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Resonant-state expansion of dispersive open optical systems: Creating gold from sand
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A resonant-state expansion (RSE) for open optical systems with a general frequency dispersion of the
permittivity is presented. The RSE of dispersive systems converts Maxwell’s wave equation into a linear matrix
eigenvalue problem in the basis of unperturbed resonant states, in this way numerically exactly determining
all relevant eigenmodes of the optical system. The dispersive RSE is verified by application to the analytically
solvable system of a sphere in vacuum, with a dispersion of the permittivity described by the Drude and
Drude-Lorentz models. We calculate the optical modes converting the sphere material from gold to nondispersive
sand and back to gold, and evaluate the accuracy using exact solutions.
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Any optical system is characterized by its resonances,
which are a cornerstone of physics. The concept of resonant
states (RSs) is a mathematically rigorous way of treating the
resonances. Formally, RSs are the optical eigenmodes of the
system, i.e., the eigensolutions of Maxwell’s wave equation,
which satisfy the outgoing wave boundary conditions. In open
optical systems the RS eigenfrequencies ωn are generally
complex, which physically reflects the fact that the energy
leaks out of the system. The real part Re(ωn) gives the position
of the resonance, while the imaginary part Im(ωn) gives its half
width at half maximum, also determining the quality factor of
the resonance as Qn = |Re(ωn)/[2 Im(ωn)]|.

We have recently developed the resonant-state expansion
(RSE), a rigorous method for calculation of RSs, which is
treating perturbations of open optical systems of arbitrary
strength and shape [1]. Specifically, we note that the RSE
(i) uses the natural discretization in the frequency domain
provided by RSs, (ii) reduces the solution of Maxwell’s
wave equation to a linear matrix eigenvalue problem, and
(iii) produces all RSs originating from the basis states in a
single calculation, avoiding spurious solutions. This enables
the RSE to determine numerically exactly all the RSs in a
frequency range of interest, with an accuracy limited by the
basis truncation only.

Established computational methods in electrodynamics,
such as finite difference in time domain (FDTD) and finite
element method (FEM), instead, use an artificial discretization
in space and time domain and the approximation imposed by
perfectly matched layers (PMLs) at the system boundaries.
The FEM determines RSs one by one, by solving iteratively
a large eigenvalue equation—it is therefore impractical to
verify that all RSs within a complex frequency area have
been found. In FDTD, RSs can be found by analyzing the
calculated time evolution by a sum of RSs. Only RSs that have
been excited in the simulation are visible, and the resulting
number of RSs is not well defined. In both methods the spatial
discretization and PMLs can give rise to spurious solutions.
We have explicitly shown in [2] the advantages of the RSE over
FDTD and FEM in terms of accuracy and efficiency, exceeding
those of the popular computational methods by orders of
magnitude.

The RSE was not available until recently since RSs with
complex eigenfrequencies have wave functions, which are
exponentially growing in space away from system, and the

proper general normalization of such RSs was not known. The
issues with the normalization have been discussed recently [3],
where the presence of PMLs was used to calculate the
normalization. At the same time, the correct normalization
is contained in our first work on the RSE [1], and we recently
generalized it to an arbitrary surface of integration and to
dispersive materials, and developed an exact theory of the
Purcell effect [4], almost 70 years after its discovery [5].

So far the RSE has been developed for nondispersive
systems of different dimensionality and geometry [1,2,6–8].
However, almost all realistic systems, even dielectrics such as
glass, have a frequency dispersion of the permittivity. We have
recently found [9] that the direct substitution of an Ohm’s law
dispersion into the nondispersive RSE maintains its linearity.
The Ohm’s law dispersion can be a reasonable approximation
for materials with a permittivity dispersion determined by their
dc conductivity or when the dispersion can be approximated
by a term linear in the light wavelength over the frequency
region of interest. However, metals are better described by the
Drude model [10], and a significant improvement is achieved
by adding Lorentzian terms [11], which is further refined by
using complex weights (residues) of the frequency poles called
critical points (CPs) of the permittivity [12,13]. This treatment
of dispersion is also used in FEM and FDTD, adding significant
computational complexity.

In this paper we present a new fundamental method for
calculating RSs in open optical systems, generalizing the RSE
to treat arbitrary physical materials, by including the frequency
dispersion of the permittivity. We verify the method on exactly
solvable plasmonic and dielectric nanoparticles, and show
that its efficiency and convergence are similar to those of the
nondispersive RSE, and thus better than FEM and FDTD.

We start with a basis of RSs with the wave functions En(r)
and frequencies ωn being the eigensolutions of Maxwell’s
wave equation

∇ × ∇ × En(r) = ω2
n

c2
ε̂(r,ωn)En(r), (1)

where r is the spatial position and En(r) satisfy the outgoing
wave boundary conditions [7]. Generally, the dispersive
permittivity tensor ε̂(r,ω) of an unperturbed open optical
system described by Eq. (1) can be treated as an analytic
function in the complex frequency plane, which contains a
countable number of simple poles and therefore, according to
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Mittag-Leffler theorem, is expressed as

ε̂(r,ω) = ε̂∞(r) +
∑

j

iσ̂ j (r)

ω − �j

, (2)

where ε̂∞(r) is the high-frequency value of the permittivity and
�j are the resonance frequencies (poles) of the permittivity
determining the dispersion, with the weight tensors σ̂ j (r)
corresponding to generalized conductivities of the medium
at these resonances. The Lorentz reciprocity theorem requires
that all tensors in Eq. (2) are symmetric, and the causality prin-
ciple requires that ε̂∗(r,ω) = ε̂(r, − ω∗) [14]. Therefore, for
a physically relevant dispersion, each pole of the permittivity
with a positive real part of �j has a partner at �−j = −�∗

j

with σ̂−j = σ̂ ∗
j , while poles with zero real part of �j have real

σ̂ j . We assume here a local response of the material, for which
the permittivity only depends on a single coordinate. In real
materials, the response is nonlocal, typically on the atomic
scale, which is relevant for structure sizes in the nanometer
range [15].

The Ohm’s law dispersion of the permittivity corresponds
to replacing the sum in Eq. (2) by a single term with �0 = 0,
and σ̂ 0(r) being the dc conductivity tensor. The Drude model
of metals consists of two poles, �0 = 0 and �1 = −iγ , with
σ̂ 1(r) = −σ̂ 0(r). An example is given in Fig. 1, approximating
the measured complex refractive index nr (ω) = √

ε(ω) of
gold [10] using ��1 = −92.8 i meV, �σ1 = −744 eV, and
ε∞ = 1 [3]. Here ε(ω) is the diagonal element of the uniform
permittivity tensor in the metal. The Drude-Lorentz model
introduces additional poles at ω = �j with j = ±2, ± 3, . . .

and complex conductivities σ̂ j . We show in Fig. 1 an
established model for gold [12], having two pairs of addi-
tional resonances with ��1 = −85.6 i meV, �σ1 = −882 eV,
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FIG. 1. (a) Real and (b) imaginary parts of the refractive index
nr (ω) of gold, measured by Johnson and Christy [10] (green error
bars) and approximated by the Drude model [3] (thick blue lines),
and by the Drude-Lorentz model with two pairs of CPs [12] (thin red
lines).

��2 = (2.64 − 0.65 i) eV, �σ2 = 3.35 eiπ/4 eV, ��3 =
(3.82 − 1.17 i) eV, �σ3 = 4.20 eiπ/4 eV, and ε∞ = 1.54.
These Drude and Drude-Lorenz models for gold are used in
the following for illustration of the dispersive RSE.

The GF of Maxwell’s wave equation has the spectral
representation

Ĝω(r,r′) = c2
∑

n

En(r) ⊗ En(r′)
2ωn(ω − ωn)

, (3)

where the sum is taken over all RSs, and ⊗ denotes the dyadic
product of vectors. Equation (3) requires [4] that the RSs are
normalized according to

1 + δ0,ωn
=

∫
V

En(r) · ∂[ω2ε̂(r,ω)]

∂(ω2)

∣∣∣∣
ωn

En(r) dr

+ c2

2ω2
n

∮
SV

(
En · ∂Fn

∂s
− Fn · ∂En

∂s

)
dS, (4)

where Fn = (r · ∇)En, V is an arbitrary simply connected vol-
ume with a boundary surface SV enclosing the inhomogeneity
of the system, and the derivative ∂/∂s is taken along the outer
surface normal.

Substitution of the spectral representation Eq. (3) into
Maxwell’s equation for the GF results in a closure relation
and additional sum rules, as shown in Appendix A, see
Eqs. (A4)–(A6). The sum rules provide additional spectral
representations of the GF, one for each pair of poles in the
permittivity.

Let us now consider a perturbed system, in which ε̂(r,ω) is
replaced by ε̂(r,ω) + �ε̂(r,ω), with the perturbation �ε̂(r,ω)
in the form of Eq. (2) described by �ε̂∞(r) and �σ̂ j (r),
nonzero only inside the unperturbed system. We find the
electric field E(r) and the eigenfrequency ω of a perturbed
RS using the integral equation

E(r) = −ω2

c2

∫
Ĝω(r,r′)�ε̂(r′,ω)E(r′)dr′. (5)

Expanding the perturbed RS inside the system into the
complete basis of unperturbed RSs,

E(r) =
∑

n

cnEn(r), (6)

and using the different spectral representations of the GF [see
Eq. (A9) of Appendix A] for the corresponding terms of the
permittivity, the integral equation (5) is converted to the matrix
eigenvalue equation

(ωn − ω)
∑
m

[2δnm + Vnm(∞)]cm = ωn

∑
m

Vnm(ωn)cm, (7)

which is linear in ω, with the perturbation matrix

Vnm(ω) =
∫

En(r) · �ε̂(r,ω)Em(r) dr, (8)

see Appendix B for details. This is the linear dispersive RSE,
which treats arbitrarily shaped changes of the permittivity
inside the basis system, described by �ε̂∞(r) and �σ̂ j (r).
In the absence of dispersion we have Vnm(ω) = Vnm(∞), and
Eq. (7) simplifies to 2(ωn − ω)cn = ω

∑
m Vnmcm, which is the

matrix eigenvalue equation of the nondispersive RSE [1,2].
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FIG. 2. Results of the linear dispersive RSE converting gold into
sand. (a) RS energies �ωn of the unperturbed system (gold sphere
in vacuum using the Drude-Lorentz model, black circles with dots)
and the perturbed system (sand sphere in vacuum) for l = 1 TM
modes and the sphere radius of R = 200 nm. The perturbed energies
are calculated exactly (blue squares) and using the linear RSE Eq. (7)
(red crosses) for �ωmax = 200 eV. (b) Relative difference between the
RSE and exact eigenenergies, for different values of ωmax as given.

The linear dispersive RSE is suited for both dispersive and
nondispersive unperturbed systems with perturbations, which
do or do not add new poles to the permittivity. For every
additional nonzero pole of the permittivity, the GF acquires
an additional countable infinite number of poles [16], having
frequencies asymptotically approaching the permittivity pole.
Poles of the permittivity with finite weight in the perturbed
system but zero weight in the unperturbed system are included
in the basis by taking the limit of the pole weight tending
to zero. In this limit, the pole-related RSs have frequencies
converging to the pole but refractive indices taking separate
discrete values, as detailed below.

To illustrate the linear dispersive RSE and evaluate its
convergence, we show in Figs. 2 and 3 the transverse
magnetic (TM) eigenmodes of spheres made of a dispersive
material (gold) and a nondispersive material (sand, nr = 1.5)
in vacuum, and perturbations, which transform gold to sand
in Fig. 2 and sand to gold in Fig. 3. We call the nondispersive
material sand since it is a fictitious material with a refractive
index similar to silica in the visible region. In order to
model the fundamental surface plasmon (SP) mode, which
is an important mode for applications such as plasmonic
biosensing, we choose RSs with the orbital number l = 1.
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FIG. 3. Results of the dispersive RSE converting sand into gold.
(a) RS energies �ωn of the unperturbed system (sand sphere with
nr = 1.5 in vacuum, black circles with dots) and perturbed system
(gold sphere in vacuum using the Drude model) for l = 1 TM modes
and R = 200 nm. The perturbed energies are calculated exactly (blue
open squares), and using the linear RSE Eq. (7) (red crosses) or the
nonlinear RSE Eq. (9) (green crosses). The inset shows the refractive
index of degenerate Drude-pole modes in the unperturbed basis sorted
in ascending order. The line shows a proportionality between number
and index. (b) Relative error of the RSE energies of the perturbed
RSs, for both the linear and nonlinear RSE, for different values of
ωmax as given. The inset shows the relative errors of RSs close to the
Drude pole, which have purely imaginary energies.

The RSs of the sand and gold spheres in vacuum were
taken in the analytic form [2] and normalized according to
Eq. (4). Explicit expressions are given in [4]. The radius of the
sphere R = 200 nm is chosen such that both the Drude and
the Drude-Lorentz models of the gold permittivity shown in
Fig. 1 are approximately valid for the fundamental SP mode
at �ω ∼ (0.88 − 0.43i) eV shown in Figs. 2 and 3 by arrows.

We select a finite number N of RSs for the RSE basis,
including all RSs satisfying the condition |nr (ωn)ωn| < ωmax.
This excludes RSs having a wave vector in the medium
above ωmax/c, which occurs both for large ωn and for large
|nr (ωn)| with ωn close to the poles of the dispersion. The
RSE results for the perturbed eigenmodes are compared with
the analytic solutions, and the relative errors are shown
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in Figs. 2(b) and 3(b) for different ωmax, demonstrating a
high accuracy given the strong perturbation. Note that for
the present geometry, N is approximately proportional to
ωmax, with N = 456 for �ωmax = 200 eV. The observed 1/N3

convergence to the exact solution is comparable to that of
the nondispersive RSE [1,2], which indicates that the linear
dispersive RSE has the same advantages in accuracy and
efficiency compared to FDTD and FEM as demonstrated for
the nondispersive RSE [2].

Converting gold to sand [Fig. 2(a)] the RSE reproduces
the RSs of the nondispersive sand sphere, and additionally
produces a number of quasidegenerate RSs at the Drude and
Lorentz poles. These RSs are present in the system since in
the linear RSE the same poles of the dispersion are considered
before and after perturbation. Poles with zero weight lead to a
series of RSs, all having the frequencies at the pole position but
corresponding to different refractive indices, as exemplified in
the inset of Fig. 3(a). For the sphere geometry, they can be
calculated analytically by taking the limit of the pole weight
to zero in the secular equation. A perturbation that creates a
finite weight of the pole lifts the degeneracy of these RSs, as
exemplified in Fig. 3(a) converting sand to gold.

We now compare this result with an alternative dispersive
RSE approach, which uses a nondispersive system as basis and
creates the additional RSs due to the poles of the dispersion
via the nonlinearity of the resulting generalized eigenvalue
problem. Assuming that the unperturbed ε̂(r) has no dispersion
leaves us with only one sum rule [Eq. (A5) of Appendix A] and
one alternative GF representation [Eq. (A9) used for �j = 0].
Using that representation in Eq. (5) results in a nonlinear
dispersive RSE

2(ωn − ω)cn = ω
∑
m

Vnm(ω)cm, (9)

which appears as a more direct generalization of the nondis-
persive RSE [1,2]. For a finite number of poles in the
permittivity, Eq. (9) can be written as a polynomial matrix
equation in ω. The order M of the polynomial is given by
the number of poles in Eq. (2), so for example, M = 1 for
the Ohm’s law model (linear matrix problem), M = 2 for
the Drude model (quadratic problem), and M = 6 for the
Drude-Lorentz model with two pairs of CPs. For any finite
M > 1, such a polynomial eigenvalue problem can be solved
by linearization [17], extending the size of the matrix problem
by a factor of M .

We illustrate the nonlinear dispersive RSE using the Drude
dispersion of the perturbed system, for which Eq. (9) is a
quadratic matrix problem. For the same basis cutoff ωmax

as used for the linear dispersive RSE, the energies of the
Fabry-Pérot RSs are reproduced with a similar accuracy, see
Fig. 3(b). However, the SP mode has an about two orders
of magnitude larger error, and RSs around the Drude pole
are also having orders of magnitude larger error as shown
in the inset of Fig. 3(b). This can be understood considering
that in the nonlinear RSE the basis does not contain the pole
RSs, and is therefore less suited to describe RSs close to
the permittivity poles. Furthermore, the nonlinear RSE matrix
problem is somewhat larger, leading in the present example to
approximately twice the computation time. This demonstrates
that the linear dispersive RSE is superior to the nonlinear one in

determining the electromagnetic properties, specifically close
to material resonances, e.g., for plasmons as shown here, but
also for phonon polaritons [18] or exciton polaritons [19].

We emphasize that the RSE can treat arbitrary shapes
and materials that are located within the basis system. The
latter condition is required for the expansion Eq. (6) to be
converging, and to retain the outgoing boundary conditions
outside of the basis system. As basis system one can use
an analytically solvable one, such as a spherical system with
homogeneous material as used in this work, but also core-shell
systems [20]. However, one can as well use RSs obtained
from other solvers. Furthermore, small perturbations of a
nonspherical system can be treated using a double-step RSE,
which in a first step determines the RSs of the system and their
expansions using a spherical basis. A smaller perturbation
of the system can then be efficiently calculated by a local
perturbation RSE [2] using only few important RSs as basis.

While the present work gives examples for a three-
dimensionally bounded geometry, the RSE is suited also for
planar [8] or wire [7] structures. An extension to other specific
geometries such as planar photonic crystals is possible and
under development. Beyond electrodynamics, the dispersive
RSE approach can be applied to other areas of physics
described by linear wave equations, such as quantum me-
chanics and acoustics, using effective medium models for the
underlying materials.

In conclusion, the presented generalization of the RSE to
materials with arbitrary frequency dispersion of the permittiv-
ity, described by a finite number of simple poles, is extending
the applicability of the RSE to general open optical systems,
paving the way to its widespread use in electromagnetic
simulation.

The data presented in this work are available from the
Cardiff University data archive [21].
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Cymru National Research Network in Advanced Engineering
and Materials. The authors acknowledge discussions with
M. D. Doost and H. Sehmi. E.A.M. acknowledges support
from RFBR Grant No. 14-02-00778.

APPENDIX A: DERIVATION OF SUM RULES AND
ADDITIONAL SPECTRAL REPRESENTATIONS OF THE
GREEN’S FUNCTION OF A SYSTEM WITH DISPERSION

For an optical system, described by Maxwell’s wave
equation (1), with a frequency-dependent permittivity ε̂(r,ω),
the GF Eq. (3) satisfies the following wave equation with a
δ-function source term:

− ∇ × ∇ × Ĝω(r,r′) + ω2

c2
ε̂(r,ω)Ĝω(r,r′) = 1̂δ(r − r′).

(A1)

Substituting Eq. (3) into Eq. (A1) and using Eq. (1), we obtain
a closure relation [4]∑

n

ω2ε̂(r; ω) − ω2
nε̂(r; ωn)

2ωn(ω − ωn)
En(r) ⊗ En(r′) = 1̂δ(r − r′).

(A2)
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For the permittivity in the form of Eq. (2), the above equation
is transformed, with the help of the algebraic identity

1

ωn(ω − ωn)

(
ω2

ω − �j

− ω2
n

ωn − �j

)

= 1

ωn − �j

+ ω

ω − �j

(
1

ωn

− 1

ωn − �j

)
, (A3)

to the expression

ω

2
ε̂∞(r)

∑
n

En(r) ⊗ En(r′)
ωn

+ 1

2
ε̂∞(r)

∑
n

En(r) ⊗ En(r′)

+ 1

2

∑
n

∑
j

iσ̂ j (r)

ωn − �j

En(r) ⊗ En(r′)

+ ω

2

∑
j

iσ̂ j (r)

ω − �j

∑
n

En(r) ⊗ En(r′)
ωn

−ω

2

∑
j

iσ̂ j (r)

ω − �j

∑
n

En(r) ⊗ En(r′)
ωn − �j

= 1̂δ(r − r′).

The above closure relation has to be satisfied for any ω.
Therefore, it splits into a simpler, frequency-independent
closure relation

1

2

∑
n

ε̂(r,ωn) En(r) ⊗ En(r′) = 1̂δ(r − r′) (A4)

and sum rules ∑
n

En(r) ⊗ En(r′)
ωn

= 0 (A5)

and ∑
n

En(r) ⊗ En(r′)
ωn − �j

= 0. (A6)

The latter holds for every �j contributing to the permittivity
given by Eq. (2). Now, using the algebraic identity Eq. (A3) in
the form

1

ωn(ω − ωn)
− 1

ωωn

+ �j

ω2(ωn − �j )
= W

j
n (ω)

ω(ω − ωn)
, (A7)

where

Wj
n (ω) = ωn

ω

ω − �j

ωn − �j

, (A8)

including W 0
n (ω) = 1 for �0 = 0, and combining the GF

given by Eq. (3) with the sum rules Eq. (A5) and Eq. (A6),
according to the terms in Eq. (A7), we find an additional
spectral representation Ĝj

ω of the GF for each pole in the
permittivity:

Ĝj
ω(r,r′) = c2

∑
n

En(r) ⊗ En(r′)
2ωn(ω − ωn)

− c2 1

2ω

∑
n

En(r) ⊗ En(r′)
ωn

+ c2 �j

2ω2

∑
n

En(r) ⊗ En(r′)
ωn − �j

= c2
∑

n

Wj
n (ω)

En(r) ⊗ En(r′)
2ω(ω − ωn)

. (A9)

Note that the Ohm’s law dispersion introduces a ω = 0 pole
in the permittivity, which leads to the sum rule Eq. (A6)
with �0 = 0, identical to Eq. (A5). This sum rule leads
the representation Ĝ0

ω(r,r′) of the GF given by Eq. (A9)
with W 0

n (ω) = 1. The ω = 0 pole is actually present also in
the nondispersive system owing to the longitudinal ωn = 0
modes [2]. As a result, the sum rule Eq. (A5) [or Eq. (A6)
with �0 = 0] holds even without dispersion [7,8], due to the
constant term ε̂∞(r) in the permittivity. This explains why
Ohm’s law does not need any significant reformulation of the
RSE compared to the nondispersive case and does not require
an extension of the basis of RSs [9].

APPENDIX B: DERIVATION OF THE MATRIX
EIGENVALUE EQUATION OF THE LINEAR

DISPERSIVE RSE

We consider Maxwell’s wave equation

∇ × ∇ × E(r) = ω2

c2
ε̂p(r,ω)E(r) (B1)

with a perturbed permittivity ε̂p(r,ω) = ε̂(r,ω) + �ε̂(r,ω).
The perturbation �ε̂(r,ω) has the form similar to Eq. (2):

�ε̂(r,ω) = �ε̂∞(r) +
∑

j

i�σ̂ j (r)

ω − �j

, (B2)

with the poles at the same frequencies �j as in the unperturbed
permittivity but with different weights. In Eq. (B1), E(r) is
the wave function of a perturbed RS satisfying the outgoing
wave boundary condition and ω is its eigenfrequency. To bring
the perturbed problem Eq. (B1) to a linear matrix eigenvalue
problem Eq. (7), we use the formal solution for the electric
field E(r) in the form of the integral equation (5), in which we
use the unperturbed GF in its different representations Eq. (A9)
for the corresponding terms of the permittivity:

E(r) = −ω2

c2

∫ ⎡
⎣Ĝ0

ω(r,r′)�ε̂∞(r′) +
∑

j

Ĝj
ω(r,r′)

i�σ̂ j (r′)
ω − �j

⎤
⎦

× E(r′)dr′. (B3)

Expanding the perturbed RS wave function into the basis
of unperturbed ones, Eq. (6), and substituting the spectral
representations Eq. (A9) of the GF, we obtain:

∑
n

cnEn(r) = −ω2
∫ [∑

n

En(r) ⊗ En(r′)
2ω(ω − ωn)

�ε̂∞(r′)

+
∑

j

∑
n

ωn

ω

En(r) ⊗ En(r′)
2ω(ω − ωn)

i�σ̂ j (r′)
ωn − �j

⎤
⎦

×
∑
m

cmEm(r′)dr′. (B4)
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Equating the coefficients at different basis functions En(r) results in a matrix equation

cn = − 1

2(ω − ωn)

∫ ⎡
⎣ωEn(r) · �ε̂∞(r) + ωnEn(r) ·

∑
j

i�σ̂ j (r)

ωn − �j

⎤
⎦ ∑

m

cmEm(r)dr, (B5)

which is equivalent to the linear matrix eigenvalue problem Eq. (7) with the perturbation matrix elements Vnm given by Eq. (8).
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