signals.  A key feature of the intrinsic pathway, sometimes 

referred to as the p53-mitochondrial pathway, involves mitochondrial membrane 

permeabilization.  This permeabilization is performed in a controlled manner, regulated 

by proteins of the Bcl-2 family, mitochondrial lipids, metabolic proteins and other key 

permeability regulating proteins.  The result is the release of pro-apoptotic proteins into 

the cell cytosol, which then mediate caspases further down in the pathway to further 

activate PCD and induce other cell death processes such as nuclear DNA fragmentation 

(Green and Kroemer, 2004). 

 The extrinsic pathway is initiated through ligand binding to DRs which are 

members of the tumour necrosis factor (TNF) superfamily.  These TNF superfamily DRs 
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all contain a cytoplasmic death domain (DD) of around 80 amino acids in length 

(Ashkenazi and Dixit, 1998).  When an appropriate death ligand, such as TNF-related 

apoptosis inducing ligand (TRAIL) (Section 1.2.2) binds, which is usually a trimeric 

structure; an adaptor protein will be recruited on the cytoplasmic portion of the 

receptor.  The initial adaptor protein contains a DD which is able to bind with the DD 

present on the receptor and thus functions to convey the initial ligand binding signal 

further along to the intracellular components of the pathway.  Apoptosis is then 

mediated by a series of procaspases which are cleaved to become the activated 

caspases (Ashkenazi and Dixit, 1998; Elmore, 2007).  

 Disturbances in the regulation of apoptosis can promote cancer initiation due to 

prolonging the life of cells beyond their normal lifespan.  Consequently, it follows that 

apoptosis is often reduced in cancer cells, which is likely controlled by anti-apoptotic 

proteins taking precedence over apoptosis-inducing proteins (Section 1.2.2.6 and 1.3) 

(Schlotter et al., 2008; Wong, 2011). 

 In the case of the mammary gland, microarray profiling has been performed on 

the mouse mammary gland during several key processes: pregnancy; lactation; and 

involution.  Post-lactation, during the remodelling process of involution, a number of 

changes involving high levels of PCD occur in the mammary gland.  The previously 

important cells required during lactation undergo apoptosis controlled by multiple 

apoptosis-related proteins, which were identified by the screen as multiple members of 

the TNF-α superfamily.  TRAIL, amongst other TNF ligands, was detected as a possible 

apoptosis-inducing ligand in the mammary gland (Clarkson et al., 2004). 

 

1.2.2 TRAIL Induced Apoptosis  

 TRAIL is an endogenous death ligand and a member of the TNF superfamily. The 

20 kDa protein is primarily expressed on immune cells due to its significant roles in both 

T-cell homeostasis and natural killer (NK) or T-cell killing of both virally and 

oncogenically transformed cells (Wang and El-Deiry, 2003). 

 TRAIL is a type II transmembrane protein, containing an extracellular domain 

which is cleaved to form the biologically active soluble form of TRAIL.  The protein was 

initially identified based on a high sequence homology with CD95 ligand (28% 
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homologous) and TNFα (23% homologous).  The fact that TRAIL has a cleavable 

extracellular carboxy portion, which forms the active soluble form, however, makes it 

unique from CD95L and TNF-α (Mariani and Krammer, 1998).   

 TRAIL has two transmembrane surface receptors: DR4 and DR5 which are 

capable of inducing apoptosis.  The two remaining TRAIL receptors are the decoy 

receptors (DcR), DcR1 or DcR2 (Pan et al., 1997), which lack the functional DD and thus 

do not facilitate apoptosis due to the lack of signal transduction after TRAIL binding 

(Ashkenazi, 2002).   A fifth TRAIL receptor does exist, osteoprotegerin (OPG) which is a 

secreted TNF family member that acts to inhibit osteoclastogenesis (Emery et al., 1998). 

 The two active TRAIL receptors, DR4 and DR5, consist of an extracellular 

cysteine-rich domain (CRD) and an intracellular DD.  Homotrimerisation of TRAIL leads 

to conformational changes in the receptors, including their oligomerisation which 

enables the receptors DD to recruit and bind, via a DD:DD interaction, to intracellular 

Fas-associated death domain (FADD).  FADD, in its role as an adaptor protein, then 

recruits and interacts, via the DED domains, with the zymogen caspases, procaspase-8 

or -10, forming the death inducing signalling complex (DISC) and leading to the initiation 

of the caspase cascade (Ashkenazi and Dixit, 1998; Medema et al., 1997).  Cleavage of 

procaspase-8/-10 to their active caspase subunits, p18 in the case of caspase-8, 

facilitates the subsequent activation of ‘executioner’ caspases, primarily involving 

caspase-3, ultimately leading to apoptosis (Figure 1.4).   
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Figure 1.4: Simplified Schematic of TRAIL induced extrinsic apoptosis 
TRAIL binds to its surface receptors DR4 or DR5, that trimerise and recruit the adaptor protein 
FADD via DD interactions.  FADD in turn recruits procaspase-8 which is cleaved to the active 
caspase-8 form which then leads to apoptosis through cleavage of downstream caspases or 
through the intrinsic pathway of apoptosis, via Bid cleavage. 

 
 The active caspase-8 is also able to induce the protein ‘Bcl2 homology domain 3 

interacting domain’ (BID) which in turn initiates activation of the intrinsic, mitochondrial 

pathway of apoptosis.  Bid cleavage to truncated Bid induces activation of Bax and Bak 

which translocate and form pores in the mitochondrial membrane, facilitating the 

release of cytyochrome C.  An interaction between apoptotic protease factor-1 (Apaf-1) 

with caspase-9 can then occur, thus completing the formation of the apoptosome 

complex and in turn, activating caspase-9.  Caspase-9 leads to further activation of 

effector caspases and enhances the signal induced via the extrinsic pathway (Chen et 

al., 2000; Ashkenazi and Dixit, 1998).   
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1.2.2.1 Alternative roles of TRAIL 

 Conversely to its role in both the extrinsic and intrinsic forms of apoptosis, TRAIL 

is able to activate several pathways involved in cell survival, including the NF-κB, MAPK 

and JNK pathways, depending on the components that make up the DISC complex 

(Johnstone et al., 2008).  Although not fully established, it is thought that some of the 

key proteins involved in the alternative functions of TRAIL are FADD, TNFR type 1-

associated DD (TRADD), procaspase-8/-10, replication protein A-interacting protein 

(RIP), c-FLIP and inhibitor of apoptosis proteins 1 and 2 (IAP1/2) (Johnstone et al., 2008).  

DISC composition, therefore, can regulate TRAIL-susceptibility.  

1.2.2.2 Regulation of TRAIL Signalling 

 The multistep pathway of TRAIL induced apoptosis has many potential areas, 

from receptor level to intracellular signalling components, which may be altered in 

order to regulate responses to TRAIL.  In particular, expression of the death receptors 

can impact cell sensitivity or resistance to TRAIL.  Lack of surface expression of DR4 or 

DR5, which has been observed in neuroblastoma tumour cells, for example, is 

correlated with reduced TRAIL sensitivity (Yang et al., 2003). However, DR4 or DR5 

expression levels have not been found to impact on breast cancer cell TRAIL sensitivity 

(Rahman et al, 2009; Zhang and Zhang, 2008).  Localisation of DRs in lipid rafts, due to 

palmitoylation controlled by O-glycosylation enzymes can alter TRAIL sensitivity. This 

occurs in DR4 only, impacting on the ability of the receptor to form trimers in lipid rafts 

when TRAIL is unbound (Wagner et al., 2007; Rossin et al., 2009).  Internalisation of DRs 

can occur by endocytosis, with the absence of DR4 conferring TRAIL resistance in 

leukaemia cancer cells (Cheng et al., 2006).  Of particular interest is that endocytosis of 

both TRAIL receptors can impact on breast cancer cell sensitivity to TRAIL (Zhang and 

Zhang, 2008) 

 Expression of the decoy receptors, DcR1 or DcR2, which compete with DR4 and 

DR5 for binding with TRAIL and do not induce apoptosis due to lack of a DD have been 

shown to induce TRAIL resistance when overexpressed (Rahman et al., 2009).  

Expression of the decoy receptors, however, in breast cancer cell lines (or indeed in 

other tumours) is not clearly associated with TRAIL resistance, despite appearing to 

contribute, at least in part, to the TRAIL resistance in normal cells (Rahman et al., 2009; 
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Le Blanc and Ashkenazi, 2003).  Binding of TRAIL to the fifth TRAIL receptor, OPG, does 

not lead to apoptosis induction due to the fact that OPG is secreted, and, thus the 

response upon TRAIL-binding is similar to that observed with the DcRs.  The TRAIL-

inhibiting effect of OPG has been observed in Jurkat cells, using overpexpression of OPG 

to prevent TRAIL-induced apoptosis (Emery et al., 1998).  Contradictory information 

surrounds OPG, however, since, although expression levels have been correlated with 

poor prostate cancer prognosis (Brown et al., 2001), it has also been demonstrated to 

reduce bone metastases in a model of breast cancer (Morony et al., 2001).  

 Mutation, rather than overall expression levels, of the TRAIL receptors, however, 

may have at least a partial role in TRAIL sensitivity.  In a study of 57 clinical breast 

cancer samples, three samples were found to have mutations in the DD of DR4, and 

four in the DD of DR5 which impinged their ability to induce apoptosis.  These mutations 

were only observed in the metastatic set of 34 samples, whereas no mutations were 

observed in the 23 non-metastasised samples (Shin et al., 2001). 

 As mentioned in Section 1.2.2, the additional roles of TRAIL, i.e. its ability to 

induce cell survival rather than apoptosis, depending upon the DISC components, is an 

area in which resistance mechanisms can be explored.  The regulation of procaspase-8/-

10 activation can be controlled by several anti-apoptotic proteins, such as Bcl-2 and, in 

particular, cellular FLICE-Like Inhibitory Protein (c-FLIP), which acts via directly 

preventing the ability of FADD to recruit procaspase-8/-10 (Scaffidi et al., 1999; Safa, 

2012). We and others have demonstrated that c-FLIP contributes to TRAIL resistance in 

breast cancer and that targeted inhibition of c-FLIP by siRNA is able to partially sensitise 

adherent breast cancer cells to TRAIL whilst also eliminating the breast CSC population 

(Piggott et al., 2011). c-FLIP and its role in TRAIL resistance will be discussed in Section 

1.3.   

 The Myc oncogenic pathway can enhance TRAIL sensitivity by transcriptional 

repression of c-FLIP (Ricci et al., 2004).  Furthermore, Myc has been shown to increase 

DR5 expression and thus, caspase-8 activation (Wang et al., 2004).  Myc hac been 

demonstrated to regulate TRAIL-dependent transcription of several genes, including NF-

κB and cellular inhibitor of apoptosis protein 2 (CIAP2), which impact on TRAIL 

sensitivity (Ricci et al., 2007). 
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1.2.2.3 TRAIL and Untransformed Cells 

 The ability of untransformed cells to resist TRAIL, whilst apoptosis is induced in 

cancer cells, is one of the major factors that makes TRAIL such a desirable cancer 

therapy (Ashkenazi et al., 1999; Walczak et al., 1999; Gura, 1997).  Although the exact 

mechanism of this TRAIL resistance has not been fully elucidated, evidence for many 

potential mechanisms does exist.  It is thought that TRAIL resistance in normal cells is 

partly controlled by an elevated expression of the decoy receptors (Zhang et al., 2000; 

LeBlanc and Ashkenazi, 2003; Daniels et al., 2005).  Several normal adult tissues have 

been shown to express one or more decoy TRAIL receptors which may be contributing 

to the resistance to TRAIL induced apoptosis (Sheridan et al., 1997).  In addition, studies 

have shown that normal stem cells are resistant to TRAIL induced apoptosis (Szegezdi et 

al., 2009; Kim et al., 2000).   

 Additionally, the anti-apoptotic proteins XIAP, Bcl-2 and c-FLIP are thought to 

contribute in part to the lack of TRAIL sensitivity in non-transformed cells.  However, it 

is likely that a combination of these proteins is required in order to elicit TRAIL 

resistance in non-transformed cells, rather than just one required in cancerous cells 

(van Dijk et al., 2013). 

 Being a naturally secreted ligand, it is unsurprising that TRAIL is well tolerated by 

animals, including mice, monkeys and chimpanzees (Rahman et al, 2009).   Thus, there 

is clearly much evidence to demonstrate the cancer specific properties of TRAIL and 

provide reason for its use as a therapeutic in the clinical setting. Furthermore, the initial 

in vitro observations of TRAIL-resistance in normal cells has been confirmed in phase I 

trials using TRAIL which showed no systemic toxicity, even when administered at high 

doses (Section 1.2.2.5) (van Dijk et al., 2013).   

 

1.2.2.4 TRAIL as a Therapeutic Agent in Cancer  

 Many anti-cancer agents function via a non-specific cytotoxicity, by targeting 

processes such as DNA replication, which, although often altered in cancer cells, are 

also key functions in non-cancerous cells thus leading to the side effects that are 

associated with many chemotherapeutics.  An ability to cause cancer cells to undergo 

apoptosis (PCD), either by methods of direct activation of apoptotic pathways, or re-

sensitisation to previously redundant pathways, is a desirable property of a cancer 
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therapeutic since it targets one of the key hallmarks of cancer: apoptosis evasion 

(Hanahan and Weinberg, 2000) and leaves the untransformed cells unharmed.  Many in 

vitro studies have demonstrated that TRAIL is indeed able to preferentially induce 

apoptosis in a wide range of human tumour cells, whilst sparing the non-transformed 

cells (Ashkenazi et al., 1999; Gura, 1997; Takeda et al., 2001; Kim et al., 2000; Wiezorek 

et al., 2010). 

 In addition to the direct ability of TRAIL to induce apoptosis in cancer cells when 

administered in recombinant form, there is much interest in the antitumour effects of 

endogenous TRAIL.  Secreted mainly by cells involved in immune regulation, including 

NK cells, T cells, monocytes and neutrophils, TRAIL has been shown to have a role in the 

natural immune defence system by virtue of its specific toxicity to transformed cells 

(Takeda et al., 2001).  TRAIL was first observed to have a role as a tumour suppressor in 

2001, in an in vivo study which demonstrated NK cell-mediated cytotoxicity on tumour 

xenografts to be at least in part dependant on TRAIL expression from mouse NK cells in 

the liver.  The study was able to demonstrate, using a neutralizing monoclonal antibody 

against TRAIL, a significant increase in liver metastases of several TRAIL sensitive tumour 

cell lines (Takeda et al., 2001).  Similarly, an in vivo study in 2005, using mice which are 

deficient in TRAIL, demonstrated an increase in spontaneous lymphoid tumour 

formation compared with those with normal levels of TRAIL (Zerafa et al., 2005).   

 There is clearly much evidence to support the potential of TRAIL as an anti-

cancer therapy, and, as such, several TRAIL receptor agonists have entered clinical trials. 

 

1.2.2.5 TRAIL in Cancer Clinical Trials 

 There are currently two categories of TRAIL receptor agonists being tested 

clinically: recombinant forms of TRAIL and agonistic antibodies specific for DR4 or DR5.  

Early stage clinical trials have demonstrated TRAIL-pathway agonists to be safe and well 

tolerated, and to show some anticancer activity with partial or complete responses in 

both non-small-cell lung cancer and non-Hodgkin's lymphoma patients when treated 

with Dulanermin, a recombinant form of TRAIL, in combination with other anti-cancer 

agents (Soria et al., 2010; Belada et al., 2010).  Several TRAIL receptor agonistic 

antibodies have demonstrated anticancer activity in combination with chemotherapy in 
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multiple cancer types, although the effects were modest and non-significant (Lempke et 

al., 2014).  

 Recombinant TRAIL was first tested in phase I clinical trials in two prevalent 

cancers; lung cancer and lymphoma to establish overall safety and tolerability, and was 

shown to be well-tolerated at serum levels above the therapeutic concentrations used 

in preclinical studies, demonstrating no overall toxicity (Herbst et al., 2010).  In addition, 

several monoclonal antibodies against DR4 and DR5 have also been well tolerated 

(Stuckey and Shah, 2013).  One such monoclonal antibody, mapatumumab, which acts 

on DR4, entered Phase II testing for non-Hodgkin lymphoma and generated a promising 

response in around a third of the trial patients, with one showing a complete recovery 

(Younes et al., 2010).  

 Most recently, Tigatuzumab, an agonistic anti-DR5 antibody has been tested, in 

combination with Paclitaxel, in a clinical trial of patients with triple-negative breast 

cancer (Forero-Torres et al., 2015). Tigatuzumab functions to trigger apoptosis in DR5 

expressing human tumour cells and has demonstrated in vitro and in vivo activity when 

tested on basal-like breast cancer cells, when administered in combination with 

chemotherapeutic agents.  Although the responses were relatively modest, the 

Tigatuzumab-Paclitaxel combination prolonged progression free survival in several 

patients, thus supporting further studies and trials into anti-DR5 agents as a means of 

activating the TRAIL pathway in cancer.  Indeed, this trial was performed in triple-

negative breast cancer, which has been demonstrated in vitro to be TRAIL sensitive 

(Rahman et al., 2009) including in studies performed both in vitro and in vivo using anti-

DR5 antibodies. 

 There are some clinical trials, however, which have been less successful for 

TRAIL, primarily when tested as a combination therapy with chemotherapeutic agents, 

despite in vitro studies showing promise for such regimes (Lempke et al., 2014; Shrader 

et al., 2007).  Although further demonstrating a high systemic tolerance to TRAIL, 

minimal anticancer activity has been observed in many studies (Lemke et al., 2014) 

(Table 1.3).   Therefore, there are needs to improve the clinical performance of TRIAL, 

and identify those patient subsets which will benefit from TRAIL treatment.  
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Table 1.2: Clinical Trials for rhTRAIL.   

All clinical trials presented here demonstrated safety for the drug tested. 
Phase Agent Cancer Combination n Efficacy Ref 

I 

 

 

rhTRAIL 
Advanced 

cancers 
- 71 

2 patients with 
metastatic 

chondrosarcoma had 
partial responses. 33 
patients had stable 

disease for longer than 
6 months.  

Herbst 2010 

IA 
 

rhTRAIL 

Advanced 
Cancer and 
Lymphoma 

- 39 None reported Ling 2006 

IA rhTRAIL CRC, sarcoma, 
NSCLC  

- 31 
1 partial response,  

5 stable disease 
Pan 2007 

I 
rhTRAIL 

Colorectal 

+ Chemotherapy 

+ Bevacizumab 

23 13 partial responses 
Wainberg 

2013 

I 
rhTRAIL 

Colorectal 27 6 partial responses 
Kasubhai 

2012 

I rhTRAIL 
Lung 24 

1 complete response, 
 13 partial responses 

Soria 2010 

II rhTRAIL Lung 213 No responses Soria 2011 

I 
 

rhTRAIL 
Colorectal 

+ Chemotherapy 

+ Cetuximab 
30 

Evidence of activity - 
ongoing 

Yee 2009 

I rhTRAIL 
Lymphoma 

+ Rituximab 
7 

2 complete responses, 
 1 partial response 

Yee 2007 

II rhTRAIL Lymphoma 48 No responses Belada 2010 

Ib/II 
Monoclonal 

Ab 
Non-Hodgkin’s 

Lymphoma 
- 40 

3 patients with 
follicular lymphoma 

responded: 2 complete, 
1 partial 

Younes 2010 

II 
Monoclonal 

Ab 
TNBC + Chemotherapy 64 

3 complete remissions, 
8 partial, 11 stable 

Forero-

Torres 2015 
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1.2.2.6 TRAIL Resistance in Cancer 

 One of the most prevalent issues with any anti-cancer agent is the issue of 

resistance.  Cells often adapt and change in order to overcome treatment by certain 

drugs; however, resistance to TRAIL appears to be a more cell-type specific 

phenomenon (Rahman et al., 2009).  Studies have shown that approximately 60% of 

tumour cell lines are TRAIL resistant, which significantly limits the clinical potential of 

TRAIL as a monotherapy (van Dijk et al., 2013).  It is possible that TRAIL-resistance can 

be overcome if used in combination with other clinical agents.  An understanding of 

TRAIL-resistance and regulation mechanisms is therefore vital in order to attempt to 

establish a viable treatment regime (Section 1.2.2.2). 

 The efficacy of TRAIL as a therapeutic in breast cancer is severely hampered by 

the existence of several subtypes of the disease, which make up a large proportion of 

breast cancer cases, that are resistant to TRAIL (Rahman et al., 2009).  Several in vitro 

studies of TRAIL mediated apoptosis in breast cancer cell lines showed that whilst the 

triple-negative MDA-MB-231 cell line sensitive to TRAIL mediated apoptosis, a large 

proportion of cell lines were highly TRAIL resistant (Ashkenazi et al., 1999).  Further 

studies have shown that TRAIL sensitivity of breast cancer cells can be categorised by 

the disease subtype, with triple-negative breast cancers of a mesenchymal phenotype 

demonstrating the greatest sensitivity to TRAIL.  In contrast, the more prevalent ER-

positive cancers, of a more luminal phenotype, were highly TRAIL resistant, more so 

than the HER2 lines which had a modest response to TRAIL (Rahman et al., 2009). 

 Resistance in these cancers involves several previously mentioned pathways of 

TRAIL regulation (Section 1.2.2.2).  Dysfunctions in the death receptors DR4 and DR5, 

the adaptor protein FADD, or the initial caspase caspase-8, due to mutations, can lead 

to TRAIL resistance in cancer (Zhang and Fang, 2005).  Primarily, however, anti-

apoptotic proteins such as c-FLIP are thought to be the key drivers of TRAIL-resistance in 

cancers (Section 1.3) (van Dijk et al., 2013; Safa and Pollok, 2011). 
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1.2.2.7 TRAIL Sensitisation Agents 

 The majority of current therapeutic strategies in cancer aim to overcome two of 

the key hallmarks of cancer: excessive proliferation and apoptosis resistance (Hanahan 

and Weinberg, 2011).  Therapeutics which slow or prevent cancer cell proliferation are 

likely to achieve a stable disease state, through limiting the growth of tumour cells, 

whereas therapeutics which are able to induce apoptosis may have the potential to 

eliminate cancer cells, thus potentially forging a route to cure (Lemke et al., 2014).  The 

observation that the endogenous death ligand TRAIL can preferentially target cancer 

cells through the cancer-cell specific induction of apoptosis (Ashkenazi et al., 1999; 

Walczak et al., 1999) makes it a highly desirable anti-cancer therapy.   Indeed, there are 

now a multitude of in vitro studies which provide evidence of this cancer cell-specific 

effect (Section 1.2.2).  Although initial in vitro studies demonstrated great promise for 

TRAIL as a cancer-cell specific therapy, these clinical trials, at phases I, II and III, 

performed in multiple cancer types have demonstrated positive, although much less 

significant results for TRAIL as a potential therapeutic.  In addition, many in vitro studies 

have confirmed the existence of multiple TRAIL-resistant cell lines in both breast and 

other cancer types (Rahman et al., 2009), which may partially explain the reason for the 

modest in vivo effects.  These observations have evidentially decreased the initially 

apparently broad therapeutic range of TRAIL as a monotherapy.  Ways of overcoming 

TRAIL resistance and increasing the therapeutic efficacy of TRAIL are becoming an 

important research target.    

 Agents which enhance TRAIL-mediated apoptosis do exist, acting in a variety of 

different in vitro cancer cell lines and via several mechanisms of action.  Mechanisms of 

these agents include increasing expression of TRAIL receptors, particularly DR5, 

increasing expression or activation of caspases, including caspase-8, and 

downregulating c-FLIP (Section 1.3.6) amongst several other mechanisms (Trivedi and 

Mishra, 2015).   

 GGTI-298, for example, is a geranylgeranyltransferase I (GGTase I) small 

molecule inhibitor which was shown to augment TRAIL-induced apoptosis in a panel of 

lung cancer cell lines.  Reduced c-FLIP levels were also observed, which may have been 

due to the inhibition of Akt phosphorylation, although the primary mechanism of action 

was suggested to be via induction of DR4 and DR5 expression (Chen et al., 2010).  The 
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actions and effects of GGTI-298 are similar to that of farnesyltransferase (FTase) 

inhibitors, that is, reducing Akt phosphorylation in some cell lines and enhancing the 

apoptosis-inducing ability of TRAIL (Qiu et al., 2007). 

 In the last year, a novel caspase-8 selective small molecule has been developed 

using in silico modelling which potentiates TRAIL-induced death in prostate cancer cells 

by directly binding to and promoting caspase-8 activation (Bucur et al., 2015). 

 There are many additional TRAIL sensitising agents that exist, although the 

majority act via a relatively non-specific targeting of several involved proteins.  Agents 

which regulate c-FLIP, and thus, TRAIL sensitivity are further explored in Section 1.3.6. 

 

1.2.3 DED Containing Proteins  

 Many of the key proteins involved in the extrinsic pathway of apoptosis, 

introduced in Section 1.2, are death effector domain (DED) containing proteins.  The key 

proteins involved include FADD, procaspase-8/-10 and c-FLIP.  The reason that the TRAIL 

pathway can have such opposing effects of inducing apoptosis or cell survival is based 

on which DED-containing proteins make up the DISC complex Section 1.2.2.1 (Johnstone 

et al., 2008). 

 The DED domain is a site of protein interaction which, as the name suggests, is 

mostly associated with the induction or processing of apoptosis, although the domain 

itself has no enzymatic activity.  DED domains facilitate predominantly hydrophobic 

interactions (Eberstadt et al., 1998) between TNF receptor (TNFR) family members 

followed by recruitment of the DED containing linker protein, FADD, and the induction 

of a caspase cascade usually involving procaspase-8/-10 (Valmiki and Ramos, 2009).  

 In addition to the key TRAIL signalling proteins, additional DED containing 

proteins include: death effector domain containing DNA binding (DEDD), DEDD2 and 

phosphoprotein enriched in astrocytes 15-KDa (PEA-15), which are more commonly 

involved in TNF-α receptor family processes (Figure 1.3).  These additional proteins 

demonstrate further that not only are DED proteins required for apoptosis induction, as 

is the case with procaspase-8/-10 but, conversely, they also have roles in processes such 

as transcription, migration and proliferation (Valmiki and Ramos, 2009). 
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Figure 1.5: The family of some of the key DED domain containing proteins 

Summary of the key DED (shown in red) containing proteins. Displayed sizes are relative 
to protein base pair length (Adapted from Valmiki and Ramos, 2009). 
 

1.2.3.1 DED Domain Structure  

 The structure of the DED domain is generally very highly conserved between 

proteins and was first defined in 1995, in a transient transfection assay using FADD 

(Chinnaiyan et al., 1995).  Basic computer modelling was used to predict the folding of 

the DED initially, before full NMR characterisation was performed in 1996, enabling the 

elucidation of  the structure of FADDs DED (Eberstadt et al. 1998).  FADD is a member of 

the death domain (DD) superfamily and thus has the features of an amphipathic, 

antiparallel bundle of six α-helices (Figure 1.6), shared between members of the DD 

superfamily, despite the family having an overall low sequence homology (Weber and 

Vincenz, 2001).  
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Figure 1.6: NMR structure of DED domain from FADD.   

Protein chains are coloured from N- to C-terminal using a rainbow spectral colour gradient 
(Image from PDB-1A1W). 

 
 
 Many DED proteins have an ‘FL motif’ which, in tandem DED proteins, will be 

present on DED1 and thus occupy a pocket in the surface of DED2 (Dickens et al., 2012).  

FADD, containing one DED only, has an FL motif at F25/L26 which is not buried within 

another domain and is therefore available to form interactions with other DED proteins, 

including procaspase-8/-10 or c-FLIP (Eberstadt et al., 1998).  Further detail into DED 

structure and interactions is provided in Section 1.3.7. 
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1.3 Cellular FLICE-like Inhibitory Protein (c-FLIP)   

1.3.1 Introduction 

 c-FLIP, otherwise known as Casper, FLAME-1, iFLICE, CASJ, CLARP, CFLAR or MRIT 

(Schuchmann et al., 2006; Safa and Pollok, 2011), has been demonstrated to be a key 

regulator of apoptosis.  The identification of c-FLIP, as a cell expressed homolog of viral 

FLIPs (v-FLIPs), in 1997, sparked an interest in research to divulge the function of this 

novel cellular expressed protein (Irmler et al., 1997).  Although 13 splice variants of c-

FLIP have been identified, only 3 isoforms appear to be expressed as proteins: 55 kDa c-

FLIP long (L), 26 kDa c-FLIP short (S) and 24 kDa c-FLIP Raji (R) (Figure 1.7).  The two 

shorter forms of c-FLIP, c-FLIP S and R still contain two functional DED domains but lack 

the caspase-like domain.  All three forms of c-FLIP have been demonstrated to have a 

role in the regulation of signalling pathways including both survival and apoptosis, 

although the least is known about the role of c-FLIP R (Safa et al., 2008; Safa, 2012).   

 

 

Figure 1.7: Basic structures of the 3 c-FLIP splice variants which are expressed as 
proteins and the 2 cleaved products.   
c-FLIP-L, the longest form of c-FLIP is made up of two DEDs; DED1 and DED2.  The carboxyl tail is 
made up of two subunits, p20 and p12 which are not present on c-FLIP-S or –R.  Upon 
homodimerisation or heterodimerisation with procaspase-8 (or-10), c-FLIP may be cleaved to 
one or both of the cleaved products shown. Sizes are relative to protein length (Adapted from 
Safa, 2012). 
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 In addition to the cellular forms of c-FLIP, v-FLIPs also exist, initially identified in 

molluscum contagiosum virus (MCV) and in forms of γ-herpesviruses with one of the 

most studied v-FLIPs being the MCV, MC159 (Garvey et al., 2002)   These FLIP variants 

have been demonstrated to block the activation of DRs at the point of DISC assembly in 

the same manner as c-FLIP (Thome and Tschopp, 2001) and are thought to have evolved 

to inhibit apoptosis of infected host cells in MCV (Garvey et al, 2002).  Like c-FLIPs, v-

FLIPs also contain 2 tandem DED domains which have been demonstrated to be able to 

interact with the DED domains of both FADD and procaspase-8 (Yang et al., 2005; Li et 

al., 2006).  

 

1.3.2 c-FLIP Structure  

 c-FLIP L is 55 kDa protein, highly homologous to procaspase-8 (Scaffidi et al., 

1999; Naito et al., 2004), containing two N terminal DEDs, DED1 and DED2, which, like 

procaspase-8, allow binding to the DED of FADD when in complex with TRAIL receptors 

DR4 or DR5.  Unlike procaspase-8, c-FLIP does not have an active caspase domain, due 

the substitution of tyrosine for a conserved cysteine residue in its C-terminal caspase-

like domain, and is therefore caspase-inactive (Irmler et al., 1997; Peter, 2004).  The 

DED domains, DED1 and DED2 of c-FLIP and procaspase-8 are able to interact with the 

one DED present on FADD, when in complex with the membrane bound death receptors 

DR4, DR5, DcR1 or DcR1.  The complex of these proteins results in the formation of a 

DISC.  Since c-FLIP is catalytically inactive, binding to FADD competitively inhibits the 

induction of apoptosis by procaspase-8/10 (Grunert et al., 2012; Safa and Pollok, 2011).  

Furthermore, in addition to preventing apoptosis competing with procaspase-8 for 

FADD binding, c-FLIP is also able to bind to procaspase-8 itself, thus preventing the 

formation of a complete DISC, which has recently been proposed to consist of 'chains' of 

processed caspase-8 homodimers, bound initially to FADD via a DED:DED interaction 

(Dickens et al., 2012). 

 The caspase-like C-terminal domain of c-FLIP has been resolved by 

crystallography, however, the full protein, including its DED domains has not been yet 

been resolved.  The crystal structure of v-FLIP, MC159’s DED domains have, however, 

been resolved, which is useful for aiding in silico studies of c-FLIP (Dickens et al., 2012) 
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(Chapter 3) and indeed other DED domain containing proteins (Li et al., 2006).  c-FLIP S, 

in particular, is similar in structure to the v-FLIPs; the main difference being the 

presence of 20 additional amino acids on c-FLIP S which are important for its 

ubiquitination and proteosomal degradation.  c-FLIP R, similarly to v-FLIPs, contains the 

two DED domains but lacks the additional C-terminal amino acids.  c-FLIP L has a much 

extended C terminus to c-FLIP S and R which is similar to the C-terminals of procaspase-

8/10, although the substitution of a cysteine residue in this domain deems c-FLIP 

catalytically inactive and thus does not act as a caspase (Safa et al., 2008). 

 

1.3.3 Functions of c-FLIP   

 Many roles for c-FLIP in cellular processes have been elucidated since its 

discovery, with regulation of apoptosis being the primary of its functions.  At a cellular 

level, it has been shown to have a dual-role in both cell death, i.e. apoptosis and 

necroptosis, and cell survival processes.  On a larger scale, in vivo studies have shown c-

FLIP to have an important role in T-cell proliferation (Zhang et al., 2008) and the 

development of heart tissue in early embryonic development (Yeh et al., 2000).   

1.3.3.1 c-FLIP prevents Apoptosis 

 Exploring the reasons for TRAIL resistance indicates that c-FLIP expression plays 

a key role in this mechanism, and indeed with the mechanism of resistance to Fas-L and 

TNF-ɑ induced apoptosis (Section 1.2.2.6) (Safa and Pollok, 2011).  Indeed, c-FLIP (both 

long and short) expression levels have been correlated with TRAIL-responsiveness, with 

elevated expression of c-FLIP shown to correlate with resistance to both TRAIL and 

chemotherapy-induced apoptosis (Safa and Pollok, 2011; Safa, 2013).  

 c-FLIP is described as a regulator of death-receptor induced apoptosis, and 

amongst its other functions, a key focus of research is on its ability to compete with 

procaspase-8 (or procaspase-10) at the DISC and thus inhibit TRAIL induced apoptosis 

(Section 1.2.2.6) (Griffith et al., 1998; Safa et al., 2008; Cheung et al., 2009; Grunert et 

al., 2012).  In addition to causing TRAIL resistance, c-FLIP has been shown to have anti-

apoptotic roles in Fas and TNF-α-mediated signalling and has been demonstrated to 

induce chemotherapeutic drug resistance in several diseases (Safa et al., 2008; 

Micheau, 2003). 
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 Both c-FLIP L and S have been shown to have anti- and pro- apoptotic roles in 

additional signalling pathways, including an ability to activate or upregulate pro-survival 

signalling proteins such as Akt, ERK and NF-κB (Safa, 2012).  c-FLIP expression is 

demonstrated to enhance tumorgenicity and result in a poor clinical outcome for many 

cancer types due to its effects on enhancing resistance to chemotherapeutics and TRAIL 

(Day and Safa, 2009).  Akt, serine-threonine kinase involved in cell survival regulation, is 

a key protein with which c-FLIP interacts.  This interaction enhances the anti-apoptotic 

functions of Akt through modulation of Gsk3β and is mediated by regulation of p27 and 

caspase-3 expression as assessed by Yeast-2-hybrid in several cancer cell lines 

(Quintaville et al., 2010).  An increased response to TRAIL has been observed when the 

Akt pathway is downregulated, for example, by suppressing DNA-protein kinase (DNA-

PK) in the human chronic myelogenous leukemia cell line, K562 (Kim et al., 2009).  The 

anti-apoptotic role of c-FLIP has also been demonstrated in primary pancreatic tumour 

cells (Haag et al., 2011), in primary T-cells (Lens et al., 2002) in addition to other primary 

cells.  

 Not only has c-FLIP been demonstrated to compete with procaspase-8/-10 for 

binding with FADD, it has also been shown to interact directly with DR5, FADD and 

caspase-8 in order to form an apoptotic inhibitory complex (AIC) in the MCF-7 breast 

cancer cell line (Day et al., 2008).  The anti-apoptotic interactions of c-FLIP will be 

explored further in Section 1.3.7. 

1.3.3.2 c-FLIP Activates Cell Survival Pathways  

 c-FLIP is able to directly activate cytoprotective pathways which involve cell 

survival, proliferation and carcinogenesis (Safa, 2012).  In fact, even its interaction with 

procaspase-8 can be pro-apoptotic as opposed to anti-, in that in certain conditions it 

can actually directly activate caspase-8 (Micheau et al. 2002; Dohrman et al, 2005).  c-

FLIP overexpression is able to activate NF-κB and ERK pathways through binding to 

proteins involved in these pathways (Safa, 2012; Ueffing et al., 2008).  The key proteins 

with which c-FLIP binds in these pathways are TRAF2 and RIP1, although more efficient 

binding and robust activation is achieved with the processed p43 N-terminal fragment 

of c-FLIP L (Dohrman, et al., 2005; Safa, 2012).   

 c-FLIP L appears to have a role in the modulation of Wnt signalling through 

the inhibition of β-catenin ubiquitylation (Naito et al., 2004).  The nuclear 
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translocation of c-FLIP and promotion of β-catenin-mediated gene transcription is 

able to enhance Wnt signalling.  This nuclear localisation, controlled though the 

functional bipartite nuclear localization signal (NLS) present at the C-terminus, could 

allow c-FLIP to accumulate and thus allow cells to re-acquire stem cell properties via 

Wnt-mediated transcription (Katayama et al., 2010).   

1.3.4 Transcriptional and Post-Translational Regulation of c-FLIP 

 c-FLIP is the target of many different transcription factors, which can induce or 

suppress its expression.  These factors are generally involved in survival and apoptosis 

signalling pathways and are activated by a multitude of cytokines, growth factors and 

ligands involved in DR signalling.  c-FLIP levels are primarily regulated by ubiquitin or 

proteosomal directed degradation (Safa et al., 2008) although other methods of can 

regulation control c-FLIP. 

 The protein, Akt is thought to positively regulate the expression of c-FLIP since 

suppression or activation of Akt was shown to decrease or increase c-FLIP levels 

respectively (Panka et al., 2001).  The two proteins are able to interact, within the C-

terminus of c-FLIP, via Akt's binding to and phosphorylation at S273, resulting in the 

subsequent stabilisation of c-FLIP L (Shi et al., 2009).  Conversely to Akt, JNK activation, 

induced by the E3 ubiquitin ligase, Itch causes the polyubiquitination of c-FLIP and thus 

targets it for degradation at the proteosome (Chang et al., 2006).   

1.3.5 c-FLIP in Cancer 

 Abnormal expression levels of c-FLIP have been observed in a range of disease 

states including multiple sclerosis, Alzheimer’s disease, diabetes mellitus, rheumatoid 

arthritis and cancer (Micheau, 2003).  Elevated levels of c-FLIP have been demonstrated 

in multiple cancer cell lines in vitro, and are generally associated with resistance to 

apoptosis induced by death ligands such as TRAIL.  Increased c-FLIP expression has been 

observed in prostate (Gao et al., 2005), colorectal (Ryu et al., 2001), gastric (Nam et al., 

2003), pancreatic (Elnemr et al., 2001), ovarian (Xiao et al., 2003) and breast (Wang et 

al., 2005) cancers, and also in melanoma (Griffith et al., 1998).  Additionally, analysis of 

primary tissues and cells has shown increased c-FLIP in B-cell chronic lymphocytic 

leukaemia (Olsson et al., 2001), gallbladder (Zong et al., 2009), non-small cell lung and 

in several other cancer types (Shirley and Micheau, 2010).  These observations are 
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primarily on c-FLIP L, although upregulation of c-FLIP S has been observed in some 

gastric and pancreatic cancer cell lines, and in lung adenocarcinoma primary samples 

(Shirley and Micheau, 2010). 

 Several groups have demonstrated that suppression of c-FLIP sensitises 

cancer cells to TRAIL killing (Cheung et al., 2009; Li et al., 2012; Murtaza et al., 2009; 

Geserick et al., 2008).  In addition, our lab have demonstrated that suppression of c-

FLIP using siRNA, in combination with TRAIL treatment, can selectively eliminate 

cancer stem cell activity in all breast cancer cell lines tested, in the in vitro model of 

cancer stem cells (Section 1.1.7.3) (Piggott et al., 2011).    

 Despite expression levels of c-FLIP appearing to correlate with TRAIL 

sensitivity, we have recently published data demonstrating that localisation of c-FLIP 

may be more of an important determinant in TRAIL-sensitivity of several breast 

cancer cell lines.  TRAIL-sensitivity appeared to be associated with breast cancer cells 

which expressed c-FLIP in the nucleus, whereas cells which expressed the protein in 

the cytoplasm were TRAIL-resistant (French et al., 2015 in press).  Inhibition of c-FLIP, 

whether sensitivity is controlled by localisation or expression levels, however, is 

clearly a potential method for TRAIL sensitization.   

 

1.3.6 c-FLIP Targeting Agents  

 We have previously demonstrated that a combination of c-FLIP elimination, by 

siRNA, and TRAIL causes a significant reduction in viability of the bulk population of 

several usually resistant breast cancer cell lines (Piggott et al., 2011).  More 

interestingly, perhaps, is the fact c-FLIP siRNA combined with TRAIL is able to entirely 

eliminate the tumoursphere forming cells present in several TRAIL-resistant, and one 

TRAIL-sensitive, breast cancer cell line in vitro (Piggott et al., 2011).  Cancer stem cells 

are a very important target for new therapies (Section 1.1.7), and, thus, this observation 

in particular highlights the potential impact of a c-FLIP inhibitor in combination with 

TRAIL.  Furthermore, the demonstrated correlation between c-FLIP overexpression and 

resistance to death ligand, i.e. FasL or TRAIL induced apoptosis, further highlights that c-

FLIP may be a suitable target for cancer therapy (Safa and Pollok, 2011; Safa, 2012).   
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 Many approaches to enhancing the degradation or inhibiting c-FLIP in vitro have 

been studied, including the use of transcriptional regulators, si/shRNA and degradation 

or ubiquitination inducing agents.  Although targeted suppression of c-FLIP using such 

methods as si/shRNA do sensitise cancer cells to TRAIL in vitro, this cannot currently be 

translated to a clinically viable therapy, thus, the use of pharmacological inhibitors of c-

FLIP is being considered. However, the development of such inhibitors is made complex 

by the homology between the DEDs of c-FLIP and procaspase-8 (Goltsev et al.¸ 1997; 

Safa, 2012), i.e. inhibiting the DED of c-FLIP would potentially also inhibit procaspase-8.  

Currently, agents which result in inhibition or degradation of c-FLIP are non-specific. 

 Histone Deacetylase Inhibitors (HDACi), which are able to significantly 

downregulate c-FLIP expression have been proposed to be inhibitors of c-FLIP, although 

their action is relatively non-specific (Safa et al., 2008).  These inhibitors, alone, have 

been demonstrated to induce re-differentiation in tumour cells and thus re-establish 

sensitivity toward apoptosis-inducing agents.  Vorinostat (suberoylanilide hydroxamic 

acid (SAHA), for example, has been shown to down-regulate levels of c-FLIP in various in 

vitro cell models of cancer, thus increasing their sensitivity to apoptosis, particularly 

that induced by TRAIL.  Pre-treatment of breast tumour cells with SAHA has been 

demonstrated to cause increased sensitivity to TRAIL (Yerbes and Lopez-Rivas, 2012).    

 A novel small molecule HDAC inhibitor, 4-(4-choloro-2-methylphenoxy)-N-

hydroxybutamamide (CMH) or Droxinostat has been identified through use of a high-

throughput chemical library screen in which downregulated c-FLIP mRNA expression 

was identified (Schimmer et al., 2006; Mawji, et al., 2007).  Although able to partially 

sensitise MCF-7 cells to TRAIL, this molecule was significantly toxic to cells alone, which 

is not a desirable property of a c-FLIP inhibitor.  In addition, CMH-induced additional off-

target effects of degradation of poly(ADP-ribose) polymerase (PARP) thus 

demonstrating its lack of specificity (Bijangi-Vishehsaraei et al., 2010).  

 Several Akt inhibitors have been analysed as inhibitors to c-FLIP and therefore 

TRAIL-sensitising agents, due to the known ability of the two proteins to interact.  API-1, 

for example, is a small molecule Akt inhibitor, which binds to, and blocks the membrane 

translocation of Akt (Kim et al., 2010).  Synergy was demonstrated in non-small cell lung 

cancer (NSCLC) cell lines, using the combination of API-1 and TRAIL, although the precise 

mechanism was not elucidated.  Additionally, a cell line tested which was described to 



Chapter 1: General Introduction 
 

 O A Hayward   44 
 

be 'relatively resistant' to TRAIL and showed high levels of c-FLIP expression, was not 

sensitised to TRAIL by API-1.  Furthermore, the overexpression of c-FLIP L or S did not 

fully abrogate the ability of API-1 to sensitise to TRAIL, thus suggesting the effects not to 

be primarily c-FLIP-mediated (Li et al., 2012). 

 Another agent which acts to inhibit Akt, Celecoxib, has been explored in models 

of colon cancer, for an ability to reduce c-FLIP levels (Chen et al., 2011).  This agent is a 

marketed COX-2 inhibitor which is used as an anti-inflammatory and analgesic drug; 

however, it has also been demonstrated to exhibit chemopreventive effects and is 

known to reduce the risk of colon cancer, although little is known about the mechanism 

behind this.  In general, the antitumor effects of celecoxib are considered to be linked 

with its ability to induce apoptosis (Thun et al., 2002) via inactivation of PDK1/Akt, 

upregulation of CHOP/GADD153 and calcium ion increase in several cancer cell types 

(Schonthal, 2006).  Apoptosis induced by celecoxib is able to downregulate c-FLIP via a 

proteasome mediated pathway, through the inhibition of GSK3.  The study thus 

assessed the effects of a GSK3 inhibitor on TRAIL induced apoptosis, which was indeed 

enhanced (Chen et al., 2011).  Celecoxib, and subsequently GSK3 inhibitors have 

therefore been shown to enhance the effects of TRAIL, with an ability to downregulate 

c-FLIP, however, like API-1, these effects are relatively non-specific. 

 There are several other Akt inhibitors, such as Perifosine, which have been 

demonstrated to have similar effects to API-1 and Celecoxib, i.e. they can enhance TRAIL 

which appears to be mediated through the downregulation of several proteins involved 

in DR signalling, including c-FLIP (Tazzari et al., 2008).   

 As with all cancer therapies, the ideal candidate is one that is highly specific and 

targeted to the desired protein.  Although many non-specific c-FLIP inhibitors or down 

regulators are available, at the time of this study, no specific ways of targeting c-FLIP 

clinically, or c-FLIP specific agents and small molecule inhibitors existed of which were 

aware. 

 

 

 

 

 



Chapter 1: General Introduction 
 

 O A Hayward   45 
 

1.3.7 Interactions of c-FLIP in TRAIL Resistance 

 In depth knowledge of the anti-apoptotic interactions that c-FLIP is involved in is 

imperative in order to be able to attempt to alter or prevent these, as a c-FLIP specific 

therapeutic strategy.  No mutational studies had been performed on the DEDs of c-FLIP 

L at the time of this study, however, which would elucidate any information about the 

importance of either DED or specific residues within the DED.   

Many studies have shown that the DEDs of c-FLIP, and of procaspase-8/-10 and 

not the caspase-like domain are important for the interaction with FADD (Irmler et al., 

1997).  Furthermore, studies have demonstrated that the DEDs of procaspase-8/-10 can 

interact with FADD and with each other to form intracellular filaments or fibers known 

as death effector filaments (DEFs) (Dickens et al., 2012; Ueffing et al., 2008).  The 

formation of complete DEFs can be blocked by v-FLIP proteins (Siegel et al., 1998).    

One study on a form of c-FLIP, murine c-FLIP R did look into several DED 

mutations and the impact of these on interactions with FADD.  Mutations were only 

performed on the FL motif present on DED2 at F119G/L120G which did demonstrate an 

increase in sensitivity to CD95-mediated apoptosis, with increased caspase-8 

processing.  Results suggested that only one DED domain of murine c-FLIP R was 

required for its anti-apoptotic role.  In addition, in contrast to c-FLIP L, murine c-FLIP R, 

did not prevent FADD self-association, and thus is not directly comparable (Ueffing et 

al., 2008). 

There are several mutational studies which have been performed on the single 

DED domain containing protein, FADD, which have various effects on the proteins 

functions and interactions.  Additionally, unlike c-FLIP or procaspases-8, the NMR 

structure of the DED of FADD has been resolved, which has helped to provide insight on 

DED proteins.  Furthermore, some groups have looked into the importance of residues 

present on procaspase-8 and v-FLIP with regards to the important TRAIL mediated 

interactions.  A review of the literature surrounding the importance of these DED 

mutations is required in order to attempt to comprehend the anti-apoptotic 

interactions of c-FLIP and therefore to target it therapeutically in order to sensitise to 

TRAIL.   
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 There are other protein interactions which c-FLIP is involved in (mentioned in 

Section 1.3.3.1), however, in this study we focus on the DED interactions of c-FLIP, 

although future work could involve targeting other domains on the protein. 

 

1.3.7.1 FADD DED Mutational Studies 

 The NMR structure of FADD revealed the existence of two hydrophobic patches 

(Eberstadt et al., 1998) and enabled a more specific selection of residues which have 

been analysed in several mutagenesis studies.   

 Mutation of residues F25 (part of the FL motif) and K33-R38, present in alpha 

helix 3 of the DED of FADD are able to alter DED interactions between FADD and c-FLIP 

as demonstrated by co-immunoprecipitation, in addition to  interactions between FADD 

and procaspase-8 (Kaufmann et al., 2002).  Interestingly, the F25Y FADD mutant was 

shown to bind procaspase-8 as well as wild-type FADD (Eberstadt et al., 1998), although 

the interaction with c-FLIP was significantly reduced, which suggests the two proteins 

have slightly different binding affinities to FADD and thus show some promise for the 

development of inhibitors (Kaufmann et al., 2002).   

 It is known that FADD, like c-FLIP and procaspase-8, can self-associate, although 

it is unlikely that this self-association occurs in the same way as between FADD and 

different proteins.  Muppidi et al., used CFP and YFP FRET constructs to demonstrate 

the existence of FADD:FADD interactions in living cells.  When the DED was removed 

from one or both of these constructs, no FRET was observed, thus suggesting the DED of 

FADD is also required not only for interaction with other proteins, but for its own self-

association also.  This study used the NMR structures from the previous work by 

Eberstadt et al. to further understand FADD self-association.  The first hydrophobic 

patch, mentioned by Eberstadt et al., contains residues F25, L26 (making up the FL 

motif), L28, L66 and L70 and is important for the interaction between FADD and 

procaspase-8.  The slightly less conserved second hydrophobic patch contains residues 

M1, P3, L5, V6, L43, L50, P57 and F82.  Mutations of the residues in this second patch 

did not disrupt the self-association of FADD or Fas signalling, suggesting that the first 

hydrophobic patch is key to its interactions with the DISC proteins (Muipiddi et al., 

2006).      
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 In addition to the FL motif, the RXDLL motif is conserved between many DED 

containing proteins, and indeed, the DED of FADD contains the sequence 'RHDLL' 

between amino acids 72 and 76.  Studies performed on v-FLIP demonstrated that 

specific point mutations within this domain were important for its antiapoptotic activity 

(Garvey et al.,2002) thus, Muippidi et al., performed mutagenesis on the RXDLL motif of 

FADD.  Several point mutations were introduced and a combination of co-

immunoprecipitation and FRET showed these residues do have a key role in FADD self-

association but that they were not important for its interaction with procaspase-8.  The 

study did demonstrate, however, that the mutant forms of FADD were unable to initiate 

TRAIL-induced apoptosis, despite retaining their ability to bind procaspase-8 and thus 

conclude that FADD self-association is required for induction of apoptosis but not for 

proper folding of the FADD DED (Muipiddi et al., 2006).   

 Carrington et al., however, have shown slightly different work to Muipiddi et al., 

regarding the site of FADD self-association.  This study suggested that the site of self-

association is around F25 of the FL motif in FADDs DED domain but agrees that FADD 

self-association is at a site distinct to that of procaspase-8 binding.  They suggest that 

FADD interacts with only one of the DED domains of procaspase-8, and that the 

residues S12, R38, D44 and E51 were potentially involved in the interaction with 

procaspase-8.  Additionally, two residues F25 and K33, previously mentioned for their 

ability to bind procaspase-8 (Eberstadt et al., 1998) or c-FLIP (Kaufmann et al., 2002) 

were also analysed.  A mutation at F25 of the FL motif was indeed shown to disrupt the 

ability of FADD to induce apoptosis in addition to being required for FADD self-

association (Carrington et al., 2006) 

 

1.3.7.2 Procaspase-8 Mutational Studies 

 In addition to the studies performed on the DED of FADD, several groups have 

looked specifically at mutations on the DEDs of procaspase-8 for their impact on 

interactions with FADD in the DISC.  Information elucidated about procaspase-8 

interactions could provide vital information surrounding the interactions of c-FLIP since 

c-FLIP and procaspase-8 bind to FADD in the same manner, and thus areas of 

importance on the structure of procaspase-8 may also feature on c-FLIP.  
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 A naturally occurring caspase-8 mutant with a deletion of leucine 62, located in 

DED1 of procaspase-8 was identified in human vulvar squamous carcinoma cells, which 

are a TRAIL resistant cell line.  This procaspase-8 mutant was shown to have no 

apoptotic activity when overexpressed in several cell lines, suggesting the presence of 

leucine 62 is vital for caspase-8 to induce apoptosis.   Analysis into the interactions of 

this procaspase-8 mutant showed that it was unable to interact with FADD, unlike 

overexpressed wildtype- procaspase-8 in addition to being unable to oligomerise with 

itself, or wildtype- procaspase-8.  In addition, it was shown that this mutant retained its 

enzymatic activity, governed by the N-terminus of the protein, thus, the lack of 

apoptosis was not due to a mutation in the caspase-domain of the protein (Liu et al., 

2002). 

 Another study has identified a short form of procaspase-8 which encodes DED1 

and only a small section of DED2 and has shown it to be present in multiple cell lines, 

using RT-PCR.  This short form of caspase-8 was demonstrated, by co-

immunoprecipitation, to still bind to FADD.  However, the procaspase-8-mutant was 

unable to induce apoptosis and therefore this suggests that DED1 alone of caspase-8 is 

sufficient to induce apoptosis (Xu et al., 2009). 

  A recent paper by Dickens et al. provides further insight into the structure of the 

DISC, with particular reference to the interactions between FADD and procaspase-8.  

This study observed FADD to be substoichiometric relative to TRAIL-Rs or DED-only 

proteins, conversely to the previously accepted triplet expression.  Approximately nine 

times more procaspase-8 than FADD was observed to be present at the DISC, upon 

stimulation with TRAIL.  A model was proposed which suggests that procaspase-8 

molecules interact sequentially via their DED domains to form a caspase-activating 

chain, which fits in with previously observed DISC ‘filaments’, and that both DED 

domains of procaspase-8 are required for this for full induction of apoptosis.  Mutating 

key interacting residues in procaspase-8 DED2 was shown to abrogate chain formation 

and disrupt, but not fully prevent, DISC mediated procaspase-8 activation and thus 

apoptosis induction which suggests that DED1 may be the important domain for initial 

FADD binding (Dickens et al., 2012).   

 In silico modelling was used to study the interactions involved in the Dickens 

caspase-8 chain model.  Caspase-8 DED1/2 were modelled by constructing a homology 



Chapter 1: General Introduction 
 

 O A Hayward   49 
 

model using the crystal structure of v-FLIP MC159 (Carrington et al., 2006; Li et al., 

2006; Yang et al., 2005).  DED interactions between different procaspase-8 proteins 

were modelled based on the interaction interface that exists between DED1 and DED2 

(FL motif of DED1) in the tandem DEDs of caspase-8 (Dickens et al., 2012).  Mutation of 

F122G/L123G of procaspase-8 DED2 was able to disrupt death effector filament 

formation, reduced procaspase-8 recruitment to the DISC and prevented procaspase-8 

activation.  Procaspase-8 recruitment, however, was not totally prevented, thus, they 

propose that it is unlikely that procaspase-8 is recruited to FADD only by interaction 

with DED2.  The group suggested that it is more likely that either procaspase-8 is 

recruited to FADD by DED1 or by DED1 and DED2 simultaneously, rather than by DED2 

alone (Dickens et al., 2012).  

 The findings of Dickens et al. do not fully agree with research by Yang et al., who 

suggested that procaspase-8 DED2 does indeed mediates recruitment to FADD.  Yang et 

al. proposed this due to the fact that their mutant of F122 reduced interactions with 

FADD, whilst the double FL mutant, F122G/L123G completely abolished co-IP 

detectable interactions (Yang et al., 2005).     

1.3.7.3 v-FLIP Mutational Studies 

 Although no studies had been performed on c-FLIP at the time of this study, and 

in particular, when constructing our models, there are studies which have looked into 

mutations on the viral form of the protein, v-FLIP, which may elucidate information into 

the residues or domains of importance in c-FLIP. 

 The DED domains of v-FLIP, MC159, exhibit intramolecular interactions: DED1 

interacts with DED2 via an 'FL' hydrophobic motif conserved in nearly all DEDs, which 

was used by the previously mentioned study performed by Dickens et al. to assist in the 

construction of a procaspase-8 homology and interaction model.  In tandem DED 

proteins (including c-FLIP and procaspase-8), the FL motif present on DED1 appears to 

occupy a pocket in the surface of DED2.  FADD only has 1 DED and so its own FL motif, 

F25/L26, is not buried at an intramolecular interface and thus is free to be able to 

recruit procaspase-8, or c-FLIP.  Mutation of this FL motif in FADD has been shown to 

prevent caspase-8 binding (Eberstadt et al., 1998).   
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 The highly DED-conserved RXDLL motif is present in v-FLIP.  In v-FLIP studies 

performed by Garvey et al., double mutants of the RHDLL to AHALL or RHDAA, but not 

point mutations, were sufficient to reduce anti-apoptotic activity.  12 mutants of v-FLIP 

were produced in this study, seven of which had mutations within DED1 and protected 

against Fas-mediated apoptosis in HeLa cells.  Two of the mutants, with residues altered 

within DED1 showed a loss of protection from Fas- and TRAIL-mediated apoptosis in 

Jurkat cells.  In comparison, two mutants which had mutations in DED2 retained TRAIL-

resistance. Garvey and team also explored mutations of the RXDL motif of both DED1 

and 2, which demonstrated the motifs in both domains to have a role in death effector 

filament formation and the anti-apoptotic role of v-FLIP, but not in binding to 

procaspase-8 or FADD.  Furthermore, they showed that two mutations which led to a 

loss of caspase-8 binding were present within DED1.  Mutations performed on the FL-

motif present on DED1, F30A, resulted in a reduced binding to caspase-8 and altered 

the ability of v-FLIP to prevent apoptosis.  This group suggest, therefore, that DED1 is 

required for the anti-apoptotic role of v-FLIP in TRAIL-mediated apoptosis (Garvey et al., 

2002).   

 Summarising the relevant mutational studies demonstrates some key residues 

involved in the DED interactions (required for Chapter 3) (Table 1.2). 

 

Table 1.3: Summary of Key Mutational Studies performed on FADD, v-FLIP and Procaspase-8 
at the time of Modelling Study (2012/2013). 
Although at the time of the modelling component of this project (November 2012 - March 
2013), no mutational studies had been performed on the DEDs of c-FLIP, several studies 
involving FADD, v-FLIP or procaspase-8 had been carried out, which provided us with 
information regarding the importance of DEDs and specific residues within them. 

Protein Residues 
Mutated 

Functional Consequence Reference 

FADD F25 K33-R38 (FL 
motif) 

Altered DED interactions with 
c-FLIP 

Kaufmann et al., 
2002 

FADD F25Y (FL motif) Bound with procaspase-8 as 
well as wt FADD 

Eberstadt et al., 
1998 

FADD F25G or F25V (FL 
motif) 

No loss in apoptotic activity 

Weaker binding with c-FLIP 

Eberstadt et al., 
1998 

FADD DED removal No FADD self-association Muppidi et al., 2006 

FADD RXDLL motif Altered FADD self-association Muppidi et al., 2006 
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No impact on procaspase-8 
interaction 

Unable to induce TRAIL 
mediated apoptosis 

FADD F25 (FL motif) Alters self-association Carrington et al., 
2006 

FADD S12, R38, D44, 
E51 

Alter procaspase-8 
interaction 

Carrington et al., 
2006 

FADD F25 Disrupted apoptosis 
induction 

Reduced self-association 

Carrington et al., 
2006 

Procaspase-8 L62 (DED1) Deletion associated with 
TRAIL resistance 

No apoptotic activity 

Unable to interact with FADD 

Unable to self-associate 

Retained enzymatic activity 

Liu et al., 2002 

Procaspase-8 DED2 (protein 
containing DED1 
and short 
section of DED2) 

Retained FADD binding 

Unable to induce apoptosis 

Xu et al., 2009 

Procaspase-8 F122G, L123G 
(FL motif), DED2 

Mutations of residues in 
DED2 abrogated DISC chain 
formation but did not 
completely prevent apoptosis 

MacFarlane et al., 
2012 

Procaspase-8 F122/L123G Abolished detectable 
interactions with FADD 

Yang et al., 2005 

v-FLIP RHDLL (RXDLL 
motif) 

Point mutations altered anti-
apoptotic activity but not 
interaction with FADD or 
caspase-8 

Garvey et al., 2002 

v-FLIP F30 (FL motif), 
DED1 

Mutations in DED1 reduced 
anti-apoptotic abilities and 
binding to caspase-8 

Garvey et al., 2002 
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1.4 Aims of the Study 

 Agonists of the endogenous death ligand TRAIL clearly show promise as 

therapeutics, despite the somewhat mixed responses from early phase clinical trials.  Its 

ability to induce apoptosis preferentially in cancer cells is a highly desirable property 

and one that should be exploited. Although triple-negative forms of breast cancer are 

TRAIL sensitive in vitro, a large subset of breast cancer types are resistant to treatment 

with the death ligand.  Overcoming this resistance is clearly an important objective in 

order to widen the therapeutic potential of TRAIL.  

 Many studies have proven the role of c-FLIP in TRAIL resistance (Safa and Pollok, 

2011; Safa, 2012). While we and others have demonstrated that targeted suppression 

of c-FLIP by si/shRNA sensitise both cancer cells and CSCs to TRAIL (Piggott et al., 2011; 

Safa, 2012; Day et al., 2009), this method of suppression cannot currently be translated 

to a clinically viable therapy.  It is known that the ability of c-FLIP to prevent TRAIL 

induced apoptosis is due to its competition with procaspase-8 at the DISC, however, the 

specific residues which are required for this interaction are not known.  In addition, 

although there are some compounds including histone deacetylase (HDAC), Akt 

inhibitors and the compound CMH, which exhibit non-specific inhibition of c-FLIP and 

therefore show general toxicity (Shanakar et al., 2005; Chen et al., 2011) (Section 1.3.6), 

there are currently no c-FLIP specific inhibitors available.   

 Drug development is constantly changing and adapting to new technologies.  

One of the more recent developments is the ability to design drugs that are specific to 

particular features present on protein surfaces, by using the latest in silico modelling 

technologies.  In addition, in silico protein modelling can help to elucidate information 

about certain amino acid residues which may be vital for certain cellular processes.   
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In this study we set out to use a form of in silico modelling to design novel small-

molecule inhibitors of c-FLIP and then to verify these inhibitors using cell-based in vitro 

assays.  More specifically, our objectives were to: 

 Model the structures of c-FLIP and procaspase-8 DEDs in order to subsequently 

model relevant interactions between c-FLIP, FADD and procaspase-8 

 Use pharmacophore screening to select and develop specific small molecule 

pharmacological inhibitors to c-FLIP 

 Use in vitro assays of cell viability and cancer stem-like cells to test the ability of 

inhibitors to sensitise to TRAIL 

 Validate the mechanism of action of identified inhibitors 

 Identify residues which may be involved in the anti-apoptotic role of c-FLIP and 

could be used to perform mutational studies 

 

 The desired action of a small molecule c-FLIP inhibitor was to sensitise breast 

cancer cells and CSCs to TRAIL induced apoptosis, through interference with the c-

FLIP:FADD interaction (Figure 1.8), whilst having low toxicity on ‘normal’ non-cancerous 

cells.  The development of such inhibitors, however, might be complicated by the 

homology between the DEDs of c-FLIP and procaspase-8 which could lead to off-target 

binding of the compounds to caspase-8.  Thus, the potential inhibitors should be 

analysed for their ability to inhibit c-FLIP whilst allowing procaspase-8 to bind FADD and 

activate apoptosis.  In addition, exploring the potential important residues involved in 

the interaction would provide alternative ways of targeting c-FLIP, should it not be 

possible to generate active inhibitors. 
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Figure 1.8: TRAIL Pathway and Simplified Schematic of c-FLIP Inhibitor 
A) TRAIL induced apoptotic pathway, inhibited by the interaction of c-FLIP with FADD via 
a DED:DED protein domain interaction (highlighted in yellow circle). B) c-FLIP inhibitors 
will be designed to inhibit the c-FLIP FADD DED interaction (yellow circle in A), whilst 
sparing the FADD:Procaspase-8 DED interaction, thus allowing apoptosis to progress.

A 

B 
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Chapter 2: Materials and Methods  

2.1 Cell Culture 

2.1.1 Cell Lines 

 In this study, we utilised multiple established human breast cancer cell lines 

which represent the main receptor-defined subtypes of breast cancer: ER-positive; 

HER2-positive; and TNBC.  The principal breast cancer cell lines used were MCF-7, BT474 

and MDA-MB-231 respectively.  MCF-7 cells are human luminal-like cells derived from a 

patient with metastatic breast cancer in 1970 (Brooks et al., 1973), which are epithelial-

like and represent ER-positive cancer cells.  An additional epithelial-like, ER-positive cell 

line, BT474, was derived from a solid invasive ductal breast carcinoma (Lasfargues et al., 

1978).  The mesenchymal-like MDA-MB-231 cell line, derived from the pleural effusion 

of 51 year old patient with long term metastatic breast cancer, represents TNBC.  SKBR3 

cells were also used, in order to analyse a HER2+ve, ER-ve breast cancer type.  MCF-10A 

cells were used to represent ‘normal’ non-tumorigenic mammary epithelial cells, 

although it was recognised that these cells were both transformed and of ductal origin.  

 Human  breast cancer cell lines MDA-MB-231 and MCF-7 cells were kindly 

supplied by Dr Julia Gee, Cardiff School of Pharmacy,  BT474 and SKBR3 cells were 

purchased from ATCC and MCF-10A cells were obtained from Dr Steven Hiscox, Cardiff 

School of Pharmacy.  HeLa human cervical cancer cells were a gift from Dr Ladislav 

Andera, Institute Molecular Genetics, Prague.  MDA-MB-231, MCF-7, BT474 , SKBR3 and 

HeLa cells were cultured in RPMI-1640 medium (Invitrogen) supplemented with 10% 

foetal bovine serum (FBS), 2 mM L-glutamine (Invitrogen) and 50 units/ml penicillin-

streptomycin. MCF-10A cells were cultured in 1:1 DMEM/F12 (Invitrogen) medium with 

5% horse serum (Sigma), 50 units/ml penicillin-streptomycin, 100 ng/ml cholera toxin 

(Sigma), 20 ng/ml epidermal growth factor (EGF) (Sigma), 0.5 mg/ml hydrocortisone and 

10 µg/ml insulin.   
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2.1.2 Cell Culture Maintenance 

 Cells were kept in a logarithmic growth phase in 25 cm2 cell culture flasks (T25) 

(Nunc, Thermo) at 37°C in a sterile incubator with a humidified atmosphere of 5% CO2 

and 95% air by passaging or refreshing media when required.  Cells were passaged 

when they had reached 80-100% confluency.  Passaging was performed by removing 

culture medium, before adding an appropriate amount of 0.05% Trypsin-EDTA 

(Invitrogen) for the size of the flask.  Cells were incubated in trypsin for around 5 

minutes at 37°C before all cells could be seen to have lifted off the vessel surface and 

rounded up, at which point, a volume at least 10 times that of trypsin of serum 

containing media was added to inactivate the trypsin.  Cells were passaged at 

appropriate ratios for the cell line (Table 2.1) and remaining cells were discarded or 

used as required.  Cell lines were kept to a passage number of around 40, after which, a 

fresh aliquot of low-passage cells would be revived from liquid nitrogen.   

 

Table 2.1: Conditions and maintenance of cell lines used within this study  

(Adapted from Holliday and Speirs, 2011) 
Cell Line Media (before 

supplementation) 

Passage 

Ratio 

Breast Cancer 

Subtype 

Classification 

MCF-7 RPMI 1:8 ER +ve, PR +/-, 

HER2- 

Luminal A 

BT474 RPMI 1:8 ER +ve, PR +/-, 

Her-2 + 

Luminal B 

SKBR3 RPMI 1:8 ER -, PR-, Her-2 + HER2 +ve 

MDA-MB-

231 

RPMI 1:10 TNBC Claudin-low 

MCF10-A DMEM-F12 1:6 Non-tumorigenic NA 

HeLa RPMI 1:10 N/A (Cervical 

Cancer) 

NA 
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2.1.3 Cell Storage 

 Cells were frozen at low passage number and cryo-stored in liquid nitrogen.  To 

prepare cells for storage, cells were trypsinised and pelleted by centrifugation for 5 

minutes at 234 g after which pellets were resuspended in 1 ml complete media with 

10% DMSO (Sigma) in 1.5 ml cryo-tubes (Nunc).  Around 2 x 106 cells were frozen per 

aliquot. Cryo-tubes were left overnight at -80°C in an isopropanol cell freezing container 

after which tubes were transferred to long term storage in liquid nitrogen.  To revive 

cells, tubes were defrosted rapidly in a 37°C waterbath before being spun for 5 minutes 

at 234 g to obtain a cell pellet.  The cell pellet was resuspended in 5 ml of the 

appropriate growth medium and cultured in a T25 flask, or other appropriately size 

vessel, depending on cell pellet size. 

 

2.1.4 Activation and Suppression of Apoptosis 

 Activation of caspase-8 mediated cell death was initiated in cell culture with 

recombinant soluble human TRAIL (super-killer TRAIL, Enzo Life Sciences) at 20 ng/ml 

(unless otherwise stated) for 18 h.  Inhibition of caspase activity was performed with 

Pan-caspase-inhibitor Z-VAD-FMK (R and D Systems), 10 µM (unless otherwise stated).   

 

2.2 In Silico Protein Modelling 

 All molecular modelling was performed on a MacPro dual 2.66 GHz Xeon running 

Ubuntu 9. Crystal structures for FADD and v-FLIP were downloaded from the Protein 

Data Bank (PDB) (www.pdb.org).  

 

2.2.1 c-FLIP and Procaspase-8 Homology Models 

 Crystal structures for the DED domains of c-FLIP and procaspase-8 had not been 

resolved and thus these were constructed based on a homology model.  Amino acid 

sequences for c-FLIP and procaspase-8 were obtained from Genbank. The structures of 

the two DEDs of c-FLIP and procaspase-8 were generated using MOE (Molecular 

Operative Environment, 2010) based on sequence alignment homology models with the 

published 3D structure of MC159 (PDB ID: 2BBR).  MC159 was imported to MOE where 

hydrogen atoms were added to the protein and residue ionisation was set to pH 7.4.  
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The structure was minimised to keep all heavy atoms fixed until the root mean square 

deviation (RMSD) gradient of 0.05 kcal moll-1 Å-1 was obtained.  

 MOE-Search PDB was used to identify a suitable template for performing c-FLIP 

and procaspase-8 model construction.  The sequence of target protein, the 'query' is 

entered and a search is performed of PDB entries in order to find one with a high level 

of homology for constructing the model.  In this case, MC159 was identified as the best 

template for performing our homology models. 

 MOE-Align was the first step in building our homology models, whereby the 

sequence of our target proteins (c-FLIP and procaspase-8) was entered and compared 

with the sequence of our template protein, MC159.  MOE-Align was used to align the 

sequences which appropriately aligned amino acids, entering gaps where required, in 

order to obtain a likely sequence to secondary structure of the template protein order.   

 MOE-Homology was subsequently used to generate a complete, energy-

minimized (i.e. 'relaxed' protein conformation) 3D model of our target proteins, based 

on the template structure MC159.  This application creates a number of potential 

models, constructed using a series of Boltzmann-weighted choices of sidechain 

rotamers and loop conformations using the selection of protein fragment components 

present in the built-in library of crystalised, high-resolution protein structures.  An 

average model of the target proteins were then constructed and a level of energy 

minimization was selected, in this case, AMBER99 (Assisted Model Building with Energy 

Refinement).  AMBER99 essentially simulates energy force fields to minimise excessive 

bond stretching within the protein. 

  

2.2.2 Modelling Intermolecular Interactions 

 The intramolecular interface (a known interaction (Dickens et al., 2012) between 

the FL-motif of DED1 and DED2 of c-FLIP and procaspase-8 was used to model the 

intermolecular interactions between DED2 of procaspase-8 and DED1 of c-FLIP.  This 

interaction was then used to analyse the c-FLIP DED1:FADD and procaspase-8 

DED1:FADD interactions (FADD crystal structure from PDB, ID: 1A1W).  In brief, c-FLIP or 

procaspase-8 DED1 was aligned and superimposed to the DED of FADD in MOE in order 

to simulate the intramolecular interactions that occur within the protein.  FADD was 
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then manually moved into position so that it mimicked this interaction, but on the outer 

surface of DED1 of c-FLIP or procaspase-8. 

 Protein complexes were subjected to in silico minimisation processes to create 

the optimum energy-minimised models. Hydrogen atoms were added to the protein 

and ionization of residues was performed at a pH of 7.4 in MOE.  The system was kept 

minimized by fixing the heavy atoms to obtain an RMSD gradient of 0.05 kcal mol-1 Å-1.   

An average model of the target proteins is then constructed and a level of energy 

minimization was selected, in this case, AMBER99 (Assisted Model Building with Energy 

Refinement).  AMBER99 essentially simulates energy force fields to minimise excessive 

bond stretching within the protein, in this case, we ensured the gradient of 0.05 kcal 

mol-1 Å-1 was maintained.  

 Following this, GROMACS software 4.5 (Hess et al¸ 2008) was used to perform 

molecular dynamics on the protein complexes using Gromos 96 forcefield and NPT 

working environment.  Interaction simulations were performed at 300 K, 1 atmosphere 

and a time step of 0.002 ps.  Next, the whole system was equilibrated for 100 ps after 

which the structure was solvated in a dodecahedron simulation box using spc216 water 

molecules, to generate a minimum of 9 Å water between the protein and the edge of 

the box, thus setting boundary constraints to the system.  Finalised models were 

visualised in VMD (Visual Molecular Dynamics). 

 

2.2.3 Protein Analysis and Pharmacophore Design 

 A pharmacophore query was run on c-FLIP using MOE to identify features on the 

protein surface which could be targeted by small molecule inhibitors to block the 

interaction with the FL motif on FADD.  The FL motif of FADD was used as if it were a 

compound-like ligand to set up the query on the surface of DED1 on c-FLIP.  After user 

defined refinement of these features a library of over 350,000 compounds (Specs 

Database) was virtually screened to identify potential inhibitors to these sites. 14000 

positive hits were docked on our modelled interactive surfaces of c-FLIP and 

procaspase-8 using MAESTRO (Schrodinger) software.  2000 compounds were obtained 

as a result, which were re-docked on the structures of c-FLIP and procaspase-8.  The 

Glide feature was used to ‘score’ these compounds based on their ability to bind the 

proteins.  Several docking steps were utilised to obtain a final, refined, 200 compounds 
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which had high scores for c-FLIP and low scores for procaspase-8.  These were analysed 

visually using MOE, comparing compound binding on the pocket of c-FLIP to the pocket 

on procaspase-8; those which scored highly for c-FLIP binding and low for procaspase-8 

binding, and visually appeared to fit those criteria were selected (19 compounds 

initially) (further detail in Chapter 3). 

 

2.3 Cell Based Assays 

2.3.1 Cell Subculture: Seeding for Assays 

 Culture medium was removed and trypsin added as in Section 2.1.2.  Once 

detached, cells were passaged as required and the remaining cells were moved to a 15 

ml falcon tube (Nunc).  Cells were fully resuspended to ensure a single cell suspension 

before being counted using a Fastread 10-chamber counting grid (Immune Systems).  

 10 µl of cell suspension was added to the counting chamber and cells were 

counted according to manufacturer's instructions in order to calculate the require 

volumes for cell seeding. The average of four counting squares was obtained and 

multiplied by the required factor to obtain the number of cells per millilitre.  The 

appropriate dilution for the assay was made before seeding cells into the assay plate 

required.  Cell numbers and media required for sub-culturing varied between assays and 

plates (Table 2.2). 

 

Table 2.2: Subculture tissue culture plates  

Plate Type (No. of wells) Relative Surface Area Media Required (µl) 

96 0.2 100 

48 0.4 200 

24 1 500 

12 2.5 1000 

6 5 3000 
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2.3.2 Cell Titre Blue Viability Assay 

 Cell Titre Blue (Promega) gives a measure of cell viability using metabolism as a 

marker; it measures the ability of cells to convert resazurin into resorufin, a fluorescent 

product.  Cells which are not viable will not be able to do this and thus will not result in 

a fluorescent signal.   

 Adherent cells were removed from culture plates using 0.05% Trypsin/EDTA and 

were plated in 96 well plates in 100 µl media at a concentration of 100000 cells/ml in 

order to achieve an appropriate confluency for assay the next day.  After 24 h 

incubation, media was refreshed with control or test containing medium and left 

overnight after which CellTiter blue viability assay was performed according to 

manufacturer’s instructions; 20 µl reagent was added to 100 µl media in the 96 wp and 

left for 1-4 h at 37°C at 5% CO2 in the dark.  Fluorescence was measured using 

excitation/emission wavelengths of 560/590 nm using FluoStar Optima plate reader 

(BMG Labtech).   

 

2.3.3 Caspase-8 Activity Assay 

 Caspase-Glo 8 assay (Promega) is an assay that uses luminescence as a measure 

of caspase-8 activity.  Caspase-Glo reagent results in cell lysis followed by caspase 

cleavage of the substrate and a resulting luminescent signal which gives a measure of 

caspase-8 activitiy within the sample.  In brief, adherent cells were plated and treated 

as in Section 2.3.1 using black walled 96 well plates.  After 24 h incubation, caspase-Glo 

8 assay was performed according to manufacturer's instructions.  Luminescence of 

samples and media control was measured using FluoStar Optima plate reader (BMG 

Labtech). 
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2.3.4 Functional Stem-Like and Progenitor Cell Assays 

2.3.4.1 Tumoursphere Assay - Adherent Treatment 

 The tumoursphere assay aims to enrich for cancer stem cells either from cell 

lines or primary cultures by testing their ability to resist anoikis growth conditions and, 

upon passaging, self-renewal.  Adherent cells were plated as described in section 2.3.1 

and treated after 24 h.  After 18 h, cells were trypsinised, disaggregated to achieve 

single cell suspension and transferred to the tumoursphere medium, Mammary 

Epithelial Cell Growth Medium (MEBM) (Lonza) serum-free epithelial growth medium 

supplemented with B27 (Invitrogen), 20 ng/ml EGF (Sigma), 5 mg/ml insulin (sigma), 

0.0008% v/v β-mercaptoethanol (Sigma), and 1 mg/ml hydrocortisone (Sigma).  Cells 

were seeded in 200 µl of supplemented MEBM into ultra-low attachment plates (Costar, 

Corning) at a density of 5000 cells/ml and incubated for 7 days at 37°C and 5% CO2 after 

which, tumourspheres were counted.  After counting, tumourspheres were then 

collected by centrifugation at 278 g and dissociated by trypsinising in 0.05% trypsin, 

0.25% EDTA (Invitrogen) and reprocessed as before, seeding at a density of 5000 

cells/ml and left for a further 7 days to obtain a second passage count. 

 

2.3.4.2 Tumoursphere Assay - Non-adherent Treatment 

 Adherent cells were trypsinised and plated in ultra-low attachment plates in 200 

µl supplemented MEBM (Section 2.3.4.1) at a density of 5000 cells/ml.  Immediately 

after plating into anoikis conditions, appropriate wells were treated with control or test 

compound.  Cells were left for 7 days at 37°C and 5% CO2 after which, tumourspheres 

were counted.  After counting, tumourspheres were then disaggregated and 

reprocessed as described in 2.3.4.1 and left for a further 7 days to obtain a second 

passage count. 

 

2.3.4.3 Colony Forming Assay 

 The clonogenic assay is an in vitro assay which tests one of the functional 

characteristics of stem cells: the ability to propogate colonies from single cells through 

enhanced proliferative potential (Harrison et al., 2010; Locke et al., 2005).  The assay is 
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not as selective for CSCs as the tumoursphere assay since between 10% and 70% of any 

given cell line population can form colonies.  

 Cells were plated in 6 or 12wp in order to obtain 50 cells per cm2 (Harrison et al., 

2010; Locke et al., 2005), and left to attach.  After attachment, media was refreshed 

with appropriate control or test medium.  Colonies were left to form for 10 days.  After 

10 days, colonies were stained by first removing media and washing gently with two 5 

minute washes in 1 X PBS.  Crystal violet in ethanol solution (Sigma) was then added for 

15 minutes to stain the colonies, followed by three 1 x PBS washes for 5 minutes each.  

Colonies were then visualised and photographed under white light.  Colonies of at least 

32 cells in size (i.e. those that had undergone 5 or more cell divisions) were counted 

using GelCount plate reader and computer software (Oxford Optronix) by setting a 

minimum and maximum size threshold for colonies of 100-1000 µm.  

 

2.4 Compound Handling 
 All compounds obtained from SPECS or synthesised at Cardiff School of 

Pharmacy were stored in solid form at 4°C.  Substances were dissolved in an 

appropriate volume of DMSO (based on molecular weight and mass), using 

vortexing/heating as required, to achieve stock solutions of 100 mM (unless otherwise 

stated), and stored in 10 µl aliquots at -20°C. 

2.4.1 Compound Solubility 

 Compounds were prepared in antibiotic free media at concentrations of 10 nM, 

100 nM, 1 µM, 10 µM and 100 µM. In a 96 well plate, 100 µl of each concentration of 

each inhibitor was left in an incubator overnight 37°C and 5% CO2.  Wells were visually 

inspected the following day to observe and record the solubility of each compound in 

media at increasing concentrations. 
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2.5 Co-Immunoprecipitation (Co-IP) and Western Blot Protein 
Analysis 

2.5.1 Solutions Used for Co-IP and Western Blot 

 Solutions were prepared for use at different steps during Co-IP and Western blot 

(Table 2.3). 

 
Table 2.3: Solutions and Reagents required for Protein Analysis Protocols 

Solution Composition 

RIPA Buffer 5 ml 1 M Tris pH 7.4, 10 ml 10% Nonidet-P40 (Roche 17545999), 
0.25 g Sodium Deoxycholate, 3 ml 5 M NaCl, 0.4 ml 0.25 M EGTA, 

up to 100 ml with dH2O, pH to 7.4 

5 X Laemmli Buffer 60 mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 5% β-
mercaptoethanol, 0.01% bromophenol blue 

PBST 1 X PBS solution (Fisher): 5 tables in 500 ml dH2O plus 0.5 ml 
Tween (Sigma) 

TBST 1 X TBST solution - dissolve 1 TBST tablet (Merck Millipore) in 500 
ml ddH2O  

Co-IP Resolving Gel 
Buffer 

2.5 ml ddH2O, 3 ml bis-acrylamide (Sigma) 1.88 ml 1.5 M Tris-HCl 
pH 8.8 and 75 µl 10% SDS 

Co-IP Stacking Gel  75 µl APS and 7.5 µl TEMED in 2.5 ml ddH2O, 500 µl bis-
acrylamide, 625 µl 0.5 M Tris HCl pH 6.8 and 37.5 µl SDS 10% 

Western blot 
Resolving Gel Buffer 

1.5 M Tris-HCl, pH 8.8 

Western blot 
Stacking Gel Buffer 

0.5 M Tris-HCl, pH 6.8 

10 X Electrophoresis 
Buffer 

30 g Trizma (Sigma), 144.4 g Glycine (Sigma) pH 6.8, dH2O up to 1 
l 

1 X SDS-PAGE 
Running Buffer 

895 ml dH2O, 100 ml 10X Electrophoresis running buffer, 5 ml SDS 
(Sigma) 

1 X Western 
Transfer Buffer 

700 ml dH2O, 200 ml Methanol, 100 ml 10 X Eletrophoresis 
running buffer 

Blocking Buffer 5 % w/v non-fat milk powder (Marvel): 0.75 g in 15 ml PBST/TBST 
per transfer membrane  

Antibody Dilution 
Buffer 

5 % w/v BSA (Sigma): 0.1 g in 2 ml PBST per antibody 
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 Several antibodies and their respective secondary antibodies were utilised for 

protein detection (Table 2.4). 

 
Table 2.4: Primary Antibodies and Respective Secondaries used for Co-IP and Western Blot 

Antibody Species Dilution Source Target Size 
c-FLIP 5D8 

(mAb) 
Mouse 1:750 Santa Cruz 

Biotech 
55 kDa 

GAPDH Mouse 1:1000 Santa Cruz 
Biotech 

35 kDa 

FADD (IP) Mouse 1:1000 BD 610400 25 kDa 

FADD (IB) Rabbit 1:500 Santa Cruz 
Biotech sc5559 

25 kDa 

Caspase-8 Mouse 1:1000 Cell Signalling 
4927 

55 kDa 

 

2.5.2 Sample Extraction and Preparation for Co-Immunoprecipitation 

 Following experimental treatment, MDA-MB-231 and MCF-7 cells were washed 

twice with cold PBS and harvested using 700 µl lysis buffer (20 mM Tris HCl pH 7.5, 150 

mM NaCl, 10% fresh glycerol, 1% Triton X-100, 2 mM EDTA with protease and 

phosphatase inhibitors) left on a rocker at 4˚C for 20 minutes.  Cells were scraped and 

collected followed by centrifugation at 13793 g for 15 minutes at 4˚C. Supernatant was 

collected and an extra 30 µl was set aside for quantification. 20 µl Protein A beads were 

added to 5 µl sample and left on spinner at 4°C for 45 minutes.  Samples were spun at 

735 g for 1 minute and quantified using BCA protein assay kit (Pierce) and following 

manufacturer's instructions (Section 2.5.4).  After this, an equal amount of FADD 

antibody (BD, 610400) 1:1000 was added to each tube.  Samples were left spinning at 

4°C overnight. 

2.5.3 Sample Preparation for Western Blot 

 Cells from culture plates were trypsinised and centrifuged for 5 minutes at 234 

g.  Cell pellets were washed with 1 X PBS, twice, to remove remaining serum containing 

media.  Cell pellets were resuspended in 100 µl RIPA buffer with complete protease 

inhibitors (25 X solution, Roche), 200 nM NaVO3, 1 M NaF and 100 nM Na4P2O7.  23-

gauge needles on 1 ml syringes were used to break the samples up by passing them 

through 8-10 times.  Samples were transferred to 1.5 ml microcentrifuge tubes and left 
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on ice for 30 minutes.  Tubes were then centrifuged at 13793 g for 15 minutes at 4°C, 

after which, the supernatant was collected in 100 µl aliquots and stored at -20°C. 

2.5.4 Protein Quantification 

 The BCA assay was used to quantify levels of protein prepared for Co-IP or 

Western blot. In brief, 5 µl of sample or BSA standard was mixed with 25 µl BCA reagent 

and left at 37°C for 30 minutes, before being put on ice.  A standard curve for 

determining protein concentration was produced using a Nanodrop with standards of 

2.5, 5 and 10 mg BSA per ml protein buffer.   

2.5.5 Western Blotting 

 Protein samples were prepared at equal concentrations in Laemmli buffer after 

protein extraction in appropriate lysis buffer (Section 2.5.2 for co-IP extraction).  

Samples were heated to 95°C for 2 minutes and used immediately after or stored at -

20°C. 

2.5.6 SDS-PAGE  

2.5.6.1 SDS-PAGE: Co-Immunoprecipitation 

 12% resolving gel was prepared using 50 µl APS (Sigma) plus 10 µl TEMED 

(Sigma) added to resolving gel buffer (Table 2.3), mixed and immediately poured. dH2O 

was quickly pipetted over the top of the gel to ensure the gel remained level. Once set, 

dH2O was poured off and stacking gel was mixed and immediately poured, after which, 

combs were inserted and the gel allowed to set.  Gels were placed into the gel running 

tank (BioRad), in an electrophoresis gasket, and the central gasket was filled with 

running buffer.  Samples were loaded at equal quantities, of 20-30 µl in addition to a 

molecular weight marker (Pageruler Plus, Fermentas, Fisher).  Gels were run at 125 V 

for approximately 1.5 hours. 

 

 

2.5.6.2 SDS-PAGE: Western Blot 

 10% resolving gel was prepared using 100 µl APS (Sigma) with 15 µl TEMED 

(Sigma), added to the resolving gel buffer before immediately mixing and pouring.  
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dH2O was quickly pippetted over the top of the gel to ensure the gel remained level.  

After 15 minutes, dH2O was poured off before addition of the stacking gel, prepared by 

the addition of 100 µl APS to 4% stacking gel buffer.  After pouring stacking gel, a comb 

was immediately inserted into the gel and left to set for approximately 15 minutes.  

Once set, gels were inserted into the electrophoresis gasket and placed in a gel running 

tank (BioRad).  Running buffer was used to fill the centre of the gasket, ensuring the 

buffer overflowed so that a depth of around 3 cm was achieved. 20-30 µl of prepared 

protein samples were loaded, alongside a molecular weight marker (Pageruler, 

Fermentas, Fisher).  Gels were run at 180 V for approximately 1 hour. 

2.5.7 Protein Transfer to PVDF Membrane 

 Western transfer sandwich was prepared by layering sponge, 2x filter paper, 

protein gel, Polyvinylidene Fluoride (PVDF) membrane, 2x filter paper and sponge onto 

the transfer cassette.  Each layer was soaked in transfer buffer beforehand.  PVDF 

membrane was activated in methanol prior to soaking in transfer buffer for 5 minutes.  

A stripette was rolled over each layer to ensure no air bubbles were present. The 

cassette was shut and entered into the transfer tank, along with an ice block.  Transfer 

buffer was added to fill the tank and the transfer was run in the cold room, at 4°C.   

Transfer was run at 80 V for 45 minutes. 

 

2.5.8 Membrane Probing 

 After transfer, membranes were washed 3 times in PBST/TBST (1 x 15 min, 2 x 5 

min) before immersion in blocking buffer (5% w/v non-fat milk in PBST/TBST) with 

rocking for 1 h.  Membranes were transferred to tubes containing 4 ml of appropriate 

primary antibody made up in 5% BSA and left rotating overnight at 4°C.  Following this, 

membranes were washed 3 times in PBST/TBST as before and transferred to a tube 

containing 4 ml of appropriate secondary antibody (Table 2.4) and left to rotate at room 

temperature for 1 h.  Membranes were washed 3 times in PBST/TBST, as before, before 

protein detection and film development using ECL prime (Amersham) (Section 2.5.7). 
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2.5.9 Protein Visualisation 

 Immobilised proteins were detected using ECL or ECL Prime according to 

manufacturer’s instructions.  Solutions of ECL were mixed well and left to activate for 1 

minute, before adding directly to the membrane. Approximately 1 ml was added to 

each membrane, depending on its size.  X-Ray film (Amersham) was used to detect 

proteins, using an automatic X-Ray film processor (Xograph). 

 

2.6 Expression of Recombinant Proteins 

2.6.1 Expression Constructs 

 The eCFP-CI and eYFP-C1 vector plasmids were kindly provided by Dr David 

Stanek, Institute of Molecular Genetics, Prague. Full-length c-FLIP, FADD and 

procaspase-8 were kindly provided by Dr Ladislav Andera, Institute of Molecular 

Genetics, Prague.  CFP-YFP fusion protein was obtained from Liusheng He and 

Jehonathan Pinthus (Addgene plasmid # 24520). 

 
Table 2.5: Constructs Used within this Study 

Construct Expression System Antibiotic 
Selection 1 

Antibiotic 
Selection 2 

Reference 

eCFP-C1 Fluorescent plasmid Kanamycin Neomycin Clontech 

eYFP-C1 Fluorescent plasmid Kanamycin Neomycin Clontech 

CFP:YFP Fluorescent plasmid Kanamycin - He  et al., 

2003 
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2.6.2 Plasmid Propagation 

 

2.6.2.1 Transformation into E.coli 

 E.coli OneShotStbl3 cells (Invitrogen), for FRET constructs, or E.coli  XL-blue cells 

(Stratagene), for SDM were stored at -80°C were thawed on ice in 50 µl aliquots.  1 µl of 

DNA to be transformed was added to one 50 µl bacterial cell aliquot and incubated on 

ice for 30 minutes.  Heat-shock was then performed for 45 seconds at 42°C followed by 

a 2 minute incubation to allow the bacterial cells to recover. 250 µl pre-warmed (to 

37°C) SOCS media (Invitrogen) was added to the transformations and left for shaking at 

225 rpm for 1 hour at 37°C.  The culture was then spread on an agar plate made up with 

the appropriate antibiotic, and left to incubate overnight (for approximately 12 hours) 

at 37°C. 

 Colonies were selected by inoculation of a pipette tip, which was placed into 2 

ml (for mini-culture) of LB broth containing the appropriate antibiotic, and incubated 

with shaking at 225 rpm for approximately 16 h at 37°C before DNA extraction. 

 When preparing DNA from maxi- culture, the pipette tip was placed into 80 ml of 

LB broth, unless a starter culture was required, in which case this initial 2 ml culture was 

added to 80 ml LB-broth with appropriate antibiotic and left at 37°C for 16 hours, with 

shaking at 225 rpm before DNA extraction. 

 

2.6.2.2 DNA Extraction 

 DNA extraction from culture was performed using a mini- or maxi- endotoxin-

free DNA extraction kit (Qiagen) according to the manufacturer’s instructions.  In brief, 

cultures were pelleted after the 16 h incubation, by centrifugation at 8161.4 g for 3 

minutes, for a mini-prep or 1741 g for 15 minutes for a 50 ml preparation.  Re-

suspension of the cell pellet was performed in buffer P1, after which, buffers P2 and N3 

were added in order to lyse the cells for extraction.  Centrifugation was performed at 

13793 g for 10 minutes, before the supernatant was transferred to a DNA-binding 

column.  An additional centrifugation at 13793 g was performed for 1 minute, with all 

subsequent centrifugations being performed in these conditions.  Washing of the DNA-

binding column with buffers PB and PE was performed, before a final centrifugation to 

remove any remaining ethanol before eluting the DNA.  30 µl (or 1 ml in the case of a 
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maxi-prep) of buffer TE was added to the column and incubated for at least 1 minute at 

room temperature before centrifugation of the column was performed to collect DNA in 

a fresh endotoxin-free micro-centrifuge tube.  DNA concentration was measured using a 

Nanodrop (GE healthcare, UK). 

 

2.6.2.3 Sequencing Plasmids 

 DNA extracted from colonies was diluted to between 50 and 100 ng/µl in 15 µl 

and primers were diluted to 2 pM.  Sequencing was carried out by BIOSI sequencing 

core, Cardiff University. 

 

2.6.3 Site Directed Mutagenesis 

 Site directed mutagenesis was performed on the pcDNA3.1c-FLIP construct, 

using the QuickChange Kit (Stratagene) according to manufacturer’s instructions.  

Plasmids were custom-designed in order to target specific residues on c-FLIP (I6G, H7A, 

R38A and D42A).   

2.6.3.1 Primer Design 

 Primers were designed by following the Stratagene guidelines.  Essentially, 

primers were designed in order to achieve the desired mutation within the middle of 

the primer sequence, including up to 15 bases of correct sequence flanking it. The 

specific conditions to adhere to were as follows: 

 Primers to be between 25-45 bp 

 Melting temperature of ≥78°C  

 GC content of ≥40% 

 Primer to end with one or more G or C bases 

 The primers were designed to mutate regions of interest within DED1 of c-FLIP.  

All primers were purchased from Sigma (Table 2.6). 
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Table 2.6: Mutagenic primers 

Target 

Mutation 

Primer 

H7A 3’-CAGACGACTTCAGTAGCGAGTCCAACTTCTTCGTG- 5’ 
5’-GTCTGCTGAAGTCATCGCTCAGGTTGAAGAAGCAC- 3’ 

R38A 3’ –CACCAAGGTGGATTACAGCGCCTGGAAGACCTATAAAATG- 5’ 
5’ –GTGGTTCCACCTAATGTCGCGGACCTTCTGGATATTTTAC- 3’ 

D42A 3’ –TTACAGTCCCTGGAAGACCGATAAAATGCCCTTTCTCCATTC- 5’ 
5’ –AATGTCAGGGACCTTCTGGCTATTTTACGGGAAAGAGGTAAG- 3’ 

I6G 3’ –CAGACGACTTCAGCCGGTAGTCCAACTTCTTCG- 5’ 
5’ –GTCTGCTGAAGTCGGCCATCAGGTTGAAGAAGCA- 3’ 

 

2.6.3.2 PCR Amplification 

 Each mutagenesis used 50 ng of double-stranded DNA template (pcDNA3.1c-

FLIPL) made up in 5 µl reaction buffer.  125 ng of each mutagenic (forward and reverse) 

primer was added, in addition to 1 µl of 10 mM dNTP mix and 1 µl of Pfu DNA 

polymerase (NEB).  dH2O was added to 50 µl before running the PCR on a Biorad T100 

Thermal Cycler machine using the manufacturers guidelines (Table 2.7) 

 

Table 2.7: PCR conditions for mutagenesis 

Cycle Temperature Time Step 

1 95°C 30 s Denaturation 

12 95°C 30 s Denaturation 

 55°C 1 min Annealing 

 68°C 6.5 min (2 min/kb 

of plasmid) 

Extension 

1 68°C 10 min Final Extension 

- 4°C - Incubation 

 

2.6.3.3 Digestion of Template DNA Strand 

 After completing the PCR cycle, 1 µl of Dpn1 restriction enzyme was added to 

the 50 µl reactions and incubated at 37°C for 1 h.  Following this, E.coli XL1-blue cells 

(Stratagene) were transformed (using the protocol defined in Section 2.6.2.1) with 

prepared DNA, with the remainder being stored at -20°C.  DNA was extracted as per 
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Section 2.5.2.2 and sequencing was carried out at BIOSI sequencing core, Cardiff 

University performed using primer T4 to check for successful mutations. 

 

2.6.4 FRET Construct DNA Preparation 

 Plasmids were designed in order to facilitate the cloning of either FADD, c-FLIP 

or procaspase-8 into the FRET plasmids e-CFP-C1 or e-YFP-C1.  A positive control 

plasmid of CFP fused to YFP was also purchased (He et al., 2003) (Table 2.5). 

2.6.4.1 Primer Design 

 FRET constructs were designed via use of EditSeq and DNAStar software in order 

to facilitate the cloning of FADD, c-FLIP or procaspase-8 into either e-CFP-C1 or e-YFP-C1 

FRET plasmids. FADD tagged to CFP, c-FLIP(L) tagged to YFP and caspase-8 tagged to 

CFP.  Oligonucleotides were custom-designed and purchased from Sigma. 

 
Table 2.8: Primers used for FRET 

Primer Name Primer Sequence 

c-FLIP_BglII_fwd GTACTGGAAGATCTaggatgtctgctgaagtcat 
c-FLIP_BglII_rev GTACTGGAAGATCTtgtgtaggagaggataagtt 

Casp8_HindIII_fwd GTACTGGAAAGCTTgggagatggacttcagcagaaa 

Casp8_BamHI_rev GTTCAGCAGGATCCatcagaagggaagacaagtt 
FADD_HindIII_fwd GTACTGCAAAGCTTgggccatggacccgttcctggt 

FADD_BamHI_rev GTTCAGCAGGATCCggacgcttcggaggtagatg 

 

2.6.4.2 Cloning of FRET Constructs 

 c-FLIP and FADD were subcloned into the vectors eCFP-C1 and eYFP-C1.  

PCR for the oligos was performed using Phusion High-Fidelity DNA Polymerase (M0530 

NEB) and was used to amplify inserts (DNA ratios used according to manufacturer's 

instructions) (Table 2.9).   
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Table 2.9: PCR conditions for FRET Constructs 

Cycle Temperature Time Step 

1 98°C 30 s Denaturation 

12 98°C 10 s Denaturation 

 56°C 1 min Annealing 

 72°C 1.5 min (30 sec/kb 

of plasmid) 

Extension 

1 72°C 10 min Final Extension 

- 4°C - Incubation 

 

 

 A Qiagen PCR purification kit was used to purify the insert DNA.  Restriction 

digestion of purified vector and insert was performed using restriction enzymes BamHI 

(NEB) and HindIII (NEB) for FADD (and caspase-8), BglII (NEB) was used for c-FLIP using 

optimised digestion times: overnight for vectors and 1h for inserts (Table 2.9).   

 Antarctic phosphatase (NEB) was used to dephosphorylate the vectors post 

digestion, according to manufacturer’s instructions.  Digested insert and vector were 

run on a 1% agarose electrophoresis gel (Section 2.5.3) to check successful digestion 

before purification of vector and insert was performed using Qiagen gel purification kit. 

 

2.6.5 Agarose Gel Electrophoresis and DNA Extraction 

 Agarose gel electrophoresis was utilised to analyse DNA digests. 5 µl of Nucleic 

Acid Stain (Safe View, NBS Biologicals, Cambridgeshire) was added to 50 ml of prepared 

1% w/v agarose gel and immediately poured into a gel cast, with a comb inserted.  Gels 

were allowed to set for around 20 minutes.  8 µl of DNA for analysis was mixed with 2 µl 

of loading dye (GelPilot DNA Loading Dye, 5X, Qiagen) and this 10 µl was loaded on the 

gel, along with 5-10µl of DNA molecular weight marker (Easy Ladder I, Bioline, London).  

Gels were run at 80 V for around 1 hour.  UV light was used to identify DNA bands for 

extraction and purification using the Qiagen gel purification kit, following 

manufacturer’s instructions.  DNA concentrations were measured using a Nanodrop. 
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2.6.6 DNA Ligation 

 After DNA extraction and purification, vector (e-CFP-C1, e-YFP, C1) and insert (c-

FLIP, FADD and procaspase-8) DNA was ligated. Protocol optimisation was required in 

order to obtain successfully cloned plasmids.  The optimum ratio of vector to insert in 

the ligation reaction for all sets of cloning was 1:3 vector:insert. Cloning was optimised 

for use with T4 DNA Ligase (NEB) and transformation in Stbl3 E. coli cells (Section 

2.6.2.1) according to manufacturer's instructions.  Colonies were selected and grown 

overnight in kanamycin LB media.  The following day, Qiagen mini prep kit was used to 

purify plasmids and DNA concentration was read on a nanodrop.  DNA was then sent for 

sequencing (Section 2.6.2.3), or run on a gel, to observe ligation success. 

2.6.7 Transient Transfection 

 The TRAIL resistant MCF-7 or HeLa cells were transiently transfected with 

constructs using the transfection reagent Lipofectamine 3000 (Life Technologies).  

Transfection conditions were optimised in order to obtain viable, successfully 

transfected cells (Table 2.10).  We observed a significant amount of cell death upon 

transfection with our c-FLIP and FADD FRET constructs which was rescued by pre-

treatment with a pan-caspase inhibitor, Z-VAD-FMK (R and D Systems) for 1 h before 

transfection, thus, this pre-treatment was used for all FRET transfection experiments. 

 

Table 2.10: Optimised DNA ratios for FRET Plasmid Transfection 
Amounts are for transfection of 3 wells of a 96 well plate, in 100 µl media. 

Transfection Condition  (with Z-

VAD-FMK pretreatment) 

DNA 

(µl) 

OptiMEM 

(µl) 

P3000 

(µl) 

Lipofectamine 

3000 (µl) 

Control 0 24 1 1.2 

CFP alone (FADD) (433.5 ng/µl) 0.5 23.5 1 1.2 

YFP alone (c-FLIP) (130.5 ng/µl) 1 23 1 1.2 

CFP:YFP +ve control (608 ng/µl) 0.5 23.5 1 1.2 

CFP + YFP Control 0.5 + 1 22.5 1 1.2 

CFP + YFP TRAIL 0.5 + 1 22.5 1 1.2 

CFP + YFP OH14 0.5 + 1 22.5 1 1.2 

CFP + YFP OH14 + TRAIL 0.5 + 1 22.5 1 1.2 
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2.7 FRET Analysis 
 In our experiments, eCFP and eYFP served as the donor-acceptor pair for AP-

FRET.  If donor (eCFP) and acceptor (eYFP) FRET constructs are within < 10 nm of each 

other and in the correct orientation to each other, upon donor excitation, energy 

transfer to the acceptor will occur.  A subsequent slight decrease in donor emission will 

occur, in parallel to an increase in acceptor emission.  When the acceptor is bleached, 

by using the YFP appropriate laser at high power, energy transfer will not occur, and 

thus an increase in donor emission will be observed.   

2.7.1 Confocal Microscopy 

 Measurements were performed on a Zeiss LSM 710 confocal microscope (Zeiss, 

Germany).  For intensity measurements, a HXP120V 150W metal halide mercury lamp 

(Zeiss, Germany) was used, the output intensity of which could be controlled remotely. 

The lamp was turned on at least 30 minutes before starting experiments so as to avoid 

artefacts due to warming up of the lamp.  Images were recorded on the Zeiss LSM 710 

capture camera and LASOS Argon Laser with 458/488/514 nm band excitation filters 

was used for CFP imaging and YFP imaging and photobleaching. All FRET measurements 

were performed at 37°C and 5% CO2. 

 

2.7.2 FRET Cell Stimulation 

 A viable cell with similar intensity CFP and YFP expression, standardised by first 

analysing CFP:YFP fusion protein transfected cells, was selected for analysis, keeping 

laser exposure times to a minimum. At least 10 cells were recorded per experimental 

condition. Typically, exposure times were kept between 100-500 ms when locating cells 

with an appropriate expression of CFP and YFP for evaluation of FRET.  20X 

magnification was selected for imaging.  Multi-track line imaging was selected (for 

sequential imaging of the CFP and YFP channels).  Spectra were recorded using a 

458/514 nm double dichroic excitation to facilitate excitation of CFP with the 458 nm 

laser and YFP with the 514 laser line. 
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 For experiments, a pinhole of 1 Airy disk unit in the CFP channel was selected, 

with the YFP channel Airy unit selected to ensure the optical section thickness was the 

same as CFP.  Laser power of the CFP laser was set to 9%, and 4% for YFP.  Digital gain 

did not exceed 750.  Bleaching with the 514 nm laser line was set to 100%.  A region of 

interest (ROI) was defined on the cell of interest, large enough to enable intensity 

measurements containing at least 900 pixels, in order to minimise image data noise.  10 

bleaches, with 1 second between each was chosen to ensure sufficient YFP bleaching 

occurred.  Image acquisition was set to obtain 5 intensity recordings prebleach and 60 

seconds postbleach (approximately 40 recordings).  

 LSM 710 software measured average intensity in the ROI which was plotted on a 

curve for each time point. 

 

2.8 TALEN  
 TALENs contain a FokI nuclease domain at their carboxyl termini, similar to zinc 

finger nucleases (ZFNs), which allows them to create the targeted DNA double-strand 

breaks required by such genome modification techniques.  TALEN DNA-binding domains 

utilise TALEs - naturally occurring proteins derived from Xanthomonas spp. plant 

pathogenic bacterium.  These DNA-binding domains are made up of a tandem array of 

33-35 amino acid repeats, which are both able to recognise a single-base pair present 

within the major targeted groove.  Specificity and thus, the ability to design TALEN pairs, 

is achieved by the two amino acids present at positions 12 and 13, the hypervariable 

‘repeat variable diresidues’ (RVDs) (Kim and Kim, 2014).  Two TALEN proteins are 

required to make a functional genome-editing endonuclease, allowing for the 

recognition of 34 bases, and, with the incorporation of a FokI DNA-cleaving domain, 

modifications can take place.  When designing TALEN pairs, a target downstream of the 

translation start codon is chosen for the creation of double-strand breaks, which will be 

repaired by the process of nonhomologous end joining, thus creating out of frame 

deletions or insertions into the genetic code (Cermak et al., 2011; Christian et al., 2010).   

The process of clonal selection involved with TALEN, and indeed other genetic 

modifying processes such as with the use of zinc finger nucleases, results in a 1.6 - 34% 

fraction of successfully modified cells (Ding et al., 2013). 
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 TALEN binding pairs were constructed targeting exon 4 of c-FLIP(L) (Figure 2.2) 

and purchased from the TALEN Library Resource (Seoul National University).   

 

 

 

 

Figure 2.1: Location of c-FLIP TALEN Pairs. 
A) Genomic loci and TALEN positions for c-FLIP left (upstream) and right (downstream) TALEN 
constructs.  B) TALEN mRNA constructs for c-FLIP. 

 

 The sequences for our c-FLIP TALEN construct primers (Table 2.11) target a site 

29.18% into the coding DNA sequence of c-FLIP: 

Table 2.11: TALEN primer sequence 

Name Target Primer 

TALEN-c-FLIP-L Left target sequence TAAATCTGGTTGCCCCAGAT 

Spacer Spacer CAACTGGATTTA 

TALEN-c-FLIP-R Right target sequence TTAGAAAAATGCCTAAGAA 

 

A 

B 
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2.8.1 TALEN Transfection  

 Transfection efficiency was optimised by testing 3 different transfection 

reagents:  Lipofectamine2000, jetPEI or GeneCellen on MCF-7 cells with GFP or m-RFP 

co-transfected to observe cells effectively transfected and to allow for cell sorting.  

Lipofectamine2000 and mRFP were chosen as the optimum transfection conditions, as 

assessed by fluorescence microscopy, and the optimum cell confluence at transfection 

of 60% was used. After optimisation, MCF-7 cells were transfected, using 

Lipofectamine2000, with equal amounts (2 µg) of TALEN-L and -R constructs (Table 2.1) 

as well as mRFP (donated by Dr David Stanek, Institute of Molecular Genetics, Prague).  

 

2.8.2 FACS Sorting and Clone Culture Conditions 

 Transfected MCF-7 cells were sorted using FACS, selecting around 80% mRFP 

expressing cells (not 100%) and subcloned into 96 well plates, plated to achieve one cell 

per well.  Cells were plated in MCF-7 conditioned medium in order to obtain optimal cell 

growth and media was changed after 5 days.   

 Wells were checked for the presence of single colonies.  After around 2 weeks, 

80 single colonies were observed and allowed to grow until a relatively high confluence 

was achieved, after which they were split and re-plated into two replicates, one for 

further propagation, the second for gDNA isolation, which was used to confirm the 

knock-down (Section 2.8.3.1).  
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2.8.3 TALEN Transfection Analysis 

 Several reagents were utilised in order to extract, isolate genomic DNA from 

MCF-7 TALEN transfected cells, before analysis could be performed (Table 2.12).  

 

Table 2.12:  Reagents required for genomic DNA isolation. 

Reagent Composition 

Lysis Buffer 10 mM Tris pH 7.5, 10 mM NaCl, 10 mM 

EDTA pH 8.0. 0.5% sarcosyl + proteinase K 

added just before cell lysis, 10 mg/ml was 

diluted 1:100 

NaCL:Ethanol 150 μl of 5 M NaCl was mixed with 10 ml 

of 96% ethanol 

Phusion Reaction Mixture 4 μl buffer, 0.4 μl of 10 mM dNTPs, 2 μl of 

primer mix (5 + 5 μM), 1 μl of template, 

0.2 μl of Phusion, 12.4 μl of H2O 

DreamTaq Reaction Mixture 2 μl of primer mix (5 + 5 μM), 1 μl of 

template, 10 μl of 2x master mix, 7 μl of 

H2O 

 

2.8.3.1 gDNA Isolation 

 Isolation of genomic DNA was performed in order to PCR-analyse the first round 

of TALEN transfected MCF-7 cells.  TALEN transfected MCF-7 TALEN clones in 96 well 

plates, were washed 2 times with PBS and lysed in 50 μl of lysis buffer. The plates were 

incubated overnight in 55°C to degrade all contaminating proteins, then 100 μl of 

NaCl:ethanol was added and the plate was incubated for 1 hour. Precipitated DNA was 

washed by very careful removal of the supernatant and two additions of 150 μl of 70% 

ethanol. DNA was dried at 55°C and finally diluted in 50 μl of Tris/EDTA, with 

resuspension to ensure full DNA dilution. 
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2.8.3.2 Confirmation of Expression 

 Folowing gDNA extraction of TALEN clones, Phusion and DreamTaq DNA-

polymerases were used according to the manufacturer’s protocol (Thermo Scientific) 

(Table 2.6.3) and compared, using normal MCF-7 genomic DNA extract, in order to 

decide which would be best for analysis of all clones.  In addition, multiple primer pairs 

were designed and tested in various combinations in order to achieve the most clear 

result for amplifying c-FLIP and checking the transfection of TALEN constructs (Table 

2.13).   

 

Table 2.13: Forward and Reverse Primers for Testing the Efficiency of c-FLIP TALEN Clones 

Oligos for c-FLIPL TALEN Primer Sequence 
c-FLIP_TALEN200_fwd AGCTCTATTGACATTTGTTT 

c-FLIP_TALEN200_rev CCACTGAGAGGCCAAAATTC 

c-FLIP_TALEN300_fwd CTGCCTCAGCCTCCCAAAGTGCTGGGATTA 

c-FLIP_TALEN300_rev ATTTATCAGTCATGATGCCC 
c-FLIP_TALEN400_fwd GCTCAGGCTGGTCTCAAACT 

c-FLIP_TALEN400_rev GAGGCTTTGGTCATCCAGGT 

c-FLIP_TALEN100_fwd CTTGGACCTTGTGGTTGAGT 

c-FLIP_TALEN100_rev TTGTCTTCAGGTCTATTCTG 
 

 

 The program for PCR was as follows: initial denaturation (98°C 1 min), 40 cycles 

(98°C 30 s, 56°C 30 s, 72°C 30 s), final extension (72°C 10 min). The PCR program for 

DreamTaq was as follows: initial denaturation (95°C 1 min), 40 cycles (95°C 30 s, 56°C 30 

s, 68°C 1 min), final extension (68°C 10 min). DreamTaq master-mix provided the best 

result and was subesequently used for the MCF-7 clones analysis together with 200F + 

400R combination of primers (Figure 2.2A and B). Restriction digestion with EcoRI 

enzyme was used to check whether the plasmids contain the correct TALEN.  The 

expected size of the bands was 4260 bp and 2500 bp.  

 The restriction enzyme used to cleave the DNA was BsrI, an enzyme present 

around 50% into the sequence of c-FLIP (Figure 2.1), and, thus, one which would be 

expected to generate products around 200 bp in size.  Reaction mixture containing 2 μl 

of PCR mixture, 1.5 μl of B-buffer, 0.2 μl of BsrI (BseNI by Thermo Scientific), 11.3 μl 

dH2O was incubated for 3 hours in 65°C. For the subsequent gel electrophoresis in 2% 
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agarose gel diluted in TAE buffer and ethidium bromide the whole digestion mixture or 

2 μl of PCR mixture were used (Figure 2.2C). 

 
Figure 2.2: Optimizing of PCR conditions and test of BsrI cleavage.  
a) Two polymerases, Phusion and DreamTaq were tested using our different primer 
pairs.  The best result was obtained using DreamTaq as it provided the cleanest bands. 
b) Different primer pairs were tested, with the combination of 200F:300R and 
200F:400R providing the best combinations. c) When cleaving the primer pairs using 
BsrI, the combination of 200F:400R was the optimal combination. 
 

2.8.4 Second Transfection 

 Second transfection was performed in the same way as Section 2.8.1, and FACS 

sorting was performed as in Section 2.8.2. RNA was extracted as in Section 2.9.1 and 

potential clones were analysed using qPCR (Section 2.9.3).   
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2.9 RNA Analysis 
 Before extracting and handling RNA, all surfaces and pipettes were cleaned 

thoroughly with RNAse Zap (Ambion). 

2.9.1 RNA Extraction 

 Cultured cells were pelleted by centrifugation at 234 g and subsequently 

resuspended in 1 ml PBS to wash off media.  After re-pelleting, PBS was removed and 

replaced with 350 µl Buffer RLT (Qiagen).  RNA was extracted using the Qiagen RNEasy 

kit following the manufacturer’s instructions.  Following this, RNA was incubated with 

DNase (Amplicon) for 15 minutes before inactivation in the appropriate inactivation 

solution.  Concentration was measured using a Nanodrop.  

 

2.9.2 cDNA Synthesis 

 cDNA was synthesised from RNA using M-MLV reverse transcriptase (Promega), 

following the manufacturer's instructions.  Essentially, 50 ng of RNA was mixed with 1 µl 

of 500 µg/ml random of primers, diluted up to 15 µl with dH2O and heated to 70°C for 5 

minutes, before rapid cooling on ice, to melt secondary structure and prevent it from 

reforming.  Tubes were spun to collect solution at the bottom, after which, 1 µl of 10 

mM dNTPs (Promega), 5 µl M-MLV 5X Reaction Buffer, 200 units (1 µl) M-MLV RT, 1 

unit/µl (0.6 µl) RNasin (Promega) and dH2O to 25 µl was added to the original 15 µl 

solution.  Samples were incubated at 37°C for 1 h.  The resulting DNA was stored at -

20°C.  

 

2.9.3 q-RT-PCR Analysis 

 All qPCR experiments were designed to include primers to target c-FLIP in 

addition to beta-actin, as the internal control gene.  Primers for q-PCR were custom 

designed using Primer3 web-based program (primer3.ut.ee) (Table 2.14). 
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Table 2.14: qPCR Primers 

Target Forward Primer Sequence Reverse Primer Sequence 

Beta Actin CCCAGCACAATGAAGAtCAA CAGGTGGAAGGTCGTCTACA 

c-FLIP TGATGGCAGAGATTGGTGAG GATTTAGACCAACGGGGTCT 

 

 Levels of beta-actin should be consistent through all cells and thus reflective of 

the total amount of cDNA present in each sample.  A control of no template was also 

included, with the replacement of cDNA with dH2O so as to control for the presence of 

contaminating DNA. 

 A qPCR reaction mix was prepared to include (per reaction): 0.2 µl Sybrgreen 

(Invitrogen), 13.7 µl dH2O (Sigma), 0.1 µl Taq polymerase (GoTaq, Promega), 5 µl GoTaq 

buffer (Promega), 2.5 µl MgCl2 (Promega), 0.5 µl 10mM dNTPs (Promega) and 0.25 µl of 

each 10 mM forward and reverse primers.  22.5 µl of the master-mix was added to 2.5 

µl cDNA in a 96-well plate (Applied Biosystems).  Wells were mixed by careful pipetting.  

The plate was sealed and the experiment run on a RealTime PCR machine running 

StepOne software (Applied Biosystems) using the following protocol:  Initial 

denaturation - 95°C 10 minutes, Denaturation - 45 cycles at 95°C for 15 s and Annealing 

- 60°C for 1 minute.  The software generated a melt curve which was analysed to 

confirm single peaks - indicating single product, and no peak, in empty controls, to 

confirm the lack of contamination. 

 

2.9.3.1 qPCR Data Analysis 

 Data generated by qPCR was analysed by relative quantitation, i.e. target gene 

expression is compared with internal control gene expression in order to normalise for 

input and efficiency variations, and a reference sample.  Expression levels of target 

gene, c-FLIP, were normalised to the endogenous control in order to obtain data 

displaying the change in expression.  Expression change was expressed relative to 1, 

thus, a value above 1 indicated an increase in expression, 0 indicated no change and 

below 1 showed a decrease in expression. 
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2.10 Data Analysis 

 Graphs are displayed with error bars (where applicable) representing standard 

error of the mean values Statistical significance was determined using the Student’s t-

test.  Box plots were constructed in Graph Pad Prism 6. T-tests were performed 

between samples and were performed on sample sizes of n ≥ 3. Statistically significant 

differences were set at p-value <0.05.  The tests were performed using Excel 2010 

software. 
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Chapter 3: Modelling of c-FLIP and Associated Proteins 
 

3.1 Introduction  
 c-FLIP plays a key role in the resistance of several breast cancer cell lines to 

TRAIL induced apoptosis due to its homology, and therefore competition with, 

procaspase-8 for binding to FADD via its DED.  Many studies exist which evidence the 

contribution of c-FLIP to TRAIL resistance in both breast and other cancer types (Section 

1.2.2.6 and 1.3.3.1).  We have previously demonstrated an ability to sensitise resistant 

breast cancer cell lines to TRAIL using siRNA to knock-out c-FLIP, as well as 

demonstrating the elimination of tumourspheres in the same conditions (Piggott et al., 

2011).  To our knowledge, however, there are no reported direct inhibitors of c-FLIP, 

therefore, in this chapter we aimed to design small molecule inhibitors to c-FLIP in order 

to prevent its anti-apoptotic function by using in silico protein modelling and screening. 

 

3.1.1 Molecular Modelling 

 In silico modelling has become more common for understanding protein:protein 

interactions and is increasingly utilised in chemical research to study compounds and 

their potential interactions with proteins.  The ability to visualise protein interactions in 

3D, in simulated conditions of a cell or solute is an extremely useful tool for drug design.  

In particular, the use of protein:ligand docking has greatly enhanced and increased the 

efficiency of the process of target identification and lead optimisation, allowing 

researchers to virtually screen vast databases of compounds in a cost-efficient and high-

throughput manner.   

 With increasing computer processing power available even to non-specialists, 

medicinal chemists are able to design and screen potential drug candidates with 

increasing confidence and accuracy in silico, even taking into account protein-ligand 

dynamic simulations.  The growth in structure-based drug design is also greatly aided by 

the vast array of protein structures available through the Protein Data Bank (PDB). The 

PDB, a database of protein structures resolved by X-ray crystallography and nuclear 

magnetic resonance (NMR), has enabled a vast number of proteins to be studied in such 

a way, even if their own structure has not yet been resolved, by using homology 

modelling (Waszkowycz et al., 2011). 
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3.1.1.1 Homology Modelling  

 Homology modelling provides a vital tool for analysing proteins in silico when 

the X-ray or NMR structure has not yet been resolved (Nayeem et al., 2006).  The 

process of homology modelling relies on the fact that 3D, structural conformations of 

proteins are more highly conserved than basic amino acid sequence, and that 

alterations in this sequence usually result in relatively small alterations to the 3D 

structure (Lesk and Chothia, 1986).  A comparison, therefore, between the sequence of 

a resolved protein and an unresolved protein, provided they are at least 30% 

homologous can allow a model of the unresolved protein to be developed (Xiang, 2006).  

Essentially, a model is developed using several steps:  identification of a template 3D 

protein structure; alignment of this resolved protein with the unresolved target protein; 

model development of the target based on the 3D template and sequence alignment; 

and validation or refining of the model until a final model is constructed (Cavasotto and 

Phatak, 2009).  This process is used widely in protein modelling, since initial discussions 

for the use of structural biology in drug discovery began over 35 years ago, and is now 

fully recognised and used as a drug development system (Congreve et al., 2005).  Many 

successful small molecules have been selected as a result of homology modelling, as 

with the case of serine and cysteine protease inhibitors used as anti-parasitic agents, in 

addition to many other successful examples (Ring et al., 1993).  

 This study utilises the homology modelling algorithm in the drug discovery 

software Molecular Operating Environment (MOE) (Chemcorp) which involves several 

key steps:  the copying of any coordinates where residue identity between the two 

sequences is conserved; Boltzmann-weighted randomized sampling whereby the 

system runs different sections of the protein backbone with alternative side-chains; 

finally, model construction involves the creation of several independent models which 

are scored using a contact energy function.  The finalised model is usually the best 

intermediate model and is subjected to molecular dynamics to further optimise the 

system (Nayeem et al., 2006). 

 

3.1.1.2 Molecular Dynamics  

 Molecular dynamics usually follows molecular modelling and involves the 

computerised simulation of molecular interactions under set parameters following the 
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basic laws of physics.  The purpose of molecular dynamics is to simulate the movement 

of atoms over time and study the forces acting on these atoms in different conditions.  

A trajectory for the motion of each atom is calculated in addition to the overall force 

acting on each atom, as measured by a change in potential energy between two 

positions in order to best predict their behaviour in a solvent (Kitchen et al., 2004). 

 In this study we have used GROMACS (GROningen Machine for Chemical 

Simulations) software which is commonly used to perform molecular dynamics 

simulations using the concept of periodic boundary conditions.  It performs molecular 

dynamics essentially by putting atoms in virtual boxes, surrounded by solvents such as 

water, to solvate the protein in the model.  Energy minimisation and molecular 

dynamics are used to attempt to prevent or eliminate any clashes or breaks in hydrogen 

bonds.  Analysis is run alongside in order to monitor energy of the system and calculate 

the root mean square deviation (RMSD), i.e. the average distance between the atoms 

making up the backbone of the protein. These processes require a high level of 

computer processing power, i.e. a computer which is equipped with multiple central 

processing units (CPU) or graphics processing units (GPU) and can take several days to 

run to completion even in the most advanced systems. 

 

3.1.1.3 Virtual Screening: Structure Based Design 

 Virtual screening is a computational approach utilised to find chemical structures 

which exhibit certain properties, relevant to the specific system, i.e. in a drug discovery 

process, this entails searching a large database of chemical structures in order to detect 

compounds which would be suitable for binding to the target.   

 Two key approaches to virtual screening may be applied:  ligand-based and 

structure based.  Ligand-based screening is utilised when the target 3D structure is 

unknown and thus compounds are selected based on their similarity to the known 

ligand or compound which is known to bind the target.  Conversely, structure-based 

design requires the 3D structure of the target and involves screening and scoring, or 

ranking, multiple compounds for their ability to fit to a specific binding pocket on the 

target.  The ‘scores’ are calculated based on specific algorithms which take into account 

forces acting on the compound and the target, essentially predicting the affinity of the 

compound to the target (Hoelder et al., 2012).   
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 In this study we have used the docking function in MOE to perform virtual 

screening, which uses the 'London dG' scoring function to estimate binding affinity by 

estimating the free energy of binding of a ligand in a certain pose (Dal Ben et al., 2013). 

 As opposed to using multiple docking programmes to screen compounds, we 

screened compounds based on the 3D structures of both c-FLIP and procaspase-8.  

Essentially, compounds were selected which bound with best affinity, i.e. highest 

docking score in MOE on c-FLIP and, in parallel, had a relatively low score for binding to 

procaspase-8.  Visual evaluation and comparison of these compounds on the DED1 

pockets of c-FLIP and procaspase-8 was also performed in order to select which bound 

with best affinity to c-FLIP but were less able to bind to procaspase-8. 

3.1.1.4 Docking Software 

 In silico docking of small molecules to specific protein sites was established over 

30 years ago and has become a vital feature of computerised drug screening (Kitchen et 

al., 2004).  The process allows a prediction of the ligand conformation and orientation 

within the binding site of the target molecule by running algorithms which test multiple 

different ‘poses’ of the ligand within the site.  

 In this chapter we have successfully utilised in silico protein modelling and 

pharmacophore design to model the previously unmodelled structure of the DEDs of c-

FLIP, and the recently modelled DEDs of procaspase-8.  By constructing models of 

interaction with FADD, and pharmacophore design and virtual screening of a library of 

350,000 compounds, we have been able to identify 19 small molecules which are 

potential inhibitors to the c-FLIP DED1:FADD DED interaction. 
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3.2 Results 

3.2.1 Constructing Models of c-FLIP Structure and Interactions   

 In order to fully comprehend and model the interaction between c-FLIP and 

FADD, we performed a comprehensive review of literature on studies into relevant 

mutations available at the time (Section 1.3.7).  There is much contradicting information 

as to which DED on c-FLIP, DED1 or DED2, is most important for binding to FADD and 

thus inhibiting procaspase-8 binding and apoptosis induction.  At the time of this study, 

no mutational studies on the DED domain of mammalian c-FLIP long (or short) were 

available, thus a full review of procaspase-8 and FADD mutational studies was required 

in order to set up in silico interaction models.  In addition, once basic c-FLIP and 

procaspase-8 in silico models were constructed, analysis of the known intramolecular 

interactions that exist between DED1 and DED2 of c-FLIP and also of procaspase-8 was 

used in order to attempt to identify the important residues involved in the interactive 

surface between c-FLIP:FADD and procaspase-8:FADD. 

 Overall, the key FADD mutational studies suggested residues F25, K33, R34 and 

K35 of the FADD-DED are important for apoptosis induction and highlight the relevance 

of electrostatic forces in DED interactions.  It was with a full analysis of all of these 

studies that we chose to model our proteins based on the intramolecular interaction 

between DED1 and DED2 and, following this, between FADDs FL motif and the DED1 of 

c-FLIP or caspase-8, even though other potential sites of interaction are still feasible, 

and indeed, there may be multiple sites of interaction. 

  

3.2.1.1 In Silico Homology Models of c-FLIP and Procaspase-8 Death Effector Domains 

 At the time of this project, the crystal structures for the DEDs of c-FLIP and 

procaspase-8 had not been resolved and were therefore constructed based a 

comparative homology model in MOE. We wished to model both c-FLIP and procaspase-

8 in order to compare the structures of the two proteins, so that compounds could be 

selected based on their ability to bind preferentially to c-FLIP. 

 The protein MC159 (PDB ID: 2BBR), which has previously been analysed for 

modelling DED interactions (Carrington et al., 2006; Yang et al., 2005; Dickens et al., 

2012) was identified as the best protein for basing the construction of c-FLIP and 
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procaspases-8 homology models on, via running a sequence comparison search on MOE 

(Figure 3.1 A summarises the sequence comparison), and was thus used to build the 

DED structures of c-FLIP (Figure 1.2A) and caspase-8 (Figure 3.1B).    

 Our homology models demonstrated that the DEDs of highly homologous 

procaspase-8, which shares 71% sequence homology with c-FLIP (Goltsev et al., 1997), 

did indeed have a very similar 3D structure to c-FLIP, with approximately 22% structural 

homology.  The DEDs of c-FLIP and procaspase-8 both consist of 6 α helices and 5 anti-

parallel β-sheets, although some variations could be identified in the order of residues 

and orientations of the alpha-helices and beta-sheets which can be more clearly 

observed when later assessing the interaction models (Section 3.2.2).  According to our 

models, there was approximately 10% and 12% structural homology between DED1 and 

DED2 of c-FLIP and procaspase-8, respectively as per our model. 
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Figure 3.1: Construction of c-FLIP and procaspase-8 homology models 
A) DED Amino acid sequence comparison with FADD, procaspase-8, c-FLIP and MC159. 
Sequences have been aligned based on DEDs. Shared ‘FL’ sequence highlighed in yellow.  
Amino-acid sequences were obtained from Eberstadt, et al., 1998. Table adapted from 
Eberstadt et al., 1998. B-C) DED structures of B) c-FLIP and c) procaspase-8.  3D structures of the 
two DEDs (DED1 and DED2 from left to right) of A) c-FLIP and B) procaspase-8 modelled in silico 
using a sequence homology model with MC159. 

B                                                                                                                    

A 

C                                                                                                                   
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3.2.2 Generation of c-FLIP:FADD and Procaspase-8:FADD Complexes 

 The known strong, hydrophobic, intramolecular interactions between the 

internal 'FL motif' on DED1 and a pocket on the internal surface of DED2 of c-

FLIP/procaspase-8 (Dickens et al., 2012) were used to model the intermolecular 

interactions between these proteins, with the FL motif of DED2 binding to pocket on 

DED1.  This intermolecular interaction between procaspase-8 and c-FLIP (Figure 3.2A) 

was then used to analyse the c-FLIP:FADD and procaspase-8:FADD interactions.   

 Although there are many potential conformations of interaction, the FL 

(F25/L26) motif of FADD has been previously demonstrated to be important for 

procaspase-8 binding (Eberstadt et al., 1998; Kaufmann et al., 2002) and the recent 

model of DISC formation, which provides evidence that strongly suggests that the DISC 

consists of a 'chain' of procaspase-8 molecules binding each other via their DED1 pocket 

and exposed DED2 FL motif (F122/L123) (Dickens et al., 2012), amongst other FADD 

mutation studies mentioned in Section 1.3.7 meant the first important interaction we 

chose to model was that of c-FLIP/procaspase-8 DED1 with FADD, which involved the 

binding of FADDs external FL motif to a pocket on the surface of DED1 on c-FLIP (Figure 

3.2B) or procaspase-8 (Figure 3.2C).  All constructed models were fully energy 

minimised after molecular dynamics, as assessed using the RMSD energy plots in MOE. 

 Comparison of these surface models and of the ribbon models of c-FLIP and 

procaspase-8 interacting with FADD (Figure 3.2 D and E respectively) demonstrated the 

pocket on DED1 of c-FLIP to appear to form a more tightly fitting interaction with the FL-

motif of FADD than the pocket of DED1 present on the surface of procaspase-8. 
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Figure 3.2: Modelling c-FLIP key protein:protein interactions. 
Models were constructed based on the chain DISC model (Dickens et al.¸2012). A) Interaction 
between FL motif on procaspase-8 DED2 (orange) and c-FLIP DED1 pocket. B) Interaction 
between c-FLIP DED1 pocket and FL motif on DED of FADD (blue).  C) Interaction between 
procaspase-8 DED1 pocket and FL motif on DED of FADD (blue).  Surfaces shown represent 
electrostatic surface charge, negative in green, positive in pink.  D) Ribbon model of c-FLIP 
(orange) DED1:FADD (blue) interaction.  E) Ribbon model of procaspase-8 (red) DED:FADD (blue) 
interaction. 
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3.2.3 Generation of a Pharmacophore Model: Structure-Based Virtual 

Screening 

 The interactive surface and apparent pocket on c-FLIP when interacting with 

FADD was our target for inhibitors when setting up a pharmacophore model in MOE.  

We utilised a structure-based approach to perform virtual screening on the surface of c-

FLIP and by generating a pharmacophore model, the screening of compounds was made 

specific, as, only those which fit the pharmacophore model would gain high binding 

affinity scores, and therefore be identified as hits.  We set up the pharmacophore query 

using a collection of three-dimensional chemical features to represent the ligand's, i.e. 

the FL motif of FADD, interacting residues and set volume restrictions to limit the 

surface area of the compound binding site.  Compounds were then selected based on 

their ability to interact with c-FLIP in a similar manner to the FL-motif in the areas 

represented by these features, and therefore to compete with the FADD ligand for 

interaction with the residues in and around the designated area on the surface of c-FLIP 

DED1 (Figure 3.3A and B).  Four features were identified, and, of particular interest, 

residues around the ‘pocket’ on c-FLIP were identified to be important for the binding of 

FADD via the FL-motif (Figure 3.3C).   
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Figure 3.3: Characterisation of the DED1 c-FLIP:FADD binding pocket and 
Pharmacophore Model on Binding Surface. 
A) Pocket on surface of c-FLIP DED1 with residues displayed which were key in the FADD 
interaction.  B)  Zoomed view of c-FLIP:FADD interaction showing residues of importance on c-
FLIP DED1 (yellow) (FADD shown in red). C) Pharmacophore model used to filter the database of 
over 350000 small molecules for the virtual screening studies on the interactive surface of c-FLIP 
(red ribbon).  The model consists of 'features' (4 coloured spheres), i.e. areas of interaction of 
the FL-motif of FADD with c-FLIP DED1 which could be targeted by inhibitors.  Features are 
coloured based on their hydrogen acceptor/donor status (blue = aromatic acceptor, green = 
acceptor, purple = donor). Grey spheres represent carbon atoms on surface of c-FLIP. 
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3.2.4 Virtual selection of inhibitors to c-FLIP:FADD interaction 

 Our finalised pharmacophore model was used to screen a library of over 350,000 

commercially available compounds (Specs Database, Delft) in order to identify potential 

inhibitors to these sites.  Approximately 14000 ‘hits’ were identified which were able to 

satisfy the pharmacophore query by their ability to bind to at least 3 out of 4 of the 

features, which were then virtually ‘docked’ on c-FLIP.  Compounds were scored based 

on their ability to bind to the specific features on c-FLIP and after a further two docking 

refinement steps, we selected 2000 compounds with the highest score, i.e. ability to 

bind to the selected features, to analyse and re-run against caspase-8.  The compounds 

which had the lowest score for caspase-8 were of interest, since they would not bind to 

this protein with such affinity (Figure 3.4A).   

 We visually inspected the ‘top’ 100 scored compounds from c-FLIP and ‘bottom’ 

100 from caspase-8 for their ability to bind to the protein and thus to block the 

interaction with FADD (Figure 3.4 B and C).  For a compound to be selected, they 

needed to adhere to the criteria we had put in place: 

1. Compound must fill the pocket on c-FLIP 

2. Compound must not lie outside of the pocket on c-FLIP 

3. Compound must not clash within the protein structure 

4. Compound should not fill pocket on procaspase-8 

5. Compounds selected should be relatively varied in structure 

 Using these criteria, we selected a final 19 compounds using the combination of 

MOE docking scores and visual inspection of the compounds within pockets of c-FLIP 

and procaspase-8.  These compounds were chosen to include a range of chemical 

structures, with varying molecular weights and chemical properties, which were then 

purchased from Specs database (Table 3.1).  All compounds selected adhered to the 

Lipinski rule of 5 (Molecular weight <500, LogP <5 (lipophilicity), H donors <5, H 

acceptors<10 (Leeson, 2012).   
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Figure 3.4: Visual inspection of one of the 19 compounds within the pocket on c-FLIP 
DED1 
A) Summary of in silico user defined compound selection steps. B) Visual evaluation of around 
200 compounds on the FADD-interactive pocket on both c-FLIP and procaspase-8 was 
performed to select inhibitors which would be specific for the c-FLIP pocket.  Compound 
displayed is OH14. 
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Table 3.1 Structure of 19 Compounds Selected from In Silico Screening 
19 Selected compounds all adhered to the Lipinski rules and thus were all valid drug candidates. 
MW = molecular weight to 1 d.p. 

Cpd MW Formula Displayed 

OH1 269.3 C16H15NO3 

 
OH2 286.7 C16H11ClO3 

 
OH3 321.2 C16H10Cl2O3 

 
OH4 397.5 C19H25NO5S 

 
OH5 297.3 C17H15NO4 

 
OH6 342.4 C18H18N2O5 

 
OH7 299.3 C17H17NO4 

 
OH8 455.3 C16H10INO3S2 
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OH9 347.37 C21H17NO4 

 
OH10 278.31 C17H14N2O2 

 
OH11 354.38 C20H19FN2O3 

 
OH12 350.42 C21H22N2O3 

 
OH13 360.2 C18H11Cl2NO3 

 
OH14 360.22 C14H11Cl2NO4S 

 
OH15 382.43 C22H23FN2O3 

 
 Structure unavailable 

OH16 358.4 C17H18N4O3S 

 
OH17 416.3 C19H14BrNO3S 

 
OH18 317.4 

 
C17H19NO3S Structure unavailable 

OH19 309.3 C18H15NO4 Structure unavailable 
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3.4 Discussion 
 Previously we have demonstrated that genetic knock-out of c-FLIP using siRNA is 

an effective way to partially sensitise previously resistant bulk breast cancer cells to 

TRAIL and significantly enhance the sensitivity of breast CSCs, represented by 

tumourspheres (Piggott et al., 2011).  TRAIL itself is a highly cancer cell specific drug, as 

it is able to induce apoptosis in cancer cells whilst sparing the untransformed cells 

(Section 1.2.2.3), however, the fact that many breast cancer cell lines are resistant to 

TRAIL limits its potential as a therapeutic.  Our discovery that c-FLIP suppression is able 

to sensitise to TRAIL suggested that the combination of a small molecule c-FLIP 

inhibitor, in combination with TRAIL, could be a potentially very beneficial therapeutic.  

Currently there are no c-FLIP specific inhibitors available (Section 1.3.6), and, at the time 

of the project, no c-FLIP mutational studies published were able to elucidate any key 

residues which could be targeted by small inhibitors, thus, the aim of this project, and 

particularly of this chapter, was to identify potential small molecule inhibitors that are 

specific to c-FLIP, by the use of in silico protein modelling techniques.  The main 

potential hurdle in selecting a c-FLIP specific inhibitor is the reason it is a potent 

inhibitor of TRAIL induced apoptosis: its homology to procaspase-8, thus, modelling and 

inhibitor screening was performed on procaspase-8 in parallel with c-FLIP to try to avoid 

the unwanted and opposite effect of procaspase-8 inhibition. 

 At the time of this study, the crystal structure of c-FLIP or procaspase-8 had not 

been resolved.  In addition, no in silico models of the DED domains of c-FLIP had been 

generated, thus, this chapter aimed to generate, initially, an in silico model of the 

structure of the DED domains of c-FLIP.  Here, we first constructed these models in MOE 

based on a homology model using v-FLIP, MC159 as the template.  In addition, we 

constructed a model of the DEDs of procaspase-8, again based on a homology model 

using MC159 as the template.  Our models revealed that c-FLIP and procaspase-8 are 

indeed highly homologous proteins in both structure and sequence, showing 71% 

sequence homology in their DEDs, which is in accordance with an initial report also 

demonstrating 71% homology between the DEDs of c-FLIP and procaspase-8 (Goltsev et 

al., 1997). 

 Subsequently, the c-FLIP:FADD interaction, which had not yet been modelled, 

and procaspase-8:FADD interaction, which had recently been studied in silico (Dickens 
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et al., 2012), were modelled.  We constructed our initial model based around the 

intramolecular interactions that exist between DED1 and DED2 on both c-FLIP and 

procaspase-8 (Dickens et al., 2012).  Both models were constructed in MOE, with 

molecular dynamics being performed in order to further optimise the complex and 

validate the stability of the interaction models.  More recently, Majkut and team have 

used in silico modelling to analyse the c-FLIP:FADD DED interaction, also using MC159 to 

construct a homology model.  Their modelling looked at two potential orientations of 

the c-FLIP:FADD interaction  (Majkut et al, 2014).  Although we did recognise that there 

may be other potential conformations of the interaction, due to time constraints and 

the fact we were attempting to identify an inhibitor, we were only able to model and 

screen one interaction.  One of the models generated by Majkut et al., was, however, 

very similar to our model, with c-FLIP DED1 interacting with the FL-motif of FADD 

(Majkut et al., 2014).  Another recent study, by Hwang and colleagues has also modelled 

the c-FLIP:FADD interaction, although they based their model on DED2 of c-FLIP 

interacting with FADD and did not explore the DED1 interaction (Hwang et al., 2014). 

 We decided to target the interactive surface on DED1 of c-FLIP or procaspase-8 

for the generation of our pharmacophore model and structure based virtual screening, 

based on a thorough analysis of previous studies (Section 1.3.7).  Although both DED1 

and DED2 do appear to have an ability to interact with FADD, time constraints of the 

project restricted our focus to only one of the potential interactive conformations.  Our 

interaction model between c-FLIP and FADD was the basis of our virtual inhibitor 

screens, whereby we used the FL motif on the DED of FADD to generate a 

pharmacophore model and identify a panel of potential small molecule inhibitors 

against this interaction.  The models we constructed here revealed that there are some 

structural differences in the interactive surfaces on DED1 of c-FLIP and procapase-8.  

The 'pocket' present on c-FLIP appeared smaller, thus giving rise to a closer interaction 

with FADD, when compared with procaspase-8.  This suggested that an inhibitor 

targeted to this pocket would likely be specific for c-FLIP, due to its size and shape, thus 

sparing procaspase-8, allowing it to bind with FADD and induce apoptosis.  

 We then performed virtual compound screening on this model, using a library of 

over 350,000 commercially available compounds (Specs database, Delft, The 

Netherlands).  Only compounds that satisfied the pharmacophore query were then 
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docked on the surface of c-FLIP and scored based on their ability to bind to at least 3 

identified 'features', i.e. charged residue pockets, on the FADD interactive surface on 

DED1 of c-FLIP.  After several score-refining and compound-eliminating docking screens 

in MOE, 200 inhibitors were visually assessed for their ability to bind c-FLIP specifically.  

We hypothesised that, since c-FLIP and procaspase-8 are similar in structure, screening 

the same library of compounds on the procaspase-8, and then visually analysing those 

which did not score well for procaspase-8 would enable us to select more c-FLIP specific 

inhibitors.  Indeed, several compounds which gained high MOE docking scores, 

appeared to fit well into the pocket on procaspase-8 and so were eliminated as 

potential compounds.  Of the 200 compounds visually screened on both proteins, 19 

structurally diverse small molecule compounds were selected from the initial virtual 

library of over 350,000 compounds for their ability to bind to c-FLIP, preferentially over 

procaspase-8.   

 Using pharmacophore generation and virtual compound screening, a classical in 

silico pharmacological approach, here we have successfully identified a panel of 19 

potential commercially small molecule inhibitors which aim to target specific residues 

on DED1 of c-FLIP protein.  These inhibitors were tested in in vitro assays on breast 

cancer cells for their ability to sensitise previously resistant cells to TRAIL induced 

apoptosis (Chapter 4) and thus to block the c-FLIP:FADD interaction, whilst sparing the 

procaspase-8:FADD interaction (evaluated in Chapter 5).  
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Evaluation of c-FLIP Small Molecule Inhibitors 
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Chapter 4: Evaluation of c-FLIP Small Molecule 
Inhibitors 
 

4.1 Introduction 
 Tumour heterogeneity, drug resistance and the existance of cancer stem cells 

each present distinct challenges to successful treatment of breast cancer and other 

types of cancer.  Indeed, cancer stem cells, themselves, are resistant to many types of 

cancer therapy, including chemo- and radiotherapy.  Agonists of the TRAIL receptor 

pathway have demonstrated an ability to induce apoptosis in cancerous cells, whilst 

sparing untransformed cells, making them highly desirable as cancer therapeutics (Gura, 

1997; Ashkenazi et al., 1999; Lemke et al., 2014).  We and others have previously 

demonstrated an ability to sensitise previously TRAIL-resistant breast cancer cells to 

TRAIL induced apoptosis via c-FLIP knockdown using siRNA (Piggott et al., 2011).   

 Our previous data, in addition to multiple other studies regarding the anti-

apoptotic role of c-FLIP, clearly highlight that a c-FLIP inhibitor could be an effective 

TRAIL sensitising agent and thus a viable combination therapy with TRAIL for treating 

TRAIL-resistant cancers, in particular, breast cancer, particularly due to the ability to 

target cancer stem-like cells (Lempke et al., 2014; Safa and Pollok., 2011; Piggott et al., 

2011).  Currently, however, although agents do exist which alter expression of c-FLIP 

these do not specifically target the protein, and, as such have off-target effects affecting 

other important pathways (Section 1.3.6), there are no c-FLIP specific inhibitors 

available.  The aim of this project, and in particular this chapter, was to evaluate the 

panel of small molecule inhibitors selected in Chapter 3, using a variety of relevant 

assays, for their ability to block c-FLIP and therefore sensitise to TRAIL.  The high degree 

of homology between procaspase-8 and c-FLIP is likely to be one of the key reasons a c-

FLIP small-molecule inhibitor has not yet been developed (Goltsev et al.¸1997; Safa and 

Pollok, 2011).  In chapter 3 we selected several potential inhibitors using in silico protein 

modelling and compound screening, including the issue of cross-reactivity in the 

experimental design. 

 Previous use of siRNA results in a 20% decrease in overall cell viability and a 

100% decrease in tumoursphere formation potential following TRAIL treatment (Piggott 

et al., 2011).  These cell viability data would be adopted as a benchmark for the efficacy 
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of the putative pharmacological c-FLIP inhibitors identified in Chapter 3.  Furthermore, 

the ideal inhibitor, when tested in vitro would be: effective in many cell lines; specific; 

non-toxic to untransformed cells; active at low concentrations; exert metabolic stability; 

and be soluble in multiple solvents.   

 Here we compare the relative ability of the 19 selected compounds identified 

from the in silico screen to sensitize breast cancer cells, and breast cancer stem cells, to 

TRAIL.  These experiments lead to the identification of a single lead compound, OH14, 

which exhibited the best efficacy while also satisfactorily fulfilling the additional 

parameters described above. 
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4.2 Results 
 

4.2.1 Solubility of the compounds in cell culture media 

 Solubility is one of the most important parameters involved in achieving the 

desired concentration of drug in systemic circulation when in a clinical setting.  It 

therefore follows that initial drug evaluation must pay attention to the ability of the 

compounds to dissolve in solutions, as this may otherwise be a barrier to treatment 

further along the timeline of drug development.  In fact, over 40% of new chemical 

entities developed in the pharmaceutical industry are almost completely insoluble in 

water (Savjani et al., 2012). 

 The solubility of the compounds was determined in the culture media used in 

the cell viability assays.  Dimethyl sulphoxide (DMSO) was selected as the solvent to 

prepare our stock solutions due to the fact that it is a commonly utilised agent, which is 

able to dissolve both polar and nonpolar compounds, whilst remaining miscible in 

organic solvents, such as water.  Whilst many of the compounds were soluble in DMSO 

at 100 mM stock solution and remained in solution when further diluted in cell culture 

media, some were only soluble when made up to 50 mM, and others were seen to 

come out of solution once diluted in aqueous soluation after overnight incubation in cell 

assay conditions (Figure 4.1 and Table 4.1).  
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Figure 4.1: Compound Visual Solubility Assessment. 
Representative images of compounds which did not remain in solution in media after overnight 
solubility assessment. A) 0.1% DMSO (highest concentration) alone.  B) Compound OH12 in 
media at 100 µM C) Compound OH15 in media at 100 µM D) Compound OH15 in media at 10 
µM. Scale bar = 100 µm. 

 
 
Table 4.1: Solubility of Initial 19 Compounds in Media.  
Visual assessment of compound solubility in DMSO (initial stock made at 100 mM) or after 
overnight incubation in media at a range of concentrations (100 µM, 10 µM, 1 µM, 0.1 µM, 0.01 
µM). Concentration at which compound was observed to be soluble is shown. 

Compound Stock: DMSO (mM) Working: Aqueous Media (µM) 

OH1 50 0.1

OH2 100 1 

OH3 50 0.1 

OH4 50  10 

OH5 100  100  

OH6 100  100  

OH7 100  10 

OH8 100  100 

OH9 100  100  
OH10 50  100  
OH11 50  1 

OH12 100  1 

OH13 100  100 
OH14 100  100  
OH15 100  1 

OH16 50  100 
OH17 100  100 
OH18 100  1 

OH19 100  100 
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4.2.2 Inhibitors of c-FLIP demonstrate an ability to sensitise to TRAIL in Breast 

Cancer cell lines 

 Initially, compounds were tested on their ability to sensitise the bulk population 

of the cell lines MCF-7 and BT474 to TRAIL using the Cell Titre Blue viability assay.  These 

cell lines were chosen due to their TRAIL-resistance, previously confirmed sensitivity to 

c-FLIP siRNA and TRAIL in multiple assays (Piggott et al., 2011), and for the equal 

expression of c-FLIP between these cell lines (French et al., 2015 in press). The Cell Titre 

Blue assay was chosen since it had been previously successful in demonstrating the 

ability of c-FLIP siRNA to sensitise to TRAIL (Piggott et al., 2011), in combination with the 

fact that it is a high-throughput assay which is beneficial for testing multiple compounds 

at a range of concentrations. 

 

4.2.2.1 c-FLIP Inhibitors Sensitise TRAIL-resistant MCF-7 Bulk Cells to TRAIL  

 The adherent bulk population of MCF-7 cells are TRAIL-resistant (Rahman et al., 

2009; Piggott et al., 2011).  Knocking-down c-FLIP with siRNA in these cells caused 10% 

reduction in viability and, when treated with TRAIL, this increased to 30% (Piggott et al., 

2011).  We hypothesised that similar relative levels of cell death would be obtained with 

an efficient c-FLIP specific small molecule inhibitor.  Compounds which demonstrated 

this synergistic effect with TRAIL, at several concentrations, with no solubility issues 

were of most interest for further investigation. 

 For viability evaluation, compounds (or vehicle control) were added to bulk cells 

at 70% confluence and left for one hour before the addition of 20 ng/ml TRAIL.  After 18 

hours, viability was measured using the Cell Titre Blue assay.   

 Eight of the 19 inhibitors selected demonstrated an ability to significantly 

sensitise MCF-7 cells to TRAIL (p-value<0.05) at more than 2 concentrations of 

compound, whilst causing no change in viability when administered alone, in at least 

two of these concentrations (Figure 4.2 A, C, L, N, O, P, R, S).  The TRAIL-sensitisation of 

these compounds was at a similar level, approximately 20%, to that previously observed 

using siRNA c-FLIP (Piggott et al., 2011).  These compounds were therefore of most 

interest due to their efficacy at multiple concentrations, in combination with their lack 

of significant cytotoxicity, thus demonstrating a seemingly synergistic effect.  Although 
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an additional compound increased TRAIL sensitivity at more than 2 concentrations, it 

also exhibited general cytotoxicity at several molarities (Figure 4.2Q) 

 Four of the compounds were able to significantly sensitise to TRAIL at two of the 

five concentrations evaluated yet there was no correlation with dose of agent as they 

exhibited a low therapeutic index (Figure 4.2 B, E, M, G) and thus were of less interest.  

Four compounds evaluated showed no significant ability to sensitise to TRAIL in this cell 

line (Figure 4.2 D, F, H, I).  Furthermore, two compounds, OH10 and OH11, exhibited the 

opposite effect to our hypothesis and in fact increased viability when treated in 

combination with TRAIL (Figure 4.2 J and K).  Compounds OH10 and OH11 were 

therefore discounted for any further evaluation studies. 

 Three compounds increased cell number at several concentrations tested (Figure 

4.2 I, J, L), whereas others (Figure 4.2 B, C, H, K) were cytotoxic at several 

concentrations, and caused reductions in viability to below 50%, thus, any TRAIL 

sensitisation obtained in these cases was additive, rather than synergistic.  It is possible 

on the basis of molecular homology that one or more of these cytotoxic agents could 

represent specific inhibitors of caspase-8. 
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Figure 4.2: Initial viability dose response of OH1-OH19 inhibitor panel on the bulk 
population of TRAIL resistant MCF-7 cells. 
MCF-7 cells were treated in adherent conditions at 70% confluence with a dose range of 
inhibitor or vehicle control for one hour, before the addition of 20 ng/ml TRAIL (or vehicle 
control) for 18 hours.  Cell Titre blue was then performed to assay for cell viability. Results 
represent 3 experiments with 4 wells per condition per experiment. Blue and red dashed lines 
(~90 and 70% respectively) represent the effect of c-FLIP knock out by siRNA and the 
combination of c-FLIP siRNA with TRAIL treatment respectively (Piggott et al., 2011). *=p-
value<0.05, t-test TRAIL vs compound plus TRAIL.   Control of media alone and compound within 
media were included. 
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4.2.2.2 c-FLIP Inhibitors Sensitise TRAIL-resistant BT474 Bulk Cells to TRAIL  

 BT474 cells, which are a TRAIL-resistant HER2+ve, ER+ve, PR-ve cell line were 

treated with 14 of the 19 initial inhibitors.  Compounds 10, 11, 15, 17 and 18 were not 

included for analysis on this cell line due to their lack of efficacy and large flucuations in 

response, or alterations to cell viability when administerd alone on MCF-7 cells (Figure 

4.2), in addition to their lack of solubility in DMSO (Table 4.1).   

 As before, compounds (or vehicle control) were added to bulk cells at 70% 

confluence and left for one hour before the addition of 20 ng/ml TRAIL.  After 18 hours, 

viability was measured using the Cell Titre Blue assay.  The compounds performed in a 

similar manner on the bulk population of BT474 cells compared with the MCF-7 cell line 

(Figure 4.3), with some showing a synergistic ability to sensitise to TRAIL, and others 

demonstrating no effect.  Overall, the effect of the combination therapy was reduced in 

BT474 cells compared to MCF-7 cells.  

 Six compounds significantly sensitised to TRAIL at more than two concentrations 

tested, with little or no effects on viability alone at at least two of these concentrations 

(Figure 4.3 A, B, D, F, M, L).  One additional compound exhibited a modest ability to 

sensitise to TRAIL, with efficacy only demonstrated at two concentrations (Figure 4.3N).  

Two compounds showed significant abililty to sensitise to TRAIL, yet also had alterations 

to cell viability when administered alone, thus likely demonstrating a potential lack of 

specificity and therefore, off-target effects (Figure 4.3 E, G). Three compounds were 

cytotoxic at 100 µM (Figure 4.3 B, C, H), whilst one compound demonstrated no effects 

alone or in combination with TRAIL (Figure 4.3 I).  Two compounds increased viability in 

combination with TRAIL at several concentrations tested and had little ability to 

increase TRAIL sensitivity (Figure 4.3 J, K). 
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Figure 4.3: Initial dose response of 'OH' inhibitor compound panel on the bulk 
population of TRAIL resistant BT474 cells.  
BT474 cells were treated in adherent conditions at 70% confluence with a dose range of 
inhibitor or vehicle control for one hour, before the addition of 20 ng/ml TRAIL (or vehicle 
control) for 18 hours.  Cell Titre blue was then performed to assay for cell viability. Results 
represent 2 experiments with 4 wells per condition. Blue and red dashed lines (~90 and 50% 
respectively) represent the effect of c-FLIP knock out by siRNA and the combination of c-FLIP 
siRNA with TRAIL treatment respectively (Piggott et al., 2011).  *=p-value<0.05, t-test TRAIL vs 
compound plus TRAIL.   Control of media alone and compound within media were included. 
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4.2.2.3 c-FLIP Inhibitor Bulk Cell Summary and Lead Compound Selection  

 To confirm the compounds which had the greatest ability to sensitise to TRAIL 

and thus select several potential lead compounds for analysis in additional assays, we 

organised the data by selecting the lowest concentration at which a significant TRAIL-

sensitising effect was observed and plotted these on one graph.  By this means of 

analysis, we can see more clearly that, in the MCF-7 bulk population, OH14 decreased 

viability by the greatest amount, at a low concentration (Figure 4.4A) and as such, in 

addition to the fact that there were no solubility issues and the effect appeared 

synergistic rather than additive, is the lead compound from this assay in MCF-7 cells.  

Although the effect of OH14 is reduced in BT474 cells, it still remained active at a low 

concentration (Figure 4.4B).  These results, with the lack of observed toxicity and 

solubility issues deemed OH14 as our first lead compound to be analysed in further 

assays. 

 Compound OH19 also showed activity at a low concentration in MCF-7 cells, 

significantly sensitising to TRAIL in a seemingly synergistic manner by 30%.  The activity 

of OH19 was diminished in BT474 cells by comparison, with only a modest sensitisation 

observed at 100 nM.  However, since no solubility or toxicity issues were seen with this 

compound, and the due to its effect in MCF-7 cells, which represent around 60% of 

clinical patients, we decided to include OH19 as a secondary lead compound for further 

analysis. 

 OH16 showed TRAIL-sensitisation efficacy in both the MCF-7 and BT474 cell lines 

which appeared partially synergistic, as a modest reduction in viability was seen with 

compound alone at some concentrations.  Although OH16 performed best at 100 µM in 

MCF-7 cells, its effect, although modest, was in fact best at the lowest concentration, of 

10 nM in BT474 cells.  The abilty of the compound to sensitise to TRAIL at a range of 

concentrations in both cell lines, in addition to the lack of toxicity and solubility issues 

led OH16 to be selected as our third lead compound for the next assay. 

 Other compounds which appeared nearest to the top left of the summary 

efficacy plots, such as OH8 on BT474 cells and OH1 on MCF-7 cells, were discounted as 

lead compounds at this stage based on their large alterations to cell viability when 

administerd alone, low efficacy over several concentrations (i.e. only affective at two or 
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less concentations), or the solubility issues observed at several concentrations 

previously (Table 4.2).   
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Figure 4.4: Summary of 'OH' compounds on the ability to sensitise MCF-7 and BT474 
bulk cells to TRAIL. 
The data from A) Figures 4.2 (MCF-7) and B) 4.3 (BT474) is re-presented to compare the lowest 
concentration at which a significant TRAIL-sensitisation was observed.  The concentration of 
each c-FLIP inhibitor that gave a significant (p-value<0.05) decrease in cell viability, compared 
with TRAIL, is plotted as a percentage compared to experimental agent alone.  On this graph, 
compounds that appear nearest to the top left of the plot exhibit greatest efficacy. 
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Table 4.2: Initial Lead Compound selection. 

Soluble:  = Insoluble at more than two concentrations in aqueous media or initial DMSO.   

Viability:  = no deviation below c-FLIP siRNA (blue line ~90%) or above 100%.   

Efficacy:  = significant TRAIL sensitisation at more than two concentrations, with at least one 
of these concentrations altering viability alone. NA indicates untested compound 

Compound Soluble Viability 
MCF-7  

Viability 
BT474  

Efficacy 
MCF-7  

Efficacy 
BT474  

1      

2      

3      

4      

5      

6      

7      

8      

9      

10   NA  NA 

11   NA  NA 

12      

13      

14      

15   NA  NA 

16      

17   NA  NA 

18   NA  NA 

19      
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4.2.3 Small Molecule Inhibitors of c-FLIP Increase Sensitivity of Breast CSCs to 

TRAIL 

 Our observations that some of the initial 19 inhibitors did indeed show an ability 

to at least partially sensitise the bulk cell population of two previously resistant cell lines 

to TRAIL, in effect, representing a phenocopy of the results obtained using siRNA c-FLIP, 

led to the desire to explore their effect on assays representing different aspects of 

breast cancer development and progression.  The most profound in vitro effect of c-FLIP 

siRNA in combination with TRAIL treatment was observed when cells were analysed in 

the tumoursphere assay, which assesses properties of CSCs (Section 1.1.7.3).  We 

observed that knocking down c-FLIP using siRNA, in adherent conditions, and treating 

with TRAIL prevented several breast cancer cell lines from being able to form 

tumourspheres (Piggott et al., 2011).  In the same study, it was shown that suppression 

of c-FLIP alone had little effect on tumoursphere size, formation, or number whilst 

TRAIL treatment alone exhibited a modest effect on the morphology and number of 

spheres in MDA-MB-231 and MCF-7.  We therefore hypothesised that a similar effect on 

tumoursphere size and number would be obtained using small molecule inhibitors of c-

FLIP in combination with TRAIL.  Due to the complexity of the assay, only the three lead 

compounds, OH14, OH16 and OH19, selected previously based on MCF-7 and BT474 cell 

viability assays (Section 4.2.2.3), were chosen to be assessed.  MCF-7 cells were pre-

treated in adherent conditions, with one of the three lead inhibitors (or appropriate 

DMSO control), for one hour, after which TRAIL was added at 20 ng/ml and left for 18h, 

as previously described (Piggott et al., 2011). After 18 h, the remaining viable cells were 

subjected to the tumoursphere assay.   

 Two of the three lead compounds, OH14 and OH16, resulted in an increase in 

the sensitivity of MCF-7 tumoursphere forming cells to TRAIL (Figure 4.5A).  One of 

these, OH14, had no significant effect on tumoursphere formation when administered 

alone, but had a profound effect in increasing TRAIL sensitivity when administered in 

combination, within 90% of the level of c-FLIP siRNA when administered at 100 µM 

(Figure 4.5A).  Compound OH16 in combination with TRAIL demonstrated a significant 

decrease in tumoursphere number, compared with TRAIL alone, at both concentrations 

tested. An overall increase in tumoursphere number was observed with OH16 alone, 

however, at 10 µM. Similarly, OH19 demonstrated a significant increase in 
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tumourspheres at 10 µM, although this was only observed when administered to the 

cells in combination with TRAIL.  Only when cells were treated at 100 µM, did OH19 

demonstrate a significant ability to increase tumoursphere sensitivity to TRAIL. 

 When treating cells with a larger dose-range of OH14 or OH16 in combination 

with TRAIL, before plating into tumoursphere conditions, we observed OH14 to retain a 

significant ability to sensitise to TRAIL at all 3 concentrations tested.  OH16, however, 

gave inconsistent results at the 3 molarities tested.  At 100 and 1 µM, a significant 

TRAIL-sensitisation was observed, however, at 10 µM, no significant sensitisation was 

observed. 

 OH14 had no significant impact on tumoursphere morphology or number when 

administered alone, when compared with untreated or TRAIL treated cells (Figure 4.5C, 

D and E), only when treated in combination with TRAIL was there a significant impact of 

OH14 on tumourspheres (Figure 4.5F). 
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Figure 4.5: 3 Three Initial Inhibitors Demonstrate some Efficacy in Increasing 
Sensitivity of MCF-7 Tumoursphere Forming Cells to TRAIL. 
MCF-7 cells were cultured for 24 h in a 96 well plate, before being treated with vehicle control 
or compound for 1 h.  20 ng/ml TRAIL (or control) was added after 1 h and the cells were left for 
18 h.  The following day, cells were subjected to the tumoursphere assay, with no additional 
drug added.  A) One of 3 lead inhibitors (14, 16 and 19) at two concentrations alone and in 
combination with TRAIL.  B) OH14 or OH16 at a range of concentrations in combination with 20 
ng/ml TRAIL (no compound alone).  Results represent passage 1 of 3 replicates, with error bars 
displaying standard error of the mean.  * = p<0.05, t-test.  Representative images of 
tumourspheres from C) Vehicle control D) 100 µM OH14 E) 20 ng/ml TRAIL and F) 100 µM OH14 
plus 20 ng/ml TRAIL. Scale bar = 100 µm. 
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4.2.3.1 OH14 Sensitises Tumoursphere-Forming Cells to TRAIL in a Dose-Dependent 
Manner 

 The tumoursphere assay, in combination with the cell titre blue assay 

demonstrated that, of the three lead compounds, compound OH14 demonstrated the 

most significant and consistent ability to sensitise MCF-7 bulk cells and tumoursphere 

forming cells to TRAIL whilst having little effect when administered alone.   

 In order to fully establish the effect of this compound on increasing TRAIL 

sensitivity, a dose range was tested on the tumoursphere forming population of MCF-7 

cells.  Breast cancer cell lines contain a sub-population of around 3% of tumoursphere 

forming cells (Dontu et al., 2003).  The overall levels of spheres generated by the MCF-7 

cells used in the previous experiments (Section 4.2.3), around 6% were slightly above 

the average obtained in many of our other investigations.  Cell lines can vary between 

batches and laboratories, and repeating the experiment here with OH14, using a 

different batch of cells confirmed the initial result with OH14, but demonstrated a 

control tumoursphere potential more consistent with the norm.  

 OH14 significantly sensitised tumoursphere forming cells to TRAIL at a dose 

range of 100 µM to 100 nM (Figure 4.6A) which was particularly evident following 

passage of the primary tumourspheres (Figure 4.6B).  Confirming the initial OH14 test 

(Figure 4.5), tumoursphere forming cells were almost entirely eliminated by treatment 

with 100 µM OH14 in combination 20 ng/ml (Figure 4.6C).  In order to establish whether 

pre-treatment of adherent cells in bulk conditions was required for sensitising 

tumoursphere forming cells to TRAIL, we performed a treatment with OH14 after plating 

into anoikis conditions.  Under these conditions, OH14 exhibited a similar dose-

dependent ability to sensitise to TRAIL (Figure 4.6D). 

 Although the effects of the combination therapy on BT474 bulk cell viability 

were less significant than those observed in MCF-7 cells (Section 4.2.2.3), we have 

previously demonstrated siRNA mediated knockdown of c-FLIP acutely sensitised BT474 

tumourspheres to TRAIL (Piggott et al., 2011).  Thus, the lead compound was assessed 

for its ability to affect tumoursphere formation in this cell line (Figure 4.7).  OH14 

significantly sensitised to TRAIL at a dose range of 100 µM to 1 µM in a dose-dependent 

manner in both primary tumourspheres (Figure 4.7A) and after passaging, without the 

addition of fresh compound (Figure 4.6B). 
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Figure 4.6:  Compound OH14 significantly sensitises MCF-7 tumoursphere forming 
cells to TRAIL in a dose dependent manner. 
MCF-7 cells were cultured for 24 hours before being treated with a dose range of compound 
OH14 (or vehicle control) for 1 hour, followed by TRAIL (or vehicle control) treatment at 20 
ng/ml and 18 h incubation.  Cells were then subjected to the tumoursphere assay, with no 
additional drug added. A) Passage 1: MCF-7 dose dependent decrease in the ability of cells to 
form tumourspheres when treated with OH14 in combination with TRAIL. B)  Passage 2: MCF-7 
dose dependent decrease in the ability of cells to form tumourspheres when treated with OH14 
in combination with TRAIL. C) Representative images of MCF-7 tumourspheres under different 
treatment conditions. Scale bars = 100 µm. D) Passage 2 of MCF-7 tumourspheres treated after 
plating Passage 1 (in anoikis conditions) with vehicle control (DMSO) or a dose range of OH14 
alone or in combination with 20 ng/ml TRAIL.  Error bars represent 3 internal replicates. *=p-
value<0.05, t-test - TRAIL vs OH14 plus TRAIL. 
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Figure 4.7:  Compound OH14 sensitises BT474 tumoursphere forming cells to TRAIL in 
a dose dependent manner.  
BT474 cells were cultured in adherent conditions for 24 hours before being treated with a dose 
range of OH14 (or vehicle control) for 1 hour, followed by TRAIL (or vehicle control) treatment 
at 20 ng/ml and 18 h incubation.  Cells were then subjected to the tumoursphere assay, with no 
additional drug added. A) Tumoursphere Assay Passage One: Treatment with 20 ng/ml TRAIL in 
combination with OH14 reduced significantly the number of primary tumourspheres formed in 
BT474 cells in a dose dependent manner (*=p-value< 0.05, t-test TRAIL vs OH14 + TRAIL) B) 
Tumoursphere Assay Passage 2: Treatment of primary spheres with 20 ng/ml TRAIL in 
combination with OH14 significantly reduced the number of secondary tumourspheres formed 
in BT474 cells in a dose dependent manner (*=p-value< 0.05, t-test TRAIL vs OH14 plus TRAIL).   
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4.2.4 TRAIL Sensitivity in Clonogenic Colony Forming Assay 

 The clonogenic assay, an assay established for over 50 years, is an additional in 

vitro assay which tests one of the functional characteristics of stem cells, that is, the 

ability to propogate colonies from single cells through an enhanced proliferative 

potential.  The assay is not as selective for CSCs as the tumoursphere assay, as 

demonstrated by the fact that between 10% and 70% of any given cell line population 

are able to form colonies, however, the assay is an informative accompaniment to the 

tumoursphere assay, which itself is partially restricted in that it only selects for stem-

like cells which exhibit the property of anoikis resistance, a property which is not an 

absolute requirement for all breast CSCs (Liu et al., 2013).  Essentially, the assay 

evaluates the ability of single cells plated at low density to form colonies of greater than 

32 cells (Grenman et al., 1989), thus having undergone five or more divisions, over a 

period of 10 days in adherent culture conditions (Harrison et al., 2013; Locke et al., 

2005) (Section 1.1.7.3).  The assay is often thought of as a progenitor or proliferation 

assay rather than a stem cell assay per se as it enables evaluation of the variabilities in 

replicative viability between cells treated in different conditions.  

 The overall TRAIL sensitivity of four relevant breast cancer cell lines, which 

represent different subtypes of the disease, was analysed using the CFA.  Cells were 

plated at a low density of 50 cells per square centimetre, allowed to attach, before 

being treated with TRAIL at 20 ng/ml.  Colonies were left to form for 10 days, after 

which, colonies of over 32 cells were counted. TRAIL was able to significantly reduce 

colony formation in the four breast cancer cell lines tested (Figure 4.8A and B), although 

it did not completely prevent the formation of colonies in any of these lines.   
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Figure 4.8: Colony Forming Cells are Sensitive to TRAIL 
Cells were seeded at 50 cells/ cm2 and treated with TRAIL at 20 ng/ml before being left for 10 
days to grow.  A) Representative images of colonies from 4 breast cancer cell lines. B) % Colony 
forming units in 4 cell lines. * = p<0.05, t-test between control and 20 ng/ml TRAIL treated 
colonies. Error bars represent standard error of the mean. 
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4.2.4.1 Compound  OH14 Increases TRAIL Sensitivity of Colony Forming Cells 

 Although we have demonstrated, in section 4.2.3.1, that our main TRAIL-

resistant cell line models are significantly TRAIL sensitive in the clonogenic assay, there 

was still a remaining population of cells, thus, we wished to establish whether we could 

further sensitise these cells to the effects of TRAIL.   

 To assay the ability of OH14 to target colony forming cells, we cultured MCF-7 

and BT474 at low density as in Section 4.2.4 and treated as before, with the addition of 

OH14 1 hour before treatment with TRAIL.  Our lead compound did indeed show an 

ability to significantly increase sensitivity to TRAIL and thus reduce ability of colony 

forming units to form in both MCF-7 and BT474 cell lines, to a similar level as that 

observed using the tumoursphere assay (Figure 4.9). TRAIL significantly reduced colony 

formation in both MCF-7 (A) and BT474 (C) cell lines (p<0.05), however, TRAIL sensitivity 

was significantly increased (p<0.05) by pre-treatment with OH14 at 100 µM, whilst the 

compound alone was found to be non-toxic.   
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Figure 4.9: Colony forming cells are TRAIL sensitive and can be further sensitised by 
treatment with OH14. 
A-B) MCF-7 and C-D) BT474 cell were plated at a low density of 50 cells per cm2 for the CFA 
assay. After cells had attached, 100 µM OH14 (or 0.1% DMSO vehicle control) was added for 1 h 
before the addition of 20 ng/ml TRAIL .  Results represent at least 3 independent experiments, 
with errors caluclated as standard error of the mean. *=p-value<0.05, t-test. 
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4.2.5 Compounds Appear Less effective in Triple Negative and HER2+ve Breast 

Cancer Cell Lines 

 Our initial assays were performed on the two luminal-like, TRAIL-resistant, ER+ve 

cell lines, MCF-7 and BT474.  Previous studies have demonstrated that breast cancer 

cells of a mesenchynmal-like phenotype, such as MDA-MB-231 cells, are TRAIL-sensitive 

(Rahman et al., 2009).  Indeed, our lab have previously demonstrated the triple negative 

cell line, MDA-MB-231 to be around 60% sensitive to TRAIL when assayed for cell 

viability in the bulk population (Piggott et al, 2011), while MDA-MB-231 tumoursphere 

populations were similarly sensitive (French et al., 2015 in press). We wished to 

evaluate whether these already TRAIL-sensitive bulk- and tumoursphere- forming cells 

could be further sensitised by treatment with OH14.   

 Although we have previously observed that MDA-MB-231 tumoursphere 

forming cells are partially TRAIL sensitive, to around 60% (French et al., 2015 in press), 

here, only in passage 2 was a modest TRAIL sensitivity evident (Figure 4.10B). Passage 1 

shows contradictory results to our previous observations, with OH14 in fact increasing 

tumoursphere number when combined with TRAIL (Figure 4.10A).  Upon passaging, 

however, which ultimately tests the key feature of CSCs; self-renewal, we did observe a 

modest TRAIL-sensitivity of MDA-MB-231 tumoursphere-forming cells, and observed 

that OH14 exhibited a modest yet significant (p<0.05) ability to further sensitise to 

TRAIL at 100 µM (Figure 4.10B). 
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Figure 4.10: OH14 has a modest ability to sensitise MDA-MB-231 Tumoursphere 
Forming Cells to TRAIL only after Passaging 
MDA-MB-231 Cells were treated in adherent conditions with vehicle control, OH14 at two 
concentrations and cells were left or treated with 20 ng/ml TRAIL after 1 h. 18 h later, cells were 
transferred to tumoursphere forming conditions.  A) Passage 1: Treatment with 20 ng/ml TRAIL 
in this case did not significantly reduce primary tumoursphere forming ability alone or 
combined with OH14.  B) Passage 2:  After passaging, a significant effect of TRAIL alone, and in 
combination with 100 µM OH14 could be observed (*=p<0.05, t-test).  Results represent three 
technical replicates with errors caluclated as standard error of the mean. 
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 The HER2 positive, SKBR3 cell line has been previously observed to be TRAIL 

resistant in both bulk cell and tumoursphere forming conditions (Piggott et al., 2011). 

Given that these cells are TRAIL resistant, we wished to evaluate whether OH14 could 

sensitise the tumoursphere forming and bulk cells to TRAIL.   

 Cells were treated in adherent conditions before being plated into the 

tumoursphere assay.  Passage 1 (Figure 4.11A) and 2 (Figure 4.11B) data demonstrated 

that indeed SKBR3 tumoursphere forming cells do not respond to TRAIL.  Initially, it 

appeared that OH14, at all concentrations tested, slightly increased the formation of 

primary tumourspheres (Figure 4.11 A), however, upon passaging and thus, when 

evaluating self-renewal, this was not the case.  Passage 2 tumorsphere forming cells had 

a modest response to OH14, with OH14 sensitising to TRAIL at the two highest 

concentrations, 100 µM and 10 µM, although this was only significant (p<0.05) at 10 

µM, where OH14 alone reduced sphere number, thus deeming the effect likely to be 

additive rather than synergistic.  At lower concentrations, the combination of OH14 and 

TRAIL resulted in a slight increase in spheres, as previously observed in passage 1, 

although this effect was not observed at 100 nM, where sphere number was reduced 

(although not significantly) in the combination-treated tumourspheres. 

 An additive TRAIL sensitising effect was observed when OH14 was evaluated 

using Cell Titre blue to measure cell viability of SKBR3 cells (Figure 4.11C). 
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Figure 4.11: OH14 does not Sensitise SKBR3 Bulk or Tumoursphere Forming Cells to 
TRAIL 
SKBR3 cells were treated with OH14 at several concentrations, with or without TRAIL at 20ng/ml 
and left for 18 h before being transferred to tumoursphere condition (A & B) or assayed for cell 
viability (C). Tumourspheres were counted after 7 days (A) or passaged and cultured for a 
further 7 days (B) to determine self-renewal capacity.  Viability of the initial treated adherent 
cell population was measured using Cell Titre blue viability assay (C). Data represent three 
technical replicates, with error presented as the standard error of the mean. *=p<0.05, t-test 
TRAIL vs OH14 plus TRAIL. 
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4.2.6 Repeated Treatment with OH14 Slows Proliferation but does not 

Significantly Reduce Viability 

 The data above lead us to conclude that OH14 was the most efficacious c-FLIP 

inhibitor, which exhibited the least non-specific toxicity.  It was therefore considered 

our primary pre-clinical lead compound. 

 In order to determine the long-term effects of OH14 on cell viability, we set up a 

7 day daily treatment experiment with OH14 at 100 µM, with two different cell 

confluences of MCF-7 cells, in order to ensure full cell confluence was not reached at 

too early a stage in the experiment.  After 3 days of treatment, no significant difference 

was observed between OH14 and vehicle control (DMSO) treated cells at either cell 

density, this suggested that the cells proliferated at the same rate (Figure 4.12A, Day 1).  

By day 4, however, the proliferation rate of cells treated with OH14 appeared lower 

than those treated with control at both cell densities (Figure 4.12A, Day 4).   At 7 days, a 

significant visual difference was observed, where untreated cells had formed a fully 

confluent monolayer, in contrast with OH14 treated cells which appeared to be around 

70 and 80% confluent for 25000 and 50000 cells respectively (Figure 4.12A, Day 7).  No 

significant decrease in viability was detected using the Cell Titre Blue assay (Figure 

4.12B), although, this may have been due to the fact that the untreated cell population 

had reached 100% confluence and had become partially quiescent.  

 Cells from Day 7 of this experiment were plated into tumoursphere assay 

conditions to evaluate the effect of repeated treatment on stem and progenitor like 

cells.  Prolonged treatment of MCF-7 cells in adherent culture conditions with OH14 at 

100 µM slightly, but significantly, reduced tumoursphere forming ability (Figure 4.13A).  

In contrast, however, when untreated cells (i.e. those which had recieved daily 

treatment with DMSO vehicle control) were plated into the same conditions, and 100 

µM OH14 was added when cells were plated out, no significant effect on tumoursphere 

forming ability was observed (Figure 4.13 B).  OH14 appeared only to impare 

tumoursphere formation when a long term treatment had been performed on the bulk 

population, thus, this observation, in combination with the fact that overall cell viability 

was not significantly reduced, suggested that OH14 alone either affected cell viability 

more gradually than the rapid TRAIL mediated activation of apoptosis, or that cells 

underwent a delayed stochastic apoptosis in response to the single agent.   
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Figure 4.12: Daily Treatment with OH14 Slows Proliferation but does not Significantly 
Reduce Viability 
MCF-7 cells were plated at two different cell densities (25000 cells per well and 50000 cells per 
well) in a 6 well plate.  Media was refreshed daily with either 0.1% DMSO (vehicle control) or 
100 µM OH14. A) Cells were assessed daily under microscope.  Scale bar = 100 µM.  B) Cell titre 
blue viability assay was performed after the 7 day daily treatment regime (assay was performed 
on one well of a 6 well plate per condition). 
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Figure 4.13: 7 Day Daily Treatment with OH14 Partially Reduces Tumoursphere 
Forming Ability 
A) Two cell densitites of MCF-7 cells which had been subjected to 7 days daily treatment with 
OH14 at 100 µM or 0.1% DMSO vehicle control were plated into tumoursphere conditions and 
left for 7 days before tumourspheres were counted. 7 day treatment with OH14 significantly 
reduced tumoursphere-forming cells at both cell densities (*=p-value<0.05, t-test between 
untreated and OH14 (blue) or TRAIL and OH14 + TRAIL (red). B) Cell density 50000 cells which 
had not previously been subjected to the 7 day OH14 treatment were subjected to 
tumoursphere conditions and either 0.1% DMSO or 100 µM OH14 was added at the beginning 
of the assay, before being left for 7 days and tumourspheres counted. Errors caluclated as 
standard error of the mean 
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4.2.7 Lead Compound OH14 is Non-Toxic to Non-Tumourgenic Cells 

 Part of the interest in TRAIL as a therapeutic is its ability to target cancer cells 

specifically, leaving non-cancerous cells viable.  This is a desirable attribute for any novel 

cancer therapeutic and we wished to determine if this was also true for OH14.   

 To determine the cytotoxicity of OH14 on non-tumourgenic cells, we evaluated 

the compound using the Cell Titre Blue viability assay on MCF-10A cells.  MCF-10A cells 

were derived from mammary tissue of a 36 year old healthy woman and have been 

cultured as immortalised but non-tumourgenic mammary epithelial cell line, and 

exhibits a stable karyotype (Soule et al., 1990).  These cells have few genetic alterations 

which are common in cultured breast epithelial cells, express normal p53 (Merlo et al., 

1995) and are ultimately used to represent non-tumourgenic mammary epithelial cells.   

 The lead compound, OH14, was assessed at a range of concentrations for its 

toxicity on the bulk population of MCF-10A cells, which show modest TRAIL-sensitivity 

(Piggott et al., 2011), using the Cell Titre Blue viability assay over a 24 h period.  The 

combined effect of OH14 and TRAIL was also analysed, since the treatment regime 

would consist of both TRAIL and OH14, thus it is important to fully establish the effect of 

the combination treatment in this cell line.  Although a small, and non-significant, 

reduction in cell viability was seen, very little toxicity was observed in MCF-10A cells 

over this time period, with the IC50 value clearly not being reached even at the highest 

concentration of OH14 tested, 100 µM (Figure 4.16). There was a modest, yet significant 

reduction in viability when cells were treated with TRAIL in combination with OH14, 

however, viability did not fall below 80% at all concentrations tested, thus, although 

significant, this decrease does not suggest a high level of toxicity. 
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Figure 4.14:  Lead Compound OH 14 is Non-Toxic to Non-Tumourgenic MCF-10A Cells 
Alone but partially decrease viability in combination with TRAIL  
Nontransformed TRAIL resistant (Piggott et aI., 2011) human breast cell line MCF-10A cells 
cultured in adherent conditions and were treated at 70% confluence with vehicle control or 
OH14 at several concentrations for 1 h, before either adding 20 ng/ml or leaving with OH14 
alone for 18 h.  Cell viability was measured the next day using the CellTiter blue MTS assay of 
cell metabolism. *=p-value<0.05 between control and OH14 alone (blue) and TRAIL and OH14 + 
TRAIL (red). Results represent three individual experiments performed with four internal 
technical replicates with errors caluclated as standard error of the mean. 
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4.3 Discussion  
 In this chapter, we have used multiple in vitro assays to evaluate 19 small 

molecules, identified in Chapter 3, for their ability to sensitise TRAIL-resistant breast 

cancer cells and stem-like cells, to TRAIL.  Here, we identify several small molecules 

which demonstrate an ability to significantly sensitise the adherent, bulk population of 

TRAIL-resistant MCF-7 and BT474 cells to TRAIL.  The compounds analysed had varied 

effects, from no effect on TRAIL sensitivity; increasing sensitivity; or even decreasing 

sensitivity and increasing viability in some cases.  Several compounds, although able to 

sensitise to TRAIL at low concentrations, also significantly increased viability at high 

concentrations which may simply have been due to the fact that several of the 

compounds were not in solution and so particles were physically preventing cell 

proliferation.  Alternatively, however, it may be that the compounds were binding to 

the site of FADD interaction on procaspase-8, due to the homology between c-FLIP and 

procaspase-8, and thus causing the effect of caspase-8 inhibition, and therefore 

potentiating an anti-apoptotic effect.  Of the 19 small molecule inhibitors evaluated on 

MCF-7 and BT474 bulk cell viability, we selected 3 lead compounds OH14, OH16 and 

OH19, which demonstrated an ability to siginificantly sensitise TRAIL-resistant MCF-7 

and BT474 cells to TRAIL to a similar level as that obtained using siRNA targetted to c-

FLIP, whilst exhibiting little viability effects alone and demonstrating good solubility 

properties, to evaluate in the tumoursphere assay.   

 The most profound result obtained from our previous work on c-FLIP siRNA and 

TRAIL treatment was observed in the tumoursphere assay, where 100% of 

tumourspheres from 4 breast cancer cell lines tested were eliminated (Piggott et al, 

2011).  Here, we show that one of the three lead compounds, OH14, significantly 

reduced the tumorsphere-forming ability of cells from two TRAIL-resistant breast cancer 

cell lines at multiple concentrations, when administered in combination with TRAIL, 

whereas the other two initial lead inhibitors did not show such efficacy.  Almost a total 

elimination of tumoursphere-forming cells generated from both MCF-7 and BT474 cells 

was observed when treated with 100 µM OH14 in combination with TRAIL.   

 In addition, we have evaluated our compounds in the colony-forming assay - a 

proliferation or progenitor like assay.  Initially, we noted that MCF-7 and BT474 

colonies, which are TRAIL resistant in bulk and tumoursphere assays, were more 
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sensitive to TRAIL in these assay conditions.  Colonies are varied in size and morphology, 

thus, this increased sensitivity may be due to the specificity of TRAIL for more 

mesenchymal-like cells (Rahman et al., 2009).  Regardless of this, however, TRAIL-

sensitivity of BT474 and MCF-7 colonies was still significantly increased by treatment 

with our lead compound, OH14.  Since 50% of cells plated form colonies, the assay is 

not representative of the minority stem cell population in the same way as the 

tumoursphere assay.  However, this assay did provide further support to the cell 

viability and tumoursphere assays as the drug efficacy data follows a similar overal 

trend in each case. 

 The initial compound screens performed here were on two TRAIL-resistant 

ER+ve cell lines, as these were hypothesised to have the greatest response to our 

combination therapy, based on previous data, however, we explored the effects of our 

lead compound on two additional cell lines, which represent different subtypes of 

breast cancer.  c-FLIP has been associated with TRAIL resistance in HER2 +ve breast 

cancer (Zang et al., 2011) and we have previously shown the bulk and tumoursphere 

forming population of SKBR3 cells to be sensitive to siRNA c-FLIP suppression and TRAIL 

treatment (Piggott et al., 2011).  SKBR3 cells were not selected for high-throughput 

compound screening primarily due to the integrity of their tumoursphere-forming cells 

being sub-optimal, in addition to their reduced ability to form colonies in the CFA.  

When treated with OH14, primary SKBR3 tumourspheres were not sensitised to TRAIL, 

however, a modest, yet significant sensitisation was observed at 10 µM upon passaging.  

This sensitisation, however, was likely to be additive rather than synergistic since OH14 

itself reduced sphere number at this concentration.  Similarly, OH14 did sensitise SKBR3 

bulk cells, assessed using the viability assay, to TRAIL, although impacting on viability 

alone.  Previously, knocking out c-FLIP using siRNA reduced SKBR3 viability by around 

15%, whilst the combination led to a 45% increase in cell death (Piggott et al., 2011), 

thus, OH14 was unable to phenocopy siRNA to such an extent on these cells. 

  The bulk population of triple-negative breast cancers are mostly TRAIL sensitive 

(Rahman et al., 2009), thus, using a TN cell line in order to study our inhibitors would 

not have been optimal for the initial viability assay.  However, as we have observed here 

using the CFA, our inhibitors can further increase the sensitivity of TRAIL-sensitive cells 

and so it may be possible to further sensitise these cells, although our previous work 
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using c-FLIP siRNA did not further sensitise the bulk population of the TN cell line, MDA-

MB-231 to TRAIL (Piggott et al., 2011).  Previous work has, however, demonstrated the 

tumoursphere-forming population of this cell line to be highly sensitive to the 

combination of siRNA c-FLIP and TRAIL treatment (Piggott et al., 2011) and so it was 

hypothesised that we may obtain a similar result with our lead compound.  We did not 

observe a significant effect of OH14 on MDA-MB-231 primary tumoursphere forming 

cells, although, similar to SKBR3 tumoursphere-forming cells, a modest, yet significant 

effect was observed at 100 µM upon passaging.  Although we, and others, have shown 

that genetic suppression of c-FLIP can sensitise MDA-MB-231 and SKBR3 cells to TRAIL 

(Piggott et al., 2011; Zang et al., 2014), it may be that inhibition of the FADD-c-FLIP 

interaction using our inhibitors is not potent enough to exert this same effect.  

 One of the primary reasons that TRAIL is such a desirable therapeutic agent is 

the specificity it exhibits for targeting cancerous cells, whilst sparing non-cancerous 

cells, thus, retaining this lack of general cytotoxicity is an important feature of a TRAIL-

sensitising agent.  Since TRAIL resistance in these cells is thought to be largely due to 

the expression of decoy receptors, with anti-apoptotic proteins such as c-FLIP only 

playing a part when activated in combination with each other (Gura, 1997; Ashkenazi et 

al., 1999; Lemke et al., 2014; Griffith and Lynch, 1998) we hypothesised that our small 

molecule c-FLIP inhibitors would be non-toxic to these cells when administerd alone, in 

accordance with published data using siRNA to c-FLIP on these cells (Piggott et al., 

2011).  In accordance with this, we hypothesised that a partial induction of apoptosis 

may be observed when administered in combination with TRAIL, due to the potential 

role of anti-apoptotic proteins in normal cell TRAIL resistance, in additoin to our 

published observations of 20% increase in cell death using c-FLIP siRNA and TRAIL in 

MCF-10A cells (Piggott et al., 2011).  Here, we have demonstrated, using the non-

cancerous MCF-10A mammary cell line, that our lead compound was indeed not 

significantly toxic to this non-transformed cell line when administered alone.  We 

observed a modest increase in cell death when treated in combination with TRAIL, 

similar to the level we have previously observed using siRNA (Piggott et al, 2011).  To 

ascertain further information regarding the long-term cytotoxicity of OH14, we 

performed daily treatment on the bulk population of MCF-7 cells at 100 µM which 

demonstrated OH14 to be non-cytotoxic.  Treatment with OH14 did, however, slow 
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proliferation after 4 days which may be due to the role c-FLIP has on stem-like cells, that 

is, inhibiting c-FLIP may be preventing growth of progenitor or stem-like cells, which 

help maintain the cell population. This data is preliminary and these experiments will be 

repeated with the use of stable c-FLIP deficient cell line (using shRNA or TALEN, for 

example) aswell as a more efficacious analogue of OH14 in the future.   

 In conclusion, we have confirmed using several in vitro assays, that, of the 19 

compounds initially selected using in silico protein modelling in Chapter 3, we have 

successfully identifed one lead c-FLIP small molecule inhibitor, OH14, which shows an 

ability to significantly increase sensitivity of previously resistant breast cancer cells to 

TRAIL induced apoptosis in a number of different assays.  The following chapters 

explore the mechanism of action of our lead compound, OH14 (Chapter 5), in addition 

to analysing analogues of OH14 to provide initial structural activity information for 

future compound generation (Chapter 6).   
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Chapter 5: Exploring the Mechanism of Action of OH14 
 

5.1 Introduction 
 The design of our inhibitors, using molecular modelling, aimed to generate small 

molecules which enter and bind within a pocket on the surface of c-FLIP L DED1 in order 

to block its interaction with the FL motif of FADD.  Data presented in Chapter 4 

demonstrated that a proportion of the candidate inhibitors do indeed function as 

intended, by sensitising previously resistant or partially resistant breast cancer cells to 

TRAIL, in several different cell-based assays.  These cellular outcomes are consistent 

with the proposed mechanism of action of our inhibitors, however, it is important that 

this is confirmed in vitro by demonstrating that the interaction between FADD and c-

FLIP is indeed impaired.  

 Many important cellular processes are reliant on protein:protein interactions 

(PPIs) and thus pharmacological inhibition of these interactions are an attractive target 

of small molecule drug design.  Developing efficient pharmacological PPIs and indeed 

studying protein interactions in vitro can be quite a challenge, due to the dynamic 

nature of such processes, and despite the many potential techniques available, there 

are many drawbacks to each.  A full understanding of the mechanism of such inhibitors, 

i.e. proving their ability to interfere with their target interactions is vital in order to 

progress such therapeutics.  Through a collaboration with the Institute of Molecular 

Genetics, Prague, we had the opportunity to utilise FRET as a technique to study these 

interactions, through advice provided by Dr David Stanek.  Additionally, Dr Ladislav 

Andera provided expertise for us to attempt to use the technique of TALEN in order to 

attempt to generate a stable c-FLIP negative cell line which would be used for 

performing mutational studies on c-FLIP key residues.   

 In addition to exploring the mechanism of action of OH14, we wished to 

evaluate its effects on additional cell lines, as well as evaluating its potential effect in 

CSC plasticity, i.e. the ability for non-cancer-stem cells to reacquire stem-like properties.  

Clinically, CSC-plasticity is a process of high importance since it implies that, even if all 

CSCs were eliminated from a tumour, any remaining bulk cells would be able to de-

differentiate to a CSC-like state and thus, re-seed resulting in new tumour growth.  A 

clinical strategy involving a combination treatment which eliminates CSCs and prevents 
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plasticity is therefore a highly desirable way of eliminating a tumour and preventing 

relapse.  Studying plasticity in vitro is a complex task since observing an increase in CSCs 

alone does not demonstrate the process as it may be occurring by increased CSC self-

renewal.  It is necessary to eliminate all CSCs from a cell population before plasticity can 

be observed with some confidence.  Our recent demonstrations that TRAIL in 

combination with siRNA c-FLIP can eliminate tumoursphere-forming cells from a panel 

of breast cancer cell lines in vitro has provided us with a tool for studying plasticity 

(Piggott et al., 2011).  We have recently optimised an in vitro assay, using our previous 

findings, which can be used as an in vitro model of plasticity (French, R., PhD Thesis 

2014).  This assay relies on the fact that, although all tumoursphere-forming ability is 

eliminated after treatment with TRAIL in c-FLIP suppressed cells, some viable cells 

remain which are able to re-acquire tumoursphere-forming ability (Piggott et al., 2011).  

Using this optimised assay, we wished to analyse whether OH14 could impair CSC 

plasticity, which would enhance the clinical potential of this small molecule c-FLIP 

inhibitor. 

 

5.1.1 FRET Acceptor Photobleaching 

 Fluorescence or Förster, after the scientist who originally discovered FRET, 

Resonance Energy Transfer (FRET) is a distance-dependent transfer of energy between 

an electronically excited fluorophore to a second, non-excited fluorophore.  FRET 

efficiency depends on the donor and acceptor molecules being within 1-10 nm of one 

another and for the absorption spectrum of the acceptor to overlap with the emission 

spectrum of the donor (Jares-Erijman and Jovin, 2003).   
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Figure 5.1: Representation of the FRET spectral overlap requirement of donor and 
acceptor. 
Donor and acceptor emission and absorption spectra, respectively, must overlap in order to 
achieve successful FRET.  Acceptor photobleaching FRET involves loss of the acceptor (e.g. in 
this case, YFP) signal, and an increase in the donor (e.g. in this case, CFP) signal. 

 

 FRET can be measured using a variety of methodologies; sensitized emission (SE-

FRET); acceptor photobleach (AP-FRET); or fluorescence lifetime imaging (FLIM-FRET).  

AP-FRET, which is used in this study, is a method of measuring protein interactions using 

the exchange of energy between a donor and acceptor.  The intensity of the donor will 

be measured before and after irreversible eradication of the acceptor by ‘bleaching’ 

using a high intensity light source. (Figure 5.2)  Successful FRET interactions will prevent 

full emission of the donor, thus, the increase in donor intensity after acceptor bleaching 

demonstrates the presence of absence of FRET. 

 

Figure 5.2: Schematic of FRET Acceptor Photobleaching using CFP Donor and YFP 
Acceptor 
A) When donor is excited at its wavelength, in a case where donor and acceptor fluorophores 
are in close proximity, energy will be transferred from donor to acceptor which will cause the 
acceptor to emit. B) In this same case, if the acceptor is bleached by exciting at a very high laser 
power, the donor emissions will not be transferred and instead will be emitted as light.  In both 
cases, if acceptor and donor are not in close proximity, then no transfer of energy will occur 
between the two fluorophores and so all donor emissions will be detectable, regardless of 
whether the acceptor is bleached or not. 
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5.1.2 TALEN Gene Manipulation 

 In February 2011, Nature Biotechnology released two articles on targeted 

genomic modification using Transcription activator-like effector nucleases (TALENs) 

(Miller et al, 2011; Zhang et al., 2011).  TALENs have since been used to modify the 

endogenous genes present in a variety of species from viruses, plants and yeast to 

insects, frogs and mammals, including mice (Kim and Kim, 2014). 

 TALEN technology was utilised in this chapter in order to attempt to eliminate c-

FLIP from MCF-7 cells, and, ultimately generate a stable c-FLIP knock-out cell line, which 

we have not been able to successfully achieve using shRNA.  If generated, this cell line 

could then be utilised for overexpression studies using SDM to analyse the importance 

of residues on c-FLIP we have identified in Chapter 3.   

 In this chapter, we explore the mechanism of action of our lead compound, 

OH14. We analyse the interactions between c-FLIP, procaspase-8 and FADD in TRAIL-

sensitive and -resistant lines and demonstrate the ability of OH14 to interfere with the 

c-FLIP:FADD interaction.  TALEN technology was utilised in order to attempt to generate 

a c-FLIP knock-out cell line, however, this was not successful and requires further work.  

Therefore additional mutagenesis studies c-FLIP:FADD interactions were not achievable 

at this time.  We also explored the effect of our lead inhibitor on additional cell lines 

and on the CSC theory of plasticity, and demonstrated it to have potential therapeutic 

efficacy in targeting this important process. 
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5.2 Results 

5.2.1 Procaspase-8 Cleavage Increases Over Time after TRAIL Treatment  

 Co-immunoprecipitation (co-IP) and Western blot were optimised in order to 

evaluate the relevant protein:protein interactions and caspase-8 activity, represented 

by procaspase-8 cleavage in TRAIL resistant and sensitive cells.   In brief, optimisation 

involved evaluating differing pairs of antibodies against FADD and caspase-8 in order to 

achieve the best combination for use in co-IP. 

 Several groups have reported the presence of interactions between caspase-8 

and FADD in TRAIL sensitive cell lines, and the lack of this interaction in TRAIL resistant 

lines (Day et al., 2008; Dickens et al., 2012; Safa and Pollok, 2011).  We therefore 

wanted to establish whether this was the case in our cell lines.  The levels of cleaved 

caspase-8 (p43 and p18 C8) was initially evaluated upon treatment with TRAIL after 

varying treatment times.  Initial Western blot on TRAIL-sensitive MDA-MB-231s 

demonstrated an increase in the cleaved and therefore, active, forms of caspase-8 as 

the duration of TRAIL treatment increased up to 2 hours (Figure 5.3A).  In contrast, 

TRAIL-resistant MCF-7 cells exhibited a barely detectable level of cleaved caspase-8 at 2 

hours (Figure 5.3A).   This Western should ideally be repeated with replicate samples 

and higher concentrations of protein to confirm these findings, particularly, since 

GAPDH confirms that the gel was not equally loaded.  Comparing band intensity, by 

normalisation to GAPDH, confirmed however the increase in cleaved caspase-8 in MDA-

MB-231 cells, while no marked differences were observed in total protein levels of c-

FLIP or FADD between the MDA-MB-231 and MCF-7 cells.   

 After TRAIL-sensitive MDA-MB-231 cells were treated at time intervals with 100 

ng/ml TRAIL  no interaction between FADD and  c-FLIP was evident, as no c-FLIP band 

was present (Figure 5.3B).  Western blot confirmed an increase in the cleaved, p43/41 

and p18 forms of caspase-8 over the duration of 2 hours.  Additionally, FADD levels 

were confirmed to stay constant throughout the treatment duration.  An interaction 

between FADD and caspase-8 was observed, although the band was faint, whilst an 

increasing interaction with FADD and the p43/41 was observed over time 

demonstrating cleavage of the pro-form of caspase-8 (procaspase-8) to its active 

cleaved form, whilst in complex with FADD (Figure 5.3B).  Stable total levels of FADD 
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confirmed that this increase did not simply correlate with increasing protein levels of 

FADD.   

 In the future, this data needs to be compared in the TRAIL resistant MCF-7 cell 

line to establish if the immunoprecipitation of FADD and c-FLIP is achievable in resistant 

cells. 
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Figure 5.3: Caspase-8 Cleavage and Interaction with FADD Increases over Time in 
TRAIL Sensitive Cells. 
 A) Total protein extracts from MCF-7 and MDA-MB-231 cells, treated with 100 ng/ml TRAIL for 
the indicated timepoints, were probed for Caspase-8, FADD and c-FLIP protein levels. GAPDH is 
provided as loading control.  B) Total protein input prior to co-IP (C) was probed for caspase-8 
and FADD protein levels, with GAPDH as loading control. C) Total protein extracts from MDA-
MB-231 cells, treated with TRAIL, were immunoprecipitated with anti-FADD antibodies. 
Immunoprecipitates were blotted with antibodies to FADD, Caspase- 8 and c-FLIP. 
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5.2.3 TRAIL Increases Caspase-8 Activity in Sensitive Cell Lines 

 TRAIL acts by inducing apoptosis mediated by the extrinsic, caspase-8 pathway.  

In the bulk population of TRAIL resistant MCF-7 cells, this pathway is blocked by the 

action of c-FLIP (Safa and Pollok, 2011; Day et al., 2009; Piggott et al., 2011), and thus, 

little caspase-8 activity will be observed when cells are treated with TRAIL.  We 

therefore expected our lead compounds, which have demonstrable ability to sensitise 

to TRAIL, to cause an increase in caspase-8 activity when treated with TRAIL in these 

cells.  In addition, we have previously observed that TRAIL does exert an effect on the 

colony forming activity of TRAIL resistant MCF-7 cells (Section 4.2.4), which is consistent 

with a recent study from our laboratory (French et al., 2015 in press) thus, we wished to 

elucidate whether this occured through the normal pathway of TRAIL activity.   

 To determine caspase-8 activity in this assay, the enzymatic Caspase-Glo 8 assay 

(Promega) was used.  An initial evaluation of this assay was performed on the trail 

sensitive MDA-MB-231 cells compared with TRAIL resistant MCF-7 cells (Figure 5.4 A-D) 

in order to confirm that this would indeed be a suitable assay for compound evaluation.  

Bulk cells from a TRAIL-resistant (MCF-7) and TRAIL-sensitive (MDA-MB-231) cell line 

were treated with either 20 ng/ml or 100 ng/ml TRAIL and left for around 2 hours, 

allowing for a significant induction of caspase-8 activity as observed in previous studies 

(MacFarlane et al., 2000; Sharp et al., 2005).  Overall caspase-8 activity was higher in 

the TRAIL sensitive line, regardless of whether TRAIL had been added.  Upon treatment 

with TRAIL at 20 ng/ml, caspase-8 activity was not altered in the TRAIL-resistant MCF-7 

cells, however, a slight, although non-significant in this case, increase was observed in 

the TRAIL-sensitive line.  When the concentration of TRAIL was raised to 100 ng/ml, an 

increase was detected in MDA-MB-231 cells, although this was not significant, however, 

no increase in caspase-8 activity was observed in MCF-7 cells (Figure 5.4E). 
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Figure 5.4: Caspase-8 Activity Increases upon TRAIL addition in TRAIL sensitive Cell 
Lines 
Representative images of untreated A) TRAIL-resistant MCF-7 and C) TRAIL-sensitive MDA-MB-
231.  Representative images of 20 ng/ml TRAIL treatment for 18 h on B) MCF-7 and D) MDA-MB-
231. Scale bars = 100 µm.  E) TRAIL-sensitive MDA-MB-231  and TRAIL-resistant MCF-7 cells 
were plated in adherent conditions and left to attach overnight. After 24 h, vehicle control, 20 
ng/ml or 100 ng/ml TRAIL was added and cells were left for around 2 h to allow the induction of 
caspase-8.  Caspase-Glo 8 was performed according to manufacturers instructions and 
luminsecence was read using a plate reader.  Results represent 3 replicates. 

E 
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5.2.3 c-FLIP Inhibitors Increase Caspase-8 Activity upon TRAIL Treatment 

 To evaluate the effect of our 3 initial compounds, OH14, 16 and 19 on caspase-8 

activity in the bulk population of TRAIL resistant MCF-7 cells, we used caspase-glo 8 

luminescence assay. The compounds alone did not significantly effect caspase-8 activity, 

when treated in combination with TRAIL, however, a significant increase in caspase-8 

activity was observed (Figure 5.5A). This suggested our compounds are indeed specific 

in their ability to sensitise to TRAIL via the extrinsic, caspase-mediated pathway of 

apoptosis.  One other compound was selected (OH12) which we previously observed to 

exhibit a modest TRAIL sensisising effect at some concentrations, but increased viability 

at several higher concentrations in the initial viability evaluation (Section 4.2.2).  OH12 

did not significantly increase caspase-8 activity, as hypothesised by its lack of efficacy in 

initial assays.  OH14, 16 and 19 did show a modest, although non-significant, reduction 

in caspase-8 activity when treated alone which may be due to a suppression of baseline 

caspase-8 activation in the system, or alternatively an off-target effect of caspase-8 

inhibition when the TRAIL pathway is not stimulated.   

 In addition to the caspase-glo assay, the idea that CFA cells are TRAIL sensitive 

due to the induction of caspase-mediated apoptosis was tested using a commercially 

avaialable pan-caspase inhibitor (Z-Vad-FMK).  This was performed in BT474 cells which 

are TRAIL resistant, however, like MCF-7 cells, their CFA cells are partially TRAIL 

sensitive (Section 4.2.4).  The sensitivity of BT474 colony forming cells to TRAIL was 

rescued to 78%, by the addition of a pan-caspase inhibitor (Figure 5.5 B).  When 

combined with OH14, BT474 CFA TRAIL-sensitivity was increased, as previously 

observed which was restored to a similar level as TRAIL alone by pre-treatment with the 

pan-caspase inhibitor, with a rescue to an average of 73%.  Furthermore, we show here 

that the caspase inhibitor was able to rescue the MCF-7 CFA TRAIL-sensitivity 

significantly (p-value<0.001) (Figure 5.5 C) and demonstrated therefore that TRAIL is 

acting through the extrinsic pathway of apoptosis in the partially-sensitive MCF-7 colony 

forming cells.  Evaluation of OH14 in combination with a caspase-inhibitor has not yet 

been performed on MCF-7 colony forming cells. 
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Figure 5.5: Small Molecule c-FLIP Inhibitors Sensitise to TRAIL via Caspase-mediated 
Pathway. 
A) Caspase-8 (C8) Activity Assay (Caspase-Glo 8) performed on 70% confluent adherent MCF-7 
cells after treatment with the 3 initial lead compounds (OH14, 16 and 19) and another, less 
active, compound (OH12) at 100 µM alone or in combination with 20 ng/ml TRAIL. *=p-
value<0.05, t-test TRAIL vs compound plus TRAIL (red) and untreated 231 vs TRAIL treated 
(green).  B) CFA: BT474 cells plated at 50 cells per cm2, treated after attachment with OH14 
(both 14.2 and 14 represent OH14) at 100 µM alone or in the presence of a pan-caspase 
inhibitor (CI) at 10 µM with or without 20 ng/ml TRAIL and left for 10 days to form colonies. C) 
CFA: MCF-7 cells were plated at 50 cells per cm2 and left to attach before treatment with 20 
ng/ml TRAIL in the presence of absence of the pan-caspase inhibitor at 0.1 µM (CI) and left to 
form colonies. Results represent averages of 4 technical replicates over 2 experiments, error 
bars presented represent standard error of the mean. *=p-value<0.05, **=p-value<0.001, t-test. 
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5.2.2 FRET Acceptor Photobleaching 

 In our experiments, eCFP and eYFP serve as the donor-acceptor pair for AP-FRET.   

 

5.2.2.1 FRET Optimisation: Plasmid Ratios 

 FRET constructs e-CFP-C1 and e-YFP-C1 were used to generate fusion constructs 

of FADD, c-FLIP and procaspase-8.  We have successfully generated e-CFP-C1-FADD and 

e-YFP-c1-c-FLIP plasmids, however, cloning is ongoing for the procaspase-8 FRET 

constructs.  Ultimately we wish to be able to use FRET to study the interactions of c-

FLIP:FADD, c-FLIP:caspase-8 and caspase-8:FADD in the presence of our lead compound 

and ultimately in order to evaluate our c-FLIP mutants via mutagenesis of the FRET 

constructs. 

  In order for AP-FRET to be successful, it is optimal for both donor and acceptor 

to be expressed to relatively similar levels, thus, a considerable amount of optimisation 

was required.  MCF-7 cells were initially chosen since these are the key TRAIL resistant 

model used in the previous inhibitor evaluations, however, HeLa cells, which are also 

TRAIL resistant are reported to be an easier cell line to transfect (Crowder and El-Deiry, 

2012), thus we decided to use these cells for the initial FRET optimisation and inhibitor 

testing.  We initially observed that it was difficult to obtain a strong fluorescent signal 

for CFP transfected cells in comparison to YFP expression, thus, we tested the 

expression obtained using several different ratios of CFP and YFP plasmid DNA to each 

other in order to achieve the optimum ratios for our system (Methods, Table 2.1).  

Fluorescence was observed using a confocal microscope to further confirm whether 

successful transfection of cells had taken place.  
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5.2.2.2 FRET Optimisation: Overexpression of FADD and c-FLIP FRET Constructs 

Induces Caspase-Mediated Apoptosis 

 In the process of plasmid optimisation we observed that when cells were 

transfected with either c-FLIP or FADD FRET constructs, a significant amount of cell 

death was present in comparison to when empty CFP and YFP constructs were 

transfected.  We hypothesised that transfection with FADD-CFP is an overexpression of 

one of the key signalling components of the apoptotic pathway, therefore, this may 

cause cells to undergo apoptosis, due simply to the abundance of a key apoptotic 

protein.  Although, it is not clear why c-FLIP:YFP expression induced cell death. 

 To determine whether the cell death was simply due to the overexpression of 

apoptotic proteins, and, in an attempt to optimise conditions for FRET experiments to 

take place, we pre-treated cells to be transfected with a pan-caspase inhibitor.  The pan 

caspase inhibitor, Z-VAD-FMK, blocks the active form of caspases and thus would not 

block the uncleaved form of procaspase-8 (or -10), which would still be able to compete 

with c-FLIP for FADD if no c-FLIP inhibitor was present.   

 HeLa cells were treated with the pan-caspase inhibitor Z-VAD-FMK at 10 µM 1 

hour before transfection with c-FLIP-YFP or FADD-CFP FRET constructs.  After 

transfection, cells were left for 24 h before being visualised using a confocal microscope 

to check both viability and uptake of the plasmids.  Transfection with both c-FLIP and 

FADD FRET constructs (either tagged to YFP or CFP) induced death in HeLa cells (Figure 

5.6 A and C) and in MCF-7 cells (data not shown).  Treatment of the cells with the pan-

caspase inhibitor Z-VAD-FMK prior to transfection prevented this cell death, as cells 

appeared more viable, and showed increased expression of FRET constructs (Figure 5.6 

B and D).  This rescue was also observed in MCF-7 cells (data not shown). 
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Figure 5.6: Pan-caspase Inhibitor Z-VAD-FMK Prevents Cell Death Induced by 
Overexpression of c-FLIP and FADD FRET Constructs 
Hela cells were plated on 24 well glass bottom plates (Mattek), left to attach overnight and 
treated with vehicle control or pan-caspase inhibitor at 10 µM Z-VAD-FMK for 1 hour before 
being transfected with either FADD-CFP or c-FLIP-YFP FRET constucts.  Phase constrast 
microscopy was performed 24h after transfection. A) FADD-CFP treated with vehicle control B) 
FADD-CFP with caspase-inhibitor C) c-FLIP-YFP treated with vehicle control D) c-FLIP-YFP treated 
with with caspase-inhibitor. White arrows highlight cells which have rounded up and detached.  
Scale bars = 100 µm. 
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5.2.2.2 CFP-YFP Construct Demonstrates FRET in HeLa Cells 

 To test the validity of FRET in our biological system, and ensure that successful 

FRET could be measured in our cells, we obtained a CFP-YFP fusion protein, to be used 

as a positive control.  Since CFP and YFP are fused together, when transfected with the 

construct, cells should show an interaction between the proteins, i.e. an increase in CFP 

when YFP is bleached.  Due to the fact that the proteins are fused, the level of FRET 

obtained is likely to be maximal, compared to when testing the FRET between two 

unfused proteins. 

 HeLa cells transfected with the fusion protein were analysed.  A region of 

interest (ROI) was selected based on the ratio of CFP to YFP fluorescence, that is, the 

fluorescence intensity of CFP and YFP was relatively similar and was adjusted using the 

digital gain to ensure this was the case (Figure 5.7A).  The average intensity within the 

ROI was plotted as a function of time (Figure 5.7B).  The positive control showed a 

significant increase in donor (CFP) fluorescence intensity after the acceptor (YFP) was 

bleached and bleaching was continued, thus confirming the ability of FRET to be 

recorded using our system. 
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Figure 5.7: Fluorescence image of HeLa cells expressing CFP-YFP fusion construct. 
A) Representative image of HeLa cells transfected with CFP-YFP fusion protein, before bleaching 
took place.  Scale bar = 50 µm. B) Fluorescence of donor (CFP) and acceptor (YFP) were 
measured as a function of time during acceptor photobleaching (bleaching occurred at each 
time point). Intensities within the region of interest (red square (A)) from an average of 4 cells 
over 3 experiments were analysed and plotted.  
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5.2.2.3 OH14 Reduces the Number of Detectable FADD:c-FLIP Interactions in TRAIL 
Treated Cells 

 Our observation that the pan-caspase inhibitor prevented apoptosis induced by 

expression of our c-FLIP and FADD FRET constructs was such that in subsequent FRET 

experiments, cells were always treated with caspase-inhibitor before transfection, in 

order to ensure that they remained viable for FRET measurements to take place 24 

hours later.  Pan-caspase inhibitors act by binding to the active site on caspases (R and 

D systems), and therefore do not interfere directly with FADD complexes. 

 To determine whether our lead compound, OH14, could indeed inhibit the 

interaction between c-FLIP and FADD, HeLa cells were left untreated (vehicle control), 

treated with TRAIL alone, treated with 100 µM OH14 alone or pre-treated with 100 µM 

OH14 before TRAIL addition at 20 ng/ml.  Untreated cells showed an increase of up to 

approximately 7% in CFP intensity upon YFP bleaching (Figure 5.8A, blue), suggesting 

that FRET was occurring to a small degree, that is, in unstimulated cells, c-FLIP and FADD 

do interact, but not to a great extent.  When cells were first treated with OH14 at 100 

µM, FRET appeared to be slightly, although not significantly, reduced, compared with 

untreated cells (Figure 5.8A).  Upon treatment with TRAIL, a significant increase in CFP 

intensity, of up to an average of approximately 35%, was observed at every time point 

after bleaching (Figure 5.8B, red), which suggested that stimulation of the apoptotic 

pathway in these TRAIL resistant cells has occurred, and that c-FLIP and FADD are 

indeed interacting.  When the cells were pre-treated with OH14, however, the CFP 

intensity increased to only 5% compared with unstimulated cells (before bleaching) 

(Figure 5.8B, green), and overall was significantly lower than TRAIL alone, which 

suggested that OH14 successfully inhibited the interaction between c-FLIP and FADD.   

 The same FRET experiments were performed in MCF-7 cells, which initially 

showed a great deal of cytotoxicity when cells were transfected with the constructs, 

and so were not selected as our primary line for performing FRET experiments. When 

treated with TRAIL alone, we did, however observe an increase in FRET, which was 

reduced when TRAIL was treated in combination with OH14, although this experiment 

needs to be repeated in order to demonstrate the significance of this reduction (Figure 

5.8C). 

 In any live cell, protein interactions will be dynamic, with the kinetics varying 

with protein expression and affinity between the proteins involved.  By using a box-
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scatter plot we have explored this variability in greater detail by looking at the 

responses at certain time points after bleaching: at the beginning; a third of the way in; 

and two thirds into reading.  The mean bars demonstrate the overall trend, however, 

individual points clearly demonstrate that whilst there were many detectable 

interactions in one cell, there were few in another (Figure 5.8D).   
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Figure 5.8: OH14 Reduces FADD:c-FLIP Interactions in TRAIL Treated TRAIL-resistant 
HeLa and MCF-7 Cells 
HeLa cells were transfected with c-FLIP and FADD FRET plasmids, treated with caspase-inhibitor 
at the time of transfection were left for 24 h before treatments. Cells were then treated with A) 
vehicle control (0.1% DMSO, blue), 100 µM OH14 alone or B) 100 µM OH14 for 1 hour before 20 
ng/ml TRAIL for 2 hours (Green), or 20 ng/ml TRAIL alone for 2 hours (Red).  Multiple cells were 
recorded, results displayed are CFP fluorescence from the average of at least 7 cells on 3 
independent experiments. There is a significant difference 4 seconds after bleaching between 
TRAIL and OH14 plus TRAIL (t-test for each time point). C) MCF-7 cells transfected and treated in 
same way as HeLa cells with either 20 ng/ml TRAIL alone for 2 h (Red) or 100 µM OH14 for 1 h 
followed by 20 ng/ml TRAIL for 2 h (blue).  Results represent the average of 10 cells on 1 
experiment. Error bars in A-C represent standard error of the mean. D) Each data point 
represents a recording made on an individual HeLa cell. Bleaching occurred at each time point. 
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5.2.2.4 OH14 does not act by Reducing Overall c-FLIP Levels 

 To further confirm that our inhibitors act by interfering with protein interactions 

rather than overall protein levels, we wished to assess the levels of c-FLIP protein 

present during different treatment conditions.  MCF-7 cells were cultured with vehicle 

control or OH14 at 100 µM for 1 h before the addition of 20 ng/ml TRAIL or vehicle 

control for a further 2 h.  Protein was extracted from MCF-7 cells post-treatment before 

being subjected to Western blotting (Figure 5.9A).  No significant differences were 

observed between c-FLIP protein levels between treatments when normalised to 

GAPDH (Figure 5.9 B).  Thus OH14 does not appear to alter c-FLIP expression or 

stabilisation of the protein. 
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Figure 5.9: OH14 does not decrease c-FLIP protein levels 
A) Western Blot: Total proteins were extracted from MCF-7 cells which had been subjected to 
various treatment conditions: Ctrl - 0.1% DMSO, TR - 20 ng/ml TRAIL for 2 h, 14 - 100 µM OH14 
for 3 h, 14+TR - 100 µM OH14 for 1 h before the addition of 20 ng/ml TRAIL for a further 2 h. B) 
Densitometry analysis of total c-FLIP protein expression between MCF-7 cells treated conditions 
in A).  
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5.2.3 Generation of a c-FLIP TALEN Cell Line  

 In order to generate a stable c-FLIP knockout cell line, we transfected MCF-7 

cells with TALEN constructs targetted to c-FLIP.  Transfected cells were grown as single 

cell clones until enough cells were obtained for DNA extraction and PCR analysis.  

Following PCR evaluation, we used restriction digestion to analyse the potential clones 

(Figure 5.10A).  We determined that the inital round of TALEN transfection successfully 

generated 4 potential c-FLIP heterozygote MCF-7 cell lines (Figure 5.10B) which 

required a second round of transfection with the TALEN constructs in order to attempt 

to generate a fully c-FLIP eliminated stable cell line. 

 Western blotting was performed on 4 of the potential heterozygotes as an 

additional confirmation of their reduced levels of c-FLIP (Figure 5.11A and B).  

Densitometry analysis of Western blots showed that clone 41 had the most reduced 

expression of c-FLIP and was therefore the clone of choice to undergo further 

evaluation and, subsequently, a second round of transfection (Figure 5.11C and D). 

 We have previously observed that overall c-FLIP levels within cells are not the 

reason for differences in sensitivity to TRAIL, rather it is possible that the subcellular 

localisation determines susceptibility (French et al., 2015 in press) and thus, although 

our heterozygotes are likely to express a lower level of c-FLIP than wildtype cells, we did 

not expect to see a significant increase in TRAIL sensitivity in these cells until an 

elimination of c-FLIP was obtained.  TRAIL sensitivity was tested using the Cell Titre Blue 

assay in the bulk population of untransfected MCF-7 and our TALEN cell clone 41.  As 

hypothesised, no significant increase in TRAIL sensitivity was observed between the two 

cell lines using Cell Titre blue to measure cell viability (Figure 5.12). 
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Figure 5.10: Analysis of clones from Initial round of MCF-7 TALEN transfection 
revealed potential c-FLIP heterozygotes. 
A) TALENs were targeted to flanking sequences surrounding a unique restriction enzyme site to 
aid screening via BsrI restriction enzyme digest. Genomic DNA was extracted from transfected 
cells grown up from single cell clones.  cFLIP was amplified (Methods 2.8.3.2) and the resulting 
DNA was amplified using BsrI restriction digestion.  Samples successful for TALEN showed only 1 
band, around 300 bp due to a lack of restriction digestion cleavage by BsrI within the TALEN 
spacer. Unsuccessful TALEN samples showed 2 bands, around 200 and 100 bp in size, due to 
cleavage by BsrI within the TALEN spacer site. Should TALEN be successful, two products will 
form, but if unsuccessful, DNA will be cut only at one site. B) Following genomic DNA extraction, 
71 clones of MCF-7 cells transfected once with TALEN constructs were analysed by 2% agarose 
gel electrophoresis by BsrI cleavage.  Arrows point to potential heterozygote clones. 

 
 
 
 

A 

B 



Chapter 5: Exploring the MOA of OH14 
 

 O A Hayward   178 
 

 

  
 
 

        
 
Figure 5.11: Western Blotting Confirms Reduced c-FLIP Protein in TALEN Transfected 
Cells 
Western Blot: Total proteins were extracted from WT MCF-7 cells and our 4 TALEN 
heterozygote clones, and one non-heterozygote (49) as an additional negative control. 
A and B are repeats of the same cell samples. C & D) Densitometry was performed on 
the blots from A) and B) respectively, protein levels are relative to GAPDH. 
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Figure 5.12: TRAIL sensitivity is not significantly increased after initial round of TALEN 
transfection in MCF-7 cells. 
Untransfected MCF-7 cells (WT) and those subjected to one round of transfection with our 
TALEN c-FLIP constructs, and demonstrated to be the most well knocked down (TALEN - clone 
41) were grown in adherent conditions to 70% confluence before being treated with 20 ng/ml 
TRAIL or vehicle control. Results represent a single experiment performed with 6 internal 
technical replicates.  Error bars represent standard error of the mean. 
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5.2.3.1 Evaluation of Second Round of TALEN Transfected Cells 

 We performed a second round of transfection with the TALEN constructs on the 

clone identified to have the lowest c-FLIP levels in Section 5.2.3, clone 41.  Transfection 

of TALEN constructs was performed in combination with mRFP for use in FACS sorting of 

transfected cells, in order to attempt to generate cells, and ultimately, a stable cell line, 

which were homozygous for the deletion of c-FLIP gene.   

 Clones from this second round were monitored during their growth and many 

were noted to have morphologies different to that of untransfected MCF-7 cells (Figure 

5.13A and B).  In addition, many of the clones had different proliferation rates to that of 

untransfected cells, with a few of the clones growing predominantly in colonies (Figure 

5.13C and D).  This may be due to the impact of removing c-FLIP from the cells, it may 

be as a by-product of the TALEN process overall, or may be as a result of using 

subclones of MCF-7 cells .   

 We analysed expression of successfully expanded clones using qPCR.  qPCR 

analysis identified several clones with lower expression levels of c-FLIP relative to 

control, although none were identified with complete removal of the gene (Figure 

5.14A).  We then treated adherent cells of clone 40, which appeared to have the 

greatest c-FLIP reduction, with TRAIL, TALEN, however, no increase in TRAIL sensitivity 

was observed using the Cell Titre blue to assay cell viability (Figure 5.14B).   
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Figure 5.13: MCF-7 TALEN Double Transfected Cell Morphology and Growth 
Assessments. 
The morphologies and growth rates of the TALEN clones varied considerably.  A) Untransfected 
MCF-7 cells B) TALEN Clone 20 - mesenchymal-like morphology. C) TALEN Clone 13 - slow 
growth rate: small colonies with large amounts of cell death and resulting debris.  D) TALEN 
clone 10 - cells grew in colonies with morphology similar to that of untransfected MCF-7s. Scale 
bar = 50 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Exploring the MOA of OH14 
 

 O A Hayward   182 
 

 

 
Figure 5.14: qPCR and Cell Viability Analysis of MCF-7 TALEN transfected cells from 
second round of transfection. 
A) qPCR analysis of second round of transfection TALEN MCF-7 cells. B): TRAIL sensitivity of cells 
which had undergone the complete two rounds of TALEN transfection and selection. Clone 40 
cells were cultured in a 96 wp for 24 h before the addition of 20 ng/ml TRAIL for 18 h.  Cell Titre 
Blue was performed to measure cell viability. Results represent 3 technical replicates, error is 
presented as standard error of the mean. 
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5.2.4 Selection of Mutations for c-FLIP Mutational Studies 

 Currently, there are only two mutational studies performed on the DEDs of c-

FLIP, which were published after the majority of the work in this project had been 

carried out (Hwang et al., 2014; Majkut et al., 2014), with studies involving mutations 

carried out on the structure of FADD being far more abundant (Section 1.3.7).  We 

wished to further confirm the importance of the site on c-FLIPs DED1, which our 

inhibitors were designed to target.  Analysis of this binding site identified several 

residues which play a key role in the interaction with FADD, based on our model 

(Chapter 3), these include; Methionine (Met) 1, Alanine (Ala) 3, Isoleucine (Ile) 6, 

Histidine (His) 7, Glutamic Acid (Glu) 10, Arginine (Arg) 38 and Arg 45 (Figure 5.15A). 

 We designed primers to target Ile 6, His 7, Arg 38 and Arg 45, initially, as these  

residues were identified to be important on our in silico model.  Successful generation 

of constructs using these SDM primers has taken place (Figure 5.15B).  We hypothesise 

that overexpression of wildtype c-FLIP in a c-FLIP knockout, and thus, TRAIL-sensitive 

cell line would confer a significant amount of protection to TRAIL induced apoptosis 

and, in contrast, overexpression of our mutants would not protect in the same way 

since they are designed to impede the c-FLIP:FADD anti-apoptotic interaction.  
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Figure 5.15: Interacting Residues in the c-FLIP DED1 Pocket and Generation of SDM 
Constructs. 
A) Analysis of the interactive surface between c-FLIP and FADD, based on our interaction model, 
identify 7 residues which appear to have an integral role (Met 1, Ala 3, Ile 6, His 7, Glu 10, Arg 38 
and Arg 45). B) Successful generation of c-FLIP mutants (representative sequencing result). 
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5.2.5 In Vitro Assay of CSC Plasticity 

 Studies have demonstrated the ability of non-stem cancer cells to de-

differentiate into a stem cell-like state in what we and others have referred to as CSC 

plasticity (Section 1.1.7) (Gupta et al., 2011; Chaffer et al., 2011; French and Clarkson, 

2012).  Plasticity describes a state of flux between stem-like and non-stem-like sub-

populations within a cancer cell field.  Clinically, plasticity means that, even if all CSCs 

were eliminated from a cancerous population, any remaining bulk cells may have the 

ability to de-differentiate and therefore to become CSCs, thus enabling new tumour 

growth to occur.  Therapeutic strategies should therefore take into account the need to 

either eliminate both stem-like and non-stem-like pools simultaneously, or to prevent 

the ability of cells to transition between these states. 

 The data from our lab, demonstrates that when combined with TRAIL, siRNA 

inhibition of c-FLIP, can completely eliminate tumoursphere-forming cells from breast 

cancer cell lines and that under these conditions, between 5% and 20% of the total cell 

population remains viable (Piggott et al., 2011).  This gives us the ability to study 

plasticity, since we have a viable population of non-CSCs with which to study the 

reacquisition of CSC-like activity. 

 We have previously reported that BT474 breast cancer cells treated with TRAIL 

and siRNA targeted to c-FLIP to eliminate tumoursphere forming cells, if allowed to 

recover in the absence of TRAIL in adherent conditions for 7 days regain the ability to 

form tumourspheres (Piggott et al., 2011).  We have re-capitulated this in MCF-7 cells, 

showing the kinetics of tumoursphere recovery over 7 days (Figure 5.16). 
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Figure 5.16: In Vitro Model of breast CSC Plasticity 
MCF-7 cells were subjected to siRNA to c-FLIP for 48 h, after which TRAIL was administered at 
20 ng/ml and cells were left for 18 h.  Subsequently, cells were subjected to the tumoursphere 
assay to confirm complete elimination of tumourspheres (day 1). Remaining cells were seeded 
in adherent culture conditions and left to recover over 9 days, with tumoursphere forming 
ability being assayed each day by plating in tumoursphere conditions and counting after 7 days. 
A) Passage 1: siRNA c-FLIP successfully eliminated all tumourspheres initially, however, surviving 
cells regained the ability to form tumourspheres by day 2, with full tumoursphere forming 
ability restored after 9 days.  B) Passage 2: Tumourspheres from passage 1 could be successfully 
passaged, however, formation did not reach the level of untreated spheres by day 9.  Results 
are averages of three independent experiments, performed with three internal technical 
replicates (*=p<0.05, t-test). 
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5.2.5 OH14 Impacts on MCF-7 Cell Plasticity after siRNA c-FLIP Treatment 

 The previous data (Figure 5.16) was generated using siRNA to c-FLIP thus, during 

the reacquisition of tumoursphere activity, c-FLIP mRNA levels would be no longer 

repressed due to the transient nature of siRNA knockdown. We wished to determine 

whether long term suppression of c-FLIP may impede the ability of cells to reacquire 

tumoursphere-forming ability in our assay of plasticity. 

 To test this we used our lead compound to retain the suppression of c-FLIP.  

Although the compound itself targets the c-FLIP:FADD interactive surface, it is possible 

that this inhibition is relevant to the role of c-FLIP in plasticity, in addition to the fact 

that binding of the compound itself may impact on the other functions of c-FLIP. 

 Following the elimination of tumourspheres using FLIPi and TRAIL, the surviving 

cells were plated in adherent conditions and treated with OH14 at 10 µM for 7 days; 

replacing culture media and drug daily.  Treatment of the surviving population with 

OH14 prevented the formation of tumourspheres after the 7 day 'recovery' period in 

comparison with cells which were left untreated, which recovered to around 50% on 

passage 1 (Figure 5.17).  OH14 profoundly inhibited the clonal expansion of these 

residual viable cells in adherent culture (Figure 5.16).  It is possible therefore that the 

lack of tumoursphere formation could be due to the inability of the cells to proliferate 

to form floating colonies. 

 In parallel work carried out by Luke Piggott, c-FLIP has been suppressed 

permanently by shRNA, which demonstrated the same inhibition of tumoursphere 

reacquisition (Piggott, L, personal communication).  This confirms the c-FLIP specificity 

of this effect on plasticity. 
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Figure 5.17: Treatment with Lead Compound OH14 Impairs Ability of Cells to reacquire 
Tumoursphere Forming Ability following FLIPi + TRAIL 
MCF-7 cells which had been treated with c-FLIP siRNA for 48 h were treated with TRAIL for 18 h 
and then subjected to tumoursphere conditions to demonstrate complete loss of tumoursphere 
forming ability (A - Day 1).  B) The remaining cell population were re-seeded in adherent 
conditions and left to recover for around 7 days with daily 0.1% DMSO or 100 µM OH14 
treatment, after which tumoursphere forming potential was reassessed. C) Daily visual 
inspection of the cells in adherent culture prior to re-plating into the tumoursphere assay 
demonstrated that OH14 appeared to prevent the re-expansion of the cell population. Scale 
bars = 50 µm. 
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5.3 Discussion 
 Many studies have demonstrated the interaction between c-FLIP and FADD, in 

addition to the interaction between c-FLIP and procaspase-8,  to play an integral role in 

TRAIL resistance (Irmler et al.¸1997; Safa and Pollok, 2011; Safa et al., 2012; Dickens et 

al., 2012).  In the previous chapters, we identified one lead small molecule, OH14, which 

can sensitise previously resistant breast cancer bulk; progenitor-like or colony-forming; 

and stem-like or tumoursphere-forming cells to TRAIL induced apoptosis.  OH14 was 

initially selected in silico based on its ability to specifically bind to c-FLIP and prevent 

interaction with FADD.  In this chapter, we performed evaluation of the biological 

interactions of c-FLIP and validated the mechanism of action of OH14 in vitro.  In 

addition, we explored the effects of the lead inhibitor on another important process of 

cancer biology that c-FLIP may have a role in: cancer stem cell plasticity (Piggott et al, 

2011; French, 2014 unpublished). 

 Previous data has shown the presence of an interaction between c-FLIP and 

FADD, and of procaspase-8 and FADD in TRAIL-resistant and TRAIL-sensitive lines 

respectively (Safa and Pollok, 2011; Zhang and Fang, 2005; Sprick et al., 2000; Medema 

et al., 1997.  Here, we confirm the presence of the latter interaction, in our biological 

system using co-immunoprecipitation in TRAIL-sensitive MDA-MB-231 cells and the lack 

of an interaction between c-FLIP and FADD, suggesting that this interaction is indeed 

important for TRAIL sensitivity, although these results will need to be compared with a 

TRAIL-resistant line, in addition to utilising our lead inhibitor within the experiment.  

Treatment with TRAIL over a four point timecourse on TRAIL sensitive MDA-MB-231 

demonstrated an increase in cleaved (p43 and p18), and therefore active, caspase-8 

over time, up to 2 h, after treatment with 100 ng/ml TRAIL.  This is in accordance with 

previous studies which have demonstrated a similar increase caspase-8 cleavage upon 

treatment with TRAIL over time (Suliman et al., 2001; Wang et al., 2008).  In contrast, no 

increase in p43 caspase-8 was observed in the TRAIL-resistant MCF-7s, suggesting TRAIL 

induced caspase-8 activation was indeed prevented.  Previous studies have 

demonstrated similar findings in TRAIL-resistant cell lines, including in colon cancer, 

whereby TRAIL treatment in a TRAIL-resistant line showed significantly less caspase-8 

cleavage than in a TRAIL-sensitive line (Zhang et al., 2005). FADD and c-FLIP protein 

levels were confirmed to be similar between the two lines, despite their differing TRAIL 
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sensitivities, thus, sensitivity may instead be due to differential localisation of c-FLIP in 

sensitive versus resistant cells.  Our lab has recently demonstrated the importance of 

subcellular localisation, rather than overall protein levels, of c-FLIP to be most 

important for its anti-apoptotic role.  These recent results demonstrated that TRAIL-

resistant cell lines express c-FLIP predominantly in the cytoplasm, whereas c-FLIP is 

confined to the nucleus in those which are TRAIL-sensitive.  Furthermore, when c-FLIP 

localisation was assessed in the tumoursphere forming cells of these same cell lines, the 

partially sensitive tumoursphere-forming cells of the MCF-7 cell line expressed c-FLIP in 

the nucleus, in contrast to the bulk cells, which showed nuclear expression of c-FLIP 

(French et al., 2015 in press).   

 Our hypothesised mechanism of action, based on in silico drug design, was that 

OH14 directly inhibited the interaction between c-FLIP and FADD.  Here we have shown, 

using acceptor-photobleaching FRET-based confocal microscopy, that our lead inhibitor, 

OH14 did indeed significantly reduce interactions between c-FLIP and FADD in TRAIL 

stimulated TRAIL-resistant HeLa and MCF-7 cells.  The constructs themselves induced 

cell death, which was prevented by use of a caspase-inhibitor. Indeed, several studies 

have shown similar results, demonstrating that transient expression with FADD leads to 

increased activation of apoptotic pathways, even in the absence of TRAIL, which can be 

blocked by a pan-caspase inhibitor (Siegel et al., 1998; Grunert et al., 2012; Matsumura 

et al., 2000; Gomez-Angelats and Cidlowski, 2003), although the reason that expression 

of c-FLIP:YFP induced caspase-dependent cell death is unclear.  As our FRET 

experiments were based on live cells, we did obtain a large degree of variation in 

responses which is in accordance with the fact that interactions in a biological system 

are dynamic: they may be transient and frequently altering with fluctuations in protein 

interaction kinetics (Li et al., 2011).  Despite this, we have been able to observe an 

overall trend in our data, although it is unlikely to be true for 100% of the cells in a 

population.  In future, our FRET constructs may be used to perform mutational studies 

in order to elucidate the importance of our identified interacting residues using FRET.   

 Since TRAIL acts via the extrinsic caspase-mediated pathway of apoptosis, 

leading to the activation of caspase-8 (Section 1.2), we hypothesised that a specific 

inhibitor which sensitises to TRAIL would therefore, increase caspase-8 activity, and, 

thus blocking caspase activity would inhibit this effect.  Our data suggest that our 
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inhibitors are indeed specifically acting in this manner, as we have shown that pre-

treatment with a pan-caspase inhibitor significantly impaired the ability of our 

compounds to sensitise to TRAIL.  In addition, we have observed a modest, yet 

significant, increase in caspase-8 activity upon treatment of our lead compound in 

combination with TRAIL, further confirming this mechanism of action.   

 We have identified, using our in silico interaction models, several residues on the 

interactive pocket of c-FLIP which appear important for the anti-apoptotic interaction 

with FADD, and, as such, were targeted with our small molecule inhibitors.  Here, we 

have attempted to generate a stable c-FLIP knock-out cell line, using TALEN technology, 

to analyse our identified residues.  Cell clones which had reduced c-FLIP levels and 

survived the second transfection had significantly altered morphology and proliferation 

rate, and many did not survive passaging.  Those clones which did survive the second 

transfection did indeed exhibit reduced c-FLIP levels, as measured by qPCR, but did not 

show an increased sensitivity to TRAIL using an assay of cell viability.  It may be that 

despite the reduction in c-FLIP levels induced by this double transfection, the 

phenotype of the cells was further altered, either by inhibition of c-FLIP or subclonal 

expansion, which prevented any significant change in TRAIL sensitivity being observed.  

Furthermore, as c-FLIP was not completely eliminated from these cells, the remaining c-

FLIP may have been sufficient to retain their TRAIL resistance, as we have recently 

demonstrated that c-FLIP mediated TRAIL-sensitivity may be due to c-FLIP localisation 

rather than expression levels (French et al., 2015 in press), thus, only a total elimination 

of c-FLIP would be likely to cause a significant sensitisation to TRAIL.  Additionally, it is 

possible that use of TALEN to modify the genes itself has compromised cell viability, 

since TALEN does not release the ends it has bound to immediately after cleavage, DNA 

repair may be interfered with thus potentially inducing cell death (Beumer et al., 2013; 

Mali et al., 2013).  Furthermore, our TALEN constructs targetted an area within exon 4 

of c-FLIP (nucleotides 935-946, approximately amino acids 148-151), toward the middle 

of DED2 on c-FLIP (Methods, Figure 2.9).  It is possible that targetting this site, around 

30% into the sequence of c-FLIP, may not be sufficient to knock down the whole 

protein, especially since it is DED1 and 2 that are important for TRAIL resistance, thus, it 

may be that these domains remain intact and available to retain the anti-apoptotic role 

of c-FLIP.  Since c-FLIP was not completely eliminated, it would have been more relevant 
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to assess the clones using FRET to evaluate whether there was a reduction in 

interactions, however, the since the proliferation of the transfected cells was altered, 

the majority of cells did not survive additional transfection and plating on FRET assay 

plates, and would not have survived laser bleaching.  Further work is required to 

ascertain an appropriate assay or optimum clone for performing mutagenesis studies. 

 The ability of a cancer therapy to prevent CSC plasticity is clinically desirable, as, 

when combined with a treatment to eliminate bulk tumour cells, a CSC and 

chemotherapy combination therapeutic regime may have the potential to destroy the 

original tumour whilst also preventing relapse (Vinogradov and Wei, 2012; Han et al., 

2013; Frank et al., 2010).  Although OH14 was designed to target the c-FLIP:FADD 

interaction, long-term treatment with the compound may abrogate additional functions 

of c-FLIP, perhaps due to compound binding at one site inducing conformational 

changes at other protein domains.  We have observed here, that OH14 may have 

potential efficacy for targeting CSC plasticity in our in vitro model of the process.  After 

elimination of tumoursphere-forming cells using siRNA c-FLIP, we observed that daily 

OH14 treatment of the remaining viable cells, replated in adherent conditions 

prevented growth compared with vehicle control treated cells.  Prolonged treatment of 

OH14 does not affect overall cell viability (Chapter 4), however, it does result in a 

modest, yet significant reduction in tumoursphere forming ability, in contrast to a single 

overnight treatment, which did not significantly alter tumourspheres (Chapter 4).  

Section 4.2.6 explored the effect of long-term treatment with OH14, which 

demonstrated a lack of overall cytotoxicity, although a slowing of proliferation was 

observed, it is possible, therefore, that treatment with OH14 effects a more gradual 

process, such as plasticity, and prevents reacquisition of breast CSCs or progenitor cells, 

thus leading to the ultimate death of the surviving population, which require breast 

CSCs to propagate and proliferate.  A repeat of our plasticity study using stable c-FLIP 

inhibition, for example, using shRNA is required as an appropriate control to make more 

definite conclusions about the actions of OH14 in plasticity.  Since c-FLIP in combination 

with TRAIL induces the extrinsic pathway of apoptosis, it is likely that bCSCs are lost by 

cell death.  We will address this in future using the pan-caspase inhibitor Z-VAD-FMK, to 

determine whether treatment with the caspase-inhibitor can rescue tumoursphere 
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ablation.  Alternatively, it is possible that cells which survive FLIPi/TRAIL are quiescent, 

which may be assessed using flow cytometry of pyronin γ and hoescht (Shapiro 1981). 

 In conclusion, we have demonstrated that our lead compound OH14 was able to 

sensitise to TRAIL through direct interference with the c-FLIP:FADD interaction and 

therefore, facilitated TRAIL-induced apoptosis through a caspase-mediated pathway, 

leading to activation of caspase-8.  We have observed that the effects of our inhibitor 

may be even more clinically important than initially evaluated, as the inhibitor appeared 

to prevent CSC plasticity, in our in vitro model.  
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Chapter 6: Biological Evaluation of OH14 Analogues 
 

6.1 Introduction 
 Agents which have been demonstrated to have an ability to sensitise to TRAIL, 

via effects, albeit non-specific, on c-FLIP are often seen to be working at relatively high, 

micromolar, concentrations (Chen et al., 2010, Rao-Bindal et al., 2014; Li et al., 2013) 

(Section 1.3.6), and exhibiting a high IC50, i.e.  the concentration required to achieve 

50% inhibition of a specific target.  Reducing the dose of c-FLIP inhibitor required to 

achieve such effects is beneficial in terms of improving any potential safety and 

tolerability issues that may result from treatment. 

 We selected compound OH14 as our lead compound after thorough biological 

evaluation using assays of cell viability, proliferation, and stem cell functionality 

performed in Chapter 4 and evaluation of the mechanism of action in Chapter 5.  

Subsequently, in this Chapter, we both obtained (from SPECS database) and generated 

(in house at Cardiff School of Pharmacy) analogues of OH14 to be tested in relevant, 

high-throughput assays, with the aim of identifying compounds which have similar 

efficacy to OH14 but exhibited lower effective working concentrations, as we have 

previously observed OH14 to function best at >10 micromolar concentrations.  Due to 

the fact we will evaluate multiple compounds, we wanted to select an assay that was 

both relatively high-throughput and representative of the TRAIL-sensitising ability of our 

compounds.  The clonogenic or colony forming assay was selected for this purpose, as it 

was demonstrated, in Chapter 4, to produce results which correlated well with both 

bulk cell viability and tumoursphere forming ability in both MCF-7 and BT474 cell line 

models.  This fits in with the output of the assay being a progenitor-like proliferation 

assay, thus encompassing two of the features of cell viability and tumoursphere forming 

assays.  Analogues of OH14 will help us to establish an initial structure-activity 

relationship for our compounds which will help us to further refine analogue generation 

in the future.   

 Here, we have tested a series of 39 analogues of OH14 for their ability to 

increase the sensitivity of breast cancer colony forming cells to TRAIL.  We have 

successfully identified around 7 analogues which exhibit a similar or improved efficacy 

as OH14. 
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6.2 Results 
 We obtained 8 analogues of OH14 from Specs database and 29 analogues of 

OH14 were synthesised in house at Cardiff School of Pharmacy, by Gilda Giancotti, in 

order to identify potential analogues with similar or improved efficacy than OH14.  

6.2.1 SPECS Based Analogues 

 Initially, 8 analogues of OH14 (Termed 14.1-14.9, 14.2 is the same as compound 

OH14) were identified and obtained from Specs (Table A6.1, appendix).  These 

compounds were selected as they were 90% idential to OH14 and retained the 

important sulphonamide group but had alterations in the aromatic rings and side 

groups. 

 

6.2.2 OH14 Synthesis and Analogue Design 

 After identifying OH14 as our lead compound, in-house synthesis of the 

compound was begun at Cardiff School of Pharmacy (performed primarily by Gilda 

Giancotti).  The method of synthesis (appendix section A6.1) followed a previously 

described method of synthesis for similar chemical structural compounds (Peifer et al., 

2007). 

 The lead compound, OH14, was predicted to form hydrogen bonds with several 

key amino acid residues on c-FLIP, including Glu 10, Lys 18, Arg 38 and Arg 45, amongst 

others (Figure 6.1).  Analogues of OH14 were therefore selected and designed to so that 

these or similar bonds were formed, as evaluated by entering in the structure of 

analogues on the in silico structure of c-FLIP and assessing the compounds affinity to 

these residues.  
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Figure 6.1: Ligand interaction of Compound OH14 in the predicted binding pocket on 
c-FLIP 
A) Predicted binding pocket on surface of c-FLIP DED1 with lead compound OH14 docked. Part 
of c-FLIP is shown in yellow ribbon format. Compound OH14 is presented in ball and stick 
format. B) Ligand interaction diagram of OH14 in c-FLIP pocket, with relevant key. 

 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 



Chapter 6: Biological Evaluation of OH14 Analogues 
 

 O A Hayward   198 
 

 

6.2.3 Analogue Modifications and Synthesis 

 The sulphonamide group on OH14 was identified as a highly important 

component of the compound for binding with the pocket on c-FLIP, and thus, this group 

was to be retained on all analogues.  Alterations to the aromatic rings were therefore 

the most logical first points of modification.  A range of hydrophobic groups were 

chosen to replace the two chlorine and methyl groups present on OH14 (R), in order to 

elucidate whether alternative hydrophobic groups at different positions on the aromatic 

ring could increase fit within the pocket and overall stability of the compound within 

solution and within the pocket.  Additionally, replacing the carboxylic acid with a methyl 

ester group on the other aromatic ring (R1) was considered (Figure 6.2).  A methyl ester 

group was considered due to its hydrophobicity, which could facilitate cell permeation 

through the lipid cell membrane in addition to the fact that, once through the 

membrane, in a more hydrophilic environment, ester hydrolysis to carboxylic acid 

would occur, thus re-enabling interactions with amino acid residues on c-FLIP.  This 

methyl ester would be synthesised to occupy varying positions on the aromatic ring to 

fully explore whether alternative reactions with other amino acids on c-FLIP may occur 

and subsequently improve the affect of the compound.   

 Twelve analogues of OH14 were initially designed which conserve the central 

sulphonamide group which connects the two aromatic rings (Previous Figure 6.3) but 

have a variety of substitutions on the aromatic rings (Table 6.2).  Synthesis of the 

analogues was similar to OH14 synthesis (appendix A6.2).  
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Figure 6.2: Central Scaffold for Pharmacy Synthesised Analogues of OH14 
R and R1 represent the two groups to be modified by the addition of either a range of 
hydrophobic groups (on R) or a methyl ester (on R1).  

 
 
Table 6.1: Aromatic Ring Substitutions for Pharmacy Synthesised Analogues of OH14 

Compound R R1 

GG1 2-methyl ester 2,4-dicholoro-5-methyl 

GG2 3-methyl ester 2,4-dicholoro-5-methyl 

GG3 4-methyl ester 2,4-dicholoro-5-methyl 
GG4 2-methyl ester 4-trifluoromethyl 

GG5 2-methyl ester 3,4-dimethyl 

GG6 2-methyl ester 3,4-dichloro 

GG7 2-methyl ester 2,4-dichloro 
GG8 2-methyl ester 2,4-dimethyl 

GG9 2-methyl ester 2,5-dimethyl 

GG10 2-methyl ester 2,5-dichloro 

GG11 2-methyl ester 4-tert-butyl 
GG12 2-methyl ester 4-methyl-3-chloro 
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6.2.3.1 Cardiff School of Pharmacy Synthesised Analogues 

 Two sets of analogues were synthesised by Gilda Giancotti at Cardiff School of 

Pharmacy. Pharmacy synthesised compounds, GG 1-12 featured modifications 

discussed in section 6.2.3 (Table A6.2, appendix). The additional 17 Pharmacy 

Synthesised analogues, termed N1-17 in the results section (Table A6.3, appendix) 

followed similar structural substitutions to those explained previously, for compounds 

GG1-12 and were produced by Mahmoud El-Hiti.   

 

6.3 Analogue Analysis 

6.3.1 Compound Solubility 

 The solubility of all the compounds in cell culture media was assessed as in 

Section 4.2.1 in order fully understand the properties and thus, the effects, of these 

compounds.  Ideally, compounds would all be soluble when dissolved at 100 mM in 

DMSO and subsequently in aqueous cell media to aid biological evaluation.  At this 

point, we also wished to establish whether OH14 was soluble directly in sterile water, as 

this would eliminate the need for DMSO and would thus allow higher concentrations to 

be tested without risking toxicity to cells due to high percentage of DMSO.  OH14, 

however, did not dissolve in water and required a minimum of 10 µl DMSO to 1 ml 

water/media in order to dissolve. 

 All of the SPECS analogues of OH14, 14.1-14.9, dissolved at 100 mM in DMSO 

and remained in solution when further diluted in cell culture media (Table 6.2).  

Analogues N1-17, synthesised by Cardiff School of Pharmacy, did not all remain in 

solution (Table 6.3).  All  but one of the GG1-12 analogues, synthesised by Cardiff School 

of Pharmacy, all dissolved at 100 mM in DMSO and in subsequent aqeous media 

diluations to make up working stock (Table 6.4). 
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Table 6.2: Solubility of SPECS Analogues of OH14  
Visual assessment of compound solubility in DMSO or after overnight incubation in media (100 
µM, 10 µM, 1 µM, 100 nM, 10 nM). '' indicates no detected problems with solubility. 

Compound 100 mM in DMSO 100 µM in Aqueous Media 

14.1   

(14.2 = OH14)   

14.3   

14.4   

14.5   

14.6   

14.7   

14.8   

14.9   

 
Table 6.3: Solubility of Pharmacy Synthesised Compounds N1-17  
Visual assessment of compound solubility in DMSO or after overnight incubation in media (100 
µM, 10 µM, 1 µM, 100 nM, 10 nM). '' indicates no detected problems with solubility. 

Compound 100 mM in DMSO 100 µM in Aqueous Media 

N1  Soluble at ≤10 µM

N2  Soluble at ≤10 µM 

N3 50 mM Soluble at ≤10 µM 

N4  Soluble at ≤10 µM 

N5  Soluble at ≤1 µM 

N6  Soluble at ≤1 µM 

N7   

N8   

N9  Soluble at ≤10 µM 

N10  Soluble at ≤10 µM 

N11   

N12 10 mM Soluble at ≤10 µM 

N13  Soluble at ≤10 µM 

N14  Soluble at ≤10 µM 

N15  Soluble at ≤1 µM 

N16  Soluble at ≤0 µM 

N17 10 mM  Soluble at ≤10 µM 

 
Table 6.4: Solubility of Pharmacy Synthesised Compounds GG1-12 
Visual assessment of compound solubility in DMSO or after overnight incubation in media (100 
µM, 10 µM, 1 µM, 100 nM, 10 nM). '' indicates no detected problems with solubility. 

Compound 100 mM in DMSO 100 µM in Aqueous Media 

GG1  Soluble at ≤10 µM

GG2   

GG3   

GG4   

GG5   

GG6   

GG7   

GG8   

GG9   

GG10   

GG11 50 mM  

GG12   
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6.3.2 Testing the Efficacy of Novel Compounds  

 Chapter 4 utilised several assays for the evaluation of inhibitor efficacy however, 

the clonogenic or colony forming assay (CFA) was chosen to evaluate the new inhibitors 

initially as it provides the most representative combined result for the compounds when 

compared with the cell viability and tumoursphere assays.  Additionally, it is easily 

replicated for testing multiple compounds and requires relatively little resources in 

comparison.  The tumoursphere assay was utilised after initial clonogenic testing, as it 

provides the most representative result for stem cell survival in vitro and was the assay 

in which the most profound effects have been previously observed for both siRNA c-FLIP 

and for our compounds. Analogues, like OH14, were considered to be efficacious if they 

significantly increased sensitivity to TRAIL, without being significantly toxic when 

administered alone. 

 

6.2.1.1 SPECS Analogues of OH14: Colony Forming Assay 

 The 8 SPECS analogues of OH14 were tested in MCF-7 and BT474 cells using the 

colony forming assay at 100 µM initially, as this was the dose of OH14 which we 

established to be the most affective in several assays (Chapter 4). 

 Overall, the analogues exhibited similar effects on MCF-7 (Figure 6.3A) and 

BT474 (Figure 6.3B) colony forming cells, with 6 compounds demonstrating similar 

efficacy to OH14 (compounds 14.3, 14.4, 14.6, 14.7 and 14.8) and compound 14.9 

demonstrating a modest improvement on the activity of OH14 in both cell lines.  

Compounds 14.3, 14.4, 14.7 were less active in BT474 cells, with only 14.8 and 14.6 

demonstrating a significant ability to sensitise to TRAIL.  In both cell lines, compounds 

14.1 and 14.5 showed no significant difference from TRAIL alone.  14.7 in both cell lines 

reduced colony-formation ability when administered alone, and yet did not significantly 

improve on the effect of TRAIL. 
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Figure 6.3: Specs Analogues 14.1-14.9 in combination with TRAIL have similar effects 
on colony growth of MCF-7 and BT474 cells. 
Specs Analogues 14.1-14.9 (14.2 = newer preparation of OH14) at 100 µM on A) MCF-7 and 
B)BT474 cells plated at 50 cells per cm2 and left to grow for 10 days before colonies were 
counted. Results represent at least 3 individual biological repeats. *=p-value<0.05, t-test 
between TRAIL and compound + TRAIL. 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
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6.2.2.2 SPECS Analogues of OH14: Tumoursphere Assay 

 The stem cell compartment of a tumour is the ultimate target of a c-FLIP 

inhibitor and TRAIL combination therapy, thus, the analogues were also analysed using 

the tumoursphere assay. 

 When plated in tumoursphere conditions, cells treated with 4 of the 8 new 

analogues did not significantly improve on the TRAIL-sensitising effect of OH14 on MCF-

7 tumoursphere forming cells.  Compounds 14.6, 14.7 and 14.8 significantly increased 

MCF-7 tumoursphere forming cell TRAIL sensitivity, although to a smaller degree than 

OH14 (Figure 6.4A).  Compound 14.9 showed a modest improvement on the TRAIL-

sensitising ability of OH14, similar to that observed in the colony forming assay (Section 

6.2.2.1).   

 The compounds were slightly more effective on BT474 tumoursphere-forming 

cells, with 6 of the 8 compounds showing an ability to sensitise to TRAIL (Figure 6.4B).  

Compounds 14.3 and 14.4, which were not efficacious in MCF-7 cells did show an ability 

to sensitise to TRAIL, although the effect with 14.4 appeared additive due to the effect 

of the compound when administered alone.  Compound 14.9 again was the most 

effective analogue, sensitising to TRAIL by approximately 50%, similar to OH14.  

Interestingly, 14.7, which previously reduced colony-forming number alone on both 

MCF-7 and BT474 cells did not exhibit this same effect but did exert a small yet 

significant ability to sensitise BT474 tumoursphere forming cells to TRAIL. 

 A modest alteration in tumoursphere forming ability was observed for some 

compounds when administered alone, particularly on BT474 tumoursphere-forming 

cells, however, the effect of the effective most effective compounds (14.6, 14.7, 14.9) in 

combination with TRAIL did appear synergistic rather than additive across both cell 

lines.  Overall, the effect of our analogues when analysed in the tumoursphere assay 

appeared to follow a similar trend to the colony-forming assay, further demonstrating 

the assay to be a good surrogate test to give an initial idea about the efficacy of 

analogues.   Across both the tumoursphere and the colony forming assays, in both cell 

lines tested, 14.9 showed consistent efficacy, with a modest improvement on the 

activity OH14. 
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Figure 6.4: Several SPECS Analogues Sensitise MCF-7 and BT474 Tumoursphere 
Forming Cells to TRAIL to a similar level as OH14. 
A) MCF-7 and B) BT474 cells were cultured for 24 h in a 96 wp, before being treated with vehicle 
control or compound at 10 µM for 1 h. 20 ng/ml TRAIL (or control) was added after 1 h and the 
cells were left for 18 h.  The following day, cells were subjected to the tumoursphere assay, with 
no additional drug added.  A) Passage 1: MCF-7 B) Passage 1: BT474. Results represent passage 
3 replicates, with error bars displaying standard error of the mean.  *=p-value<0.05, t-test 
between TRAIL and compound + TRAIL. Compound 14.2 = newer preparation of OH14. 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
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6.2.2 Pharmacy Synthesised Analogues 

6.2.2.1 Pharmacy Synthesised Analogues N1-17: Colony Forming Assay  

 To analyse the effect of OH14 analogues on MCF-7 progenitor-like cells, we 

performed the colony-forming assay, as described previously.  This assay gave an initial 

idea as to the efficacy of the compounds, as we have previously demonstrated that the 

effects observed in the CFA are representative of effects which can be obtained from 

the tumoursphere assay.   

 Initially, compounds were treated at 100 µM as this was the concentration at 

which we had previously observed the best effect with OH14.  At 100 µM, in addition to 

the previously observed solubility issues (Table 6.5), however, several of the compounds 

were highly toxic to MCF-7 colony forming cells at this concentration (Figure 6.5A).  We 

therefore decided to commence with evaluation at 10 µM in order to retain compounds 

in solution and thus not induce toxicity simply due to physical barriers to growth, as well 

as observing whether compounds which initially appeared toxic could be titrated down 

in order to uncover their actual efficacy as TRAIL sensitising agents.  

 Overall, the first series of compounds had similar efficacy to OH14, when treated 

at 10 µM (Figure 6.5B).  Compounds N10, N13 and N17 showed a modest increase in 

efficacy compared with OH14, increasing sensitivity to TRAIL by an average of 60% as 

opposed to 55%.  Five of the analogues did not improve on the efficacy of OH14 but did 

retain the ability of OH14 to significantly sensitise to TRAIL by on average 50%, whereas 

six compounds had a slightly reduced efficacy, and did not significantly enhance TRAIL-

sensitivity.  Many of the compounds, although demonstrating a consistent trend, did 

show a large variability in their ability to sensitise to TRAIL, thus producing a wide error 

range which may be due to issues with solubility, as we previously observed several of 

these compounds to be partially soluble in aqueous media or indeed, in DMSO (Table 

6.5 previously).  

 Three of this first set of pharmacy-synthesised compounds, N15, N5 and N6, 

appeared toxic to the cells at both 100 and 10 µM, even when administered without 

TRAIL.  These compounds, however, had been observed to be partially out of solution at 

100-10 µM (Table 6.5 previously), which may explain their toxicity i.e. cells were 

physically prevented from growing due to compound particles blocking their ability to 
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do so.  In order to elucidate the potential reasons for the toxicity of the two most 

significantly toxic compounds, N5 and N15, a cell viability experiment was performed 

using a dose-range of the compounds on the bulk population of MCF-7 cells.  Cell 

viability was not significantly affected by N15 at 4 of 5 concentrations tested, with a 

significant decrease in viability only observed with both analogues at 100 µM (Figure 6.6 

A and B). 

 N10, N13 and N17 were selected as compounds of interest for future evaluation, 

due to their ability to reproduce the effects of OH14, with a modest improvement 

observed in some cases. 
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Figure 6.5: Several Series 1 Analogues Sensitise MCF-7 colonies to TRAIL in a similar 
manner to OH14. 
MCF-7 cells were plated at 50 cells per cm2 and treated with vehicle control, OH14 (14) or 
analogues at A) 100 µM or B) 10 µM alone or in combination with 20 ng/ml TRAIL and left to 
grow for 10 days before colonies were counted.  Results represent 1 to 3 individual experiments 
for A and at least 3 individual biological repeats for B. *=p-value<0.05 t-test between TRAIL and 
compound + TRAIL. 

 
 

A 

B 
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Figure 6.6: Analogues are less toxic to the bulk population of MCF-7 cells than colony 
forming cells 
MCF-7 cells were plated to achieve a confluence of 70% before treatment with a dose range of 
analogues A) N5 and B) N15.  After 24 h Cell Titre Blue was performed to evaluate cell viability.  
Results represent averages from 4 technical replicates. Error bars are presented as standard 
error of the mean.  *=p-value<0.05, t-test between vehicle control (DMSO) and compound. 
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6.2.2.2 Pharmacy Synthesised Analogues GG1-12: Colony Forming Assay 

 The second series of Pharmacy compounds, GG1-12 had more variation in their 

ability to increase the sensitivity of MCF-7 colony forming cells to TRAIL.  The majority of 

the compounds, including GG1, 2, 5, 6, 7, 9 and 11, were not as active as OH14, showing 

no significant decrease in CFU number compared with TRAIL alone. Four of the 

compounds, GG2, 6, 8 and 10 appeared to increase the number colony forming cells 

when treated alone, whilst some, including GG3 and GG11, reduced colony forming 

cells.  

 Compounds GG4 and 12 demonstrated the most similar ability to increase MCF-

7 colony forming cell sensitivity to TRAIL, as OH14, improving on TRAIL alone by up to 

80%.  GG3, 8 and 10 showed a significant TRAIL-sensitisation, although this was more 

modest than the effect of OH14 (Figure 6.7), increasing sensitivity to TRAIL by 

approximately 70%.     

 Subsequently, GG4, GG8 and GG12 were selected as compounds of interest for 

future evaluation. 
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Figure 6.7: Several Series 2 Analogues Sensitise MCF-7 colonies to TRAIL in a similar 
manner to OH14. 
MCF-7 cells were plated at 50 cells per cm2, allowed to attach and treated with vehicle control, 
OH14 (14) or Pharmacy Synthesised analogues of OH14: compounds GG1-12 at 10 µM, before 
being left to form colonies which were counted after 10 days. All results are averages of three 
or more independent experiments.  *=p-value<0.05, t-test between TRAIL and compound + 
TRAIL. Error bars represent standard error of the mean. 
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6.3 Discussion 
 In chapter 4 we used several in vitro assays to screen our 19 commercially 

available compounds and identified OH14 as our initial lead compound.  The aim of this 

chapter was to select and design novel analogues of OH14 which may improve on the 

efficacy of OH14 and provide an initial structure-activity relationship.   

 Although molecular modelling is a very useful tool for distinguishing between 

active and non-active compounds, it cannot accurately predict activity at µM 

concentration of compounds with highly similar structures.  Consequently, we obtained 

8 commercially available analogues from Specs database, which showed 90% structural 

similarity with OH14, and 29 compounds were synthesised in-house, by Gilda Giancotti 

and Mahmoud El-Hiti, at Cardiff School of Pharmacy for in vitro evaluation.  Three 

primary structural modifications on the structure of OH14 were implemented when 

designing analogues.    

 Only compounds which dissolved in the common solvent, DMSO and were 

soluble in aqueous solution were potential lead analogues.  The majority of the 

analogues we analysed here fit these criteria.  Alterations to the structure of OH14 

appeared to impact on the solubility of the compounds, with many being partially 

insoluble in DMSO, or coming out of solution when further diluted in cell media.  

Solubility of a compound is an important feature when selecting potential drug 

candidates, thus, those candidates with impaired solubility will not be carried through 

for further testing.  The presence of a carboxylic acid group on a compound aids in 

solubility due to the ability to form hydrogen bonds, thus, this feature will be retained 

on analogues in the future.   

 We selected the colony-forming assay as our initial screen for the compounds as 

it provides a repeatable result which is representative of both viability and 

tumoursphere-forming ability (as observed in Chapter 4).  Here we have evaluated a 

total of 37 analogues of OH14.  The 8 commercially available analogues were assessed 

on MCF-7 and BT474 cells in both colony-forming and tumoursphere assays.  These 

compounds, 14.1-14.9, as predicted, showed similar efficacy data when analysed in the 

CFA and tumoursphere assays.  Compound 14.9 performed with the greatest efficacy of 

all SPECS analogues tested, showing consistent and significant ability to sensitise to 
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TRAIL across both MCF-7 and BT474 tumoursphere- and colony-forming cells, in a 

seemingly synergistic manner, to the same or better level as OH14.   

 The remaining 29 Pharmacy-synthesised analogues were assayed only in MCF-7 

cells, thus, their effects in BT474, as well as other cell lines, is yet to be evaluated.  We 

observed the analogues to have varied activities, with many compounds unable to 

improve on the effect of TRAIL alone and others some showing toxicity to colony 

forming cells when administered alone (Figures 6.6-6.8).  N5 and N15, observed to be 

the most toxic analogues to colony forming cells did not demonstrate significant toxicity 

on the bulk population of MCF-7 cells until the highest concentration of 100 µM was 

administered, thus suggesting this toxicity is restricted to progenitor-like colony-forming 

cells.   

  Ultimately, we identified six pharmacy synthesised analogues: GG4, GG8, GG12, 

N10, N13, N17 and one SPECS analogues, 14.9, which increased sensitivity of MCF-7 

colony forming cells to TRAIL, by at least 80%; a similar sensitisation to that achieved 

with OH14.  Comparison of the chemical structures of compound OH14 and the 

structures of these analogues suggest that perhaps removal of one or both of the 

chlorine atoms on the aromatic ring of OH14 plays a key role in increasing efficacy of 

the compound (Figure 6.8).  The absence of these chlorine groups 6 of the 7 lead 

analogues may have increased solubility in aqueous solution, thus, perhaps the 

increased efficacy of due to the fact that a higher concentration of drug in media is 

achieved and therefore more can enter the cells.  The ability of N13 and N17 to increase 

colony-forming sensitivity to TRAIL may, however, be an additive rather than synergistic 

effect since a decrease in colony forming ability was observed when these compounds 

were treated alone.  This decrease was not seen for the other lead analogues, and so it 

is likely that their efficacy was indeed due to a synergistic effect with TRAIL. 

 These analogues will be analysed in the future on additional relevant assays to 

ascertain a lead analogue.  Further structural modifications may be able to lower the 

working concentrations of the drugs, although, if their toxicity to untransformed cells 

remains non-significant, identifying a promising drug candidate with a relatively high 

working concentration is feasible. 
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Figure 6.8: Structures of Most Efficacious Pharmacy Synthesised Analogues 
Chemical structures of OH14 and most efficacious analogues of OH14: 14.9, GG4, GG8, GG12, 
N10, N13, N17. 

 

 In conclusion, we have identified and synthesised several chemical analogues of 

OH14, which were designed to retain the important features of the compound.  Using 

primarily the colony-forming assay, we have identified 7 potential lead analogues of 

OH14 which will be evaluated in additional assays in order to attempt to identify more 

efficacious lead compound. 
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Chapter 7: General Discussion 
 TRAIL is an endogenous death ligand which exhibits cancer cell-specific 

cytotoxicity (Gura, 1997; Lempke et al., 2014) (Section 1.2). There is a large body of 

evidence for TRAIL as a therapeutic in multiple cancer types due to its cancer-specific 

ability to induced apoptosis.  Research is growing into specific apoptosis inducing 

agents, with the strive to find more cancer cell-targeted treatment options.   

 Studies have demonstrated TRAIL to be most efficacious in mesenchymal-like 

breast cancer lines (Rahman et al., 2009), with many cell lines from other subtypes of 

the disease exhibiting TRAIL resistance.  We, and others, have demonstrated c-FLIP to 

have a key role in TRAIL resistance (Piggott et al., 2011; Safa and Pollok, 2011).  c-FLIP 

directly competes with procaspase-8/-10 for interaction with FADD upon TRAIL pathway 

stimulation (Dickens et al, 2012; Safa, 2012; Scaffidi et al., 1999) (Section 1.3).  It is this 

anti-apoptotic role that, if inhibited, could facilitate a route to TRAIL sensitisation. 

 Breast cancer stem-like cells, although contributing to only around 4% of a 

tumour, are thought to have a key role in resistance to treatment and disease relapse 

(Vinogradov and Wei, 2012).  We have recently been able to successfully eliminate 

tumoursphere-forming cells, which are an in vitro model of CSC-like cells (Dontu et al., 

2003), in a panel of breast cancer cell lines using the combination of c-FLIP suppression, 

using siRNA, and treatment with TRAIL (Piggott et al., 2011).  There is therefore much 

evidence to support the therapeutic potential for TRAIL sensitising agents, and, in 

particular, agents which prevent the anti-apoptotic role of c-FLIP, however, there are 

currently no c-FLIP specific inhibitors of which we are aware. 

7.1 Targeting c-FLIP with Small Molecule Inhibitors 

 Several studies have identified agents which decrease c-FLIP expression, and 

sensitise cells to TRAIL or other chemotherapeutics (Trivedi and Mishra, 2015).  These 

agents function by interfering with c-FLIP transcription, degradation or translation (Safa 

et al., 2008; Safa and Pollok, 2011).  Furthermore, many of these agents act via inducing 

DNA damage, and will usually affect other proteins, thus reducing their target-specificity 

(Safa, 2012).  The combination of TRAIL with a c-FLIP-specific small molecule inhibitor 

that retains a cancer-specific mechanism of action is therefore highly desirable.  The 

high homology between c-FLIP and procaspase-8 (Goltsev et al., 1997) means that a 
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small molecule targeted to c-FLIP could potentially also inhibit this pro-apoptotic 

protein, however, therefore any method of c-FLIP suppression must be highly specific. 

 We have used in silico modelling to model the structure of c-FLIP and associated 

proteins and develop interaction models.  We have confirmed that the structures of the 

DEDs of procaspase-8 and c-FLIP are indeed very similar and show a great amount of 

structural homology (Goltsev et al., 1997).  Our models demonstrated, however, that 

the potential interactive surface between DED1 of procaspase-8 or c-FLIP and the DED 

of FADD shows some variation in physical and electrostatic properties. We identified a 

site on DED1 of c-FLIP which provides a specific target for small molecule inhibitors to 

bind and interfere with the interaction with FADD and potentially also affect any 

interaction between c-FLIP and procaspase-8, whilst sparing the site of FADD interaction 

on procaspase-8 itself.  A recent publication by Dickens et al. have shown a similar in 

silico model for the structure of caspase-8, modelled using different software but a 

similar homology model, based on v-FLIP, MC159 (Dickens et al., 2012) which supports 

the accuracy of our model.  Additionally, after the completion of our in silico modelling 

and initial compound testing, two publications emerged which performed similar in 

silico analyses of c-FLIP and FADD (Hwang et al., 2014; Majkut et al., 2014).  In 

particular, Majkut et al. constructed a very similar model to ours of the c-FLIP 

DED1:FADD interaction, providing further support for our own model. 

 A structure-based virtual screen was performed on c-FLIP and procaspase-8 in 

parallel.  After a multi-step in silico selection process, 19 small molecules were selected 

for their potential ability to prevent the interaction between c-FLIP and FADD, whilst 

sparing the interaction between procaspase-8 and FADD.   

 

7.2 Biological Evaluation of c-FLIP Small Molecule Inhibitors 

 We performed biological evaluation of the 19 compounds primarily on the two 

previously described TRAIL-resistant breast cancer cell lines MCF-7 and BT474 which 

demonstrated several of our 19 c-FLIP inhibitors to have an ability to partially sensitise 

these cells to TRAIL induced apoptosis.  The ability of the compounds to sensitise to 

TRAIL, with little viability alterations when administered alone was similar to that 

observed previously on MCF-7 and BT474 cells using siRNA to remove c-FLIP followed by 

treatment with TRAIL (Piggott et al., 2011), thus in effect, our lead compounds were 
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able to phenocopy c-FLIP siRNA.  Treatment with one of our lead compounds, OH14, at 

a range of concentrations, in assays which are used to represent stem-like and 

progenitor cells respectively, demonstrated a dose-dependent ability of the compound 

to significantly sensitise both MCF-7 and BT474 tumoursphere- and colony-forming cells 

to TRAIL, whilst remaining non-toxic when administered alone.  In order to fully 

differentiate between additive and synergistic effects of the compounds, ideally, the 

IC50 of the drugs would need to be reached, using a combination of cell and interaction 

assays. 

 Our initial data demonstrated OH14 in a TN breast cancer and PR -ve cell line to 

only modestly increase sensitivity to TRAIL at one concentration.  Studies have 

demonstrated HER2 status to be associated with TRAIL resistance, in that HER2 +ve 

cancers are more TRAIL resistant (Zang et al., 2014), thus, perhaps HER2 receptor status 

impacts on sensitivity to the combination therapy, with HER2 cells expressing a different 

variant of c-FLIP.   Both SKBR3 and MDA-MB-231 cells, unlike BT474 and MCF-7 cells, are 

PR -ve cell lines, thus, it may be that lack of expression of this hormone receptor 

impacts on the ability of these cells to be sensitised to TRAIL by our inhibitors, although 

this hypothesis has not yet been explored.   

 An additional explanation for the differences in sensitivity to OH14 is that both 

the MDA-MB-231 and SKBR3 cell lines may express a modified variant of c-FLIP.  Even a 

one amino acid alteration in the sequence of c-FLIP around the pocket of DED1, which 

we have selected OH14 to target, could lead to the compounds being ineffective.  

Protein sequence variation is common in cell lines, as demonstrated by around 15 

million, of reported single nucleotide polymorphisms (SNPs) present in the human 

genome.  These have been identified in a large-scale project 'The 1000 Genomes 

Project' which characterised human genome sequence variation and correlate results 

with genotype and phenotype information (1000 Genomes Project Consortium, 2010).  

In order to explore the idea that the c-FLIP sequence variation plays a role in the lack of 

OH14 sensitivity to some cell lines, sequencing of the c-FLIP gene is required in order to 

determine its primary structure in these cell lines. In addition, further evaluation into 

the effects of OH14 or lead analogues in other breast cancer cell lines, including triple 

negative, PR -ve and HER-2 positive cell lines is required.  
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 Our results thus far suggested that our lead compound was most efficacious in 

the micromolar rage, with the concentrations at which our lead compound was most 

efficacious in multiple assays from 10 to 100 µM, deeming OH14 to have a low potency.  

Although this is a relatively high concentration, many non-specific c-FLIP-inhibiting 

agents, for example the Akt Inhibitor API-1 (Li et al., 2012); the HDAC agent MS-275 

(entinostat) (Rao-Bindal et al., 2013);  also act at micromolar levels.  Furthermore, pan-

caspase inhibitors, such as Z-VAD-FMK (Promega) are reccomended for use at 

micromolar concentratons, up to 100 µM (Promega, Datasheet).  Testing of analogues 

of OH14 has begun and has provided us with an initial structure activity relationship for 

the compound, with the identifications of several compounds which exhibited different 

activity to OH14, with some showing improved efficacy.  It is hoped that we will identify 

an analogue of OH14 with improved efficacy and a lower working concentration, thus a 

larger therapeutic range. 

7.3 Mechanism of Action: c-FLIP:FADD Interactions 

 The pharmacological disruption of PPIs is an increasingly important tool in 

modern medicine.  Compounds targeted to protein-protein interactions, involving 

crucial processes in both disease and normal states, such as apoptosis, must have their 

mechanism of action validated to demonstrate that it exerts its desired effect through 

the inhibition of the target protein interaction (Roszkik et al., 2013).  Several studies 

have reported on the presence of interactions between the DEDs of FADD and c-FLIP, 

FADD and procaspase-8, and c-FLIP and procaspase-8 (Day et al., 2008; Dickens et al., 

2012; Safa and Pollok, 2011).  One of the key reasons for TRAIL resistance is the 

competition between c-FLIP and procaspase-8 for interacting and binding with the DED 

present on FADD (Safa, 2012), thus, demonstrating that our inhibitors prevent this 

interaction is of great importance.  

 In Chapter 5, we utilised co-IP and Western blot in a TRAIL-resistant line to 

demonstrate an interaction between caspase-8 and FADD, however, further 

optimisation is required for compound analysis using co-IP.  We have, however 

optimised FRET acceptor-photobleaching to evaluate the ability OH14 to interfere with 

the interaction between c-FLIP and FADD in TRAIL-resistant HeLa and MCF-7 cells.  FRET 

provides a technique for studying protein:protein interactions which does not rely on 
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antibodies, which are often are not highly sensitive and can exhibit poor target 

selectivity.  FRET has previously been utilised, in different formats, including flow 

cytometry FRET, to demonstrate FADD:caspase-8 and -10 interactions (Wang et al., 

2001; Muppidi et al., 2006), TRAIL-receptor interactions (Neumann et al., 2014) and 

FADD self-association (Muppidi et al., 2006), however, FRET has not yet been performed 

to evidence c-FLIP:FADD interactions.  Using FRET, we were able to show that our lead 

inhibitor, OH14, can prevent the interaction between c-FLIP and FADD in HeLa cells 

stimulated with TRAIL, and, although less profound, a similar effect was observed in 

MCF-7 cells.  Furthermore, using several assays to evaluate caspase activity, we have 

demonstrated that our lead compound OH14 indeed facilitates TRAIL-induced apoptosis 

through the caspase-mediated pathway, and, as such, in combination with our FRET 

studies, have demonstrated the highly specific likely mechanism of action of OH14.   

 

7.4 Residues Involved in c-FLIPs Anti-Apoptotic Role 

 Primers for site directed mutagenesis have been designed and plasmids have 

been generated to target residues I6, H7, R38 and R45 on DED1 of c-FLIP, although 

successful biological evaluation of these has not yet taken place.    

 At the time of the study, there were no mutational studies published on the 

DEDs of c-FLIP.  Much more recently, however, two studies have emerged which look 

into mutations on the relevant domains of c-FLIP and both utilise in silico modelling.  

One study utilised in silico modelling and carried out mutations on DED2 of c-FLIP.  This 

study, performed by Hwang et al., evaluated mutations of E80A, L84A, K169A and 

Y171A, all present within DED2, and, using co-IP, showed a disturbed interaction with 

FADD, in addition to lowering the overall stability of the DEDs of c-FLIP (Hwang et al., 

2014). 

 Majkut and team evaluated mutations in both DED1 and DED2 of c-FLIP, and, in 

particular the residue, H7 in DED1: one of the residues which we had selected based on 

in silico modelling.  They observed that an H7G FLIP mutant had a modest reduction in 

the ability to block apoptosis and bind to procaspase-8 when compared to wildtype 

FLIP, whilst F114A in DED2 impacted more significantly on FADD procaspase-8 binding 
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although this was not the expected outcome, since based on their own in silico model, 

they expected H7 to be of greater importance (Majkut et al., 2014).  

 Interestingly, an equivalent amino acid residue on procaspase-8, Y8, was shown 

to be important for the interaction with FADD and activation of downstream 

executioner caspases upon TRAIL stimulation, whilst mutation of F122A in DED2 did not 

have any effect.  A double mutant, F122A/Y8G however, reduced the ability of 

procaspase-8 and FADD to interact even more than Y8G alone, suggesting again, that 

both DED domains are important for these interactions, although processing of 

procaspase-8 may be impacted (Majkut et al., 2014).  Furthermore, they assessed 

mutations on FADD at F25A and H7G, demonstrating the H7G mutant to have more 

important role in FADD:c-FLIP interactions.  The group demonstrated, however, that, 

unlike murine c-FLIP R (Ueffing et al., 2008) both DED1 and DED2 are required for the 

anti-apoptotic activity of c-FLIP S (Majkut et al., 2014).  These results provide 

interesting, although non-conclusive information about some of the DED residues of 

importance in c-FLIP, FADD and procaspase-8 interactions.   

 In the future, we aim to use our mutagenesis plasmids to demonstrate residues 

on c-FLIP which are important for its ability to interact with FADD.  Confirming the 

importance of these residues will be used by using mutant c-FLIP overexpression versus 

wildtype c-FLIP overexpression in c-FLIP knock-out cell lines, such as those generated 

using TALEN.  Unfortunately, we were unable to successfully generate a c-FLIP null cell 

line using TALEN technology (Chapter 5) and our siRNA cells do not have enough of a 

long term and stable reduction of c-FLIP to perform these studies.  We hope to generate 

an shRNA c-FLIP cell line, or continue to work on generating a TALEN c-FLIP cell line in 

order to perform our own mutational studies.  In addition, we may utilise our c-FLIP:YFP 

FRET constructs as our cloning template in order to generate mutant c-FLIP FRET 

constructs which will be analysed using FRET.   
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7.5 Future Directions 

 There are many additional avenues of evaluation into the potential effects and 

efficacy of our inhibitors, and indeed, targeting c-FLIP as a therapeutic strategy that we 

wish to explore in the future. 

 Synthesis and testing of new analogues is ongoing in order to improve efficacy 

and divulge structure-activity-relationship information about the compounds.  Further 

testing of these analogues, in particular, the analogues which have demonstrated the 

greatest effects so far: GG4, GG8, GG12, N10, N13, N17 and 14.9, in additional relevant 

assays, primarily the tumoursphere assay and assays to demonstrate mechanism of 

action, will be performed in the future in order to attempt to establish a novel and more 

efficacious lead compound.  Our optimised FRET acceptor-photobleaching will be 

utilised for this, alongside additional interaction assays, such as the proximity ligation 

assay, which is a highly selective and sensitive method for detecting protein interactions 

(Leuchowius et al., 2010).   

 All work carried out in this study was performed on immortalised cell lines, as 

opposed to primary tumours.  In order to increase the clinical relevance of our findings, 

it would be of interest in future to analyse our compounds in, for example, clinical 

human breast tumour biopsy samples.  Preliminary data from our lab, analysing OH14 

plus TRAIL in such samples has shown promise for the combination therapy in this 

material (Andreia Silva, personal communications).  In addition, evaluation of our c-FLIP 

inhibitors in other cancer types would certainly be of interest.  High expression levels of 

c-FLIP occurs in many cancers, including: liver, bladder, ovarian, colon, colorectal, 

prostate and breast cancers (Safa et al., 2008) and, as such, c-FLIP has been associated 

with TRAIL resistance, and indeed to play a role in chemotherapy resistance, in many of 

these cancer types (Okano et al., 2003; Kim et al., 2002; Safa, 2012; Lee et al., 2013; 

Lempke et al., 2014, Zang et al., 2014).  It would be of great interest, therefore, to test 

OH14 and lead analogues of OH14 in alternative cancer types which show potential to 

be sensitised to TRAIL in a similar way as our breast cancer cell lines.  Through use of 

HeLa cells in our FRET studies, we have demonstrated that our inhibitors do indeed 

inhibit the c-FLIP:FADD interaction in this cervical cancer line, which supports the 

hypothesis that our inhibitors may work in other cancer types. 
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 Work in this study focussed on a dual combination of our c-FLIP inhibitors and 

TRAIL, the ultimate therapy would likely include a chemotherapeutic regime.  A triple 

therapeutic action, such as this, could allow for the targeting of both cancer stem cells, 

and the bulk tumour cells, enabling a complete coverage of the cancerous cells present 

within a tumour, and the surrounding environment.  Preliminary studies from our lab 

have shown promise for such a triple-combination therapy with OH14, TRAIL and 

chemotherapy in vitro (Timothy Robinson, Personal communications).  In addition, c-

FLIP has been demonstrated to impact on chemotherapy resistance (Safa, 2012), thus, 

future work will be carried out to establish an optimum drug combination, dose and 

treatment schedule with OH14 or a lead analogue. 

 The existence of cancer stem-like cells, in combination with CSC plasticity, the 

ability of a cancer cell to de-differentiate and become a CSC, are recently proposed 

theories often used to explain cancer relapse (Section 1.1.7) (Wicha et al., 2006; 

Flemming, 2015).  A cancer therapeutic which could eliminate CSCs and prevent 

plasticity, in combination with a treatment which can eliminate bulk cells, is highly 

clinically desirable.  Although OH14 was designed to inhibit the interaction between c-

FLIP and FADD, it may be that blocking this site on c-FLIP alters other functions of c-FLIP.  

Preliminary data using OH14 on our in vitro model of plasticity is promising.  However, 

much further investigation is required in order to elucidate whether, and how, OH14 

prevents plasticity in our model. 

 One of the primary criterion of our in vitro compound assessment was the ability 

of the compound to dissolve in the common lab reagent DMSO, in order to achieve a 

millimolar stock solution.  DMSO is a widely used solvent for dissolving hydrophobic 

drug molecules, since it is amphipathic in nature and is used in both in vitro and in vivo 

studies.  In general, DMSO is only used at low concentrations, since at higher 

concentrations undesirable side effects have been observed (Galvao et al., 2014).  

Although only low concentrations of DMSO were utilised here, at latter stages of drug 

development, we may attempt to modify the chemical structure in order to increase the 

water solubility of the drug and, thus, eliminate the reliance on DMSO for preparing 

initial stock drug solutions.  This would benefit both in vitro and in vivo studies as it 

would likely allow a higher concentration of drug to be administered, which would have 

been previously restricted due to the potential toxicity of the vehicle. 
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 Ultimately, in order to progress this potential combination therapy further, in 

vivo studies would be required to provide toxicity, pharmacodynamics and side effect 

profiles for OH14 or its analogues, in addition to evaluating the in vivo efficacy of 

combination therapy overall. 

Table 7.1: Summary of all compounds tested.  

Compound obtained from: OM = original modelling SPECS (Chapter 3), SPECS analogue 
of 14 = S14, Pharmacy analogue Mahmoud = PM, Pharmacy analogue Gilda = PG. 
Efficacy: - = lack of solubility, observed toxicity or no observed efficacy, + = some 
efficacy but potential toxicity, ++ = efficacy but below OH14, +++ = efficacy equal or 
great than OH14. 
 

Compound Obtained Efficacy 
OH1 OM + 

OH2 OM - 

OH3 OM + 

OH4 OM - 
OH5 OM - 

OH6 OM + 

OH7 OM - 
OH8 OM - 

OH9 OM - 

OH10 OM - 

OH11 OM - 
OH12 OM - 

OH13 OM - 

OH14 OM +++ 

OH15 OM - 

OH16 OM ++ 

OH17 OM - 

OH18 OM - 

OH19 OM ++ 
14.1 S14 - 

14.3 S14 + 

14.4 S14 + 

14.5 S14 - 

14.6 S14 + 

14.7 S14 + 

14.8 S14 + 

14.9 S14 +++ 
N1 PM + 

N2 PM + 

N3 PM + 

N4 PM + 
N5 PM + 

N6 PM - 
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N7 PM - 

N8 PM + 

N9 PM + 

N10 PM +++ 
N11 PM + 

N12 PM + 

N13 PM +++ 

N14 PM + 
N15 PM - 

N16 PM + 

N17 PM +++ 

GG1 PG - 
GG2 PG - 

GG3 PG + 

GG4 PG +++ 

GG5 PG - 
GG6 PG - 

GG7 PG - 

GG8 PG ++ 

GG9 PG - 
GG10 PG + 

GG11 PG + 

GG12 PG +++ 
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Appendices 
 

A6.1 OH14 Synthesis 

 Amounts equal to 2-anthranilic acid (5.78 mmol), 2,4-dichloro-5-methyl-phenyl 

sulfonyl chloride (5.78mmol) and NaOH were mixed into 50 ml of water and stirred at 

room temperature overnight. The product was filtered, washed with water, dried and 

recrystallized from EtOH.   

A6.2: Analogue Synthesis 

 P-toluenesulfonyl chloride (7.95 mmol), under an atmosphere of nitrogen, was 

added to the stirred solution of methyl anthranilate (6.62 mmol) in anhydrous pyridine 

(20 ml). The reaction mixture was stirred at room temperature for 6 hours and was then 

quenched by the addition of water. The aqueous layer was extracted using 

ethylacetate (3 x 50 ml additions) and dried over anhydrous sodium sulphate. The 

solvent was removed under vacuum, and the crude product was then chromatographed 

over silica gel (eluen: hexane/ethylacetate 9/1), to produce a compound yield of 85%. 

This method followed a previously described method of synthesis for similar chemical 

structural compounds (Mishra and Panda, 2007). 
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Table A6.1: SPECS analogues of Compound OH14 (14 and 14.2 are the same compound). 
H d = hydrogen donors, H a = hydrogen acceptors 

Cpd. MW 
(g/mol) 

Formula H d H a  

OH14 360.22 C14H11Cl2NO4S 2 5 

 
14.1 360.22 C14H11Cl2NO4S 2 5 

 
14.2 360.22 C14H11Cl2NO4S 2 5 Same structure as 14 

14.3 339.8 C15H14ClNO4S 2 5 

 
14.4 360.22 C14H11Cl2NO4S 2 5 

 
14.5 332.21 C13H11Cl2NO3S 2 4  

14.6 325.77 C14H12ClNO4S 2 5  

14.7 360.22 C14H11Cl2NO4S 2 5 

 
14.8 380.64 C13H8Cl3NO4S 2 5 

 
14.9 305.35 C15H15NO4S 2 5 
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Table A6.2: Pharmacy Synthesised Compounds – GG1-12 

Compound MW 
(g/mol) 

Structure 

 
 

GG1 

374.239 

 
 

GG2 

374.239 

 
 

GG3 

374.239 

 
 
 
 

GG4 

359.3 

 
 
 

GG5 

319.37 

 
 
 

GG6 

360.21 

 
 
 

GG7 

360.21 

 
 
 

GG8 

319.37 

 
 
 

GG9 

319.37 

 
 
 

GG10 

360.2 
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GG11 

347.4 

 
 
 

GG12 

339.8 
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Table A6.3: Pharmacy Synthesised Analogues N1-17 
Analogues were generated of OH14 in order to improve the efficacy of the compound and 

provide further information as to the most important structural features of the inhibitors. 

 

Compound MW (g/mol) Formula Structure 

N1 407.79 C16H13ClF3NO4S 

 
N2 442.24 C16H12Cl2NO4S 

 
N3 393.77 C15H11ClfNO4S 

 
N4 428.2 C15H14ClNO4S 

 
N5 431.2 C15H14INO4S 

 

 
N6 339.79 C15H14ClNO4S 

 

 
N7 393.77 C15H11ClF3NO4S 

 

 
N8 338.79  C15H14ClNO4S 

 
N9 339.75 C15H14ClNO4S 

 
N10 339.8 C15H14ClNO4S 
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N11 339.8 C15H14ClNO4S 
 

 

N12 369.8 C16H16ClNO5S 
 

 
N13 383.85 C17H13ClNO5S 

 

 
N14 353.82 C16H16ClNO4S 

 

 

N15 353.82 C16H16ClNO4S 
 

 
N16 339.8 C15H14ClNO4S 

 

 
N17 431.25 C15H14INO4S 

 

 

 

 

 

 

 

 

 

 

 

 

 


