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ABSTRACT: Solid-oxide fuel cells are promising devices for sustainable power
generation. Electrolyte materials play an important role in connecting the anode
and cathode, and they influence the performance of the device. In this context,
gadolinium-doped ceria (GDC) has proven to be an efficient electrolyte material,
although the presence of dopant clusters can lower its efficiency. After usage,
dopant clusters start appearing at dislocations, translocations, grain boundaries, or
surfaces. Hence, the study of dopant clustering at the atomic level near these
regions becomes of vital importance, as it allows us to understand the reasons for
the occurrence of this phenomenon and its impact on the oxygen conduction. In
this context, the present paper studies the impact of dopant clustering near the
(111) GDC surface. We have studied two different gadolinium concentrations in
the material, of approximately 7% and 14%, which are close to the optimum
concentration of 10%. Our results indicate that surface relaxation is a key factor in
determining the preference of defect clusters to be found in the surface. We have
also calculated the relative abundance of different defect clusters at different temperatures, including the configurational entropy
term. It was revealed that working temperatures (650−1100 K) show the relative abundance of different cluster structures,
displaying that, at high concentrations, preferred dopant clusters resemble the structure of Gd2O3, showing the formation of
gadolinia domains. Finally, we show that oxygen diffusion will be affected by the formation of these domains. After evaluating the
oxygen mobility, we conclude that oxygen vacancies will be trapped by the gadolinium clusters at the surface. These vacancy traps
prevent oxygen diffusion, thereby affecting negatively the performance of the material and the fuel cell in general.

1. INTRODUCTION
The need for sustainable energy sources has become a priority
to minimize the consequences of CO2 production and to meet
increasing energy demands.1,2 Among the devices and materials
designed to perform efficiently and under environmentally
acceptable conditions, fuel cells represent an important
development. In particular, solid-oxide fuel cells (SOFC) are
promising devices for clean and efficient energy conversion.3

Considering both oxygen and hydrogen as fuels, the general
reactions occurring at the anode and the cathode are

Anode

+ → +− −H O H O 2e2
2

2

Cathode

+ →− −O 4e 2O2
2

Oxide anions generated in the cathode migrate through the
electrolyte to finally react with hydrogen in the anode. Usual
electrolyte materials for SOFC are ionic solids with the fluorite
structure at working conditions, e.g., zirconia (ZrO2) or ceria
(CeO2). These materials are normally doped with trivalent
cations, usually lanthanides and in some cases transition metals,
generating oxygen vacancies through charge compensation.4−7

Owing to these vacancies, O2− anions migrate by means of a
hopping mechanism that has been studied extensively from a
theoretical point of view.8−11 Considering M2O3 dissolved in
CeO2, the oxygen vacancy formation reaction expressed in
terms of Kröger-Vink notation12 is

⎯ →⎯⎯⎯ ′ + + ··M O 2M 3O Vx
2 3

CeO
Ce O O

2

where M is a trivalent metal cation. A more detailed explanation
of the Kröger-Vink notation can be found in the Supporting
Information.
The mobility of oxide anions is directly related to the ionic

conductivity in the material, which mainly depends on two
factors: electrostatic interaction between dopants and vacancies
and elastic distortion generated by the dopants.13 Several
studies, either theoretical or experimental, have suggested that a
10% concentration of gadolinium oxide (Gd2O3) is one of the
best options for doping the cerium dioxide and obtaining high
ionic conductivities.14,15 In addition, gadolinium-doped ceria
(GDC) allows operation at intermediate temperatures between
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775 and 1075 K,16 in comparison with other electrolyte
materials like yttria-stabilized zirconia (YSZ), which operates
between 873 and 1273 K.17

Simulations of doped ionic solids often assume perfect
crystals18−20 or focus on the study of specific grain
boundaries21,22 or surfaces.23−26 More realistic models have
used molecular dynamic simulations to include dislocations and
lattice misfit, although their computational cost is still very
high.27 Other types of defects to be considered originate from
the segregation of dopants and associated vacancies toward the
surface or the grain boundaries of the materials.28 For example,
in the case of GDC, the Gd concentration is markedly higher at
surfaces than in the bulk material,29 which has considerable
impact on the ionic conductivity.
To improve our understanding of the dopant distribution in

surfaces for gadolinium-doped ceria, we have used density
functional theory (DFT) calculations to carry out a systematic
study into Gd clustering in the dominant (111) surface, its
abundance at typical SOFC working temperatures, and its
impact on the mobility of O2− near the surface.

2. COMPUTATIONAL METHODS AND SURFACE
MODEL

We have performed ab initio calculations within the density functional
theory by means of the Vienna Ab-initio Simulation Package
(VASP).30−33 Assuming the Projector-Augmented Wave (PAW)
approximation,34 we have used the Perdew−Burke−Ernzerhof
(PBE) exchange correlation functional,35 setting the kinetic energy
cutoff at 550 eV. The reciprocal space was described by a 3 × 3 × 1
Monkhorst−Pack scheme for the slab model.36 We have considered
the following explicit electrons for each atomic species:
4f15s25p65d16s2 for Ce, 4f75s25p65d16s2 for Gd, and 2s22p4 for O.
The experimental magnetization of GDC is very low,37,38 which is why
we have assumed that the total spin for the system is null, despite
performing spin polarized calculations. Finally, all optimizations were
performed to self-consistency, with convergence parameters of 1 ×
10−5 eV and 1 × 10−2 eV·Å−1 for the threshold of the electronic and
ionic steps, respectively. The optimization of the transition state
geometries (TS) was done with the improved dimer method of
Heyden et al.,39 and numerical frequencies were also calculated to
confirm the presence of a single imaginary frequency for TS and none
for ground state geometries.
It is well-known that pure DFT fails in its description of the

localized state of the 4f1 electron in Ce3+. This is a consequence of the
electron self-interaction error derived in the Coulomb interaction as
treated in the Kohn−Sham formalism.40 Hence, we have introduced
an on-site Coulombic interaction for the 4f Ce electrons, in order to
enhance their localization. The value of the U parameter was set at 5
eV,41 under the Liechtenstein algorithm.42

We also considered nonspherical contributions from the gradient
corrections to the PAW spheres. This setup entails an expansion of the
lattice parameter for CeO2 bulk up to 5.501 Å, only 1.7% larger than
the experimental one, 5.411 Å.43 However, our goal was to model
GDC, with an experimental lattice parameter of 5.423 Å,18,44 leading
to a mismatch of just 1.4%.
Our surface model was obtained by cutting the bulk material using

the dipole method implemented in the METADISE code.45,46 There
are two possible terminations without perpendicular dipoles: an
oxygen-terminated and cerium-terminated surface. After several tests,
the most stable slab was shown to be the oxygen-terminated surface,
encompassing 12 and 18 atomic layers (Ce16O32), as shown in Figure
1. The area of the surface is 52.48 Å2, corresponding to a 2 × 2 (111)
unit cell, with a surface energy (γR) of 0.72 J·m−2, in agreement with
previous results reported by several groups.41,47 The six bottom atomic
layers are fixed to model the bulk material, whereas the six top atomic
layers are allowed to relax explicitly, representing the surface. These
layers are labeled Oa to Od and Cea and Ceb.

Finally, sampling of all nonequivalent dopant configurations was
achieved using an adaptation of the SOD code48 to allow for double
substitutions. Taking advantage of the system’s symmetry, the code
permits a reduction of the number of total configurations to only those
that are nonequivalent by symmetry, determining at the same time
their configurational degeneracy.

Ce substitutions and VO were only considered in Cea, Ceb, and Oa
to Od atomic layers (See Figure 1). Since the resulting slabs were not
symmetric, dipole corrections were included during optimization of
the different structures using the VASP code.

3. RESULTS AND DISCUSSION
3.1. 6.67% Gadolinium Concentration. To model a

situation where the concentration of Gd is 6.67%, i.e., slightly
lower than the usual 10%,44,49 we have substituted two cerium
atoms per gadolinium and introduced an oxygen vacancy in the
model depicted in Figure 1a, leading to Ce14Gd2O31. It is worth
highlighting, however, that considering only the region where
we place Gd (top two metal layers), the local concentration
becomes higher, i.e., 25%, which is simulating a situation where
Gd has migrated toward the surface. We first considered a
structure without VO and with at least one Gd atom placed in
the Cea layer, where we identified three nonequivalent
configurations, labeled as n1, n2, and n3 (see Figure S1 for
further information). Starting from these configurations, we
introduced an oxygen vacancy and optimized all nonequivalent
geometries for the vacancy: 8 structures for n1, 12 for n2, and 4
out of 8 for n3 (we discuss below the reason for not optimizing
all 8 geometries of n3). The nomenclature that we will use from
now on is nx-gy, where x refers to the Gd configuration and y to
the different geometries of the VO for each x (Figure S2).

3.1.1. Energetics, Geometry, and Electronic Structure.
After optimization, we evaluated the relative energies for all the
structures (collected in Tables 1 and S1). The most stable
structures (n3-g3, n2-g5, n2-g4, n3-g4, n1-g1, and n2-g6, all depicted
in Figure 2) are all within a range of 0.25 eV, suggesting that
Gd can be placed fairly randomly in the surface, whereas the
vacancy is always found in the Ob atomic layer. The relative
energy increases as the vacancy is located in Oa, Oc, and Od,
respectively, reaching values up to 2 eV for n1-g7 and n1-g8. The
zero point energy (ZPE) for all configurations is found to be
between 1.20 and 1.23 eV (Table 1), indicating that vibrational
contributions are comparable for the different structures, and

Figure 1. Slab models used for this work: (a) 12 atomic layer model
and (b) 18 atomic layer model. In red and blue are highlighted those
layers that are allowed to relax, and in green, the atomic layers that are
kept frozen. Layers Oa to Od and Cea and Ceb are labeled.
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the energy ordering remains unaltered once ZPE is considered.
In view of the constant effect of the vibrational contributions on
all configurations, we have assumed from now on that
vibrations do not play an important role in our comparative
study.
In a representation of the VO as a function of the relative

energies, in Figure 3, it is easy to distinguish that, the deeper
into the bulk from layer Ob the vacancy is sited, the higher are
the relative energies. This trend was first observed when
analyzing all geometries for n1 and n2, which therefore avoided
the need to optimize all structures for n3, apart from those
which had VO in the Oa or Ob layers. In fact, these results are in
full agreement with previous studies of Ganduglia-Pirovano et
al., Murigida and Ganduglia-Pirovano, Nolan et al., and Fabris
et al., whose work has shown that, for CeO2 (111) surfaces,
oxygen vacancies are found in the oxygen sublayer.50−53

We define the segregation energy (Eseg) as the difference
between the slabs with a given defect cluster placed in the bulk
and in the surface (Eseg = Ebulk

def − Esurf
def ). We have used the 18

atomic layer model, depicted in Figure 1b), with the 12
topmost layers relaxed. It is worth noting that, when we
mention the surface, we are referring to the six atomic layers
highlighted in red in Figure 1, whereas the bulk refers to the six
atomic layers highlighted in blue in Figure 1b. Using this
model, we evaluated Eseg for the five most stable structures,
leading to positive energies in all cases, which unequivocally

shows that defects are preferentially found in the surface rather
than in the bulk (Table 1). The same trend is observed at grain
boundaries, as Dholabhai et al. have shown recently, with
segregation energies that are slightly higher than the ones we
obtain here for the surfaces.54 This finding validates our results,
as segregation is expected to be stronger at the grain
boundaries.
To understand why defects are preferentially found in the

surface, we have studied the distortion that occurs in the
system, both in the surface and in the bulk. We have
determined the relaxation energies of both the bulk and the
surface (Erelax,bulk and Erelax,surf), defined as the difference in
energy between the optimized (Eopt) and unrelaxed (Eun)
system, i.e., Erelax = Eopt − Eun (Table 1). We have also evaluated
the average distances from metal and oxygen atoms to VO
(considering that it was placed in the position of the former
oxygen atom), all collected in Table 2. In almost all cases
studied, Erelax is more negative when defects are placed in the
surface, which indicates that surface relaxation is an important

Table 1. Relative Energies (ΔE), Zero Point Energies (ZPE),
Segregation Energies (Eseg), and Relaxation Energies for
Bulk and Surface Defects (Erelax,bulk and Erelax,surf) for the
Most Stable Defects in Ce14Gd2O31

a

ΔE ZPE Eseg Erelax,bulk Erelax,surf

n3-g3 0.00 1.23 0.56 −4.75 −5.58
n2-g5 0.06 1.21 0.58 −2.48 −2.91
n2-g4 0.16 1.22 0.35 −1.71 −1.93
n3-g4 0.18 1.20 0.35 −4.77 −4.71
n1-g1 0.19 1.21 0.37 −4.75 −0.82
n2-g6 0.21 1.20 0.36 −2.11 −2.30

aAll energies are expressed in eV.

Figure 2. Most stable configurations for the Ce14Gd2O31 (111)
surface. Color legend: soft green for Ce, purple for Gd, red for O, and
light blue for VO. Atom radii were randomly chosen.

Figure 3. Relative energies (eV) in Ce14Gd2O31 as a function of the
oxygen vacancy depth (Å).

Table 2. Relevant Distances (in Å) for the Defect Cluster
Gd−VO−Gd in the Ce14Gd2O31 Compared to CeO2 Bulk,
Considering the VO Position to Be the Ideal Bulk Position of
the Former Oxygen Atoma

distance d(O−VO) d(Ce−VO) d(Gd−VO)
b

CeO2 2.75 2.38c

n3-g3 (s) 2.41 2.49 2.50
n3-g3 (b) 2.51 2.49 2.52
n2-g5 (s) 2.40 2.50
n2-g5 (b) 2.52 2.50
n2-g4 (s) 2.43/2.52d 2.50 2.50
n2-g4 (b) 2.55 2.50 2.51
n3-g4 (s) 2.47/2.57d 2.51 2.51
n3-g4 (b) 2.56 2.50 2.51
n1-g1 (s) 2.43 2.50 2.51
n1-g1 (b) 2.53 2.50 2.53
n2-g6 (s) 2.45/2.52d 2.50 2.50
n2-g6 (b) 2.56 2.50 2.52

aWhen the cluster is placed at the surface, it is indicated by (s),
whereas when placed in the bulk it is indicated as (b). bOnly
considered when Gd and VO are first neighbors. cCe−O distance.
dOxygen atom bonded to one or two Gd3+.
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factor since it enhances the accommodation of the defect
clusters. For n1-g1, Erel in the surface is not as low as in the
other cases, but it still shows a clear trend in terms of
segregation energy. What becomes clear is that there is a
thermodynamic trend for the defect clusters to be found in the
surface for all systems, as indicated by the segregation energies,
and the relaxation energy represents an important incentive for
that segregation to occur.
Compared with the ideal CeO2 structure, Ce (as well as Gd)

relaxes away from the VO (increasing the distance by ∼0.12 Å
in all cases, regardless of the ion), whereas oxygen atoms move
closer to VO (by between 0.20 and 0.35 Å). Bulk distortions
involving neighboring oxygen atoms are only 0.20 Å. In fact,
this phenomenon has been previously observed in similar
systems.9 These distortions are a direct consequence of the
resulting positive charge of the oxygen vacancy, which attracts
the negative charges around the point defect. The main
difference between placing the defect cluster in the bulk or in
the surface is that, in the latter case, the oxygens in the top
oxygen layer, Oa, have lower coordination numbers and this
layer therefore distorts more easily. This allows a better
compensation of the positive charge of the oxygen vacancy,
which is reflected in the relaxation energies, since a major
distortion leads to more stable final geometries.
Finally, we have analyzed the electronic structure of n3-g3

(the most energetically favorable configuration). As depicted in
Figure 4a, the oxygen states are below the Fermi level (0 eV).
The gap between oxygen and Ce(d) states is 5.23 eV, very close
to previous computational studies of ceria surfaces,52,53 but
lower than the experimental gap for CeO2, which is about 6

eV.55 This disagreement between experimental and DFT+U
results is, however, well documented and not relevant to the
discussion of our results.40 Density of states are present
between 4.5 and 5.3 eV as a consequence of small contributions
from all states, but no specific band can be assigned. The band
gap between O(p) and Ce(f) is 2.20 eV. Finally, Gd(f) are
found between Ce(f) and Ce(d) states, indicating no overlap
between them.

3.1.2. Vacancy Formation Energy and Configurational
Contribution. We have extrapolated the relative abundance of
each defect structure at different temperatures. From a
thermodynamic point of view, the cost of saturating an oxygen
vacancy is determined via the vacancy formation energy, ruled
by the stoichiometric equation (eq 1):

→ +Ce Gd O Ce Gd O
1
2

O14 2 32 14 2 31 2 (1)

The free energy (ΔFiv) of this process is associated with eq 2:

Δ = − +−F F F F( )
1
2

(O )i
v

VSurf Surf 2 (2)

where FSurf−V and FSurf are, respectively, the free energies of the
doped system and that with the oxygen vacancy. Considering a
constant volume, the free energy is approximated to the
electronic energy plus the entropic and the temperature terms.
Both entropy and enthalpy can be approximated to the product
of the electronic, vibrational, and configurational contributions.
Since the electronic ground state and the vibrational
contributions remain practically constant for all the different
systems, we have considered their contributions as negligible
and only considered the configurational entropy.
The SOD code provides us with the configuration

degeneracy (Ωi) of each nonequivalent structure. Hence, we
have calculated the configurational entropy as defined by Grau-
Crespo et al.: Si

conf = kB ln(Ωi),
48 and with this definition, we

have deduced the vacancy formation energy (ΔFiv) as

Δ = − − − +F T E TS E TS E( ) [( ) ( )]
1
2

(O )i
v

SV SV
conf

S S
conf

2

(3)

As the energy of the oxygen molecule is overestimated by
GGA, ΔFiv is therefore underestimated.56 Several corrective
terms can be found in the literature, all of them conditioned by
the functional, the pseudopotential, or the consideration of
Hubbard parameters in the calculation.57 In our case, the aim of
calculating these energies is not to perform a direct but a
comparative analysis. Therefore, the overbinding correction
becomes irrelevant.
Assuming that all different configurations are in thermody-

namic equilibrium, we have assigned an occurrence probability
for each configuration i, which can be understood as the
configurational molar fraction (χi):

χ =
Ω

∑ Ω

−Δ

=
−Δ

e

ei
i

F T k T

i
n

i
F T k T

( ( )/ )

1
( ( )/ )

i
v

i
v

B

B (4)

where kB is the Boltzmann constant (8.6173 × 10−5 eV·K−1).
Using this equation, we extrapolated the statistical weight of
each configuration between 400 and 1400 K (represented in
Figure 5a). We have only highlighted those structures that
show χi higher than 0.05.
At SOFC working temperatures, between 650 and 1100 K,

the most stable geometry (n3-g3) is actually not the most

Figure 4. Density of states (DOS) of n3-g3 (a) and s5-g5 (b). Positive
DOS values are related to α-states whereas negative values belong to
β-states. The Fermi level is set at 0 eV, so bands with negative energy
represent occupied bands, whereas positive bands refer to virtual
states.
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abundant one, which is n2-g5. This effect is observed because
configurational entropy is considered in the molar fraction
analysis. It is also interesting that, at temperatures higher than
1000 K, n3-g4 and n2-g6 become more abundant than n3-g3.

Despite these variations, the molar fraction does not reveal a
unique preferred site. In fact, we would suggest, from a
thermodynamic point of view, that different geometries are
present at a given temperature, with the proviso that Gd3+ is
found within either the first or the second metal layer, with the
vacancy located in the second oxygen layer.

3.1.3. Oxygen Migration in the Surface. As mentioned in
the Introduction, the activation energy (Eact) for oxygen
diffusion depends on two different contributions, that can be
assessed as the association energy (Eass) and the migration
energy (Emig), where both are dependent on neighboring
cations (Ce4+ or Gd3+). Eass is associated with the electrostatic
interaction between the dopants and the oxygen vacancies,
whereas Emig can be described as the sum of the system
distortions during oxygen migration from one position to
another. We should consider both when considering diffusion,
but since Eass can be overcome easily at working temper-
atures,58,59 we will assume that Eact = Emig.
Bearing in mind how the surface influences the vacancy

position and the dopant segregation, we have determined how
dopant segregation can also affect the oxygen migration near
the surface. Hence, we have evaluated separately all the
inequivalent transition states (TS) for oxygen migration
between Oa and Ob in the n2 and n3 configurations. We have
not considered the n1 geometries because of their low molar
fraction at working temperatures. A further detailed explanation
of the transition state geometry can be found in the Supporting
Information. It is worth mentioning that, similar to our analysis
of the segregation energy, here we consider Oa and Od to be
part of the surface region, as the accommodation of the oxygen
vacancy involves oxygen atoms from both atomic layers.
All these inequivalent transition states are represented in

Figure 6 for n2 (a) and n3 (b). Interestingly, activation energies
for both sets of geometries, n2 and n3, show the same trend.
When an oxygen atom migrates from the second to the first
oxygen layer, Eact is between 0.10 and 0.27 eV for n2 and
between 0.08 and 0.23 eV for n3. However, migration of oxygen
from the first to the second oxygen layer requires higher
energies, between 0.36 and 0.59 eV for n2 and between 0.41
and 0.49 eV for n3. Previously reported activation energies for
bulk GDC are found to be between 0.5 and 1.0 eV.58−61 Since
activation energies are lower near the surface compared to the
bulk, the vacancy diffusion to the surface is favorable. However,
to drive an oxygen vacancy from the second oxygen layer to the
surface (or equally, to drive an oxygen anion from the first to
the second oxygen layer) is around two times higher than the

Figure 5. Molar fraction (χi) for (a) Ce14Gd2O31 and (b) Ce12Gd4O30
as a function of the temperature, according to eq 4. Note that the
degeneracy of s5-g7* also includes s5-g2 and s5-g3.

Figure 6. Reaction pathway for the oxygen migration in the (a) n2 and (b) n3 gadolinium distribution. Energies and ZPEs (in eV) are included for all
systems. For geometries labeled in blue, the oxygen vacancies are placed in the first oxygen layer whereas for those labeled in orange, oxygen
vacancies are placed in the second oxygen layer. Transition state labels are indicated in red.
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reverse process, indicating that vacancies may be trapped in the
second oxygen layer, as experimental results have also
suggested. This effect has also been observed near grain
boundaries, where activation energies are also lower than in the
bulk.62,63

3.2. 14.29% Gadolinium Concentration. Doubling the
number of Gd centers, in a slab model, Ce12Gd4O30 leads to a
dopant concentration of 14.29% in our model (50% in surface).
In this context, the number of nonequivalent configurations
increases up to 476, although we have only calculated a subset
of 41 structures, where we have used the following selection
criterion: (i) We evaluated the relative energies of the
nonreduced systems (Ce12Gd4O32, labeled from s1 to s9)
from which we considered the six most stable structures
(relative energies are listed in Table S3); (ii) we then
preferentially placed the two VO in the first and the second
oxygen layers, since previous results showed that they are most
likely to be found in these locations; and (iii) we also tested
some structures with vacancies placed deeper in the bulk for
comparison.
After optimization, we found that the most stable structure is

s5-g5 (Figure 7b), which has both vacancies in the oxygen
sublayer (Figure S5). From that structure and in a range of 0.2
eV, we observed that structures mainly show s3 and s5
gadolinium distribution (See Table 3). Note that s5-g3 and s5-
g2 lead to s5-g7 by migration of an oxygen from the Ob layer to
the Oa during optimization (see Figure S5).

The slab relaxation helps to accommodate vacancies in the
oxygen sublayer. However, under high Gd concentration, there
is a different restructuring of the surface due to the higher
concentration of defects. We have compared the (111) surface
of Gd2O3 (crystallizing in its Ia3 group), with the six top layers
involved in the Gd-Vacancy clusters. The formation of these
domains has been reported previously from neutron diffraction

data,64 and comparing the resulting structure on the surface
with the Gd2O3(111) surface, we have found exactly the same
motif, depicted in Figure 7. This motif is observed in all
structures found below 0.20 eV, showing evidence of the
clustering effect at higher Gd3+ concentrations.
The electronic structure for s5-g5 (Figure 4b) shows the

differences as a result of higher concentrations, where now the
electronic gap is 2.10 eV between Ce(f) and O(p) states, Gd(f)
orbitals are found between Ce(f) and Ce(d), and the Ce(d)−
O(p) electronic gap is between 5.10 and 5.20 eV. Between 4
and 5 eV, we observe the presence of non-negligible DOS,
similar to the n3-g3 structure when the dopant concentration
was 6.67%.
Finally, we evaluated χi for several Ce12Gd4O30 config-

urations between 400 and 1400 K, as represented in Figure 5b.
As a consequence of oxygen migration occurring in s5-g3 and s5-
g2, the configurational degeneracy for s5-g7 increases from 24 to
72, which finally results in this structure becoming the most
abundant above 400 K, rather than s5-g5. Considering both s5-g5
and s5-g7, together they represent almost 80% of the structures
that could be present at fuel cell working temperatures, with the
only difference between the two structures being the location of
the oxygen vacancies.

4. CONCLUSIONS

The gadolinium-doped ceria (GDC) (111) surface has been
studied using DFT+U techniques. We have analyzed at
different Gd concentrations practically all nonequivalent
distributions of Gd and VO at dopant concentration of 6.67%,
concluding that there is no clearly preferred location for the
Gd. Vacancies are preferentially sited in the oxygen sublayer at
the nearest or the next nearest neighbor site from Gd, which is
accommodated by surface relaxation. The segregation energies
indicate that defect clusters are thermodynamically stabilized at
the surface. When considering configurational entropy, the
relative abundance for all the systems studied reveals that,
under SOFC working temperatures, we can expect a mixture of
different Gd−VO configurations. We have also observed that
the mobility of oxygen vacancies is enhanced via lower
activation energies, when they move from the surface to the
second oxygen layer, indicating that oxygen diffusion is driven
preferentially in one direction and explaining why, in the
presence of Gd clusters, vacancies remain trapped near the
interface. We did not observe any significant change in the
geometry or the electronic structure when increasing the
concentration of gadolinium dopant. At higher gadolinium
concentrations, when we only considered the relative energies,
we still observed a mixture of different dopant clusters.
However, when we included the configurational entropy and
the temperature, a single dopant cluster emerged as the most

Figure 7. (a) Representation of the Gd−VO−Gd cluster on the (111) surface for n3-g3, (b) defect cluster on the (111) surface for s5-g5, and (c) motif
present in Gd2O3 bulk. Green, Ce; purple, Gd; red, O; light blue, VO.

Table 3. Relative Energies (ΔE) and Zero Point Energies
(ZPE) for the Most Stable Defects in Ce12Gd4O30

a

geom. ΔE ZPE

s5-g5 0.00 1.13
s3-g5 0.03 1.12
s3-g3 0.06 1.13
s3-g4 0.07 1.13
s5-g7 0.07 1.13
s5-g6 0.08 1.13
s3-g1 0.10 1.16
s6-g1 0.12 1.11
s5-g4 0.15 1.13
s2-g4 0.19 1.15

aAll energies are expressed in eV.
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abundant structure in the material. This finding is in line with
experimental works that indicate the formation of dopant
domains near the surface when the dopant concentration is
high.
In conclusion, configurational contributions clearly play an

important role in doped systems. The segregation of dopants
and vacancies to the surface, identified in this work, may help in
the design of new SOFC materials and processes.
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