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Abstract— We present a method for compressing trajecto-
ries in an unsupervised manner. Given a set of trajectories
sampled from a space we construct a basis for compression
whose elements correspond to paths in the space which are
topologically distinct. This is achieved by computing a canonical
representative for each element in a generating set for the first
homology group and decomposing these representatives into
a set of distinct paths. Trajectory compression is subsequently
accomplished through representation in terms of this basis. Ro-
bustness with respect to outliers is achieved by only considering
those elements of the first homology group which exist in the
super-level sets of the Kernel Density Estimation (KDE) above
a threshold. Robustness with respect to small scale topological
artifacts is achieved by only considering those elements of the
first homology group which exist for a sufficient range in the
super-level sets. We demonstrate this approach to trajectory
compression in the context of a large set of crowd-sourced
GPS trajectories captured in the city of Chicago. On this set,
the compression method achieves a mean geometrical accuracy
of 108 meters with a compression ratio of over 12.

I. INTRODUCTION
Trajectory data represents a fundamental component in a

wide spectrum of application domains including robot path
planning [1], [2], [3], traffic analysis [4] and social behaviour
analysis [5]. Given the huge volumes of trajectory data
being generated by such applications, the ability to perform
effective compression is necessary in many cases. In many
of these applications, the trajectories in question are captured
in spaces where movement is constrained to a fixed set of
paths which are topologically distinct. In the context of a two
dimensional robot configuration space such paths correspond
to, for example, going left or right around an object in the
space [6], [1]. In the context of vehicles moving in a street
network such paths correspond to individual streets. This
discussion implies that one approach to compression is to
determine such topologically distinct paths and use them as
a basis for compression. Evidently this represents a lossy
compression scheme where that lost corresponds to exact
spatial and temporal information within individual paths or
basis elements.

Using a set of paths as a basis for compression has
previously been considered by many authors in the context of
vehicles moving in a street network [7], [8], [9], [10]. These
works are supervised in the sense that they assume that an
accurate model or map of the network, and in turn that the
basis used for compression, is known a priori. However in
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many cases a prior model of the space may not be available
and even if it is, it may not be accurate and current. Therefore
it would be of great value if such compression could be
accomplished in an unsupervised manner without the require-
ment of a prior model. That is, where the paths or basis used
for compression are inferred from the actual trajectory data
to be compressed. Design of such a compression scheme
represents the contribution of this paper.

Inferring a set of topologically distinct paths in a space
given a set of trajectories sampled from that space represents
a difficult problem. A trajectory is typically represented as
a discrete sequence of points as opposed to a continuous
function and one typically has only a sample of trajectories
from which to infer the paths in question. Trajectories may
be subject to the following two forms of noise which are
topological in nature [11]. Firstly, the set of trajectories may
contain outliers corresponding to trajectories which traverse
insignificant paths not traversed frequently and therefore
should not be included in the set of basis elements. For
example, in the context of GPS trajectories significant paths
correspond to those contained in a street network while
insignificant paths correspond to random paths through a
large open area. Secondly, points in a trajectory may exhibit
localization error. For example, trajectories captured using a
consumer GPS will exhibit localization error of roughly ten
meters but this may be higher in urban areas due to signal
attenuation. Such errors may result in the introduction of
small scale topological artifacts or holes which may in turn
be incorrectly identified as additional paths in the space. In
the presence of both these forms of noise it is necessary to
infer the set of paths in a robust manner.

To overcome these challenges we propose a novel solution
to the problem of inferring a set of topologically distinct
paths in a space. This solution is based on the insight that
the paths in question correspond to a decomposition of the
elements in the first homology group of the space. It contains
the following steps. The super-level sets of the Gaussian
Kernel Density Estimation (KDE) of the trajectory points
are represented using a combinational representation known
as an upper star filtration [12]. Using this representation we
compute a canonical representative for each element in a
generating set for the homology classes which correspond to
cycles in the space. However, due to the fact that these cycles
are not disjoint or localized [13] and trajectories generally
correspond to point to point movement as opposed to cycles,
they do not represent a suitable basis for compression. We
therefore perform a decomposition of this generating set
into a set of paths which are disjoint, localized and in turn
form a more appropriate basis for compression. In order to



achieve robustness with respect to trajectory outliers, we only
consider those elements in the generating set which exist in
the super-level sets above a specified threshold. This solution
draws from recent works in the area of robust topological
inference [14], [15]. Moreover, in order to achieve robustness
with respect to small scale topological artifacts or holes we
only consider those elements of the generating set which
exist in the super-level sets for a sufficient range. This
solution draws from works in the area of persistent homology
[16].

In this paper we focus on the problem of trajectory
compression in the context of GPS trajectories. To illustrate
the characteristics of such trajectories consider the set of GPS
trajectories displayed in Figure 1(a) which form a running
example in this paper. This set contains 892 individual
trajectories captured through crowd-sourcing in the city of
Chicago. It is evident from this figure that both forms of
topological noise discussed above are evident. For example, a
number of paths are only traversed by a single trajectory and
therefore can be considered outliers. Despite this focus on
GPS trajectories, the proposed methodology has the potential
to be applied to other types of trajectories.

The layout of this paper is as follows. In section II we
review related works on trajectory compression. Section III
describes how the super-level sets of the Gaussian KDE
are represented using an upper star filtration. Section IV
introduces necessary concepts from homology theory. Sec-
tion V describes the approach used to robustly compute a
canonical representative for each element in a generating
set for the homology classes. In section VI we describe
the decomposition of these elements into a set of paths
which form an appropriate basis for compression and how
compression with respect to this basis is achieved. Finally in
sections VII and VIII results and conclusions are presented
respectively.

II. RELATED WORKS

As described in the preceding section, trajectory compres-
sion methods can broadly be categorized as supervised and
unsupervised methods. In the following we briefly review
related works in each of these categories.

The most widely used unsupervised compression method
is that of Douglas-Peucker [17]. This method performs
compression by selecting a subset of the original trajectory
points such that the spatial disparity between the piecewise
linear curves corresponding to the original and compressed
trajectory is minimized. A variation of the Douglas-Peucker
method was proposed by [18] which minimizes both spatial
and temporal disparity. [19] performs compression by as-
signing semantic information, such as landmarks visited, to
trajectory points and selecting a subset such that semantic
disparity is minimized. [20] demonstrated the application
of core-sets, which is a means of approximating a solution
to an optimization problem, to trajectory compression. [21]
proposed a method for sparsifying Probabilistic Roadmap
Planner (PRM) roadmaps such that the resulting trajectories
contain fewer points. An empirical evaluation of a number

of unsupervised trajectory compression techniques was pre-
sented in [22].

All existing supervised trajectory compression methods
perform compression by representing each trajectory in terms
of a basis whose elements correspond to individual paths
in a prior model of the space. In the context of GPS
trajectories these elements typically correspond to individual
street segments. We now briefly describe these methods. [23]
presented four methods which use spatial distance, heading
information, topological information and curve matching
for determining a representation in terms of the basis. [7]
proposed a method which considers spatial and temporal
disparity when determining a representation in terms of
the basis. [24] posed the problem in terms of performing
inference with respect to a Hidden Markov Model. A number
of authors have considered the Fréchet Distance as a means
of determining a representation in terms of the basis [25].

Similar to the above supervised compression methods, the
compression method proposed in this paper represents each
trajectory in terms of a basis whose elements correspond
to individual paths. However this basis is determined in a
unsupervised manner without the requirement for a prior
model of the space.

III. UPPER STAR FILTRATION
In this section we first describe the methodology used to

compute a Kernel Density Estimation (KDE) of GPS trajec-
tory points. We subsequently describe how the super-level
sets of this density are represented using a combinatorial
representation known as a filtration. This representation is
used as a platform to robustly extract paths in the space.

Due to page constraints we do not review background on
KDE but instead direct the interested reader to the following
resource [26]. The KDE is computed using a Gaussian kernel
over a grid of points [27], [14], [15]. Specifically we used a
grid where the spacing between points is 25 meters and the
bandwidth of the Gaussian kernel bandwidth is 0.05 meters.
Empirically we found these values to be appropriate.

An (abstract) simplicial complex K is a finite set such that
for each σ ∈ K all subsets of σ are also elements in K. Each
σ ∈ K is called a simplex or k-simplex where |σ| = k + 1
is the dimension of the simplex. The faces of a simplex σ
correspond to all simplices τ where τ ⊂ σ [11], [28]. A
function f : K → R is monotonic decreasing if f(σ) ≥ f(τ)
whenever σ is a face of τ [12]. This property implies that
the super-level set K(a) = f−1[a,∞) is a sub-complex of
K for every a ∈ R. If m is the number of simplices in K
and f is monotonic decreasing, there exists a sequence of
n values a1 > a2 > · · · > an such that given a0 = ∞
and Ki = K(ai), the sequence of complexes defined by
Equation 1 exists. Such a sequence of complexes is known
as a filtration of K.

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K (1)

In order to represent the super-level sets of the KDE as a
filtration, we first construct a simplicial complex correspond-
ing to the grid of points for which estimates were made. For



(a)

(b)

Fig. 1. A total of 118,221 GPS points corresponding to 892 individual trajectories captures by vehicles traversing the Chicago street network are displayed
in (a). One of simplicial complexes in the upper star filtration of the Kernel Density Estimation is displayed in (b).

each grid point we construct a corresponding 0-simplex. For
each pair of grid points which are horizontally, vertically
or main diagonally adjacent we define a corresponding 1-
simplex. For each triple of grid points where all subsets of
pairs are horizontally, vertically or main diagonally adjacent
we define a corresponding 2-simplex. This construction is
illustrated in Figure 2.

Toward constructing an appropriate filtration of this sim-
plicial complex, we define the following monotonic decreas-
ing function f : K → R. If σ is a 0-simplex (|σ| = 1) of K,
f(σ) evaluates to the density estimate at the corresponding
grid point. If σ is a 1-simplex or 2-simplex we define f(σ) =
max(f(τ) : τ ∈ σ, |τ | = 1). For a given simplex σ we refer
to f(σ) as the density of σ. The filtration corresponding
to the function f is known as an upper star filtration
[12]. In practice this filtration is constructed by ordering
the simplices in K such that simplices with higher density
precede simplices of lower density. If two simplices have
the same density we order them by dimension otherwise we

Fig. 2. For a gird of size 2 × 4 the corresponding simplicial complex
is illustrated where red dots represent 0-simplices, blue lines represent 1-
simplices and green triangles represent 2-simplices.

order them arbitrary. We then define Ki to be that simplicial
complex which is obtained by adding the i simplex σi in this
ordering to Ki−1. A simplicial complex corresponding to a
super-level set of the trajectories in Figure 1(a) is displayed
in Figure 1(b)



IV. HOMOLOGY THEORY

The purpose of this section is to provide an introduction to
necessary background theory in homology; for greater details
the reader is encouraged to consult the following text [29].
Intuitively homology is the study of cycles or holes in a space
and is an abelianization of the fundamental group [30].

Let K be a simplicial complex. The mathematical structure
c defined by Equation 2 is k-chain where each σi ∈ K is a
k-simplex and each λi is an element of a given field. For the
purposes of this work we consider the field Z2 as is common
in path planning applications [31].

c =
∑

λiσi (2)

The vector space over all k-chains is called chain group
Ck(K). The boundary map which maps a k-simplex σ =
[v1, . . . , vk+1] to the sum of its faces is defined by Equation
3 where v̂i indicates the deletion of vi from the sequence.
It can be verified that ∂k+1∂k = 0 [29]. Application of the
boundary map to the chain groups forms a chain complex
C∗ as defined by Equation 4 [32].

∂kσ =

k+1∑
i=1

[v1, . . . , v̂i, . . . , vk+1] (3)

. . . −→ Ck+1(K)
∂k+1−−−→ Ck(K)

∂k−→ Ck−1(K) −→ . . . (4)

A k-chain c ∈ Ck(K) is a k-boundary if there exists some
d ∈ Ck+1(K) such that c = ∂d and a p-cycle if ∂c = 0. The
set of all k-boundaries and k-cycles are denoted by Bk(K)
and Zk(K) respectively. It is evident that both are subgroups
of Ck(K). As a consequence of ∂k+1∂k = 0, Bk(K) ⊆
Zk(K). The quotient group Hk(K) = Zk(K)/Bk(K) is
called the k-homology group of K and its rank is called the
kth Betti-number. Intuitively the kth Betti-number equals the
number of k-dimensional holes in K. Using this intuition, the
0th Betti-number corresponds to the number of connected
components while the 1th Betti-number corresponds to the
number of one dimensional holes.

The equivalence class of a k-cycle in Hk(K), denoted
[c], is called a homology class. Two p-cycles belonging
to the same homology class are said to be homologous.
We are principally interested in the homology classes of
H1(K) because these correspond to trajectory cycles in a
given space. Intuitively two cycles are homologous if the
region they enclose contains no holes [33], [30]. As such we
subsequently use the term homology classes when referring
to homology classes of H1(K). In the case of Z2 coefficients,
a homology group with rank n has order 2n where the order
represents the number of homology classes [12].

V. HOMOLOGY CLASSES

In this section we describe a method for robustly com-
puting a canonical representative for each element in a
generating set for the homology classes. These canonical
representatives are subsequently used to extract a basis for
compression in Section VI.

Consider the filtration described in Section III and the
event of adding the simplex σi of dimension di to Ki−1

to obtain Ki. Upon this event, two possible changes of
the homology can occur [34]. Either an element in the di
homology group is created, in which case σi is called a
positive simplex, or an element of the di − 1 homology
group is destroyed, in which case is called σi a negative
simplex. Each negative simplex σj has a corresponding
positive simplex σi where i < j such that σj destroys the
element of the homology group created by σi. The pair
(σi, σj) is called a persistence pair. A subset of positive
simplices, which create an element of an homology group
that is subsequently not destroyed, are not paired. These are
called essential simplices [34]. Every simplex of K belongs
either to a persistence pair or is essential. In this work the
method of [35] is used to compute the persistence pairs and
essential simplexes.

To compute a canonical representative for each element
in a generating set for the homology classes we employ the
method proposed by [36], [37]. We construct a spanning
tree for K consisting of all negative 1-simplices. Adding
each positive 1-simplex to this spanning tree creates a graph
containing a single 1-cycle. This cycle is an element of
a generating set of the group of canonical representatives
sought. Given this generating set, a canonical representation
for all elements of the homology classes can be subsequently
obtained through application of the group operator. In the
case of Z2 coefficients the group operator corresponds to
exclusive or.

Each element in the generating set is assigned a birth
and death density corresponding to the density at which it
was created and destroyed respectively. The function used to
assign density was introduced in section III. If an element is
created but never destroyed it is assigned a death density of
∞. The persistence of an element is the range between its
corresponding birth and death densities. In order to achieve
robustness with respect to GPS localization error and in turn
the introduction of small scale topological artifacts or holes
we only consider those elements of the generating set with
persistence above a specified threshold. This solution has
been demonstrated to be effective and is part of a larger body
of work in the area known as persistent homology [16]. In
order to achieve robustness with respect to trajectory outliers,
we only consider those elements of the generating set where
the corresponding birth density is above a specified threshold.

VI. COMPRESSION BASIS & METHOD

In this section we present a method for computing a set
of paths which form an appropriate basis for compression.
We subsequently present a method for compressing a given
trajectory by representing it in terms of this basis.

In the previous section we presented a method for com-
puting a canonical representative for each element in a
generating set for the homology classes. However these rep-
resentations do not form a suitable basis for compression for
two reasons. Firstly, while topologically correct, these repre-
sentatives may not be localized geometrically and correspond



cycles of long geometrical length around multiple holes
in the space [13]. [13] proposed a method for generating
representatives such that they are localized with respect to
a given cover of the space. However specifying a suitable
cover is challenging and would require some other form
of prior knowledge about the space in question. Secondly,
most trajectories correspond to point to point trajectories as
opposed to cycles. As such, a set of cycles does not represent
a suitable basis for compression. To overcome these issues,
we propose a method for extracting a set of disjoint paths in
the space where individual paths correspond to, for example,
going left or right around a particular hole in the space.

The proposed method contains the following two steps.
Firstly we take the logical or of all canonical representatives
in the generating set. Next we identify the set of 0-simplices
where multiple paths meet and in turn the set of individual
paths between these 0-simplices. These paths form the basis
which is used as a basis for compression. For example,
consider again the set of trajectories displayed in Figure
1(a). Figure 3 displays the corresponding set of 0-simplices
where multiple paths meet and the set of paths between
these 0-simplices which are used as a basis for compression.
It should be noted that in the context of GPS trajectories
captured in a street network, these paths will generally
correspond to individual streets in the network. As discussed
in the related works section of this paper, individual streets
are commonly used as a basis for compression in supervised
compression schemes. As such, the ability to generate such a
basis in an unsupervised manner represents one of the major
benefits of the proposed compression methodology.

In order to compress a given trajectory by representing it in
terms of the above basis the following method is employed.
For each point in a given trajectory to be compressed we
match it to the closest basis element in terms of Euclidean
distance. A KD-tree is used to determine all such matches. A
basis element is subsequently determined to be included in
the trajectory representation if the number of points matched
to that element divided by its geometrical length exceeds a
specified threshold. Otherwise it is excluded.

VII. EXPERIMENTS

This section is structured as follows. In section VII-A we
describe the data used within a set of experiments along
with performance measures considered. In section VII-B we
present the results of these experiments.

A. DATA AND PERFORMANCE MEASURES

Toward demonstrating the effectiveness of the proposed
methodology for compressing a set of trajectories in an
unsupervised manner we considered the set of GPS tra-
jectories illustrated in Figure 1(a). This set contains 892
trajectories and the corresponding total number of GPS
points is 118,221. The trajectories were captured in the city
of Chicago through crowd-sourcing and were obtained from
[38]. A UTM coordinate system, where distances measured
are in meters, is used. The length and width of the axis

aligned bounding box for these trajectories is 3,900 and 2,375
meters respectively.

The performance of the proposed compression method
was measured with in terms of geometrical accuracy and
data compression ratio. To measure geometrical accuracy
with respect to a single trajectory the Hausdorff distance
between the original representation of the trajectory and
its corresponding compressed representation is evaluated.
Given two subsets in a metric space, the Hausdorff distance
measures the maximum distance of one subset to the nearest
point in the other subset. To measure geometrical accuracy
with respect to a set of trajectories, the mean and standard
deviation of the Hausdorff distance between each individual
trajectory and its corresponding compressed representation
is evaluated.

Data compression ratio is a commonly used measure of
compression ability and is equal to the ratio of uncompressed
data size to compressed data size. We approximate each of
these data sizes by the corresponding number of numerical
values they contain.

B. RESULTS

To illustrate the compression results achieved consider
Figure 4 which displays two distinct trajectories and their
corresponding compressed representations. It is evident that
the first trajectory in Figure 4(a) and its compressed represen-
tation are very similar. This is reflected by the corresponding
low Hausdorff distance of 69 meters. The second trajectory
is also similar to its compressed represented for the most
part. However one of the boundaries of this trajectory lies
in the center of a basis element and as such that boundary
cannot be well represented in terms of the basis elements.
This is reflected by the corresponding Hausdorff distance
of 215 meters which is significantly greater than the mean
Hausdorff distance for the entire set of trajectories.

The mean Hausdorff distance between each trajectory and
its corresponding compressed representation was 108 meters
with standard deviation of 82 meters. Given the fact that this
works represents the first attempt to compress trajectories
using a basis in an unsupervised manner, the authors feel
that a mean geometrical accuracy of close to 100 meters is
very positive. A close examine of the results revealed that
in the majority of cases where the Hausdorff distance was
greater than 150 meters this could be attributed to one of the
boundaries of the trajectory in question lying in the center
of a basis element.

The set of basis elements used for compressed contained
64 elements which in turn contained a total 991 points or
0-simplices. We consider each 0-simplices to be a distinct
numerical value. The compression of each trajectory is
accomplished by storing a corresponding list of integers in
the range [1,64] where a bijection exists between the integers
in this range and the basis elements. Considering each integer
a numerical value, a total of 8,807 numerical values were
required to compress the trajectories. Therefore the total
number of numerical values used to represent the basis ele-
ments and compress the trajectories was 8,807+9,91=9,798.



Fig. 3. The set of 0-simplices where multiple paths meets and the set of individual paths between these 0-simplices are represented by red dots and blue
lines respectively.

(a)

(b)

Fig. 4. In each of the two above figures the compression of an individual trajectory is illustrated. In both cases the set of GPS points corresponding to
the trajectory in question are represented by red dots. The set of basis elements in the corresponding compressed representation are represented by thick
solid lines while all other basis elements are represented by thin dashed lines.

On the other hand the original set of trajectories contains
118,221 points and we consider each to be a distinct numer-
ical value. The data compression ratio achieved is therefore
approximately 118,221/9,798 = 12.06.

Another good attribute of the proposed compress method-
ology is its low computational complexity. The steps in the
methodology of density estimation, filtration construction,
compression basis estimation [34] and compression can all
be computed in reasonable time. Our python implementation

running on a Laptop containing an Intel Core i7 2.70GHz
processor was able to compute the basis for compression and
subsequently compress the data used in our evaluation in 96
and 55 seconds respectively.

VIII. CONCLUSIONS

This paper presents a trajectory compression method
which robustly determines a suitable basis for compression
in an unsupervised manner. The elements in this basis
correspond to paths in the space which are topologically



distinct. The method was demonstrated in the context of
GPS trajectories captured in a city where elements in re-
sulting basis generally correspond to individual streets. The
proposed method is distinct from related works which can
be considered supervised in nature owing to the fact that
they require the basis for compression to be known a priori.
The results achieved were very positive with respect to both
geometrical accuracy and compression ratio. The proposed
method also possess low computational complexity.

In future work the authors hope to evaluate the proposed
method in the context of other types of trajectories such as
those in a robot configuration space. The proposed method
also has potential applications beyond trajectory compres-
sion. For example, it is evident from Figure 3 that the method
not only determines a suitable basis for compression but
also recovers the structure of the underlying transportation
network. Steiner et al. [39] demonstrated that knowledge of
this underlying network can facilitate map reduction in the
context of localization.
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