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Thesis Summary 

The repair of damaged articular cartilage remains a clinical problem despite the 

development of numerous surgical approaches for cartilage regeneration. As result 

new options for therapeutic approaches are being sought. One of the candidate cell 

types for cartilage repair are mesenchymal stem cells (MSCs). These cells can be 

isolated from a number of different tissues and have the ability to differentiate down 

several different mesenchymal lineages. This thesis focused on the use of MSCs for 

repairing damaged articular cartilage.  Specifically I investigated the effect of producing 

regenerative medicine type constructs containing different populations of MSCs on the 

induction of chondrogenesis in response to mechanical load, compared the induction of 

chondrogenesis in MSCs through the application of exogenous TGF-β1 and multiaxial 

mechanical load and identified potentially novel markers of MSC chondrogenesis. 

The results presented in this thesis show that the induction of chondrogenesis in MSCs 

can be manipulated by producing constructs that contain separate populations of 

MSCs. The work demonstrated that seeding a layer of MSCs on the loaded surface of 

a fibrin-poly(ester-urethane) scaffold could increase the deposition of histologically 

detectable matrix. However, it was not possible to determine the mechanism 

responsible for this.  

Comparison of the secretomes of MSCs stimulated with TGF-β1 and mechanical load 

showed that these two forms of chondrogenic stimulation are not analogous and that a 

number of markers, including GRO and MMP13 may be useful for monitoring the 

progression of MSCs through chondrogenesis and hypertrophy. 

These data provide further insights into the effect of joint-like load on MSCs within 

tissue engineering/regenerative medicine style constructs, and the chondrogenic 

response of MSCs to this stimulation, which may prove to be useful for the 

development of constructs for cartilage repair. 
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Chapter 1 General Introduction and Thesis Aims 

 

Sections of this Chapter have been published in: 

GARDNER, O. F., ARCHER, C. W., ALINI, M. & STODDART, M. J. 2013. 

Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering. Histol 
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1.1 Introduction 

As the weight bearing material of diarthrodial joints, articular cartilage facilitates the 

almost frictionless movement of joint surfaces, despite being regularly exposed to 

mechanical forces in the mega Pascal range (Hodge et al., 1986). However, despite 

cartilage's capacity to dissipate and absorb load, it is susceptible to damage through 

trauma or disease, and once damaged it is all but incapable of affecting a repair. The 

susceptibility of cartilage to damage and its poor reparative response means that even 

small lesions can produce significant amounts of pain, joint stiffness, immobility and, 

over time, increases the risk of osteoarthritis (Brown et al., 2006). The lack of 

regeneration demonstrated by articular cartilage was first realised more than two 

hundred and fifty years ago by the anatomist and surgeon William Hunter (Hunter, 

1743). For a long time, it has been the goal of surgeons to develop a reliable method to 

repair damaged articular cartilage. These techniques have ranged from debris removal 

techniques, such as debridement and lavage developed in the 1940's, to osteochondral 

transplant techniques, marrow stimulation techniques and the latest generation of cell 

based tissue engineering techniques such as autologous chondrocyte implantation 

(Insall, 1967, Brittberg et al., 1994, Redman et al., 2005). Each of these techniques has 

different advantages and disadvantages and improvements are still needed. 
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1.2 Cartilage, chondrocytes and extracellular matrix 

Chondrocytes account for a small percentage of the total volume of human articular 

cartilage, perhaps as low as 1.65% (Hunziker et al., 2002); the rest of the tissue 

consists of a dense extracellular matrix consisting mainly of two macromolecules: type 

II collagen and the aggregating proteoglycan aggrecan. These two molecules account 

for 15-22% and 4-7% of the wet weight of cartilage respectively (Mow et al., 1992). The 

other substance found in large amounts in cartilage is water; this makes up 

approximately 80% of cartilage's wet weight (Sophia Fox et al., 2009). Cations such as 

sodium and calcium are attracted to the large amounts of negative charge found on the 

aggrecan molecule's glycosaminoglycan chains. This leads to an increase in osmotic 

potential that draws water into the tissue. It is the presence of large amounts of water 

within cartilage, combined with the organisation of the aggrecan and type II collagen 

that allow it to resist the large loads that it is exposed to. 

Mature articular cartilage is constructed of four layers; the surface zone, middle zone, 

deep zone and calcified zone (Figure 1.1). Each zone has a different collagen 

arrangement and the morphology of the chondrocytes in each zone reflects the 

different macromolecular structures surrounding them (Becerra et al., 2010). The type 

II collagen fibrils within articular cartilage form arch like structures (as demonstrated in 

Figure 1.2) referred to as the arcades of Benninnghoff (Benninghoff, 1925).The fibres 

change from being vertically orientated in the deep zone to form a dense overlapping 

mesh in the mid zone, and then the fibres then curve to run parallel to the surface in 

the surface zone. The horizontal fibres in the superficial zone give the cartilage surface 

tensile strength to resist the shear forces exerted upon it during joint articulation. 

Correspondingly the surface zone contains flattened chondrocytes that express a 

natural lubricating molecule called lubricin or proteoglycan 4 (PRG4), which helps 

produce and protect articular cartilage's almost frictionless surface (Schumacher et al., 

1994). In the middle zone, chondrocytes become more rounded, and are dispersed 

unevenly throughout the matrix, whereas the chondrocytes of the deep zone are 

spherical and organised into clear columns. The calcified layer acts as a transitional 

layer between the articular cartilage and the bone beneath it; the chondrocytes of the 

calcified layer contain little cytoplasm or cellular machinery.                                                       
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Figure 1.1 

The structure of articular cartilage, this image shows the different zones of articular 

cartilage and the variation in cell distribution and collagen organisation within the 

different zones.  Reproduced with kind permission from Regenerative Medicine as 

agreed by future medicine Ltd. (Stoddart MJ, Grad S, Eglin D, Alini M. Cells and 

biomaterials in cartilage tissue engineering. Regen Med. 2009 Jan;4(1):81-98.). 
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Figure 1.2 

A Scanning electron microscopy image (80x) showing collagen leaves forming arcades 

in bovine articular cartilage (image A). AS denotes the articular surface (lamina 

splendens). Image B is a carton showing the arcade like organisation of collagen fibres 

within articular cartilage. Both reproduced with kind permission and copyright © of the 

British Editorial Society of Bone and Joint Surgery (Jeffery AK, Blunn GW, Archer CW, 

Bentley G. Three-dimensional collagen architecture in bovine articular cartilage. J Bone 

Joint Surg [Br] 1991;73-B:795-801.). 

A. 

B. 
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Aggrecan molecules are held in place by the dense network of type II collagen fibres. 

Their negative charge acts to draw in water causing  the tissue to swell, as a result of 

the Donnan effect (Donnan, 1924), the resulting swelling pressure produces a tensile 

load in the collagen fibres. It is this balance between the swelling pressure caused by 

the influx of water and the tensile resistance generated in the collagen fibres that allow 

cartilage to resist compressive loads. When cartilage experiences a load greater than 

the force generated by the swelling pressure, water is forced out of the tissue. This 

increases the concentration of proteoglycans and their large negative charge draws 

water back into the tissue upon relaxation. This movement of water out of the tissue 

under load, and its return during unloading, allows cartilage to act like a shock 

absorber, dissipating the loads applied to it. 

Cartilage's avascularity is a major contributor to its poor repair response as there is no 

supply of clotting agents or cells to produce repair material following damage or insult 

(Becerra et al., 2010). Although there is no known repair response within cartilage, 

damage that is severe enough to lead to the development of a full thickness defect (i.e. 

a defect that penetrates both the articular cartilage and the underlying subchondral 

bone) can result in the filling of the defect with blood from the underlying marrow cavity. 

The result of bleeding from the marrow cavity is the formation of a clot which can then 

lead to the formation of fibrocartilaginous repair tissue (Shapiro et al., 1993, Steadman 

et al., 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

1.3 Conservative and surgical options for the treatment of damaged 
cartilage 

Among the most common causes of damage to cartilage are trauma, osteoarthritis and 

osteochondritis dissecans. Each of these three conditions can present in similar ways, 

with pain, swelling and impaired movement of the joint (Madry et al., 2011). Treatment 

for these conditions is aimed at reducing pain and improving joint mobility (Steinmeyer 

and Konttinen, 2006). As a result, the first line of conservative treatments are non-

steroidal anti-inflammatory drugs (NSAIDs), and following these opiate pain killers may 

be used, with some of the final options including hyaluronic acid or corticosteroid 

injections given into the joint (Steinmeyer and Konttinen, 2006). Once conservative 

medical options have been exhausted, there are a variety of different surgical options 

that can be used to treat damaged cartilage. These techniques are chosen due to 

patient factors such as age, body mass index (BMI) and activity levels, and factors 

based on the nature of the lesion e.g. size, type as well as location of the lesion within 

the joint (Michael et al., 2010). 

The earliest surgical techniques to deal with damaged cartilage were debridement and 

lavage; these were introduced in the 1940's and pioneered by surgeons such as 

Magnuson and Haggart (Insall, 1967). The purpose of these procedures was to remove 

any loose cartilage bodies or fragments from the joint capsule, and to smooth any 

rough areas of cartilage, as these were, at the time, believed to be the cause of 

symptoms associated with cartilage damage (Insall, 1967). Debridement and lavage 

were originally performed as open techniques, however they can now be performed 

arthroscopically (Bird and Ring, 1978). Various studies have investigated the benefit of 

these therapies, but the benefits that they provide appear to be short term and they do 

not alter the progression of osteoarthritis (OA) (Lutzner et al., 2009). Moseley et al. 

(2002) suggested that improvements in pain scoring post-procedure were simply a 

result of the placebo effect, as they found no difference between a sham surgery group 

and groups treated with arthroscopic debridement or lavage (Moseley et al., 2002).        

Bone marrow stimulation techniques are based on the principle that when a full depth 

defect penetrates the subchondral bone, bleeding from the bone marrow leads to the 

production of repair tissue within the lesion, as described in the previous subsection. 

The earliest of these techniques to be introduced was Pridie drilling, developed in the 

1950's by KH Pridie (Insall, 1967). This technique involves drilling holes into the 

subchondral plate with a drill (originally using a ¼ inch drill bit) in order to stimulate 

bleeding (Insall, 1967). Abrasion arthroplasty is a modification of the original 

'housekeeping arthroplasty' technique and is similar to Pridie drilling, but instead of 

using a drill bit an automated arthroscopic burr is used to perforate the subchondral 

bone to stimulate bleeding (Johnson, 1986). 
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The third, and most common marrow stimulation technique is microfracture, introduced 

by JR Steadman. This technique simply uses a surgical awl to create holes in the 

subchondral plate approximately 3-4mm apart, which allows marrow blood to enter the 

defect from the bone marrow cavity below (Steadman et al., 2001).                                            

The problem with these techniques is that although the clot produced fills the defect 

and produces repair tissue, this tissue is composed mostly of fibrous connective tissue, 

with a lower collagen type II content and higher collagen type I and GAG content than 

articular cartilage (LaPrade et al., 2008). This repair material also lacks the important 

organisational structure of articular cartilage and is a poor mechanical substitute for 

hyaline cartilage, which can lead to graft failure in response to joint loading (LaPrade et 

al., 2008). The integration of the repair tissue has also been shown to be poor, which 

can lead to degeneration of the repair tissue or even necrosis (Mobasheri et al., 2009). 

Despite these problems, there has been some considerable success with this 

technique, particularly in younger more active patients (Kreuz et al., 2006). In rabbit 

models, there is some evidence of the formation of more hyaline like repair tissue 

through the 'maturation' of a fibrocartilaginous tissue as a result of this technique 

(Steadman et al., 2001). 

Osteochondral autograft transfer system (OATS) is a surgical repair procedure that 

involves the harvesting of osteochondral plugs from low weight-bearing regions of the 

joint, or from an allogeneic or even cadaveric donor and placing them into the cartilage 

defect being repaired (Meyers et al., 1989, Hangody et al., 2004). There are two 

common forms of this procedure; osteochondral transfer (OCT) which involves the 

transfer of one plug from a harvest site to a recipient site, and mosaicplasty which uses 

multiple plugs to fill larger recipient lesions (as large as 4cm in diameter) (Hangody et 

al., 2004). This technique has been successful, resulting in decreased pain and 

improved mechanical function of the joint (Hangody et al., 2004). However, there is 

evidence of cell death at the donor site in autologous donors, which poses the risk of 

donor site degeneration. Donor site degeneration can also occur as a result of repair 

tissue not forming naturally in response to bleeding from the subchondral plate 

triggered by plug removal, and may even require corrective surgery (LaPrade and 

Botker, 2004). The levels of integration seen in bony regions of the plug is good; 

however the cartilage regions have shown very little integration, which can cause  

degeneration of the implant site, leading to graft failure (Horas et al., 2003, Matricali et 

al., 2010). 

Various other techniques have been used to repair damaged cartilage; osteotomies are 

used to correct malalignment of joints in order to prevent further degeneration due to 

abnormal loading (Wright et al., 2005). Soft tissue grafts of perichondrium or 
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periosteum have also been transplanted in to cartilage defects to stimulate a repair 

response (Rubak, 1982, Amiel et al., 1985).  

The final solution for severe damage is a hemi arthroplasty or a total joint replacement. 

However, when joint replacement procedures are carried out in younger patients, 

revision surgery becomes necessary when the implant fails; this is much more difficult 

than the initial surgery and has a higher rate of complications (Hamilton et al., 2015). 
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1.4 Cell Based Therapies 

The difficulties associated with producing hyaline cartilage-like repair tissue in defects 

using the surgical techniques described in the previous subsection, combined with the 

problems associated with revision surgery of total joint replacements in young active 

individuals (Hamilton et al., 2015), has led to the expansion of tissue engineering 

approaches to treat damaged cartilage.  

Tissue engineering is a very broad term, and can cover a multitude of different 

approaches, strategies or mechanisms for the treatment of disease; however the 

classical view of tissue engineering is the use of scaffolds or matrices seeded ex vivo 

with cells to effect a repair in a target tissue (Langer and Vacanti, 1993, Bianco and 

Robey, 2001).  

In order for cartilage therapy to be successful, either via surgical techniques or tissue 

engineering, the defect being repaired needs to be filled with a mechanically stable 

hyaline cartilage-like substance that will not deteriorate over time, and will integrate 

well with the surrounding tissue (Redman et al., 2005). Within the field of tissue 

engineering, there has been particular focus on the repair and regeneration of 

damaged cartilage. This wide-ranging interest has led to a number of different and 

varied approaches using different materials to fill cartilage lesions. 

Currently, the only cell based tissue engineering approach that is licenced for use in 

patients is autologous chondrocyte implantation (ACI) and its modified form is matrix-

induced autologous chondrocyte implantation (MACI). ACI was pioneered by Mats 

Brittberg and first used in 1987, and involves the use of autologous chondrocytes to 

produce repair tissue within a defect (Brittberg et al., 1994). ACI and MACI have been 

approved both by the Food and Drug Administration in the USA and as advanced-

therapy medicinal products by the European Medicines Agency. 

ACI involves two operations (Figure 1.3): in the first a small sample of cartilage 

(weighting between 200-300mg) is removed from the joint periphery (such as the 

medial femoral condyle, or intercondylar notch). Once harvested, the cartilage shavings 

are then enzymatically digested, first in pronase and then collagenase, to release the 

chondrocytes from the extra-cellular matrix (Brittberg et al., 1994, Brittberg, 2010). The 

chondrocytes are then expanded in vitro. Once the required numbers of chondrocytes 

have been produced they are reseeded back into the joint to effect a repair (Brittberg, 

2010). The original ACI procedure involved harvesting a piece of perichondrium from 

the proximal medial tibia and suturing the explant over the debrided defect, then the 

flap was sealed with fibrin glue and the chondrocytes injected underneath the flap 

(Brittberg et al., 1994). This initial technique had several problems e.g. the periosteal 

membrane could undergo hypertrophy causing the need for further surgery, the 
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harvesting of the periosteum also introduced another site of morbidity alongside the 

cartilage harvest site and the defect itself. These problems led to the second 

generation ACI technique, also referred to as collagen-covered ACI (CACI) (Brittberg, 

2010). The replacement of the periosteal flap used in the first generation with a bilayer 

collagen type I/III membrane helped to prevent hypertrophy, and removed the morbidity 

associated with periosteal harvesting, but the technique still requires an arthrotomy 

(Brittberg, 2010). The current third generation of ACI, called matrix-induced ACI (MACI) 

uses biodegradable collagen matrices seeded with the chondrocytes and anchored into 

the defect with fibrin glue (Cherubino et al., 2003). The advantage of this technique is 

that the first operation can be carried out with a miniarthrotomy, and the second 

arthroscopically, reducing the risk of complications as a result of or during surgery 

(Brittberg, 2010). ACI is most commonly used to treat larger defects (ranging from 3-

10cm2), and has mainly been used within the knee joint (Madry et al., 2011). 
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Figure 1.3 

A schematic showing the constitutive steps of autologous chondrocyte implantation for 

the repair of cartilage defects. Reproduced with the kind permission from the authors 

(Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. 

Eur Cell Mater. 2005 Apr 14;9:23-32; discussion 23-32.). 
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ACI has been a successful technique; even the first generation used in the late 1980's 

produced improvements in joint function, reduced pain scores and in some cases 

generated hyaline-like repair tissue (Brittberg, 2010).  A study by Micheli et al. into the 

outcome of ACI procedures, reported graft failure in only 6% of cases (Micheli et al., 

2001). However, evidence produced by Knutsen et al. showed that when ACI is 

compared with microfracture surgery there is very little, if any, significant difference 

between the clinical outcomes of the two procedures (Knutsen et al., 2007). Despite 

this reported similarity in clinical outcome the histological quality of the repair tissue 

may be superior with ACI (Saris et al., 2008). MACI has been shown to produce 72% 

good or excellent results, but this was not significantly different from the 59% good or 

excellent results observed with the second generation CACI. However, the much 

improved surgical techniques used during the MACI make it a preferable approach 

(Brittberg, 2010). 

Despite showing clinical efficacy, ACI has had, and continues to have some problems 

associated with it.  The current method for chondrocyte collection in ACI involves the 

removal of slivers of cartilage, from which chondrocytes can be extracted; these slivers 

are collected form the joint during a miniarthrotomy which involves partial opening of 

the joint cavity (Brittberg, 2010). The collection of cartilage from the surface of the joint 

can also lead to donor site morbidity and the potential for further degeneration at the 

site of harvest (Matricali et al., 2010). In contrast, bone marrow derived mesenchymal 

stem cells (MSCs), which are another potential cell source for cartilage repair, can be 

harvested from the bone marrow (e.g. of the iliac crest) using a syringe, during a bone 

marrow aspiration. Although a bone marrow aspiration is painful for the patient it can 

be performed with a local anaesthetic, and involves far less risk that the miniarthrotomy 

used to collect chondrocytes for ACI, which may expose the joint cavity to infection, 

and carries the same risks as any other procedure that involves general anaesthesia. 

Another major drawback with ACI is the in vitro cell culture stage. Culturing 

chondrocytes in monolayer causes them to undergo dedifferentiation and the adoption 

of a fibroblast like phenotype (Holtzer et al., 1960, von der Mark et al., 1977). This is 

due, in part, to the loss of the chondrocyte's natural spherical morphology, which 

cannot be maintained in monolayer culture, and results in the adoption of a flattened 

fibroblast-like morphology (Benya and Shaffer, 1982). These changes cause an 

increase in the expression of markers of dedifferentiation such as type I collagen and 

reduce the chondrocytes ability to be redifferentiated and undergo chondrogenesis in 

order to produce repair tissue (von der Mark et al., 1977, Benya and Shaffer, 1982). 

MSCs maintain their chondrogenic ability better than chondrocytes in monolayer 

culture, although their replicative capacity is not infinite. Pelttari et al. showed that after 

six passages chondrocytes were no longer able to deposit cartilage-like matrix during 
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redifferentiation (Pelttari et al., 2008). Banfi et al. (2000) estimated that the useful 

clinical limit for MSC expansion would be seventeen population doublings, more than 

twice as many as chondrocytes can be usefully expanded by (Banfi et al., 2000). As 

the number of population doublings that an MSC culture has been through rises, the 

proportion of larger cells in the population begins to increase. These cells are less 

active, and have less differentiation capacity than the smaller rapidly self-renewing 

cells (RS cells)  in the population (Smith et al., 2004, Fehrer and Lepperdinger, 2005). 

Along with the increase in larger cells, individual cells lose their ability to differentiate in 

to adipocytes, chondrocytes and osteoblasts in a stochastic (hierarchal) manner 

(Muraglia et al., 2000). The first lineage that is closed to MSCs is adipogenesis and this 

occurs at approximately twenty two population doublings; the cells then retain the 

ability to form chondrocytes and osteoblasts for a considerable time in culture before 

chondrogenesis is lost and the cells can only become osteoblasts (Muraglia et al., 

2000). As well as maintaining their ability to produce useful cartilage-like repair tissue 

longer than chondrocytes in culture, MSCs also have a higher rate of proliferation. The 

very low cell density in cartilage, combined with the small areas available for harvesting 

and the limited room for the expansion of chondrocytes in vitro, means that ACI can 

only utilise a very small number of cells, whereas a larger number may have more 

success in producing hyaline-like cartilage repair tissue. 

Although ACI has been shown be effective clinically by Brittberg et al. (Brittberg et al., 

1994, Brittberg, 2010), some questions have been raised about the quality of ACI 

repair tissue, particularly with regards to the generation of mechanically inferior 

fibrocartilage (LaPrade et al., 2008).  ACI is a multistep procedure, which increases the 

chances of an infection and other complications, as well as requiring a costly cell 

culture expansion stage which can lead to the dedifferentiation of the chondrocytes 

being prepared for implantation. As a result there are considerable efforts being made 

to develop improved cell based approaches for articular cartilage repair. One of the 

avenues being investigated is the use of mesenchymal stem cells (MSCs) rather than 

chondrocytes in tissue engineering applications. 
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1.5 Mesenchymal Stem Cells 

Although interest in mesenchymal stem cells (MSCs) has increased exponentially over 

the last 15 years they have been known about (by different names) for over 130 years. 

The first description came in 1867 when Julius Cohnheim proposed the idea that 

fibroblasts involved in wound repair may originate in the bone marrow (Prockop, 1997). 

Later, in the 1970's and 1980's, Friedenstein and others, including Howlett and Owen 

demonstrated that these fibroblasts, isolated by Cohnheim, were multipotent cells 

capable of differentiating in to various forms of cells able to generate mesenchyme like 

tissues (Friedenstein et al., 1970, Friedenstein et al., 1974, Friedenstein et al., 1976, 

Howlett et al., 1986, Owen and Friedenstein, 1988). In 1999, Pittenger et al. were able 

to demonstrate the multipotent capabilities of these cells by differentiating cells from 

individual donors down the chondrogenic, osteogenic and adipogenic lineages. 

Dubbed mesenchymal stem cells by Arnold Caplan, these cells go by a number of 

names; pericytes, colony forming unit fibroblasts, mesenchymal stromal cells, but 

despite having a myriad of names there is not an absolute definition of what an MSC 

actually is. The broad definition of an 'MSC' is often given as; a culture adherent 

multipotent progenitor cell that can differentiate down the adipogenic, chondrogenic 

and osteogenic lineages (Caplan, 2009). This definition sounds conclusive, but the 

adherent cell cultures produced from MSC sources such as bone marrow are 

heterogeneous, so a more stringent definition is required (Battula et al., 2009). In order 

to refine the definition, others have tried to use cell surface markers to provide a real 

distinction between MSCs and other adherent cells, however, the lack of a definitive 

MSC marker has made this very difficult (Battula et al., 2009). Currently, the most 

quoted definition of a mesenchymal stromal cell comes from the International Society 

for Cellular Therapy (ISCT); their definition comes in three parts: In order to be 

considered a MSC a cell must be; plastic adherent, 95% or more of the cells of a 

colony must express CD105, CD73 and CD90, and less than 2% of the cells can 

express CD45, CD434, CD14, CD11b, CD79α, CD19 or HLA class II. Finally, they 

must be able to at least differentiate into adipocytes, chondrocytes and osteoblasts 

when stimulated in vitro (Dominici et al., 2006). 

One of the roles of MSCs in vivo is the production of the bone marrow stroma 

(Panoskaltsis et al., 2005). The stroma is made up of the components of bone marrow 

that facilitate the haematopoietic process and the activity of haematopoietic stem cells 

and their progeny (Panoskaltsis et al., 2005). The stroma consists of an extracellular 

matrix which contains type I, III and IV collagen as well as proteoglycans (Panoskaltsis 

et al., 2005).  The matrix contains adipocytes, osteocytes and other cell types such as 
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endothelial cells, which act together to create an environment suitable for 

haematopoiesis to occur (Panoskaltsis et al., 2005). 

The original work on MSCs used cells isolated from bone marrow; we now know that 

MSCs can be found in a huge range of tissues including: fat, bone marrow, placenta, 

cartilage, foetal tissues (e.g. spleen and liver) and deciduous teeth (Bernardo et al., 

2007). 

As well as being found in many different tissue types, under the correct conditions 

MSCs are capable of producing a wide range of tissues in vivo. MSCs, by definition 

can be differentiated into cartilage, bone and fat producing cells. They can also be 

differentiated into muscle, marrow and tendon as well as other types of mesenchymal 

tissue producing cells including myeloid and lymphoid derived blood cells. There is 

even evidence of MSCs being used to produce non-mesenchymal cells such as 

hepatocytes and neurones, although these neuronal cells simply possessed a small 

number of neuronal cell markers (Mezey et al., 2000, Caplan, 2007); however, much 

more work is required to determine if MSCs can form functioning neurones. It is the fact 

that MSCs can be differentiated into a range of lineages in vitro that makes them such 

a potentially powerful tool within tissue engineering. 

In order to differentiate MSCs down a desired lineage they must first be isolated from 

the original tissue sample. Within bone marrow there are only one to a hundred MSCs 

in every five thousand mononuclear cells, so selection is very important (Kastrinaki et 

al., 2008).  The technique first used to isolate MSCs was adhesion (Friedenstein et al., 

1974, Friedenstein et al., 1970).  Adhesion to tissue culture plastic is still used to select 

for MSCs, however it is common for a density gradient centrifugation or red blood cell 

lysis step to be performed first in order to isolate the mononuclear cell population of the 

marrow before selecting for MSCs via adhesion (Gardner and Stoddart 2015). Once 

isolated, MSCs can be directed to differentiate down various cell lineages using a 

range of soluble factors or environmental/culture conditions.  

Osteogenesis can be initiated in MSCs in monolayer by culturing them in a media 

containing ascorbic acid, dexamethasone and β-glycerophosphate (Pittenger et al., 

1999). This causes an increase in osteogenic markers such as alkaline phosphatase 

and, over time, calcium deposits form as nodules which can be detected with alizarin 

red or von Kossa staining (Pittenger et al., 1999, Chamberlain et al., 2007).  

In a similar technique, adipogenesis can be initiated in monolayer MSCs using 

dexamethasone, insulin, isobutyl methyl xanthine and indomethacin, leading to the 

formation of lipid filled vacuoles within the MSCs that can be stained using the oil red O 

technique, along with other adipogenic markers such as lipoprotein lipase (Pittenger et 
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al., 1999, Chamberlain et al., 2007). These lipid vacuoles coalesce and will ultimately 

fill the cell (Chamberlain et al., 2007).  

In order to induce chondrogenesis in MSCs, the cells need to be in close contact, as 

well as being exposed to the correct soluble factors. In order to achieve this, MSCs are 

suspended in culture medium and spun in a centrifuge to produce a pellet culture 

(Johnstone et al., 1998). The pellet is then cultured in a growth medium containing 

TGF-β, dexamethasone, ascorbic acid, non-essential amino acids and ITS; this leads 

to the development of cartilaginous tissue that stains metachromaticaly with toluidine 

blue and contains type II collagen (Johnstone et al., 1998). A problem with this 

cartilage model, however, is that TGF-β induced chondrogenesis over time leads to 

hypertrophy of chondrogenic MSCs. This is associated with an increased expression of 

hypertrophic markers like matrix metalloproteinase 13 (MMP13) and type X collagen as 

well as an increase in osteogenic markers such as Runx2 and collagen type I (Pelttari 

et al., 2008, Mueller and Tuan, 2008). This process is similar to that observed during 

bone formation via endochondral ossification, in which chondrocytes undergo 

hypertrophy leading to apoptosis and calcification of the surrounding cartilaginous 

tissue. The development of hypertrophy in MSCs that are induced down the 

chondrogenic lineage could potentially affect native tissue surrounding an MSC implant 

(Mueller et al., 2010). As a result, techniques to prevent hypertrophy need to be 

developed before chondrogenically induced MSCs can be used clinically.  
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1.6 Endochondral ossification  

There are just over two hundred bones in the human body; all of them develop in one 

of two ways: either by endochondral or intramembranous ossification. Endochondral 

ossification is the process by which the apical skeleton, vertebrae and base of the skull 

are formed. Intramembranous ossification is responsible for the formation of the facial 

bones, the pelvis and the skull cap (Buckwalter et al., 1996). Both of these processes 

begin with the formation of condensations of mesenchymal precursor cells, however, 

the rest of the two processes are very different. During intramembranous ossification, 

the mesenchymal progenitors form vascularised matrix rich membranes; the cells 

within these membranes then differentiate directly into osteoblasts and convert the soft 

tissue membrane into bone (Buckwalter et al., 1996). In order for bone to form through 

the process of endochondral ossification (shown in Figure 1.4), first a primordial 

cartilage template called the anlagen must form, providing the basis for the resulting 

bone (DeLise et al., 2000). The development of the anlagen occurs through cell-cell 

and cell-matrix interactions that trigger differentiation of mesenchymal precursors and 

the condensation into chondrocytes (Goldring et al., 2006). TGF-β is expressed soon 

after condensation begins, and acts to define the outline of the condensation and 

determine the shape of the developing bone (Goldring et al., 2006). The newly formed 

chondrocytes secrete matrix molecules such as type II collagen and aggrecan; the 

expression of these chondrogenic markers is triggered by SOX9 which is up-regulated 

in the cells within the condensation (Mackie et al., 2011). At this stage of the 

development the centre of the condensation contains proliferating chondrocytes, whilst 

the outer most layers of cells form a surrounding layer called the perichondrium (Lai 

and Mitchell, 2005). The first regions of calcified bone begin to form around the 

diaphysis of the condensate, leading to the formation of the 'bony collar'. This ring of 

bone provides access for developing blood vessels which bring with them osteoblast 

precursors (Mackie et al., 2011, Buckwalter et al., 1996). This neovascularisation leads 

to the development of the primary centre of ossification (Mau et al., 2007). At the 

epiphyses of the developing bones secondary centres of ossification also begin to 

form. The outwards spreading of calcification from the primary and secondary centres 

of ossification leads to the formation of the mineralised bone from the cartilage 

anlagen. The last remaining areas of cartilage can be found in the epiphyseal growth 

plates at either end of the bone. The growth plates will not mineralise until skeletal 

maturity and allow for the continued lengthening of the bone through childhood and 

adolescence (Mackie et al., 2011).  
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Figure 1.4 

The formation of a long bone through the process of endochondral ossification. This 

diagram shows the progression of endochondral ossification from the formation of the 

cartilaginous anlagen followed by the invasion of blood vessels and initial calcification 

leading to the formation off the bony ring and the subsequent formation of primary and 

secondary centres of ossification resulting in the formation of a fully calcified tissue with 

the exceptions of the epiphyseal growth plates.  
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1.6 Hypertrophy 

In order for the cartilage anlagen to be converted into bone, the proliferating 

chondrocytes that formed the initial template have to go through a process called 

hypertrophy (Goldring et al., 2006). Hypertrophy is the final stage of the terminal 

differentiation of chondrocytes during endochondral ossification, and allows for the 

conversion of the cartilage template into bone. This stage of differentiation gets its 

name from the hypertrophy that the chondrocytes undergo as they differentiate. The 

volume of the cells can increase by up to twenty times (Goldring et al., 2006). These 

hypertrophic chondrocytes begin to down-regulate the expression of chondrogenic 

markers such as type II collagen and aggrecan (Goldring et al., 2006, Mackie et al., 

2011). As well as down-regulating chondrogenic markers, there is an up-regulation of 

hypertrophic and osteogenic markers in these cells which are not normally observed in 

chondrocytes such as type I and type X collagen, MMP13, runt-related transcription 

factor 2 (Runx2), and alkaline phosphatase (ALP) (Mueller and Tuan, 2008). The 

transcription factor Runx2 acts as a positive regulator for hypertrophic differentiation 

(Goldring et al., 2006). As the chondrocytes enter the later stages of hypertrophy, 

expression of the angiogenic vascular endothelial growth factor (VEGF) causes blood 

vessels to invade the hypertrophic zone (Goldring et al., 2006). The invasion of blood 

vessels brings with it osteoblast precursors, and leads to the calcification of the 

cartilaginous tissue. The expression of ALP by hypertrophic chondrocytes is key to the 

mineralisation of the hypertrophic zone, as the enzymatic activity of ALP clears the way 

for the process of calcification (Mackie et al., 2011). ALP encourages the formation of 

calcified tissue from the cartilaginous matrix by cleaving inorganic phosphates to form 

organic phosphates, and in doing so affects the balance of these two compounds in the 

developing bone (Orimo, 2010). The balance of these two forms of phosphate 

determines whether or not hydroxyapatite crystals can form, and by cleaving inorganic 

phosphate to produce organic phosphate, ALP helps to provide conditions suitable for 

calcification (Orimo, 2010).  
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1.6.1 Chondroptosis 

Following the invasion of blood vessels and osteogenic precursors, hypertrophic 

chondrocytes are believed to undergo programmed cell death (Mackie et al., 2011). As 

the process of cell death progresses, cytomorphologic changes occur and two distinct 

populations begin to form; they are termed light and dark cells based on their 

differences when observed under a transmission electron microscope (Mackie et al., 

2011). These two groups of chondrocytes undergo cell death in different ways (Mackie 

et al., 2011, Mueller and Tuan, 2008). Neither of the cells undergoes apoptosis; instead 

they have their own programmes of cell death which vary from the classical form of 

apoptosis: these processes are referred to as 'chondroptosis' (Roach and Clarke, 

2000). Both the dark and light cells demonstrate chromatin condensation as part of the 

programme of cell death (Roach and Clarke, 2000). However, unlike the chromatin 

condensation observed at the periphery of the nucleus during the initial stages of 

apoptosis, the chromatin of chondroptotic cells form islands throughout the nucleus 

(Roach and Clarke, 2000). Dark cells then begin to develop endoplasmic 

compartments and autophagic vacuoles that digest the cells contents, and any 

remnants are then ejected into the cells lacunae (Roach et al., 2004). Light cells, 

however, undergo a process in which the expansion of the rough endoplasm leads to 

the formation of sacks around the organelles and other cell contents (Roach and 

Clarke, 2000). Lysosomes then release digestive enzymes that lead to the digestion of 

the cells contents within these cytoplasmic bodies (Roach and Clarke, 2000). The 

advantage of chondroptosis may be that autophagy removes the need for the 

inflammatory response required to remove the apoptotic bodies left behind by classical 

apoptosis (Roach et al., 2004). Such an inflammatory response cannot be mounted in 

cartilage, and would therefore potentially lead to secondary necrosis, if the debris was 

not removed by phagocytosis (Roach et al., 2004). 
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1.6.2 Molecular Mechanisms Regulating Hypertrophy 

In vivo hypertrophy is regulated by a number of factors, most notably the parathyroid 

hormone related protein (PTHrP)/Indian hedgehog (IHH)  axis within the growth plate 

(as described in the chapter introduction to Chapter 3, section 3.1 and Figure 3.1), 

however there are other regulators e.g. triiodothyramine, a thyroid hormone which 

enhances hypertrophy (Mueller and Tuan, 2008, Mackie et al., 2011). The slowing of 

bone elongation and abnormalities of the growth plate are signs of hypothyroidism in 

humans (Mackie et al., 2011). There is also some evidence for the involvement of WNT 

activity in relation to hypertrophy (Day and Yang, 2008). Activation of the canonical 

WNT pathway upregulates the expression of osteogenic genes by osteoblasts by 

increasing translocation of  β catenin in to the nucleus of stimulated cells, and has also 

been shown to play a role in promoting chondrocyte differentiation and hypertrophy 

(Day and Yang, 2008, Mackie et al., 2011).  

One of the major issues associated with using MSCs in cartilage therapy is their 

progression towards terminal differentiation and hypertrophy, in a manner reminiscent 

of endochondral ossification, when they are induced towards chondrogenesis 

(Johnstone et al., 1998, Mueller and Tuan, 2008). The phenotype of chondrogenically 

induced MSCs closely mimics the phenotype of hypertrophic chondrocytes in 

developing bones (Mueller and Tuan, 2008). The similarities between the two 

processes include the expression of certain genes including various isoforms of the 

FGF receptor and markers of hypertrophy including collagen type X and MMP13 

(Mueller and Tuan, 2008).  

In contrast, when chondrocytes are grown in high density pellet cultures they are more 

effective than MSCs at producing cartilage-like tissue; the tissue produced by 

chondrocytes is also mechanically superior and contains higher levels of aggrecan and 

type II collagen (Bernstein et al., 2010). When cultured in pellets, chondrocytes also 

maintain their phenotype, and unlike MSCs do not progress towards hypertrophy. 

When pellet cultures of chondrocytes are implanted into the subcutaneous pouch of 

severe combined immune deficiency (SCID) mice they remain as stable ectopic pieces 

of cartilage (Pelttari et al., 2006). However, when the same experiment is carried out 

with pellets of chondrogenically stimulated MSCs neovascularisation and calcification 

occur (Pelttari et al., 2006). These differences suggest that the differentiation that 

MSCs undergo when TGF-β is used to induce chondrogenesis is closer to the process 

of endochondral ossification than that observed in articular chondrocytes which 

produce stable articular cartilage (Mueller and Tuan, 2008). Identifying the differences 

between these two processes may allow for improvement of MSC differentiation 

protocols.  
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It has been speculated that the rapid progression of MSCs towards hypertrophy during 

chondrogenic induction in vitro is caused by the loss of the important spatial and 

temporal signalling networks that exist for chondrogenically differentiating cells in vivo 

(Pelttari et al., 2006). Instead, taking a pellet culture as an example, all of the cells 

receive the same stimuli at the same time, resulting in relatively synchronous 

differentiation and removing any interactions between different populations of cells. 

This disorder may prevent MSCs from being able to maintain a stable chondrogenic 

phenotype in culture (Pelttari et al., 2006).  As a result, rather than synchronously 

expressing type II collagen, aggrecan and other chondrogenic markers as a population 

in response to TGF-β induced chondrogenesis, MSCs begin to express both 

chondrogenic and hypertrophic markers within days of TGF-β exposure (Pelttari et al., 

2006). Type X collagen production has even been detected before the full 

establishment of type II collagen production; this suggests either that MSCs that are 

chondrogenically differentiated in pellet culture are committed to terminal differentiation 

from an early stage of culture, or that a better marker of hypertrophy is required in vitro 

(Pelttari et al., 2006, Mwale et al., 2006).  

Soluble factors play a major role in the chondrogenic differentiation of MSCs (Weiss et 

al., 2010, Fischer et al., 2010, Johnstone et al., 1998). When MSC pellets are cultured 

in medium conditioned by articular chondrocytes the expression of hypertrophic 

markers including type X collagen and IHH are lower than in MSC pellets cultured in 

unconditioned medium (Fischer et al., 2010). This shows experimentally the 

importance of soluble factors. This study also showed that when MSC pellets were 

cultured in a chondrogenic medium they only produced PTHrP for up to two weeks, 

after that, IHH signalling predominated (Fischer et al., 2010). PTHrP has been shown 

to be effective at down-regulating the expression of markers of hypertrophy in MSCs 

grown in vitro (Kim et al., 2008). Methods for maintaining PTHrP expression, such as 

DNA transfection, or ways of inducing natural expression may help to increase the 

chondrogenic stability of MSCs. 

The apparent predisposition of bone marrow MSCs to progress towards hypertrophy 

may also be linked to their role within bone tissue. MSCs play an important role in bone 

healing after fracture (Dimitriou et al., 2005). These cells act as a key source of stem 

cells, which play a critical role in various stages of the fracture healing process 

(Dimitriou et al., 2005). This may mean that the cells harvested from bone marrow may 

have some underlying predisposition to osteogenesis rather than chondrogenesis. 

Another potential contributing factor is the heterogeneous nature of MSC populations, 

which means that individual cells will have different capabilities to proliferate and 
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differentiate down different pathways, which may add to the disorganisation observed 

in pellet cultures (Mueller and Tuan, 2008). 

Other causes of phenotypic instability in MSCs have been suggested e.g. the natural 

environment for chondrocytes is hypoxic, at approximately 2-5% oxygen. Lowering the 

oxygen tension that MSCs induced into chondrogenesis are exposed to leads to a 

down-regulation of markers of terminal differentiation (Lee et al., 2013). Mechanical 

load may also play a role in maintaining MSCs in a chondrogenic state; computer 

modelling techniques such as finite element modelling (FEM), as well as studies 

applying loads to chondrogenic cells in vitro, have shown that the application of low 

levels of compressive or shear load to chondrogenic cells will result in the production of 

cartilage (Huang et al., 2004, Lee et al., 2011, Schatti et al., 2011, Zahedmanesh et al., 

2014). 

There may also be other factors that are yet to be fully characterised or appreciated 

that are important to the successful maintenance of chondrogenesis in MSCs, e.g. the 

action of enzymes, like MMP13, that are produced during MSC differentiation and can 

play a role in the progression of cells towards hypertrophy (Wu et al., 2002). 

In order for MSCs to be adopted clinically it is important for science to better 

understand their chondrogenic differentiation, and if possible determine the differential 

mechanism(s) whereby MSCs form transient cartilage, through a process reminiscent 

of endochondral ossification, whilst chondrocytes can form permanent articular 

cartilage. The majority of past and current work on the chondrogenic differentiation of 

MSCs is broadly focused on the response of cells to transforming growth factor β 

(TGF-β), which was first shown to have a chondrogenic effect on MSCs in the late 

1990's (Johnstone et al., 1998). 
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1.7 Transforming Growth Factor β 

The three isoforms of TGF-β (1, 2 and 3) are members of the TGF-β superfamily of 

proteins. This superfamily consists of more than 30 proteins and is split in to two 

subfamilies: the TGF-β subfamily which includes TGF-β1-3, activin A and B and 

Mullerian inhibiting substance, and the bone morphogenetic protein (BMP) subfamily 

containing BMP2 and BMP4-10 and the growth and differentiation factors (GDFs) 

(Wang et al., 2014a). These factors are involved in a plethora of processes including 

embryonic development, inflammation and tumorigenesis.  

TGF-β is of particular interest for cartilage repair as it can be used to induce 

chondrogenesis in MSCs. This was first demonstrated by Johnstone et al. (1998), who 

were able to show the development of a chondrocyte-like phenotype and cartilage-like 

matrix deposition in MSCs cultured in pellets in the presence of dexamethasone and 

10ng/ml TGF-β1. Subsequent work by Barry et.al. (2001) showed that all three TGF-β 

isoforms (1, 2 and 3) were capable of inducing chondrogenesis in MSCs, but that there 

were differences between the effects of the different isoforms. This was demonstrated 

by the increased induction of GAG synthesis and early induction of collagen type II 

production in pellets treated with TGF-β2 and 3 rather than TGF-β1 (Barry et al., 2001). 

Further investigation into the chondrogenic effects of the three TGF-β isoforms showed 

that no detectable difference in the induction of chondrogenesis could be observed 

between the three isoforms when used to chondrogenically stimulate human bone 

marrow derived MSCs in pellet cultures (Cals et al., 2012). However, greater 

mineralisation was observed in pellets exposed to TGF-β2 or -3 than TGF-β1 when the 

pellets were exposed to β-glycerophosphate, suggesting that the differential effects of 

the three isoforms may relate to terminal differentiation rather than chondrogenic 

induction (Cals et al., 2012).  

The signalling induced by TGF-β superfamily members occurs through type I and II 

transmembrane receptors and is mediated by different classes of Smad proteins. 

Smads derive their name from a portmanteau of Caenorhabditis elegans SMA (small) 

and Drosophilla mothers against decapentaplegic (Macias et al., 2015). 

TGF-β signalling is initiated by the formation of a heteromeric complex consisting of the 

TGF-β homodimer, a type I TGF-β receptor and a type II TGF-β receptor (Heldin et al., 

2009) (Figure 1.5). Both of these receptors are transmembrane serine/threonine kinase 

receptors (Wang et al., 2014a). 

The formation of this complex leads to activation of the type II receptor which in turn 

transphosphorylates the GS region (named for its high glycine and serine content 

(Massague, 1998)) of the type I receptor leading to type I receptor activation (van der 

Kraan et al., 2009, Wang et al., 2014a). Type I receptors are referred to as activin 
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receptor like kinases (ALK) of which seven have been discovered (ALK1-7) (van der 

Kraan et al., 2009). Five type II receptors have also been described: TGFβRII, ActRII, 

ActRIIb, BMPRII and MISRII (Wang et al., 2014a). 

The activation of the type I receptor leads to the phosphorylation of receptor activated 

Smads (R- Smads) (Derynck and Zhang, 2003). There are five R- Smads, Smad1, 2, 3, 

5 and 8. The receptor activated Smads are associated with and activated by different 

receptors, and therefore, with the different ligands specific for those receptors; ALK1, 2, 

3 and 6 mediate BMP signalling through the Smad1/5/8 pathway whilst ALK 4, 5 and 7 

bind to activins and TGF-βs and signal through Smad 2/3 (van der Kraan et al., 2009, 

Wang et al., 2014a). Evidence suggests TGF-βs can also bind to ALK1 and 2 activating 

signalling pathways previously associated with BMPs (van der Kraan et al., 2009). This 

interaction of TGF-β with the BMP pathway may be associated with the induction of 

hypertrophy in MSCs undergoing TGF-β driven chondrogenesis. In the case of TGF-β 

signalling, the type I receptor phosphorylates the two serine residues found in the –

SXS C-terminal motif of Smad 2 and 3 (Heldin et al., 2009). 

Two phosphorylated receptor Smads then form a heterotrimeric complex with Smad4 

(common Smad), which is then translocated into the nucleus and can induce or 

suppress the expression of target genes at a transcriptional level (Derynck and Zhang, 

2003). Smad4 is required for the majority of R-Smad activity but is not essential for all 

Smad activity (Heldin et al., 2009). 

The transcriptional activity of Smads is then switched off by several mechanisms 

including Smad dephosphorylation, and the binding of SnoN and Ski proteins to the 

Smad complex which prevents its transcriptional activity, and targets the complex for 

ubiquitination and proteasome degradation (Heldin et al., 2009). SnoN and Ski are 

themselves Smad targets, so the transcriptional activity of the Smad complex is 

regulated by a negative feedback loop (Heldin et al., 2009). Smad mediated signalling 

is also regulated by the inhibitory Smads (6 and 7). These block type I receptor 

phosphorylation of R-Smads, therefore blocking the transduction of receptor activation 

to transcriptional regulation. Smad 6 preferentially inhibits Smad1/5/8 signalling (BMPs) 

whilst Smad 7 blocks both Smad 2/3 (TGF-β) and Smad 1/5/8 signalling (van der Kraan 

et al., 2009). 

As well as acting through the Smad pathway, TGF-β signalling is also mediated by 

non-canonical pathways such as MAPK pathways (e.g. TGF-β activated kinase 1 

(TAK), Rho-like GTPase pathways and the phosphatidylinositol-3-kinase pathway 

(Derynck and Zhang, 2003, Wang et al., 2014a). The effects of these pathways on the 

chondrogenesis of MSCs has not been widely studied; however, evidence suggests 

that these pathways, TAK1 signalling in particular, may play a role in cartilage 
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development and the progression of chondrocytes towards hypertrophy (Wang et al., 

2014a). 

TGF-β plays a key role at all stages of cartilage development as well as in adult 

cartilage. TGF-β upregulated N-cadherin and fibronectin expression is key in the 

formation of the mesenchymal condensations that then go on to form the cartilaginous 

anlagen (Wang et al., 2014a). The proliferation and synthetic activity of proliferating 

and pre-hypertrophic chondrocytes is also driven in part by TGF-β signalling (van der 

Kraan et al., 2009). The process of terminal differentiation is not only affected by TGF-β 

associated Smad2/3 mediated signalling but also by BMP associated Smad1/5/8 

signalling. TGF-β signalling through the Smad 2/3 pathway has been shown to be 

protective of the chondrogenic phenotype in growth plate chondrocytes (Wang et al., 

2014a, Ballock et al., 1993) whilst Smad 1/5/8 signalling is involved in the induction of 

terminal differentiation both in vivo and in vitro (van der Kraan et al., 2009, Hellingman 

et al., 2011). A link has even been suggested between Smad mediated signalling and 

osteoarthritis, with a shift from predominantly Smad 2/3 signalling to increased 

Smad1/5/8 signalling during the development of arthritis (van der Kraan et al., 2009). 
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Figure 1.5 

The TGF-β signalling pathway from transmembrane receptor binding to transcriptional 

regulation. Ligand binding leads to type II receptor activation, leading to 

phosphorylation and activation of the type I receptor. The active type I receptor 

phosphorylates R-Smads. Phosphorylated R-Smads form a complex with Smad4 which 

translocates to the nucleus where it can increase or decrease the expression of Smad 

(and therefore ligand) target genes. 
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1.8 Mechanostimulation  

The effect of mechanical load on the development of skeletal tissue has been 

recognised for a long time. Wilhelm Roux suggested in the 1800's that different 

mechanical forces played a role in the development of connective tissue, and in 1922 

Carey noted that the initial areas of ossification in the developing porcine femur 

occurred where the highest tensile loads existed, and suggested that the load must 

therefore affect the development of the skeleton (Carey, 1922). The importance of load 

in the development of the skeleton is also demonstrated by the failure of joint cavities 

and cartilage to form, as well as a large number of other skeletal abnormalities, in 

embryos in which the skeletal muscle is paralysed with botulinum toxin (Murray and 

Drachman, 1969). Mechanical loading not only affects the development of the 

musculoskeletal system, but also plays a role in the development of the heart and the 

lateral-asymmetry of the organs found in vertebrates (Kartagener and Stucki, 1962).  

Loading remains important after development and seems to be essential to the 

maintenance of healthy articular cartilage (Palmoski et al., 1980, Palmoski and Brandt, 

1981). As an example, the loading that chondrocytes experience in vitro can affect their 

synthetic activity e.g. sub-physiological loads have been shown to cause translational 

arrest (Lomas et al., 2011, Lee and Bader, 1997), whilst physiological loads have been 

linked to ECM production (Mauck et al., 2000, Lee and Bader, 1997).  

The importance of load on the development of musculoskeletal tissues and the cells 

within these tissues is clear. As a result there has been a considerable effort in recent 

times to produce bioreactors and loading devices that can expose cells, with or without 

a supporting scaffold structure, to different forms of mechanical load, to either develop 

tissue engineering implants, or to model the effects of physiological loads on different 

preparations of cells and scaffolds (Grad et al., 2011). Bioreactors and loading devices 

have been used to apply a range of forces in a static and dynamic manner to both 

MSCs and chondrocytes; this introduction will now focus on the effects of: hydrostatic 

pressure, compression, shear, and multi-axial load  on MSCs.  
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1.8.1 Hydrostatic pressure 

Hydrostatic pressure is generated by the compression of a liquid within a confined 

space (Elder and Athanasiou, 2009). As cartilage is loaded, the fluid within it becomes 

pressurised and this generates hydrostatic pressure, which is key to the normal 

functioning of articular cartilage (Elder and Athanasiou, 2009). In order to mimic this in 

a loading device, the hydrostatic pressure experienced by cells in monolayer or in a 

scaffold can be increased by compressing the gas phase above the level of the 

medium, or by directly compressing the medium itself, causing an increase in 

hydrostatic pressure (Elder and Athanasiou, 2009). As with other forms of loading, 

cyclic hydrostatic pressure has been shown to be beneficial for the chondrogenic 

phenotype, whilst static loading does not have the same effect (Elder and Athanasiou, 

2009). 

Work by Angele et.al. (2003) exposed MSC pellet cultures in a chondrogenic medium 

to cyclic hydrostatic pressure that changed from 0.55MPa to 5.05MPa (within the 

normal physiological range for cartilage) at a frequency of 1Hz. The results of this study 

demonstrated that pellets increased in size and produced increased levels of 

proteoglycan and collagen when loaded for 7-14 days (Angele et al., 2003).  

The application of hydrostatic pressure to MSCs was also investigated by Miyanishi et 

al. (2006). In the first of two papers published in 2006, this group loaded human bone 

marrow MSC pellets with 10MPa hydrostatic pressure at 1 Hz for 4 hours a day for up 

to 14 days in the presence or absence of TGF-β3 (Miyanishi et al., 2006b). Intermittent 

hydrostatic pressure induced the gene expression of the chondrogenic markers Sox 9, 

collagen type II and aggrecan in the absence of TGF-β3, and further increased the 

expression of these markers in pellets cultured with TGF-β3 (Miyanishi et al., 2006b). 

In the second paper published in 2006, Miyanishi et al. exposed pellets to 0.1, 1 or 10 

MPa cyclic hydrostatic pressure at 1 Hz for 4 hours a day for up to 14 days. The 

increase in hydrostatic pressure led to a dose dependent increase in the gene 

expression of aggrecan, whilst Sox 9 expression was induced in all groups and 

collagen type II only in pellets that received 10 MPa loading (Miyanishi et al., 2006a). In 

addition to a dose dependent increase in response to load, they also showed a time 

dependent increase in the production of GAG and collagen over the two week culture 

period (Miyanishi et al., 2006a). 

Investigation into the effect of delaying the application of hydrostatic pressure was 

performed by Meyer et al. (2011). During this study, 10MPa hydrostatic pressure was 

applied at 1Hz for 1 hour a day, 5 days a week for up to six weeks to porcine BMSCs 

seeded into 2% agarose gels in the presence or absence of 10ng/ml TGF-β3 (after 21 

days of preculture) (Meyer et al., 2011). The results of this work showed that, despite 



33 
 

donor variation, hydrostatic loading increased the production of GAG and collagen by 

stimulated cells in the presence of TGF-β3, but loading in the absence of TGF-β3 (after 

21 days of preculture)  did not induce increased matrix synthesis (Meyer et al., 2011). 

The relationship between TGF-β and hydrostatic pressure was further studied by 

Vinardell et al. (2012). Pellet cultures of porcine chondrocytes, synovial membrane 

derived stem cells and fat pad derived stem cells were exposed to 10MPa hydrostatic 

pressure at 1Hz for four hours a day over 14 days in the presence of different medium 

concentrations of TGF-β3 (Vinardell et al., 2012).  In the absence of TGF-β3, 

hydrostatic pressure did not induce the expression of markers of chondrogenesis, 

however hydrostatic pressure did enhance chondrogenesis in the presence of 1ng/ml 

TGF-β3. In contrast, load had no extra beneficial effect on cartilage specific markers 

when applied in combination with 10ng/ml TGF-β3 (Vinardell et al., 2012). These 

results demonstrate the close links that exist between mechanical load and TGF-β3 

production; this is discussed in further detail in section 1.9. 

The effect of hydrostatic pressure on the stability of the MSC chondrogenic phenotype 

has also been studied. Carroll et al. (2014) looked at the effect of a 10MPa load 

administered at 1Hz for 4 hours a day, 5 days a week for up to 5 weeks on porcine 

MSCs and fat pad derived stem cells embedded in 2% agarose gels. This work showed 

that load was beneficial for the synthesis of GAG in both types of stem cell and 

collagen in MSCs only; furthermore, loading also improved the mechanical properties 

of scaffolds containing both cell types (Carroll et al., 2014). Hydrostatic loading was 

also shown to reduce calcium deposition in MSCs that were cultured in chondrogenic 

medium, but not hypertrophic medium. This suggests that hydrostatic pressure has 

some beneficial effects not only on cartilage-like matrix synthesis in MSCs, but also for 

preserving the chondrogenic phenotype (Carroll et al., 2014). 

Work conducted into the effects of hydrostatic loading show that cyclic application of 

physiological levels of pressure leads to an increase in the production of matrix 

molecules by MSCs within scaffolds when applied in combination with TGF-β, but that 

hydrostatic pressure alone cannot, in all cases, increase the expression of 

chondrogenic markers above free swelling controls in the absence of TGF-β. 
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1.8.2 Compression 

Compressive load is commonly used to study the effects of mechanical load on 

chondrogenic cells. Common estimates of physiological deformation caused by joint 

movement range from 6% (Eckstein et al., 2001) to 20% (Armstrong et al., 1979). The 

natural frequency of walking in humans is approximately 1Hz so in order to replicate 

the physiological effects of movement (particularly the effects of movement on the 

knee) it is common for studies to apply loads of 10-15% compression at a frequency of 

1Hz (Huang et al., 2004, Campbell et al., 2006, Mauck et al., 2000, Ng et al., 2006, 

Thorpe et al., 2010, Schatti et al., 2011), however this is not always the case e.g. 

Angele et al. (2004) loaded MSC hydrogels at 0.33Hz and 40% compression. The 

period of loading that the cells were subjected to also varies markedly from study to 

study e.g. Huang et.al. (2004) applied a load at 1Hz for four hours a day on fourteen 

consecutive days, whereas Kisiday et.al. (2009) loaded for twelve hours a day for eight 

days. Compressive loading, using a number of different cyclic regimes has been shown 

to induce chondrogenesis in MSCs. 

Huang et.al. (2004) compared the chondrogenic effects of both TGF-β1 and 

compression both separately and in combination. Bone marrow derived rabbit MSCs 

were seeded in to 2% agarose gels and were then exposed to 10% compression at 

1Hz for four hours a day, for up to fourteen days. The data collected showed that load 

was able to induce chondrogenesis in MSCs in the absence of exogenous TGF-β, and 

that the relative induction of collagen type II and aggrecan gene expression was similar 

to that induced by culturing the cells in chondrogenic culture media containing 10 ng/ml 

TGF-β1 (Huang et al., 2004).  

Longer loading periods of compressive load have also been shown to induce 

chondrogenesis in MSCs. Kisiday et.al. (2009) applied 7.5% compression on top of 

2.5% pre-compression at 0.3Hz for 21 days to equine bone marrow derived MSCs 

seeded into 2% agarose cells , in the absence of TGF-β (Kisiday et al., 2009). This led 

to increased levels of proteoglycan synthesis when compared to unloaded controls. 

However, the cells subjected to load only produced 20-35% of the proteoglycan content 

of the MSCs cultured in 10ng/ml TGF-β1 (Kisiday et al., 2009). 

Campbell et.al. (2006) seeded human bone marrow derived MSCs into 3% alginate 

scaffolds and applied a 15% load at 1Hz with and without TGF-β3 in six hour cycles 

(1.5 hours loading followed by 4.5 hours rest) for up to eight days. In the absence of 

TGF-β3, load was able to induce the expression of aggrecan, Sox 9 and collagen type 

X (Campbell et al., 2006). The effect of load was also noted not to be synergistic when 

applied in combination with 10 ng/ml TGF-β3 (Campbell et al., 2006).  
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Angele et.al. (2004) cultured human bone marrow derived MSCs in a hyaluronan-

gelatin scaffold in chondrogenic medium (containing 10 ng/ml TGF-β1), and scaffolds 

were loaded at 0.33Hz and 40% compression for four hours for up to three weeks. This 

loading regime led to an increase in the gene expression of aggrecan, collagen type I 

and collagen type II, and led to a significant increase in GAG and collagen content in 

loaded scaffolds compared to unloaded controls at day 21 of culture (Angele et al., 

2004). 

Further characterisation of the effect of compressive load in the presence of TGF-β 

was performed by Thorpe et al. (2010). Agarose scaffolds (2%) containing porcine 

bone marrow derived MSCs were cultured in the presence or absence of TGF-β3 (10 

ng/ml) (after 21 days of preculture)  and either kept in free swelling culture or were 

exposed to compressive load from day 0 to day 42 or from day 21 to 42. The loading 

regimen consisted of 10 % compression at 1Hz, for one hour a day, five times a week. 

The results of this study showed that loading from day 0 had a detrimental effect on 

chondrogenesis and that loading from day 21 (after three weeks of chondrogenic 

induction) did not positively or negatively affect the outcome of chondrogenic induction 

(Thorpe et al., 2010). This work also demonstrated that the continuous application of 

10 ng/ml TGF-β3 was the most potent inducer of chondrogenesis in this system. 

These studies show that compressive load has a chondrogenic effect on MSCs both in 

the presence and absence of TGF-β. However, they also highlight the complex 

relationship between TGF-β and the response of MSCs to mechanical load. Four of the 

four five studies discussed above noted the lack of synergy between mechanical load 

and TGF-β application, emphasising the crucial relationship between TGF-β and 

mechanical load that is discussed further in section 1.9. 
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1.8.3 Shear  

Shear stress, resulting from fluid flow is widely recognised to be important in the 

response of osteocytes to mechanical loading, but shear stresses have also been 

shown to have an effect on the activity of MSCs (Lee et al., 2011).  

Evidence suggests that MSCs cultured in a 2D monolayer exhibit an osteogenic 

response when exposed to low levels of shear (fluid flow), leading to the up-regulation 

of markers such as osteopontin and osteocalcin (Kreke 2005), and at higher 

magnitudes of shear, markers of endothelial cells such as von Williebrand in MSCs 

(Wang et al., 2005).  The action of shear stress also causes an increase in fluid flow 

through the matrix (Zahedmanesh et al., 2014). This increase in flow provides 

improved nutrient movement and availability, as well as more efficient removal of 

cellular waste, providing a better suited environment for cellular proliferation and 

metabolic activity. 

The application of mechanical shear stimulation alone, in the absence of chondrogenic 

media, to human bone marrow derived MSCs in fibrin-polyurethane composite 

scaffolds was investigated as part of a study by Schätti et al. (2011). In this study, 

shear forces were generated by rotating a ceramic ball on the surface of the scaffolds. 

This work demonstrated that the application of mechanical shear caused a small up-

regulation of chondrogenic markers such as collagen type II, aggrecan and COMP, but 

the combination of shear and compressive load was required to induce significant 

chondrogenesis (Schatti et al., 2011). 

Other studies have examined the effect of shear forces in the form of fluid flow on MSC 

chondrogenesis. Alves da Silva et al. (2011) exposed human bone marrow derived 

MSCs seeded on chitosan poly(butylene terephthalate) (CPBTA) meshes to a flow of 

chondrogenic media containing 1ng/ml TGF-β3 at 100 µl/minute/fibre mesh for 28 days 

(Alves da Silva et al., 2011). The application of fluid flow had no beneficial effects over 

the static culture of MSCs on meshes with chondrogenic medium with regards to the 

gene expression of collagen type II or aggrecan; however it did reduce the gene 

expression of collagen type I, collagen type X and Runx2, suggesting some 

chondroprotective effects of fluid flow (Alves da Silva et al., 2011). The effect of fluid 

flow on MSC pellets was studied by Kock et al. (2014). Human bone marrow derived 

MSCs were formed into pellets and allowed to differentiate for 18 days in the presence 

of 10 ng/ml TGF-β2, followed by exposure of the pellets to a 1.22 ml/min flow of 

chondrogenic medium for 10 days (Kock et al., 2014). Exposure to fluid flow had a 

negative effect on chondrogenesis leading to reduced collagen type II gene expression, 

reduced GAG production and a reduction in histologically detectable GAG and collagen 

II from the pellets (Kock et al., 2014). 
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The limited work performed on the effect of shear loading suggests that fluid flow has 

limited beneficial and potentially negative effects on MSC chondrogenesis. However, 

the application of shear using a solid surface (such as a ceramic ball) may have some 

beneficial effects for MSC chondrogenesis, particularly when applied in combination 

with compressive load. 
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1.8.4 Shear and compression 

Within joints in vivo, and particularly within the knee, the forces that most cartilage is 

exposed to during day to day physiological movements are a combination of 

compression (caused by gravitational or muscular loading) and shear stress (generated 

by the movement of the two articular surfaces across each other and the movement of 

synovial fluid across the surface of the tissue). As a result there is interest in the effect 

of applying a combination of shear and compression to MSCs to investigate the effect 

of this joint relevant mechanical load on chondrogenesis. 

Different authors have carried out investigations into the combined effects of these two 

forces using very different bioreactors. Bioreactor designs range from those that 

provide compression using a linear actuator and the movement of a plate in contact 

with the samples to provide shear, to the 'ball on stick' design which uses a ceramic hip 

replacement ball to both rotate on top of the sample providing mechanical shear and 

press down on the sample to provide compressive loading (Waldman et al., 2007, 

Wimmer et al., 2004, Frank et al., 2000, Yusoff et al., 2011). 

Most of the studies performed have focused on the effect of multiaxial mechanical load 

on chondrocytes. However, there has been a substantial amount of work performed by 

our group investigating the effect of combined shear and compression on MSCs, using 

the 'ball on stick' bioreactor system first described by Wimmer et.al. (2004) (figure 1.6). 

The most relevant work is summarised below, however, this bioreactor has also been 

used for similar studies that have not been described e.g., studies focusing on the 

potential use of viral over-expression of genes such as Sox 9 and BMP2 for cartilage 

tissue engineering in a joint-like environment (Kupcsik et al., 2010, Salzmann et al., 

2009, Neumann et al., 2013, Neumann et al., 2015). 

Characterisation of this system showed that when human bone marrow derived MSCs 

were seeded into fibrin-poly(ester-urethane) and exposed to 10% compressive load (on 

top of 10% pre-compression) and ±25o oscillation at a frequency of 1Hz for one hour a 

day for seven days, the MSCs responded by increasing GAG production and up-

regulating collagen type II, aggrecan and lubricin transcription (Li et al., 2010a). This 

work demonstrated that the response to load was only observable if the constructs 

were not cultured with TGF-β1 and that loading in the presence of TGF-β1 provided no 

extra chondrogenic effect. Further investigation showed that the application of 

multiaxial load to MSC seeded constructs in this system led to the induction of 

endogenous TGF-β1 production resulting in approximately 1 ng/ml of TGF-β1 in the 

culture medium (Li et al., 2010a). This endogenously produced TGF-β1 induces the 

chondrogenesis of loaded MSCs, and blocking the TGFBR1 blocks the induction of 

chondrogenesis in response to multiaxial mechanical load (Li et al., 2010a). 
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Importantly, this study was therefore able to show that multiaxial mechanical load 

induces the endogenous production of TGF-β1 by MSCs which then drives 

chondrogenesis; loading in the presence of chondrogenic medium containing 10 ng/ml 

TGF-β1 masks this beneficial effect of the load on chondrogenesis (Li et al., 2010a). 
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Figure 1.6 

A schematic showing the application of compressive and shear load to a fibrin-

poly(ester-urethane) scaffold using a ball on stick bioreactor. The white sphere 

represents a ceramic ball which can be raised and lowered as well as rotated around 

the axis parallel to the surface of the scaffold. A combination of these two movements 

results in the generation of both compressive (green arrow) and shear loading (red 

arrow). 
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This bioreactor has also been used to investigate the effect of different loading regimes 

on MSC chondrogenesis (Li et al., 2010b). Li et al. (2010) tested the effects of a range 

of loading regimes using 5%, 10% and 15% compressive loading at either 0.1Hz or 

1Hz for one hour for seven days. Results of this work demonstrated that after seven 

days pre-culture of MSCs in a chondrogenic medium, an increase in either the 

frequency of loading, or the amplitude of compressive load led to an increase in GAG 

production and the expression of collagen type II and aggrecan (Li et al., 2010b). The 

data collected from this study also showed that the ratios of chondrogenic to 

fibroblastic, hypertrophic and osteoblast markers were improved by the application of 

multiaxial load suggesting that the cells are adopting a chondrocyte-like phenotype (Li 

et al., 2010b). 

The application of shear or compressive load alone or in combination to MSCs, in the 

absence of TGF-β1 has also been investigated in this system (Schatti et al., 2011).  

This work used four conditions to establish the effects of the individual loading 

components; MSC seeded fibrin-poly(ester-urethane) scaffolds were kept as free 

swelling controls, exposed to compression only at 1Hz 10% compressive load (on top 

of 10% pre-compression), shear stress only (±25o oscillation at a frequency of 1Hz) and 

a combined shear and compression group utilising the above loading regimes (Schatti 

et al., 2011). All three loading regimes led to an increase in GAG production, shear 

loading alone led to increased gene expression of some chondrogenic markers, but the 

shear and compression combined group was the only one to show significant increases 

in the expression of chondrogenic markers such as SOX9 and type II collagen. The 

results of this work also indicated that there was an increase in the ratios of collagen 

type II to collagen type I, type X and ALP (Schatti et al., 2011).  

The attraction of multiaxial over uniaxial loading is that it better mimics the very 

complex mechanical loading that occurs within an articulating joint. This combined 

loading strategy has also been shown to induce the chondrogenesis of MSCs in a way 

not possible when either shear or compression were applied separately. 
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1.9 Load and endogenous TGF-β production 

The studies summarised in sections 1.8.1, 1.8.2 and 1.8.4 clearly demonstrate that 

mechanically stimulating MSCs can lead to the induction of a chondrogenic phenotype, 

even in the absence of exogenous TGF-β. Interestingly, these numerous studies have 

demonstrated that when one of a number of different types of mechanical load are 

applied in the presence of exogenous TGF-β there is no synergistic effect between 

these two chondrogenic stimuli (Huang et al., 2004, Campbell et al., 2006, Kisiday et 

al., 2009, Li et al., 2010a, Alves da Silva et al., 2011). This is explained by the 

production of endogenous TGF-β by MSCs in response to mechanical load which has 

been described by our group and others (Li et al., 2010a, Li et al., 2012, Huang et al., 

2004). This body of work was produced using a number of different loading systems 

with MSCs of different sources and species, suggesting a close link between the 

application of mechanical load and the production of TGF-β. 

The effects of cyclic compression and TGF-β stimulation have been demonstrated on 

MSCs harvested from the bone marrow of rabbits and implanted into 2% agarose 

(Huang et al., 2004). Cells in experimental groups were exposed to 10% strain at 1Hz 

for four hours a day for up to 14 days (Huang et al., 2004). The application of this 

loading regime, in the presence or absence of TGF-β1, led to a similar induction of 

chondrogenic genes as observed when scaffolds were kept in free swelling culture with 

exogenously applied TGF-β1. The combined effect of TGF-β and loading was an 

increase in the production of type II collagen when compared to the cells exposed to 

TGF-β alone at 14 days of culture, but the overall response between groups was very 

similar (Huang et al., 2004). The similarity in the effects of loading alone and TGF-β 

alone suggested that there may be links between the two systems (Huang et al., 2004). 

This study showed that the loading of cells induced the expression of TGF-β1 at an 

mRNA level, suggesting that the chondrogenic induction of MSCs in the loaded group 

without exogenous TGF-β is driven by endogenously produced TGF-β (Huang et al., 

2004). 

In a follow-up study, this group investigated the effects of loading on de novo TGF-β 

production (Huang et al., 2005). This study used a slightly altered experimental 

approach, in which rabbit bone marrow derived MSCs were exposed to 15% 

compression for four hours at 1Hz for two consecutive days (Huang et al., 2005). This 

study was designed to determine the temporal production characteristics of various 

factors associated with the early stages of endogenous TGF-β signalling in loaded 

rabbit bone marrow MSCs (Huang et al., 2005). The results showed the up-regulation 

of both parts of the dimeric TGF-β receptor, TβR-I and TβR-II, as well as up-regulation 

of the early response genes c-Jun and c-Fos, which are associated with the ERK and 
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MAPK pathways, which in turn are associated with TGF-β signalling (Huang et al., 

2005). The master chondrogenic transcription factor Sox9 was also found to be up-

regulated in loaded cells (Huang et al., 2005). 

In applying a combination of shear and compression to MSCs, Li et.al. (2010) 

demonstrated that the beneficial effects of loading on the expression of chondrogenic 

genes were negated if the cells were exposed to TGF-β within the culture medium. In 

order to establish the link between loading and production of endogenous TGF-β, 

MSCs were cultured in a medium containing the TβR-I blocker LY364947 (Li et al., 

2010a). The effect of this blocker was to inhibit the chondrogenic response of loaded 

cells (Li et al., 2010a). This work was therefore able to demonstrate a link between 

increased TGF-β1 gene expression and protein production and the chondrogenesis 

observed in mechanically loaded scaffolds. Similar results have been presented by Li 

et al. (2012) in a different model of mechanical load, using compression alone. Human 

bone marrow derived MSCs were seeded into 1.5% alginate beads and allowed to 

differentiate in chondrogenic medium containing 10ng/ml TGF-β1 for eight days before 

being exposed to a pressure of 14-36KPa at 0.25Hz for 1 hour a day for a further 

seven days in the absence (or presence) of TGF-β1. The application of load, in the 

absence of TGF-β1, led to an increased expression of chondrogenic markers such as 

collagen type II. This loading regimen also led to an increase in the gene expression, 

protein production and activation of TGF-β1 (Li et al., 2012). Blocking the TβR-I with 

SB431542 led to a decrease in the load-induced up-regulation of chondrogenic 

markers previously observed (Li et al., 2012). Both of these studies show a direct link 

between the chondrogenic response to mechanical load and the endogenous 

production of TGF-β1 in response to mechanical loading. 

The evidence provided by these investigations demonstrates the link between the 

loading of cells in vitro, the up-regulation of de novo TGF-β1 production and the 

subsequent induction of chondrogenesis in response to this endogenous growth factor 

production. The effect of load is unlikely to be only limited to increases in TGF-β, 

although this is currently the best described example. Investigating the effect of load on 

other growth factors and signalling molecules will provide greater understanding of the 

response of MSCs to load and may help to advance these cells towards use in the 

clinic for cartilage repair. 
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1.10 Thesis Aims 

The progression of MSCs towards a hypertrophic, rather than articular cartilage 

phenotype has hampered their use clinically. It has been hypothesised that the 

progression of MSCs towards hypertrophy may be due to the loss of the important 

spatial and temporal signalling networks that exist for chondrogenically differentiating 

cells in vivo. The aim of the work presented in Chapters 3 and 4 was to produce MSC 

containing fibrin poly(ester-urethane) constructs that were spatially and temporally (in 

terms of chondrogenic differentiation) heterogeneous. The purpose of this work was to 

investigate the induction of chondrogenesis and hypertrophy in bone marrow derived 

mesenchymal stem cells that were stimulated with multiaxial mechanical load in 

anisotropic scaffolds. It was hypothesised that by producing heterogeneous constructs 

it would be possible to modulate the induction of chondrogenesis and progression 

towards hypertrophy through paracrine signalling between cells at different stages of 

differentiation in the two layers. 

TGF-β has been widely used to induce chondrogenesis in mesenchymal stem cells. 

However, it is also possible to induce MSCs towards chondrogenesis using various 

forms of mechanical load. The induction of chondrogenesis in response to mechanical 

load has been linked to the endogenous production of TGF-β by stimulated cells which 

then drives chondrogenic differentiation. Previous work by our group has shown that 

the application of mechanical load induces the production of TGF-β1 by MSCs and 

subsequently induces chondrogenesis, which could be blocked using a TGF-β receptor 

I inhibitor. Due to the unexplained differences between groups described in Chapter 4, 

the work in Chapter 5 aimed to establish new potential markers for the chondrogenic 

differentiation of MSCs. The work presented in Chapter 5 also aimed to investigate the 

similarities and differences between these two forms of chondrogenic induction by 

comparing the secretomes of cells either stimulated with TGF-β or with mechanical 

load. The purpose of this work was to determine whether the effects of mechanical load 

are analogous to TGF-β stimulation, or if there are differences between the two forms 

of induction with regards to the soluble molecules produced by stimulated cells. 

The work conducted in this thesis was based upon the principles of regenerative 

medicine rather than tissue engineering. This appears, superficially, to be a paradox. 

However, the goal of this thesis was not to produce the highest quality cartilage-like 

tissue possible in vitro, for which the application of 10 ng/ml TGF-β1 and the use of a 

better optimised scaffold system would likely induce greater matrix deposition and 

retention. Instead the goal was to investigate the effect of multiaxial mechanical 

loading, similar to that which a construct would receive in vivo, within a scaffold (fibrin) 

that is relevant to microfracture and is also approved for clinical use. As most of the 
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scaffold materials currently used in tissue engineering studies, and TGF-β itself, are not 

approved for clinical use the experimental design was created to be as translationally, 

and clinically relevant as possible.  

 

This thesis therefore aimed to address three questions: 

Can separate populations of MSCs interact within a scaffold and modulate each other's 

response to chondrogenic stimuli? 

Are the effects of TGF-β1 stimulation and mechanical load analogous? 

Can novel markers of MSC chondrogenesis be found by analysing the secretomes of 

chondrogenically stimulated cells? 
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Chapter 2 Materials and Methods 
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2.1 Materials 

All reagents were of analytical grade and purchased from Sigma-Aldrich, Buchs, 

Switzerland unless otherwise stated. All reagents, plasticware and filtertips used for 

molecular biology were certified ribonuclease and deoxyribonuclease free.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

2.2 Poly(ester-urethane) and Scaffolds Preparation 

All preparation of poly(ester-urethane) scaffolds was performed by Dr. David Eglin and 

Mr. Markus Glarner at the AO Research Institute, Davos, Switzerland. 

The poly(ester-urethane) was prepared following a one-step solution poly-condensation 

and fabricated into a porous structure via a salt leaching-phase inverse technique as 

previously described (Boissard et al., 2009). The poly(ester-urethane) porous sponge 

was water-jet cut (CUTEC AG, Basel-CH) into cylindrical scaffolds of 8mm in diameter 

and 4mm in height or 8mm in diameter and 2mm in height, with porosity above 80% 

and interconnected macro-pores of size ranging from 90 to 300μm.  Scaffolds of 

different sizes were used in different experimental set-ups. The design of the multiaxial 

loading device used in this thesis requires that samples for loading are 4mm deep and 

8mm wide. Therefore, either one 4x8 mm scaffold was used (as in Chapter 3 and 4), 

two 2x8 mm scaffolds were seeded with cells and placed on top of the other (as in 

Chapter 3) or a cell seeded 2x8 mm scaffold was placed on top of an acellular 2x8 mm 

scaffold for support during loading (as in Chapter 5),  

The scaffolds were sterilised with ethylene oxide in a cold cycle (37°C) and degassed 

under vacuum for five days.  
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2.3 MSC Isolation and Proliferation 

MSCs were harvested from bone marrow aspirates collected during routine operations 

with full-ethical approval (KEK-ZH-NR: 2010-0444/0). Detailed information on the 

donors used in each chapter are provided in the methods section of each individual 

experimental chapter. All serum was batch tested to ensure MSC multipotency was 

maintained. The volume of the marrow was determined using a stripette and the 

sample was then diluted 1:3 with phosphate buffered saline (PBS).The PBS marrow 

mixture was then repeatedly agitated with a pipette before being passed through a 

70µm filter. The tube that contained the PBS marrow mixture and the strainer were 

then washed with PBS, which was also passed through the filter. Ficoll (Histoplaque – 

1077) was warmed to room temperature and 2.6ml of Ficoll per 1ml of original marrow 

sample was transferred to a 50ml polypropylene tube. The marrow sample was 

carefully layered on top of the Ficoll before the tube was centrifuged at 800 x g for 

twenty minutes with centrifuge acceleration and deceleration set to the lowest levels. 

After centrifugation, a plastic dropping pipette was used to collect the interphase 

(containing mononuclear cells) that had formed between the marrow sample and the 

Ficoll. The collected interphase was then washed twice with 30ml of alpha Minimum 

Essential Medium (αMEM) (Gibco, Carlsbad, USA) with 10% foetal bovine serum 

(FBS) (SeraPlus, Pan Biotech, Aidenbach, Germany), 100 U/ml penicillin and 100 

µg/ml streptomycin (Gibco, Carlsbad, USA). After washing, the mononuclear cells were 

counted using a scepter cell counter (Merck, Darmstadt, Germany). To ensure that only 

mononuclear cells were counted, cells below 8µm in diameter were gated out of the 

count. Mononuclear cells were then seeded at a density of 50,000 cells/cm2 into culture 

flasks and left to attach for 96 hours  in 10% FBS αMEM supplemented with 5ng/ml 

basic fibroblast growth factor (bFGF) (Peprotech, Rocky Hill, USA), 100 units/ml 

penicillin and 100 µg/ml streptomycin. The medium was then changed and attached 

cells were allowed to grow to 80% confluence before passaging. Cells were again 

allowed to reach 80%-90% confluence before being frozen and stored in liquid 

nitrogen.  

After thawing, the proliferation of MSCs was carried out before seeding into scaffolds 

using αMEM, 10% FBS with 5ng/ml bFGF at 37°C with 5% CO2. Passage 3-4 cells 

were then trypsinised using 0.05% trypsin-EDTA (Gibco, Carlsbad, USA) and counted 

using a haemocytometer before being seeded into fibrin-poly(ester-urethane) 

constructs as described below (section 2.4) (fibrin from Baxter, Vienna, Austria). 
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2.4 Seeding of Fibrin-Poly(ester-urethane) Scaffolds 

The seeding procedure was originally described by Li et al. (2009). In order to carry out 

the seeding, the required number of culture expanded MSCs (3,600,000 or 4,000,000 

cells per 4x8mm scaffold or 1,600,000 or 2,000,000 cells per 2x8mm scaffold 

depending on the different experimental designs used in each chapter. The cell density 

was based on previous work on this scaffold system (Li et al., 2009)) per scaffold were 

resuspended in 33mg/ml fibrinogen (Baxter, Vienna, Austria), 75µl per 4x8mm scaffold 

or 37.5 µl per 2x8mm scaffold, and transferred to the sterilised cap of an Eppendorf 

tube. The fibrin cell mixture was then rapidly mixed with an equal volume of 1 unit/ml 

thrombin (Baxter, Vienna, Austria), using a pipette. A poly(ester-urethane) scaffold, 

which had been pre-wetted in serum free DMEM (which forms the base of the 

chondropermissive medium that was applied to the scaffolds after seeding) to decrease 

the hydrophobicity of the scaffold, was then firmly pressed into the Eppendorf lid using 

a pair of sterile forceps; removing the pressure from the scaffold allowed the poly(ester-

urethane) sponge to regain its original shape and in doing so draw the fibrin cell 

mixture into the scaffold. The scaffolds were then incubated at 37°C for one hour to 

allow polymerisation of the fibrin hydrogel. This method has been used previously in a 

number of studies by this group and results in a homogeneous distribution of cells 

throughout the scaffold (Zahedmanesh et al., 2014). The final concentrations used for 

the fibrin gel were 16.5mg/ml fibrinogen and 0.5 units/ml of thrombin. 

Once seeded, the scaffolds were transferred to polyether ether ketone (PEEK) holders 

(Figure 2.1), which were manufactured in house, for further culture. Scaffolds were 

cultured in a medium consisting of: Dulbecco's modified Eagle medium (4.5g/L glucose 

(Gibco, Carlsbad, USA), 0.11g/L sodium pyruvate, 50μg/ml L-ascorbic acid 2-

phosphate sesquimagnesium salt hydrate, 1x10-7M dexamethasone, ITS+ Premix 

containing insulin 6.25 µg/ml  transferrin 6.25 µg/ml and selenious acid 6.25 ng/ml 

bovine serum albumin 1.25 mg/ml and linoleic acid 5.35 µg/ml   (Corning, Bedford, 

USA), 1% (v/v) Non-essential amino acids containing 750 mg/L glycine, 890 mg/L L-

alanine, 1320 mg/L L-asparagine, 1330 mg/L L-aspartic acid, 1470 mg/L L-glutamic 

acid, 1150 mg/L L-proline, 1050 mg/L L-serine (Gibco, Carlsbad, USA), 50 µg/ml 

Primocin (Invitrogen, San Diego, USA) and 5μM 6-aminocaproic acid  to reduce fibrin 

degradation (Kupcsik et al., 2009). Exogenous recombinant human TGF-β1, produced 

in 293 cells (Fitzgerald, Acton, USA), was added where required as per individual 

experimental plans. 
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Figure 2.1 

A Polyether ether ketone PEEK loading holder containing a fibrin-poly(ester-urethane) 

scaffold seeded with MSCs. 

 

 

 

 

 

 

PEEK Holder 

Fibrin-poly(ester-urethane) scaffold seeded with human MSCs 

Poly(ester-urethane) support ring 
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2.5 Application of Multi-axial Mechanical Load 

Scaffolds were loaded using a custom-made multiaxial load bioreactor (Figure 2.2), 

designed to apply both dynamic shear and compressive loading, based on a 

tribological system analysis of natural articulating joints (Wimmer et al., 2004). Loaded 

scaffolds were exposed to 10% compression superimposed on top of a 10% pre-strain 

and shear loading (±25°) at 1Hz for one hour a day five times a week. 10% 

compression and 25° rotation was chosen based on results from previous work and the 

limitations of the loading device (Li et al., 2010b). The loading was controlled using 

LabVIEW software (National Instruments, Ennetbaden, Switzerland) using a 

customised program designed by ALEA Solutions (Zürich, Switzerland). Load cells, 

located underneath the PEEK holders, were used to detect contact between the 

ceramic ball and scaffold in order to apply 10% pre-compression before the initiation of 

10% cyclic compression.  Loading was carried out in an incubator at 37°C, 5% CO2 

and 80% humidity. Scaffolds were loaded for one, two or four weeks depending on the 

relevant experimental design. Control scaffolds were kept in free-swelling culture 

conditions for the culture period (four weeks). The culture media was changed three 

times per week during the loading period. Multiaxial load, as described here is referred 

to as joint-like load throughout this thesis. 
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Figure 2.2 

The bioreactor used to apply multiaxial load to MSC containing fibrin-poly(ester-

urethane) scaffolds. 

 

 

 

 

 

 

Location of load cell under PEEK holder 

PEEK Holder Location of Fibrin-poly(ester-urethane) scaffold seeded with human MSCs 
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2.6 Sample Collection and Preparation 

Culture media was collected three times a week during the culture period in conjunction 

with media replenishment, and was then pooled by week, before being stored at -20°C 

for analysis. 

After the required culture period, the scaffolds from each group were harvested for 

analyses. Twenty-four hours after the final loading scaffolds were cut into halves using 

a surgical scalpel. The scaffold halves were then prepared for biochemical analysis 

(GAG/DNA content), gene expression analysis or histological analysis as per the study 

plan. 

TRI reagent® (Molecular Research Centre Inc., Cincinnati, USA) was used for RNA 

isolation from scaffolds for gene expression analysis. In order to do this one half of the 

scaffold was placed into a 2ml Eppendorf tube with 1ml of TRI reagent® and a tissue 

lyser ball bearing. This tube was then placed in a tissue lyser (Retsch & Co., Haan, 

Germany) for three minutes at 25Hz. After lysis, the tube was centrifuged at 12000 x g 

for fifteen minutes at 4°C, the supernatant transferred to another tube and 5μl of 

polyacryl (Molecular Research Centre Inc., Cincinnati, USA) carrier added, to improve 

the recovery of RNA during isolation, before storage at -80°C. 

For biochemical analysis, scaffold pieces were digested in 0.5mg/ml Proteinase K 

(Roche, Basel, Switzerland) at 56°C for sixteen hours. Proteinase K (PK) was then 

deactivated with a ten minute incubation at 96°C, and the samples stored at -20°C for 

analysis. 

Portions of scaffold for histological analysis were placed in 100% methanol for fixation 

(Brenntag, Mülheim, Germany). 
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2.7 Glycosaminoglycan and DNA Quantification 

Glycosaminoglycans (GAGs) are used as a marker for chondrogenesis, the total 

amount of GAG produced by cells (measured in both collected media and PK digests) 

was determined using the 1.9-dimethyl methylene blue (DMMB) assay and normalised 

to the DNA content of each PK digest measured using Hoechst 33258 dye 

(Polysciences Inc., Warrington, USA). The DMMB method used was based on that of 

Farndale et al. (Farndale et al., 1986) 

Quantification of GAG amount released by MSCs into the media was carried out on 

50µl of media that had been collected from each sample per week. This method used a 

standard curve of chondroitin-4-sulfate sodium salt from bovine trachea (Fluka, St. 

Louis, USA).  Standards ranging in concentration from 0.3125 – 10µg/ml were 

prepared in chondropermissive media (a blank of chondropermissive media was also 

used). Standards and samples (50µl) were placed into wells of a 96-well plate and 

200µl of DMMB added. Absorbance was measured immediately at 535nm using the 

Victor 3 Micro Plate Reader (Perkin Elmer), and GAG levels calculated following 

extrapolation from the standard curve.  

The quantification of GAG in each PK sample was identical to that used for media 

samples, except that 20µl of sample and standard were used not 50µl, the blank  used 

was PBS and standards (0.355 – 11.3µg/ml) were made up in PBS not 

chondropermissive media. Different protocols were used for media and PK 

quantification due to the different concentrations of GAG in media and PK samples. 

Höchst 33258 dye was used to determine DNA content of the PK digests using a 

method based on that of Labarca et al. (Labarca and Paigen, 1980). The standard 

curve was made using calf thymus DNA (Lubio Science, Luzern, Switzerland) and 

standards prepared in PBS ranging from 0.3125 - 10 µg/ml. Standards, samples and a 

PBS blank (40µl) were pipetted into a white 96 well plate and 160µl of 0.01% (v/v) 

Höchst dye solution added; the plate was then wrapped in aluminium foil to prevent 

penetration of light, and incubated at room temperature for twenty minutes. 

Measurements were then made using a wavelength of 360nm (excitation) and 465nm 

(emission) using the Victor 3 Micro Plate Reader (Perkin Elmer, Waltham, USA), and 

amounts of DNA calculated following extrapolation from the standard curve.  
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2.8 TGF-β1 quantification 

Both the amount of total TGF-β1, and where appropriate the amount of active TGF-β1, 

in collected culture media was quantified using the human TGFbeta 1 DuoSet ELISA 

(R&D systems, Minneapolis, USA). In order to measure the total amount of TGF- β1 in 

each sample an acidic activation step was performed as per the manufacturer's 

instructions. Analyses of the samples without this activation step provided the amount 

of active TGF-β1 within the sample. Four parameter logistic analysis was performed 

using the graph fitting software at www.readerfit.com. 
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2.9 RNA Extraction  

Following on from sample preparation (refer to section 2.6), the RNA TRI reagent 

supernatants were thawed and 0.1ml of bromochlorophenol (BCP) added to each 1ml 

volume. Tubes were then mixed by inversion for fifteen seconds and placed on a 

shaker for fifteen minutes. Samples were then centrifuged at 12 000 x g (4°C) for 

fifteen minutes. The addition of BCP led to a phase separation, the centrifugation step 

was then used to physically separate the aqueous and organic phases, allowing for the 

collection of the RNA contained in the aqueous phase. 

The RNA within the aqueous phase was precipitated out by adding 0.5ml of 

isopropanol. Samples were vortexed, placed on a shaker for ten minutes at room 

temperature and then centrifuged at 12 000 x g (4°C) for eight minutes. 

Following centrifugation, the supernatant was removed and 1ml of 75% ethanol in 

DEPC treated water used to wash the RNA pellet. After washing, the sample was 

centrifuged again at 7500 x g (4°C) for five minutes. The ethanol was removed and the 

pellets left to air dry for five minutes. Once dry, pellets were resuspended in 20μl of 

DEPC water and incubated for fifteen minutes at 56°C to ensure thorough 

resuspension. 

A NanoDrop 1000 spectrophotometer (NanoDrop, Wilmington, USA) was then used to 

quantify the amount of RNA (measurement at 260nm) and the purity (measured at 

230nm and 280nm).  
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2.10 cDNA Synthesis 

Once the concentration of RNA in each sample was determined using the NanoDrop 

1000 spectrophotometer, the volume required to provide 1 µg of total RNA per sample 

for each reaction for work presented in chapter 3 and 500ng for work presented in 

chapters 4 and 5 was calculated. The generation of cDNA was performed using Perkin-

Elmer TaqMan® reverse transcription reagents (Roche, Basel, Switzerland). For 

results presented in chapter 3 the total reaction volume used was 20 µl, whilst for 

results presented in chapters 4 and 5 a total reaction volume of 40 µl was used. The 

decision to change from 20 µl to 40 µl was made in order to allow for the reverse 

transcription of RNA preparations containing low amounts of RNA. Table 2.1A and B 

show the reagents used for each 20 µl and 40 µl RT reaction respectively.  
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A. 

Reagents: µl/tube 

10 x TaqMan® RT Buffer 2.0 

25 mM Magnesium Chloride 4.4 

10 mM dNTP mixture 4.0 

50 µM Random Hexamer 1.0 

20 U/µl RNase Inhibitor 0.4 

50 U/µl Reverse Transcriptase  0.5 

RNA Sample + DEPC-water 7.7 

Total reaction Volume: 20.0 

 

B. 

Reagents: µl/tube 

10 x TaqMan® RT Buffer 4.0 

25 mM Magnesium Chloride 8.8 

10 mM dNTP mixture 8.0 

50 µM Random Hexamer 2.0 

20 U/µl RNase Inhibitor 0.8 

50 U/µl Reverse Transcriptase  1.0 

RNA Sample + DEPC-water 15.4 

Total reaction Volume: 40.0 

 

Table 2.1 

A. The components required to prepare the required reverse transcription master mix 

for a single 20µl reaction using Perkin-Elmer TaqMan® reverse transcription reagents 

(Roche, Basel, Switzerland). 

B. The components required to prepare the required reverse transcription master mix 

for a single 40µl reaction Perkin-Elmer TaqMan® reverse transcription reagents 

(Roche, Basel, Switzerland). 
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RT buffer (constituents not made available by supplier), magnesium chloride (final 

concentration 5.5 mM), dNTP mixture (final concentration 2 mM) and Random 

Hexamers (final concentration 2.5 µM) were mixed before the addition of RNase 

Inhibitor (final concentration 0.4 U/µl) and MultiScribe Reverse Transcriptase (final 

concentration 1.25 U/µl) to create a mastermix. Either 12.3 µl or 24.6 μl of this was 

then added to reaction tubes (depending on the final total reaction volume) and the 

required volumes of DEPC water and cDNA sample added to bring the final reaction 

volume to 20 µl or 40 µl. An Applied Biosystems GeneAmp 5700 thermocycler (Applied 

Biosystems, Carlsbad, USA) was then used to perform reverse transcription using the 

following protocol; ten minutes at 25°C for primer annealing, thirty minutes at 48°C for 

reverse transcription and ten minutes at 95°C for reverse transcriptase inactivation. 

The samples were then diluted with 60μl of DEPC water with Tris-EDTA buffer (0.01 M 

TRIS, 0.001M EDTA) for samples in chapter 3, or 40 µl for samples in chapters 4 and 

5, the cDNA samples were then stored at -20°C. 
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2.11 Real-time PCR 

Real-time PCR was used to determine the relative expression of target genes of 

interest in the experimental samples. Oligonucleotide primers and probes were either 

designed and tested by members of this group using 'Primer Express Oligo Design 

Software v.1.5' to span exon-exon boundaries and synthesised by Microsynth Ag. 

(Balgach, Switzerland) (Table 2.2), or purchased as a complete Assay on Demand 

(angiogenin, angiopoietin 2, BLC, collagen type VI a1 chain, GROα, leptin, MCP3, MIF, 

MIP3α, MMP13, nitric oxide synthase 1, nitric oxide synthase 2, nitric oxide synthase 3,  

osteoprotegrin, PDGFA, ribosomal 18s RNA and Sox-9 (Applied Biosystems, Carlsbad, 

USA)).  Self-designed primers and probes were reconstituted at a concentration of 45 

µM, then 20 µl of reverse primer, 20 µl of forward primer and 20 µl of probe were mixed 

with 40 µl of DEPC water to provide a 10x primer probe mixture.  
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Gene 
Primer 

Forward 
Primer Reverse 

Probe (5'FAM/3' 

TAMRA) 

Amplicon 

Length 

human 

Col1A1 

5'-CCC TGG 

AAA GAA TGG 

AGA TGA T-3' 

5'-ACT GAA 

ACC TCT GTG 

TCC CTT-3' 

5'-CGG GCA 

ATC CTC GAG 

CAC CCT-3' 

138bp 

human 

Col2A1 

5'-GGC AAT 

AGC AGG 

TTC ACG TAC 

A-3' 

5'-GAT AAC 

AGT CTT GCC 

CCA CTT ACC-

3' 

5'-CCT GAA 

GGA TGG CTG 

CAC GAA ACA 

TAC-3' 

77bp 

human 

Col10A1 

5'-ACG CTG 

AAC GAT ACC 

AAA TG-3' 

5'-TGC TAT 

ACC TTT ACT 

CTT TAT GGT 

GTA-3' 

5'-ACT ACC 

CAA CAC CAA 

GAC ACA GTT 

CTT CAT TCC-

3' 

100bp 

human 

Aggrecan 

5'-AGT CCT 

CAA GCC 

TCC TGT ACT 

CA-3' 

5'-CGG GAA 

GTG GCG GTA 

ACA-3' 

5'-CCG GAA 

TGG AAA CGT 

GAA TCA GAA 

TCA ACT-3' 

184bp 

human Runx2 

5'-ACG AAG 

GTT CAA CGA 

TCT GAG AT-

3' 

5'- TTT GTG 

AAG ACG GTT 

ATG GTC AA -3' 

5'-TGA AAC 

TCT TGC CTC 

GTC CAC TCC 

G-3' 

77bp 

human 

Vascular 

Endothelial 

Growth Factor 

5'-GCC CAC 

TGA GGA 

GTC CAA CA-

3' 

5'-TCCTATGTG 

CTG GCC TTG 

GT-3' 

5'-CAC CAT 

GCA GAT  TAT  

GCG GAT CAA  

ACC T-3' 

69bp 

 

Table 2.2 

Sequences of self-designed primers and probes used for real-time PCR analysis. 
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The total volume of the reaction mixture used for real-time PCR differed between 

chapters. In chapter 3 a 20 μl reaction volume was used (Table 2.3), whilst in chapters 

4 and 5 a 10 μl reaction volume was used (Table 2.4). This change in volume was due 

to an change in the PCR system used by our laboratory during the course of the 

project. The reaction mixture was prepared by mixing the required volumes of 2x 

TaqMan® Master Mix, 20x Assay on Demand or 10x primer probe mix and DEPC 

treated water (Tables 2.3 and 2.4). The reaction mixture was then pipetted into a 

Thermo-fast 96 PCR Detection Plate (Thermo Fischer scientific, Waltham, USA) 

(chapter 3) or a MicroAmp Optical 96 well reaction plate (chapters 4 and 5) (Applied 

Biosystems, Carlsbad, USA) as per the plate design.  cDNA samples (2μl) were then 

added to each well. In order to ensure that there was no contamination of the PCR 

reaction mix during the preparation of plates for RT-PCR 2μl of DEPC water was added 

to the mastermix as a non-template control. Following pipetting, plates were covered 

with Absolute QPCR seal, briefly centrifuged (1000 x g, twenty-five seconds) and 

placed in to an Applied Biosystems 7500 real-time PCR machine (for work presented in 

chapter 3), an Applied Biosystems StepOnePlus real-time PCR machine (for work 

presented in chapter 4) or an Applied Biosystems QuantStudio 6 Flex Real-Time PCR 

System (for work presented in chapter 5) (Applied Biosystems, Carlsbad, USA). The 

Real-time PCR cycle consisted of ten minutes at 96°C followed by forty cycles of 

amplification (fifteen seconds at 95°C and one minute at 60°C (chapters 3 and 4) or 2 

minutes at 60°C chapter 5). After each cycle of amplification wells are analysed for 

fluorescence; this measurement was then used to determine the relative abundance of 

mRNA matching each gene in the sample. 

After the measurements had been made the collected data was analysed using the 2-

ΔΔCt method (Livak and Schmittgen, 2001) using ribosomal 18s RNA as the 

endogenous control. 18s was chosen as the endogenous control due to its stability in 

response to mechanical load in the bioreactor described in this system as shown 

previously in chondrocytes and MSCs by previous laboratory members (Lee et al., 

2005, Li et al., 2009). The data was normalised to the expression of the cells at the 

time that they were seeded into the scaffold (day zero after monolayer culture). 
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Assay on Demand 20 μl µl/reaction Primer/Probe Mix 20 μl µl/reaction 

TaqMan Master Mix 2x 10 TaqMan Master Mix 2x 10 

Assay on Demand 20x 1 Primer/Probe Mix 10x 2 

cDNA 2 cDNA 2 

DEPC-water 7 DEPC-water 6 

Total 20 Total 20 

  

Table 2.3 

The components required for one reaction for real-time PCR with a total volume of 

20µl. Human 18s and human Sox9 are bought as 20x primer/probe mixes and 

therefore different reaction setups. 

 

Assay on Demand 10 μl µl/reaction Primer/Probe Mix 10 μl µl/reaction 

TaqMan Master Mix 2x 5 TaqMan Master Mix 2x 5 

Assay on Demand 20x 0.5 Primer/Probe Mix 10x 1 

cDNA 2 cDNA 2 

DEPC-water 2.5 DEPC-water 2 

Total 10 Total 10 

Table 2.4 

The components required for one reaction of real-time PCR with a total volume of 10µl. 

Human 18s and human Sox9 are bought as 20x primer/probe mixes and therefore 

different reaction setups. 

 

 

 

 



65 
 

2.12 Histological Analysis 

Methanol fixed samples (section 2.6) were frozen in OCT compound (R. Jung GmbH, 

Nussloch, Germany) before being sectioned (12µm thick) on a cryotome (Carl Zeiss 

AG, Oberkochen, Germany) and adhered to Superfrost Plus slides (Thermo Fischer 

scientific, Waltham, USA). Slides were stored at -20°C for future use. 
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2.12.1 Toluidine Blue staining 

Toluidine blue was used to stain for sulphated GAG within histological sections, 

toluidine blue is a metachromatic dye that stains acidic components blue (e.g. nuclei) 

and sulphated GAG purple. To stain sections with toluidine blue, slides were first rinsed 

with distilled water to remove OCT compound. Sections were then placed in 0.1% (w/v) 

Toluidine blue solution (Fluka, St. Louis, USA) with 0.1% (w/v) sodium tetraborate 

(Fluka, St. Louis, USA) in deionised water for two minutes before being rinsed with 

distilled water. Sodium tetraborate was included in the solution as it is a communal 

stock which is used by other members of the institute who also use the solution for 

sections embedded in poly(methyl-methacrylate) (PMMA) and it is required to adjust 

the pH to stain PMMA sections, it does not affect the staining of the fibrin-poly(ester-

urethane) scaffolds described in this thesis. Slides were then blotted dry with blotting 

paper and left to air dry for at least thirty minutes. Slides were then placed in 100% 

xylene (Brenntag, Mülheim, Germany) for two minutes twice before being mounted 

using Eukitt mounting medium. 
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2.12.2 Safranin O/Fast Green staining 

Safranin O was used to stain for sulphated GAG within histological sections, Safranin 

O stains sulphated GAG red/orange. OCT compound was removed from the sections 

by rinsing in distilled water for ten minutes prior to Safranin O staining. This was 

followed by a twelve minute incubation in Weigert's Haematoxylin (detailed constituents 

not provided by manufacturer). The slides were then placed in lukewarm tap water for 

ten minutes to 'blue' the haematoxylin. Blueing involves the slight elevation of pH which 

results in a blue/purple staining of the nucleus, this is necessary due to the acidic 

nature of haematoxylin preparations that results in purple staining before blueing. The 

result of this process is increased contrast with the red Safranin O stain. After blueing, 

the slides were briefly washed in distilled water and then placed in 0.02% (v/v) fast 

green in 0.01% (v/v) acetic acid in deionised water (for five minutes). Fast green 

staining was followed by thirty seconds in 1% (v/v) acetic acid and then five minutes in 

0.1% (w/v) Safranin O solution (Chroma-Gesellschaft Schmid GmbH & Co, Münster, 

Germany). The slides were then dehydrated by immersing them in 96% ethanol twice 

(one minute each) and then 100% ethanol twice (two minutes each). Slides were then 

placed in 100% xylene for two minutes twice before being mounted using Eukitt 

mounting medium. 
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2.12.3 Immunohistochemistry 

All immunohistology for each target epitope was performed simultaneously on all 

groups within each biological repeat.  

The presence of collagen types I, II, VI, X and TGF-β1 in sections was determined 

immunohistochemically using the following primary antibodies COL-1 (Sigma-Aldrich, 

Buchs, Switzerland), CIICI and 5C6 (Developmental Studies Hybridoma Bank, 

University of Iowa, Iowa City, USA), C7974 and MAB240 (R&D systems, Minneapolis, 

MN, USA). 

Slides were brought to room temperature and were then washed in distilled water for 

ten minutes to remove OCT compound. Slides were transferred to a cuvette containing 

0.3% H2O2 (Fluka, St. Louis, USA) in methanol (Brenntag, Mülheim, Germany) for thirty 

minutes in order to inactivate endogenous peroxidases. Slides were then placed on 

paper towel and allowed to air dry. Once dry, a Dako pen (Dako, Baar, Switzerland) 

was used to apply a hydrophobic barrier around each section. Slides were then 

washed twice for five minutes in 0.1% (v/v) PBS-Tween 20. 

Slides were then incubated in 0.05-0.5 units/ml bovine testicular hyaluronidase ( in 

0.1% (v/v) PBS-Tween 20 (PBS-T)at 37°C for thirty minutes before being washed three 

times for five minutes in 0.1% (v/v) PBS-T. 

Sections were subsequently blocked with an appropriate serum for one hour at room 

temperature; for all antibodies except C7974 this required horse serum (Vector 

Laboratories, Burlingame, USA) diluted 1:20 in in 0.1% (v/v) PBS-T. C7974 required 

goat serum diluted 1:20 in in 0.1% (v/v) PBS-T (Vector Laboratories, Burlingame, 

USA). 

Following the block step, the serum was removed without washing and immediately 

replaced with the primary antibody. The sections were incubated with the primary 

antibodies for thirty minutes at room temperature. The primary antibodies were diluted 

with 0.1% Tween 20 as described in Table 2.5. 

Slides were then washed three times for five minutes with 0.1% Tween 20 PBS, before 

being incubated in the relevant biotinylated secondary antibody diluted in 0.1% Tween 

20 PBS as described in Table 2.5.  

Following this incubation, samples were washed again in 0.1% (v/v) PBS-T and then 

incubated with ABC solution (Vector Laboratories, Burlingame, USA) for thirty minutes 

at room temperature, washed again and then incubated with ImmPACT DAB (Vector 

Laboratories, Burlingame, USA) (Vector Laboratories, Burlingame, USA) for four 

minutes before being place into distilled water. Samples were the counterstained with 

Mayer's haematoxylin for twenty seconds and blued in tap water for five minutes. 
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Samples were dehydrated in 50%, 70%, 96%, 100%, 100% EtOH before being cleared 

in xylene and coverslipped with Eukitt mounting medium. 
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Protein of Interest 
Primary Antibody/Dilution 

(Manufacturer) 

Secondary Antibody 

(dilution) 

Collagen type I COL-1 1:2000 (Sigma) 

Biotinylated anti-mouse 

IgG 1:200 (Vector 

Laboratories) 

Collagen type II CIICI 1:6 (DSHB) 

Biotinylated anti-mouse 

IgG 1:200 (Vector 

Laboratories) 

Collagen type VI 5C6 1:5 (DSHB) 

Biotinylated anti-mouse 

IgG 1:200 (Vector 

Laboratories) 

Collagen type X C7974 (R&D systems) 

Biotinylated anti-mouse 

IgM 1:200 (Vector 

Laboratories) 

TGF-β1 MAB240 (R&D systems) 

Biotinylated anti-mouse 

IgG 1:200 (Vector 

Laboratories) 

 

Table 2.5 

The primary and secondary antibodies used to label proteins of interest during 

immunohistochemical processing. Each antibody was diluted in 0.1% Tween 20 PBS 

before use, the dilution factor used for each antibody is provided in this table along with 

the manufacturer of the antibody. 
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2.13 Microscopy 

Images of histologically prepared sections were taken using an Axioplan 2 microscope, 

an AxioCamHR camera and Carl Zeiss AxioCamHR V.5.07.03 software (Carl Zeiss 

AG, Oberkochen, Germany). Images presented in Chapter 3 were taken at 4x 

magnification and images presented in Chapter 4 were taken at 2.5x, 20x or 40x 

magnification. 
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2.14 Statistical analysis 

Data are presented, where appropriate, as mean + standard deviation. Statistical 

analyses were performed using GraphPad Prism 6 software (GraphPad Software Inc., 

La Jolla, USA), and statistical significance was defined as being P≤0.05.  

The D'Agostino & Pearson omnibus normality test was used to determine if data sets 

exhibited a normal distribution before statistical analysis. Samples were tested for 

equal variance as part of parametric analysis. If the data sets showed a normal 

distribution a T-test was used where there were only two groups, or a one-way ANOVA 

with a Tukey's multiple comparison post-hoc test where there were more than two 

groups. For data sets that did not show a normal distribution the Mann-Whitney test 

was used where two groups were compared or a Kruskal-Wallis test with a Dunn's 

multiple comparisons test where there were more than two groups being compared. 

Due to the variation in the type of statistics used between chapters the statistics used 

have been detailed individually within each results chapter. 

 

Chapter specific methods are provided in the experimental plan section of each 

chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

Chapter 3 Investigating the potential for crosstalk between 
mesenchymal stem cells at different stages of chondrogenic 
differentiation within multi-layer fibrin poly(ester-urethane) 
constructs 

 

Aim 

The aim of this chapter was to investigate the development of paracrine signalling 

between MSCs at different stages of chondrogenic differentiation and determine the 

effect on chondrogenesis, and hypertrophy, in the presence and absence of 

mechanical load. 
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3.1 Introduction 

One of the major challenges with using mesenchymal stem cells for cartilage tissue 

engineering is the progression of the cells towards hypertrophy and terminal 

differentiation rather than to a stable, hyaline, articular cartilage phenotype (Mueller 

and Tuan, 2008, Mueller et al., 2010). A potential cause for this undesirable fate 

selection is the use of differentiation conditions that do not properly support or 

coordinate the progression of MSC chondrogenesis, leading to the development of an 

unstable hypertrophic phenotype (Pelttari et al., 2006). This hypertrophic MSC 

phenotype is characterised in vitro by the upregulation of gene expression and 

production of proteins such as type X collagen and MMP13 as well as markers 

normally associated with bone, such as Runx2 (Mueller and Tuan, 2008). 

In order to improve the quality of tissue engineered cartilage that can be generated 

from MSCs this work aimed to provide a more structured and coordinated environment 

for MSCs to undergo chondrogenesis. The idea behind this system came from the 

growth plate. 

The growth plate is a band of hyaline cartilage that sits in the metaphysis of long 

bones; it has a precisely defined structure that allows concurrent chondrogenesis of the 

epiphyseal aspect of the plate, and the calcification of the diaphyseal aspect of the 

plate (Kronenberg, 2003). This controlled process of dual chondrogenesis and 

calcification allows for elongation of the bone as new cartilaginous tissue is laid down 

by the upper layers of the plate which then go on to ossify in the lower regions of the 

plate. The growth plate consists of several layers of chondrocytes (Figure 3.1); the 

periarticular cells and resting chondrocytes, the proliferating zone, the prehypertrophic 

zone, and the hypertrophic zone (Mackie et al., 2011). Indian hedgehog (IHH), a key 

vertebrate morphogen, is produced by pre-hypertrophic and hypertrophic chondrocytes 

in the prehypertrophic and hypertrophic zones of the growth plate (Deckelbaum et al., 

2002, Kronenberg, 2003). The effect of IHH signalling is two-fold: firstly it acts to 

increase the number of chondrocytes in the proliferating zone entering into terminal 

differentiation; this acts to drive the progression of chondrocytes from a resting, or 

proliferative state, towards hypertrophy (Kronenberg, 2003, Lai and Mitchell, 2005). In 

so doing, IHH induces the ossification of the cartilaginous growth plate. Secondly, the 

production of IHH by pre- and hypertrophic cells, which are in the later stages of 

chondrogenesis, also induces the expression of parathyroid hormone related protein 

(PTHrP) from the periarticular cells, which are at a much earlier stage of chondrogenic 

development (Kronenberg, 2003). The PTHrP in turn prevents the proliferating 

chondrocytes from progressing towards terminal differentiation by up regulating the 

expression of chondrogenic genes (Kronenberg, 2003, Mau et al., 2007). PTHrP blocks 
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the action of IHH signalling by binding to, and activating, the PTH receptor 1, leading to 

the induction of the protein kinase A (PKA), protein kinase C (PKC) and inositol 

trisphosphate (IP3) signalling cascades (Kim et al., 2008, Mau et al., 2007). In 

particular, the activation of the PKA signalling pathway leads to the up regulation of the 

expression of the transcription factor Gli3, which has a negative effect on the 

production of IHH target genes (Kim et al., 2008). The result of the interaction between 

these two factors is the formation of a negative feedback loop which tightly regulates 

the lengthening of the growth plate by providing a proliferative and chondrogenic 

environment in the upper layers, whilst the process of terminal differentiation and 

calcification occurs in a self-limiting manner in the lower regions (Vortkamp et al., 1996, 

Kobayashi et al., 2005). The salient part of this negative feedback loop for the work 

presented in this chapter is not IHH or PTHrP or their specific interactions in the growth 

plate. It is instead the interaction of cells at different stages of chondrogenic 

differentiation, late stage hypertrophic cells and early stage periarticular cells, and the 

dramatic effects that they can have on the behaviour of the other cell type. The 

standard method for inducing chondrogenesis in MSCs in vitro, is to culture the cells in 

a 3D system (e.g. pellet culture) in the presence of an isoform of transforming growth 

factor beta (TGF-β) but in the absence of mechanical load (Johnstone et al., 1998). 

The chondrogenic induction of MSCs in this system leads to a synchronous 

progression of the cells towards chondrogenesis and hypertrophy. As a result there is 

no potential for signalling to occur between cells at different stages of differentiation 

(i.e. early and late) as all of the cells receive the same stimuli and respond in a similar 

manner.  

The objective of this work was to culture MSCs in a system that would introduce the 

potential for cells that had undergone one or two weeks chondrogenic differentiation to 

interact with naïve undifferentiated MSCs. This was not an attempt to directly copy or 

replicate the growth plate, but to use cells at different stages of the chondrogenic 

differentiation pathway to modulate each other's phenotype and behaviour through 

crosstalk between the two cell populations. 

Our group has previously reported the use of a custom made bioreactor (Figure 1.6) 

which can be used to apply multiaxial shear and compression load to tissue engineered 

fibrin-poly(ester-urethane) constructs. This multiaxial load environment allows for tissue 

engineered constructs to be studied in an environment that mimics the one they might 

encounter in vivo, allowing for a greater understanding of how these cells might act 

within a scaffold in vivo. 

Previous work with our multiaxial load bioreactor has demonstrated that primary human 

MSCs can be directed towards chondrogenic differentiation and matrix deposition, in 
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the absence of any growth factors, through the exposure to a combination of shear and 

compressive load that broadly mimics the loading that implants would receive within a 

joint (Li et al., 2010a, Li et al., 2010b, Kupcsik et al., 2010, Neumann et al., 2013). Li et 

al. showed that the application of multi-axial load leads to the endogenous production 

of TGF-β1 by MSCs within the loaded scaffolds, which then drives the deposition of 

cartilage like matrix (Li et al., 2010a). 

The work presented in this chapter was designed to investigate the potential for 

paracrine signalling between MSCs at different stages of chondrogenic differentiation in 

a mechanical environment that mimics that of the joint in vivo. I hypothesised that 

creating constructs containing layers of MSCs at different stages of differentiation may 

modify the induction of chondrogenesis and hypertrophy by introducing the potential for 

paracrine signalling relationships that are not present in constructs that only contain 

cells at the same stage of differentiation. 
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Figure 3.1 

The epiphyseal growth plate, showing the PTHrP producing periarticular chondrocytes 

in green, resting zone chondrocytes in blue, proliferating zone cells in orange and Ihh 

producing hypertrophic cells in red. Arrows indicate the PTHrP-Ihh axis which controls 

the rate of growth plate development by regulating the progression of chondrocytes 

towards terminal differentiation; from resting zone chondrocytes to hypertrophic cells. 
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3.2 Materials and Methods 

3.2.1 Donor Information 

This work was carried out using cells from three bone marrow donors. Two aspirates 

were taken from iliac crests (one male twenty-four years old, one female forty years 

old) and one from the 4th thoracic vertebral body (female eighteen years old). 

 

3.2.2 Experimental Design 

In order to investigate the effect of cross talk between cells at different stages of 

differentiation an experiment was designed with four groups (Figure 3.2). On day 0 of 

the experiment two and a half million MSCs were seeded into each of six 2x8mm 

poly(ester-urethane)  scaffolds (three free swelling controls and three for loading), 

these were the "bottom" scaffolds of group 4 constructs. The scaffolds were then 

placed into PEEK holders and cultured in chondropermissive media with 10ng/ml TGF-

β1 for two weeks, the media was changed three times a week. On day 7 of the 

experiment another set of six scaffolds were seeded with two and a half million MSCs 

each, these were cultured for one week in chondropermissive media with 10ng/ml 

TGF-β1, these were the "bottom" scaffolds group 3 constructs. On day 14 of the 

experiment twelve fibrin-poly(ester-urethane) were seeded with MSCs and placed on 

top of the scaffolds seeded on day 0 and day 7 within the PEEK holders, these are 

referred to in the text as "top" scaffolds. As a result group 3 constructs contained a 

bottom layer of cells chondrogenically pre-differentiated for one week with naïve MSCs 

on top and group 4 constructs contained a bottom layer of cells chondrogenically pre-

differentiated for two weeks with naïve MSCs on top. On day 14, control constructs 

were also produced consisting of two and a half million naïve MSCs seeded in to both 

"top" and "bottom" scaffolds (both 2x8mm poly(ester-urethane) sponges) (group 1) and 

5 million MSCs seeded into a 4x8mm poly(ester-urethane) sponge as a comparison 

with previous work (group 2). Within each experimental repeat all of the cells seeded 

into scaffolds on day 0, 7 and 14 were from the same donor and were seeded at the 

same passage (passage 3 or 4). On day 14, all of the media was replaced with 

chondropermissive media without TGF-β1. Half of the scaffolds from each group were 

kept in freeswelling culture and the other half were exposed to multiaxial mechanical 

load. 
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Figure 3.2 

A schematic showing the experimental design for the work carried out in this chapter. 

Bilayer fibrin-poly(ester-urethane) constructs were produced with MSCs at different 

stages of chondrogenic differentiation in upper and lower scaffolds in order to 

investigate crosstalk between cells within constructs, and the effect of co-culturing cells 

at different stages of differentiation.  

Group 4 bottom scaffolds (red), 2x8mm, containing two and a half million MSCs, were 

pre-differentiated for two weeks before another set of 2x8mm scaffolds containing two 

and a half million naïve MSCs (light blue) were seeded on top of them on day 14.  

Group 3 bottom scaffolds (green), 2x8mm, containing two and a half million MSCs, 

were pre-differentiated for one week before another set of 2x8mm scaffolds containing 

two and a half million naïve MSCs (light blue) were seeded on top of them on day 14.  

Group 1 and 2 scaffolds were seeded with naïve MSCs on day 14. Group 1 constructs 

consisted of two 2x8 mm scaffolds, one on top of the other, each containing two and a 

half million MSCs. Group 2 constructs consisted of one 4x8mm scaffold, containing five 

million MSCs. 

 

 

 



80 
 

3.2.3 Mechanical Loading Regimen 

Scaffolds were loaded using a custom-made multiaxial load bioreactor based on 

tribological principles. Loaded scaffolds were exposed to 10% compression 

superimposed on top of a 10% pre-strain and shear loading (±25°) at 1Hz for one hour 

a day five times a week up to a total of 10 cycles. In contrast, control scaffolds were 

kept in free-swelling culture for the loading period (two weeks). 

 

3.2.4 Sample Collection and Storage 

Media was collected three times a week at media changes and was pooled by week 

before storage at -20°C for GAG and TGF-β1 quantification. At the end of the culture 

period of two of the experimental repeats, three scaffold halves per group were 

harvested for biochemical analysis (GAG and DNA quantification) and three scaffold 

halves per group for RNA isolation/real-time PCR. In one of the three repeats, three 

scaffold halves per group were taken for real-time PCR, three scaffold quarters were 

taken for biochemical analysis and three scaffold quarters were fixed in methanol for 

histological analysis. Analysis was performed as described in Chapter 2. 

 

3.2.5 Statistical Analysis 

Results for all real-time PCR (freeswelling and load, and free swelling alone) as well as 

all GAG, DNA and TGF-β1 quantification results represent data from three independent 

experimental repeats each carried out in triplicate using cells from a different MSC 

donor. 

An unpaired T-test was used to test the difference of media collected during week 1 of 

culture, whilst the Mann-Whitney test was used to compare the TGF-β1 content of 

media collected during weeks 2-4.  

A one-way ANOVA with a Tukey's multiple comparison test was then used to 

determine statistical differences between groups for media GAG by week, DNA and 

GAG/DNA data. The Kruskal-Wallis test with a Dunn's multiple comparisons test was 

used to test the difference of groups for all real-time PCR results and both media TGF-

β1 and GAG content from week 2-4. 

Two-way ANOVA and Sidak's multiple comparison test were used to test the 

significance of differences between loaded and control samples at each time point for 

cumulative media GAG and media GAG presented by group over time.  
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3.3 Results 

 

Due to the use of primary human cells in this work there was a high degree of 

variability between biological repeats. Due to this high level of variation and the 

relatively low numbers of donors tested many of the analyses do not reach significance 

at the 5% level.  As a result both significant changes and non-significant trends within 

the data collected are described and discussed, where relevant, in this chapter.  

 

3.3.1 Differential gene expression in response to co-culture and mechanical load 

No significant differences were detected in the expression of aggrecan mRNA despite 

a trend towards an increase with load in group 1 scaffolds (Figure 3.3A). As observed 

with other genes, there was a high degree of variation within this data set due to inter-

donor variation in the expression of aggrecan mRNA. There was also a low n-number 

for some groups due to low expression of aggrecan mRNA in one donor, particularly in 

the absence of load (group 1 control top n=5, group 1 load top n=9, group 1 control 

bottom n=5, group 1 load bottom n=7, group 2 control n=5, group 2 load n=8, group 3 

control top n=7, group 3 load top n=9, group 3 control bottom n=6, group 3 load bottom 

n=6, group 4 control top n=5, group 4 load top n=9, group 4 control bottom n=8, group 

4 load bottom n=7). The lack of response to load in aggrecan production was also 

observed for the collagen type II in this donor. 

Loading led to significant increases in the expression of Sox9 in group 1 load top 

(P=0.004) and group 1 load bottom (P=0.025) scaffolds over group 1 control top 

scaffolds (Figure 3.3B). Group 1 (P=0.034) and 4 (P=0.017) load top scaffolds also 

showed significantly higher levels of Sox9 expression than group 3 control top 

scaffolds. The expression of Sox9 was not significantly different between loaded 

bottom scaffolds between groups (all comparisons P>0.999). Load did not lead to a 

significant change in expression between top and bottom scaffolds in group 1, 3 or 4 

(all comparisons P>0.999). No significant differences were seen within group 3 or 

group 4 despite a trend towards an increase in expression in response to load. 

Statistical analysis of collagen type II gene expression showed no significant 

differences between groups, despite a non-significant trend towards an increase in 

expression in group 1 scaffolds (top and bottom) in response to load (Figure 3.3C). The 

collagen type II data presented here was not normalised to day 0 cells, as the other 

genes were, but instead to group 2 loaded scaffolds. The other groups were 

normalised to group 2 loaded scaffolds for two reasons; firstly as group 2 consisted of 

4x8mm scaffolds seeded with five million MSCs the scaffolds were similar to those 
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used to previously characterise this system, this allows for a comparison of the new 

scaffold layout presented in this chapter with the work that has been performed 

previously using fibrin poly(ester-urethane) constructs in this bioreactor. Secondly, the 

loaded group was chosen as collagen II is only consistently detected in loaded, but not 

free swelling constructs in this system. Due to the variability in the mRNA response to 

load collagen type II, was not detected in all groups, the "n-number" of the control 

groups (and group 1 loaded scaffolds) was, therefore, lower than for loaded groups 

(group 1 control top n=4, group 1 load top n=7, group 1 control bottom n=3, group 1 

load bottom n=6, group 3 control top n=4, group 3 load top n=8, group 3 control bottom 

n=5, group 3 load bottom n=9, group 4 control top n=4, group 4 load top n=8, group 4 

control bottom n=6, group 4 load bottom n=9). The difficulties encountered in the 

detection of collagen type II in non-loaded scaffolds is due to its highly selective nature 

as a marker of chondrogenesis in this system; a similar pattern of expression is 

reported in Chapter 4. Group 2 control scaffolds are not shown as no collagen type II 

mRNA was detected in these scaffolds. As with collagen type I mRNA detection, there 

was a high degree of variation within the expression levels of collagen type II in the 

cells; this appears to result from high inter-donor variation in the production of collagen 

type II, rather than the high intra-donor variation observed in collagen type I, and this 

variation may have contributed to the lack of significant differences for this gene. 

Loading led to a significant increase in collagen type X expression between group 1 top 

control and loaded scaffolds (P=0.002). The expression of collagen type X was also 

significantly higher in group 1 top loaded scaffolds than group 1 bottom control 

scaffolds (P=0.027). Free swelling group 3 top control scaffolds displayed a 

significantly lower level of collagen type X gene expression than group 3 (P=0.028) top 

loaded scaffolds. Significantly higher levels of collagen type X mRNA were also 

detected in group 3 and 4 top loaded and group 4 bottom loaded scaffolds than group 1 

and 2 control scaffolds (group 1 control top compared to group 3 load top P=0.001, 

group 1 control top compared to group 4 load top P<0.001, group 1 control top 

compared to group 4 load bottom P=0.004, group 1 load top vs group 2 control 

P=0.007, group 1 control bottom compared to group 3 load top P=0.014, group 1 

control bottom compared to group 4 load top P=0.004, group 2 control vs group 3 load 

top P=0.003, group 2 control compared to group 4 load top P=0.001, group 2 control 

compared to group 4 load bottom P=0.016, Figure 3.3D). This shows that 

chondrogenic stimulation, both in the form of load and predifferentation, acts to 

increase the expression of collagen type X in this system. 

Real-time PCR analysis of collagen type I gene expression indicated that there was no 

significant effect in response to load, or differences in the stages of differentiation of 

cells within the scaffolds (Figure 3.3E).  Compared to day 0, values for these results 



83 
 

ranged from a mean 2.016-fold upregulation to a mean 5.704-fold upregulation; 

however, there was a high degree of variation within some groups e.g. mean 5.704 ± 

7.782-fold upregulation in group 2 control, group 2 load mean 4.813 ± 5.352-fold 

upregulation in group 1 control bottom and mean 4.879 ± 4.539-fold upregulation 

compared to day 0. This variation appears to result from intra-donor variation rather 

than inter-donor variation. 

In order to clarify the results obtained from the real-time PCR analysis by removing the 

effects of mechanical load, the results for the freeswelling control scaffolds have also 

been presented separately from the results for the loaded scaffolds (Figure 3.4). 

Statistical analysis was also performed on these free swelling groups alone, in isolation 

from loaded groups. The results demonstrate that the expression of aggrecan mRNA in 

group 4 control bottom scaffolds was significantly higher than in group 1 control bottom 

scaffolds (P=0.033) (Figure 3.4A). The expression of collagen type X was also higher 

in group 4 top control scaffolds than group 1 control top scaffolds (P=0.010 and 0.035 

respectively) (Figure 3.4D). Type X collagen expression was also higher in group 4 

control top than group 2 control scaffolds (P=0.040) (Figure 3.4D). These statistical 

differences were not apparent when the data set was analysed as a whole, and may 

have arisen due to a reduction in the number of groups being analysed. 
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Figure 3.3 

Gene expression measured at day 28 of culture, using real-time PCR, demonstrates 

the effect of co-culturing MSCs at different stages of differentiation on chondrogenesis 

in response to mechanical load. (A) aggrecan (B) Sox9 (C) collagen type II (D) collagen 

type X (E) collagen type I. Data represents results from three biological repeats carried 

out in triplicate (unless otherwise stated in results section). Genes were normalised to 

monolayer culture expanded MSCs (day 0) using the ΔΔCt method, apart from 

collagen type II which was normalised to group 2 loaded scaffolds. Statistical 

significance was defined as P≤0.05 and determined using the Kruskal-Wallis and 

Dunn's multiple comparison tests. Significant differences are displayed on the plots 

using markers; the legend at the side of the plot indicates which group is represented 

by each marker. The presence of a marker over a group indicates a significant 

difference between that group and the group represented by the marker. 
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Figure 3.4 

Gene expression measured at day 28 of culture using real-time PCR demonstrates the 

effect of co-culturing MSCs at different stages of differentiation on chondrogenesis in 

free swelling culture. (A) aggrecan (B) collagen type II (C) Sox9 (D) collagen type X (E) 

collagen type I. Data represents results from three biological repeats carried out in 

triplicate (unless otherwise stated in results section). Genes were normalised to 

monolayer culture expanded MSCs (day 0) using the ΔΔCt method apart from collagen 

type II which was normalised to group 2 loaded scaffolds. Statistical significance was 

defined as P≤0.05 and determined using the Kruskal-Wallis and Dunn's multiple 

comparison tests. Significant differences are displayed on the plots using markers; the 

legend at the side of the plot indicates which group is represented by each marker. The 

presence of a marker over a group indicates a significant difference between that group 

and the group represented by the marker. 
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3.3.2 Quantification of TGF-β1 release from MSCs in response to co-culture and 
mechanical load 

Quantification of TGF-β1 detected in the media, using an ELISA, confirmed that over 

the first two weeks of culture cells received equal amounts of exogenous TGF-β1 

(Figure 3.5A and B). 

Quantification of week three medium (representing the first week of mechanical 

loading) showed that overall, load was beginning to have a positive effect on 

endogenous production of TGF-β1 but had not caused significant changes within 

groups  (Figure 3.5C). 

Week four media, representing the second week of mechanical loading, demonstrates 

a much clearer effect of load on the concentration of TGF-β1 released into the media 

compared to week 3 (Figure 3.5D). Load led to a significant increase in TGF-β released 

into the medium in group 1 and 2  compared to controls  and media from all four loaded 

groups contained significantly more TGF-β1 than group 1 and 2 control scaffolds 

(group 1 load compared to group 1 control P= 0.002, group 2 load compared to group 2 

control P=0.005). There was no significant difference between the control scaffolds in 

the four groups or between the loaded scaffolds across the four groups. However, the 

level of TGF-β1 detected in the media of group 3 and 4 control scaffolds was higher 

than in group 1 and 2 controls, although not significantly, which may explain the lack of 

significance between loaded scaffolds in groups 3 and 4 and  group 3 and 4 controls. 

This rise in TGF-β1 detected in the media from cells seeded in group 3 and 4 controls 

may result from the effects of predifferentation on the cells in the bottom scaffolds or 

from the release of TGF-β1 trapped within the scaffold during preculture. This shows 

that by the second of week of load the cells are consistently producing endogenous 

TGF-β1 in response to mechanical load. 
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Figure 3.5 

The total amount of TGF-β1 present in the media (pg/ml), as determined in each week 

of culture using an ELISA, demonstrating the effect of co-culturing MSCs at different 

stages of differentiation on chondrogenesis in response to mechanical load. Results 

represent data from three experimental repeats carried out in triplicate. Statistical 

significance was defined as P≤0.05 and determined using an unpaired T-test for data 

collected during week 1 and the Kruskal-Wallis and Dunn's multiple comparison tests 

for media collected in week 3-4. Significant differences are displayed on the plots using 

markers; the legend at the side of the plot indicates which group is represented by 

each marker. The presence of a marker over a group indicates a significant difference 

between that group and the group represented by the marker. 
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3.3.3 Quantification of DNA and GAG content of scaffolds containing MSCs and 
GAG released into the culture media  

Hoechst 33258 quantification of scaffold DNA content showed that at the end of the 

culture period group 2 scaffolds contained approximately twice the amount of DNA of 

scaffolds in other groups (Figure 3.6A). This reflects the size of group two scaffolds 

which were 4x8 mm compared to the other groups which utilised 2x8 mm scaffolds. 

There was no significant difference in DNA content between group 1, 3 and 4 

constructs, or between group 2 control and loaded scaffolds. 

The amount of GAG present within each scaffold was determined from proteinase K 

digests using the DMMB assay. The results indicated that there were no significant 

differences in GAG content from different scaffold groups or between loaded and free-

swelling scaffolds (Figure 3.6B). 

The amount of GAG was also quantified in samples of culture media collected at media 

changes and pooled by week. The results of this analysis have been presented in two 

ways; by week, to compare the amount of GAG released between groups at each time 

point (Figure 3.7), and over time to show the release from each group over the four 

weeks in culture (Figure 3.8). 

Analysis of GAG release into the media after 1 week of culture demonstrated no 

difference between group 4 control and loaded scaffolds, as the application of 

mechanical load had not begun and both groups were being supplemented with 

chondrogenic media containing 10ng/ml TGF-β1 (Figure 3.7A). After the second week 

of culture, GAG levels detected in the media collected from group 4 scaffolds contained 

significantly more GAG than group 3 scaffolds (group 3 control compared to group 4 

control P=0.029, group 3 load compared to group 4 load P=0.014) (Figure 3.7B). This 

difference is due to the extra week of culture group 4 scaffolds had had compared to 

group 3 scaffolds and represents differences in the stage of differentiation of the cells 

within the scaffolds. 

Week three represents the first week of the cells being exposed to mechanical loading. 

Quantification of the release of GAG into the media, by week, shows that there is a 

trend towards an increase in GAG release in group 1, 3 and 4 in response to load 

(Figure 3.7C), however only media from group 3 loaded scaffolds contained 

significantly more GAG than their respective freeswelling controls (P=0.031). This may 

be due to the increased levels of TGF-β1 that were released from group 4 control 

scaffolds, compared to other control scaffolds, which might subsequently have resulted 

in a significantly higher amount of GAG being released compared to group 1 control 

scaffolds. This would then decrease the perceivable difference in production between 

group 4 loaded and control scaffolds (P=0.042). The amount of GAG detected in the 
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culture media of group 3  and 4  loaded scaffolds was significantly higher than group 2 

loaded scaffolds (group 4 load compared to group 2 load P=0.012, group 4 load 

compared to group 3 control P=0.015). The GAG released into the media from group 4 

loaded scaffolds was also significantly higher (1.6 fold mean increase) than group 1 

loaded scaffolds (P=0.028). 

In contrast to the results obtained from the quantification of  GAG released into the 

media in week 3, the results from week 4 show no significant difference in GAG content 

between any of the groups or between loaded samples and free swelling controls 

(Figure 3.7D). 

The results obtained for the release of GAG into the media over time indicated that in 

groups 1 and 2 the amount of GAG released increased between weeks 3 and 4 (Figure 

3.8A and B). The GAG release was higher in loaded scaffolds than in controls in week 

4 for group 2 but not group 1 scaffolds (P=0.048) (Figure 3.8A and B). There was no 

difference in GAG release in the pre-culture period (week 1 and 2) between control and 

loaded scaffolds for group 3 and 4 constructs (Figure 3.8C and D). In week 3, the 

release of GAG into the media was significantly higher in loaded scaffolds compared to 

their respective controls in both group 3 and 4 (P< 0.001 and 0.001 respectively) 

(Figure 3.8C and D); however, in week 4 the release of GAG by loaded constructs was 

only higher in group 3 scaffolds (P=0.008). 

Quantification of the cumulative GAG released into the culture media has been 

presented both by week (Figure 3.9) and by group over time (Figure 3.10) as for media 

GAG. 

Results of cumulative GAG released into the media by week demonstrated, as would 

be expected, that in week 1 and 2 there was no significant difference within groups 3 or 

4 (between control and loaded scaffolds) as loading had not yet been applied to the 

scaffolds and all groups were receiving 10 ng/ml TGF-β1. By week 3 group 4 control 

scaffolds had released significantly more GAG to the medium than group 1 and 2 

control scaffolds (Figure 3.9C) (group 1 control compared to group 4 control P<0.001 a 

4.2 fold mean increase, group 2 control compared to group 4 control P<0.001 a3.92 

fold mean increase). Group 4 loaded scaffolds had also released significantly more 

GAG to the medium than group 1 and 2 loaded scaffolds by week 3 (group 1 load 

compared to group 4 load P=0.004 a 3.43 fold mean increase, group 2 load compared 

to group 4 load P=0.003 a 3.55 fold mean increase) (Figure 3.9C). No significant 

differences were detected within groups. The pattern of cumulative release was the 

same at week 4 as in week 3 (group 1 control compared to group 4 control P<0.001 a 

1.91 fold mean increase, group 1 load compared to group 4 load P=0.002 1.87 fold 

mean increase, group 2 control compared to group 4 control P<0.001 a 2.00 fold mean 
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increase, group 2 load compared to group 4 load P=0.003 a 1.83 fold mean increase) 

(Figure 3.9D). 

Calculation of the cumulative GAG released into the media, by cells embedded in the 

scaffolds in each group over time, also showed that significant differences were 

observed between loaded and control groups for group 2 in week 4 (P=0.005 a 1.21 

fold mean increase), group 3 during week 3 and 4 (P=0.006 and <0.001 respectively, a 

1.20 and 1.24 fold mean increase respectively) and group 4 in week 4 (P=0.038a 1.11 

fold mean increase) (Figure 3.10B, C and D). Figure 3.10E demonstrates the 

cumulative GAG data for all four groups on one graph to give an impression of the 

relative levels of release from the different groups. 

In order to normalise the amount of GAG produced by each scaffold to the number of 

cells within the scaffold, the total amount of GAG produced by each sample (as 

measured in both the scaffold and in the media) was divided by the DNA content of 

each scaffold to produce a GAG/DNA ratio. In this study, two separate scaffolds 

contributed to the "media GAG" value, and given the experimental design it was not 

possible to determine the exact source of the GAG in the media (from top or bottom 

scaffolds).  

Therefore, to produce a ratio the total amount of GAG within each scaffold was added 

to the total amount of GAG in the media collected from that construct, so both top and 

bottom scaffolds were attributed the same amount of media GAG (Figure 3.6B). This 

"total GAG" value was then divided by the scaffold DNA content to give a GAG/DNA 

ratio (Figure 3.6D). Results of "total GAG" quantification demonstrated no significant 

changes within groups but significantly higher levels of expression in group 3 and 4 

scaffolds compared to group 1 control top and bottom scaffolds in both control and 

loaded constructs. Results of GAG/DNA quantification indicated increased levels of 

GAG production in group 3 and 4 scaffolds over group 1 and 2 scaffolds but no 

significant changes within groups or between groups 3 and 4; however, interpretation 

of this data requires caution as described later in the discussion of this chapter. 
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Figure 3.6 

The amount of GAG and DNA present within scaffolds as determined using the DMMB 

assay and Hoechst 33258 dye respectively, showing the effect of co-culturing MSCs at 

different stages of differentiation on chondrogenesis in response to mechanical load. 

(A) The total DNA content of proteinase K digests of scaffolds. (B) The total GAG 

content of proteinase K digests of scaffolds. (C) The total combined amount of GAG 

measured in scaffolds and in the culture media. (D) The GAG/DNA ratio for each set of 

scaffolds. These data represent three biological repeats carried out in triplicate. 

Statistical significance was defined as P≤0.05 and determined using the Kruskal-Wallis 

and Dunn's multiple comparison tests. Significant differences are displayed on the plots 

using markers; the legend at the side of the plot indicates which group is represented 

by each marker. The presence of a marker over a group indicates a significant 

difference between that group and the group represented by the marker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



98 
 

 

 

Figure 3.7 

The total amount of GAG present in the culture media as determined in each week of 

culture using the DMMB assay, showing the effect of co-culturing MSCs at different 

stages of differentiation on chondrogenesis in response to mechanical load. These 

data represent three biological repeats carried out in triplicate. Statistical significance 

was defined as P≤0.05 and determined using an unpaired T-test for data collected 

during week 1 and the Kruskal-Wallis and Dunn's multiple comparison tests for media 

collected in week 3-4. Significant differences are displayed on the plots using markers; 

the legend at the side of the plot indicates which group is represented by each marker. 

The presence of a marker over a group indicates a significant difference between that 

group and the group represented by the marker. 
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Figure 3.8 

The amount of GAG released in to the culture media by week, shown over time by 

group. These data represent three biological repeats carried out in triplicate. Statistical 

significance was defined as P≤0.05 and determined using two-way ANOVA and Sidak's 

multiple comparison test. Significant differences between loaded and control samples 

at each time point are displayed using a star.  
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Figure 3.9 

The cumulative amount of GAG present in the culture media as determined in each 

week of culture using the DMMB assay, showing the effect of co-culturing MSCs at 

different stages of differentiation on chondrogenesis in response to mechanical load. 

These data represent three biological repeats carried out in triplicate. Statistical 

significance was defined as P≤0.05 and determined using an unpaired T-test for data 

collected during week 1 and the Kruskal-Wallis and Dunn's multiple comparison tests 

for media collected in week 3-4. Significant differences are displayed on the plots using 

markers; the legend at the side of the plot indicates which group is represented by 

each marker. The presence of a marker over a group indicates a significant difference 

between that group and the group represented by the marker. 
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Figure 3.10 

The cumulative amount of GAG released from cells embedded in scaffolds over time, 

as illustrated by group. These data represent three biological repeats carried out in 

triplicate. Statistical significance was defined as P≤0.05 and determined using two-way 

ANOVA and Sidak's multiple comparison test. Significant differences between loaded 

and control samples at each time point are displayed using a star.  
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3.3.4 Histology  

Samples fixed in methanol for histology were frozen in OCT compound and sectioned 

on a cryotome. The sections were then stained with Safranin O in order to investigate 

the distribution of sulphated GAGs within the scaffolds. 

Two sets of scaffolds (technical repeats) were collected from each group from one 

biological repeat and were processed for histology. The orientation of the scaffolds in 

the images provided in Figures 3.11-14 does not reflect their orientation with regards to 

each other during culture as this spatial relationship was unfortunately disturbed during 

histological processing.  

In both technical repeats of group 1 scaffolds (Figures 3.11 and 3.13), positive safranin 

O staining was only present in group 1 loaded top scaffolds and not in either top or 

bottom control scaffolds.  

In group 2 scaffolds, safranin O staining was again only observed in loaded scaffolds 

but not in control scaffolds (Figures 3.11 and 3.13). Group 2 scaffolds are made up of 

one 4x8mm poly(ester-urethane) scaffolds rather than two 2x8 mm scaffolds as in 

group 1, 3 and 4. The reason for including these larger scaffolds was to provide a 

comparison to previous work carried out in this system for the multilayer scaffolds in 

group 1, 3 and 4 (Li et al., 2009, Li et al., 2010a, Schatti et al., 2011).The staining 

observed in these scaffolds matches that detected in previous studies. 

Due to sectioning artefacts in the sections prepared from sample 1, it is difficult to 

compare the results from the two sets of scaffolds in group 3 (Figures 3.12 and 3.14). 

However, in both control groups there was more safranin O staining present in the top 

scaffold compared with the bottom scaffold. In sample 2, more staining was present in 

the bottom loaded scaffold compared to the top and in sample 1 the converse was 

observed with little staining in the bottom loaded scaffold and more in the top loaded 

scaffold (Figure 3.12). 

The staining pattern of group 4 scaffolds, as with group 3, differs between technical 

repeats. In both sets of loaded scaffolds there was staining in both the top and bottom, 

with a greater amount of GAG staining positively in the bottom scaffold compared with 

the top scaffold (Figures 3.12 and 3.14). In control scaffolds from sample 2, there was 

staining in both top and bottom scaffolds, with more staining in the top scaffold. 

Conversely, in sample 1 scaffolds there was no staining in the top scaffold but staining 

in the bottom scaffold (Figure 3.12).  
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Figure 3.11 

Histological images showing safranin O fast green staining of sample 1 (technical 

repeat number 1) scaffolds from group 1 and 2 subjected to mechanical load and 

harvested on day 28 of culture; non-loaded scaffolds served as controls. Scaffolds 

were fixed in 70% methanol and cryosectioned (12µM thickness) prior to histological 

analysis.  
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Figure 3.12 

Histological Images showing safranin O fast green staining of sample 1 (technical 

repeat number 1) scaffolds from group 3 and 4 subjected to mechanical load and 

harvested on day 28 of culture, non-loaded scaffolds serve as controls. Scaffolds were 

fixed in 70% methanol and cryosectioned (12µM thickness) prior to histological 

analysis.  
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Figure 3.13 

Histological images showing safranin O fast green staining of sample 2 (technical 

repeat number 2) scaffolds from group 1 and 2 subjected to mechanical load and 

harvested on day 28 of culture, non-loaded scaffolds serve as controls. Scaffolds were 

fixed in 70% methanol and cryosectioned (12µM thickness) prior to histological 

analysis.  
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Figure 3.14 

Histological images showing safranin O fast green staining of sample 2 (technical 

repeat number 2) scaffolds from group 3 and 4 subjected to mechanical load and 

harvested on day 28 of culture, non-loaded scaffolds serve as controls. Scaffolds were 

fixed in 70% methanol and cryosectioned (12µM thickness) prior to histological 

analysis. 
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3.4 Discussion 

The work presented in this chapter aimed to investigate the effect of crosstalk between 

MSCs at different stages of chondrogenic differentiation on the process of 

chondrogenesis and hypertrophy in the presence of mechanical load. In order to do 

this, bilayer constructs were produced by stacking 2x8 mm fibrin-poly(ester-urethane) 

scaffolds containing MSCs on top of each other. In order to generate MSCs at different 

stages of differentiation, the "bottom" scaffolds in group 3 and 4 were predifferentiatied 

in chondrogenic medium containing 10 ng/ml TGF-β1, for one or two weeks 

respectively, before placing "top" scaffolds containing naïve MSCs on top of them.  

The RNA used for gene expression analysis was taken from individual scaffolds at the 

end of the culture period; as a result, unlike the biochemical analysis these data 

represent the gene expression of the cells within each individual scaffold. There were 

few clear statistical differences with the gene expression data, due in part to large intra- 

and inter-donor variations in the degree and pattern of gene expression. For genes 

such as aggrecan and collagen type II this may also be related to the low n-number of 

some groups, resulting in a low number of degrees of freedom and therefore a higher 

threshold for a significant result, and the high number of groups used which may 

reduce the likelihood of achieving significance due to the increased number of 

comparisons.  

Despite the high levels of variability and the lack of significance within some of the 

genes, there is a defined pattern of expression related to the cells’ response to 

mechanical load within the data. In group 1, there was an increase in both top and 

bottom scaffolds in the mRNA expression of aggrecan, collagen type II, collagen type X 

and Sox9 in response to load, although only significant for collagen type X and Sox9 

transcripts. In groups 3 and 4, there was also an increase in the expression of these 

genes for top scaffolds in response to load, but the increase was reduced in group 3 

bottom scaffolds, and further reduced in group 4 bottom scaffolds compared to group 1. 

The smaller differences between control and loaded scaffolds in group 4 bottom 

scaffolds are likely to result from the predifferentation phase of culture. The 

predifferentation of the MSCs in the bottom scaffolds will have directed the cells 

towards chondrogenesis resulting in an increase in the expression of genes associated 

with MSC chondrogenesis (e.g. Sox9 and collagen type X). This is demonstrated by 

the, non-significant, increases in gene expression of collagen type II and X as well as 

Sox9 mRNA in group 4 control bottom scaffolds over the control bottom scaffolds of 

group 1 and 3. As a result the application of load is less likely to induce an increase in 

chondrogenic gene expression in these MSCs, which were already undergoing 

chondrogenesis, than the naïve MSCs seeded in group 1 which had received no 
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previous stimulation. Should this be the case, it would also be expected that load would 

have a more demonstrable effect on group 3 scaffolds that were only predifferentiatied 

for one week rather than the two weeks predifferentation that group 4 scaffolds were 

exposed to; the broad patterns in the real-time PCR data do appear to corroborate this. 

However, due to the high degree of variation, low 'n' number for some genes and low 

number of statistically significant differences within these data caution should be 

exercised about any interpretation as it is not possible to draw firm conclusions. 

Freeswelling control scaffolds were also analysed in isolation from loaded scaffolds to 

remove the effect of load from the system. The results of this showed that there were 

significant differences between the free swelling groups that were not visible when the 

data set was analysed as a whole. Of note is the significant increase in collagen type X 

mRNA expression in group 4 control top scaffolds over group 1 control top scaffolds 

and group 2 control scaffolds, and the trends (not significant) towards increased 

expression of aggrecan and Sox9 mRNA in group 4 control top scaffolds compared to 

group 1 scaffolds, and of collagen type II gene expression in group 3 top control 

scaffolds compared to group 1 scaffolds. These results show that there appears to be a 

possible chondrogenic effect in group 3 and 4 top control scaffolds, despite these 

scaffolds never being exposed to culture media containing TGF-β1, or exposed to 

mechanical load, this therefore appears to be linked to the predifferentation of the 

bottom scaffold and the interaction of the cells in the two scaffolds during the co-culture 

period. This effect could be caused by TGF-β1 retained in the bottom scaffolds during 

pre-culture, that when subsequently released from the bottom scaffolds induces 

chondrogenesis in the top scaffolds, or through the paracrine signalling effects of cells 

in the bottom scaffolds that are further down the chondrogenic lineage than the MSCs 

in the top scaffold. However, it was not possible with the data collected during this work 

to confirm this chondrogenic effect in freeswelling top scaffolds in group 3 and 4. 

 

Measurement of scaffold DNA contents showed that at the end of the culture period 

group 1, 3 and 4 scaffolds all contained the same amounts of DNA whilst group two 

scaffolds, which were twice the size of the other scaffolds, contained twice as much 

DNA. Characterisation of this model by our group has previously shown that there is 

little proliferation of MSCs in this scaffold system resulting in the relative stability of 

scaffold DNA contents over time in culture (Li et al., 2009).  

Quantification of the amount of GAG released into the culture media from week 1 and 

2, demonstrated no differences within groups in GAG production, but an increase in 

release from group 4 scaffolds compared to group 3 scaffolds; this was to be expected 

given that all groups are receiving chondrogenic media and that group 4 scaffolds had 
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a week longer in culture than group 3 scaffolds. The application of mechanical load for 

one hour a day began in week 3. It is in the media collected during this week that the 

clearest changes occurred in the media GAG content (presented by week). Load 

increased the amount of GAG released into the media in group 3 and 4 over their 

respective free swelling controls, although only significantly in group 3. This clear effect 

of load on GAG release was, however, not replicated in week 4 media, where there 

was no clear effect of load or any significant differences between the groups. This 

suggests that the GAG being released into the media from group 3 and 4 is not being 

synthesised in response to the application of load in week 3, rather it is GAG being 

washed out of the scaffolds that had been laid down during the preculture period. This 

trend was also observed in the release of GAG from scaffolds plotted over time for 

each group, significant differences between control and loaded groups were detected 

in both group 3 and 4. The level of GAG detected in the media was significantly higher 

in media collected from group 4 control scaffolds than group 1 loaded scaffolds. This 

demonstrates that the build-up of GAG during the preculture period in group 4 leads to 

the substantial release of GAG to the medium in week three and four even in the 

absence of mechanical load; however, the application of mechanical load increased the 

release of GAG even further. A small increase in the media GAG level was seen 

between group 1 loaded scaffolds compared to controls. This effect must be due to the 

chondrogenic effect of the load applied during week 3, this effect would be similar to 

the effect felt in group 3 and 4 loaded scaffolds, however the response to load in group 

3 and 4 dwarfs that of group 1, suggesting that either the synthesis of GAG is greatly 

enhanced in response to load by the predifferentiatied bottom scaffold in group 3 and 4 

or that GAG is being washed out of the bottom scaffolds in response to load.    

The hypothesis that the increased levels of GAG released into the media in week 3 are 

likely to be an artefact caused by loading predifferentiatied, GAG-containing scaffolds, 

was further supported by the results of TGF-β1 quantification from the culture medium. 

TGF-β1 has previously been shown to be produced by MSC laden fibrin-poly(ester-

urethane) scaffolds in response to mechanical load in this system (Li et al., 2010a). 

The release profile of TGF-β1 in week three media shows that there is a clear and 

consistent increase in all groups in response to load, but with no significant differences 

within groups (between loaded and freeswelling scaffolds). The effect of load then 

appears increased in the media collected during week 4, which shows clear differences 

between loaded and freeswelling scaffolds, with significant differences between all four 

loaded groups and group 1 and 2 control scaffolds. This pattern of TGF-β1 release 

clearly shows that the synthesis and release of TGF-β1 builds up gradually from the 

initiation of loading and is therefore higher in week 4 than in week 3. The lack of a 

significant difference between group 3 and 4 loaded scaffolds and control scaffolds 
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may result from the higher levels of TGF-β1 in group 3 and 4 control groups; this is 

likely to be due to the effect of the period of preculture on these scaffolds and may be 

caused by release of TGF-β1 retained in the scaffolds during preculture or the 

autoinduction of TGF-β1 expression in the differentiating MSCs (Van Obberghen-

Schilling et al., 1988).  The comparison of the release of GAG from scaffolds during 

week 3 and 4 with the more predictable pattern of TGF-β1 release suggests that the 

GAG measured in week 3 media results from a "burst" release of stored GAG as 

opposed to a biosynthetic response to the application of mechanical load. 

The reduced release of GAG into the culture medium in week 4 compared to week 3 

could also be caused by increased matrix retention in week 4 due to the build-up of 

matrix within the scaffolds. This could be investigated by collecting samples for 

histology at the end of each week of culture. Another factor could be an inhibitory effect 

of one of the cell populations on matrix production e.g. through a chondro-inhibitory 

soluble protein such as IL-1. However, the effects that the two populations have on 

each other have been shown by this work to be subtle and therefore unlikely to cause 

such a large and rapid decrease in GAG production/release. 

Quantification of the cumulative release of GAG from scaffolds into the media over the 

course of culture suggests an increased response to load in group 3 constructs 

compared to group 4 constructs. This is evidenced by the significant difference in 

cumulative GAG release (presented over time) at both week 3 and 4 of culture for 

group 3 scaffolds, load and control, whereas a significant difference was only detected 

at week 4 for group 4 scaffolds. The results of cumulative GAG release from scaffolds 

shown by week indicated that there was also no significant difference in the total 

amount of GAG released from group 3 and group 4 scaffolds over the total time in 

culture, despite a trend towards higher levels in the control and loaded groups relative 

to each other. This may be due either to a plateauing or even slowing of the release of 

GAG from group 4 scaffolds in the later stages of culture, or to increased GAG 

production in group 3 constructs. Given the trend towards higher GAG release from 

group 3 scaffolds compared to group 4 scaffolds in week 4, and the relatively higher 

levels of cumulative GAG in group 4 control and loaded scaffolds compared to their 

corresponding scaffolds in group 3, this is more likely to result from a slowing of GAG 

release from group 4 scaffolds in the fourth week of culture. This could be caused by 

decreased GAG synthesis within the scaffolds, or a build-up of matrix molecules in the 

scaffold (resulting from four weeks of chondrogenic stimulation) increasing the amount 

of GAG retained within the scaffolds, causing a corresponding decrease in GAG 

released to the medium. 
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Although useful for providing an idea of what is happening within this system, the 

analysis of the GAG and TGF-β1 content needs to be interpreted with caution. The 

results for the media analysis presented here provide one result per "construct" as a 

whole but do not differentiate between the top and bottom scaffolds and their 

contribution to that overall result. The changes in GAG released into the media in week 

3 demonstrates the ability of the bottom scaffolds, which had undergone 

predifferentation, to contribute GAG to the culture media in response to mechanical 

loading, despite the GAG having to diffuse through the scaffolds themselves as well as 

through the poly(ester-urethane) rings which were used to surround the scaffold to 

keep the top and bottom layers in position relative to one another. The results from this 

media analysis therefore provide a broad idea of what is going on within the construct 

but no resolution between the two scaffolds within the construct. It would be possible to 

indirectly determine the contribution of each set of scaffolds to the overall GAG content 

of the media by repeating the experiment with extra groups where either the top or 

bottom scaffold is replaced with an acellular fibrin-poly(ester-urethane) scaffold. 

Replacing either the top or bottom scaffold with an acellular scaffold would allow for the 

histological investigation into the diffusion of GAG from the bottom scaffolds in to the 

top scaffold e.g. in group 3 and 4 control scaffolds where it appears that more GAG is 

present in the top scaffold compared to the bottom scaffold. Repeating this with an 

acellular top scaffold, it would be possible to determine if the GAG detected simply 

diffuses in from the bottom scaffold or is laid down by the cells in the top scaffold driven 

by crosstalk with cells in the bottom scaffold. However, using empty scaffolds would 

also remove any effect of crosstalk between scaffolds, and may therefore affect the 

results. Another option would be to supplement the preculture culture media with the 

radioactive sulphur isotope 35S in a "pulse-chase" fashion. The presence of this 

radioactive isotope could then be determined in top scaffolds and the culture media. 

Both of these approaches could be used to show where GAG produced in the two 

scaffolds could later be detected but, neither of these systems allow for a determination 

of the ratios of GAG in the media with regards to scaffold origin.  

The GAG/DNA ratio of a construct provides an extremely useful metric for normalising 

the amount of GAG produced by a construct to the number of cells within the construct. 

Previous work in this system has calculated the "total GAG" for each scaffold by adding 

the amount of GAG determined using DMMB in the proteinase K digest of the scaffold 

at the end of culture and the media samples collected at every media change to give a 

total amount of GAG produced by the cells in each scaffold over the whole length of 

culture (Li et al., 2009, Li et al., 2010a). That total GAG value was then divided by the 

scaffolds DNA content to produce a GAG/DNA ratio. In this system the bulk of GAG 

that is produced is lost to the culture media rather than being retained within the 
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scaffold. As a result the value for the media GAG is generally higher than that for the 

scaffold GAG, especially under loading (Li 2009, Li 2010). The percentage of GAG 

found in the scaffold in this study ranges from 16.07% ± 6.39 to 28.98% ± 15.73 in 

control scaffolds (group 1 control bottom and group 2 control respectively) and between 

15.19% ± 9.00 and 31.37% ± 19.03 in loaded scaffolds (group 1 load bottom and group 

2 load respectively). This means that with the majority of GAG being lost to the media it 

is not possible to determine which scaffold it came from, top or bottom. Looking at the 

scaffold GAG content alone is also not a solution to this problem as a large amount of 

the GAG is lost from the scaffolds, and load tends to reduce the scaffold GAG content 

more than freeswelling culture as the physical application of load washes GAG out of 

the scaffold, as demonstrated in this chapter with the media GAG results from week 3. 

This problem could be overcome by using a culture system such as agarose or alginate 

which would better retain any GAG produced, however, the scaffold also needs to be 

resilient enough to withstand the repeated application of multiaxial mechanical load. 

The purpose of this work was to observe the effects of mechanical load on MSCs 

within a fibrin scaffold in response to load, rather than to optimise this scaffold to retain 

matrix molecules, that is however an important issue for future work. 

After consideration it was decided to present the "total GAG" as the summation of the 

scaffold GAG for each scaffold with the total amount of GAG in the media (i.e. the GAG 

released into the media from both scaffolds) from all weeks of culture. This means that 

the media GAG component of group 1 and 2 scaffolds is made up of results from week 

3 and 4, whilst group 3 results represent week 2, 3 and 4 and group 4 scaffolds from 

week 1-4. This inclusion of GAG produced during the pre-culture period suggests that 

there was an inherently higher amount of total GAG and a higher GAG/DNA ratio, 

regardless of the actual rates of synthesis in response to load in weeks 3 and 4. The 

reason it was decided to include all of the measurements made within the total GAG 

value is that in week 3 a large amount of GAG, synthesised in the pre-culture period, 

was released into the culture media in response to mechanical load. This means that 

even if just the week 3 and 4 results are taken for the GAG/DNA ratio the pre-culture 

period would still artificially inflate the results from group 3 and 4 scaffolds. As a result it 

was decided to include the data from the entire culture period and to highlight the 

inherent bias within these data. In order to determine the relative contributions of the 

pre-differentiation and loading periods of culture, a separate set of group 3 and 4 

scaffolds could be seeded and harvested for analysis at day 14. This would allow for 

the determination of GAG production during the pre-differentiation phase and allow for 

a better comparison to be made between the effect of load over the third and fourth 

weeks of culture on group 3 and 4 scaffolds compared to group 1 and 2. 
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The results of Safranin O staining on two technical repeats highlighted both similarities 

and differences in the deposition of GAG within scaffolds. In both sets of group 1 

scaffolds positive GAG staining was present only in group 1 top loaded scaffolds. This 

suggests that, at a histological level, load is only inducing changes in the top scaffolds 

and not the bottom scaffolds. This is in contrast to the Sox9 real-time PCR results 

which suggested the induction of some chondrogenic gene expression in bottom 

scaffolds in response to load. This suggests that within this experimental model system 

load had a stronger effect in the top scaffolds, which were directly exposed to the shear 

component of the load, than the underlying bottom scaffolds, where load was able to 

induce the expression of Sox9 but not induce detectable matrix deposition. This may 

be linked to the importance of shear load in the induction of chondrogenesis as 

discussed in Chapter 4. In line with previous work, loaded 4x8mm scaffolds in group 2 

stained positively with Safranin O whilst group 2 control scaffolds did not. Results from 

group 3 and 4 scaffolds showed interesting trends, but were inconsistent. In group 4 

control scaffolds there was a greater amount of matrix deposited in top scaffolds than 

in bottom scaffolds in both repeats; the same was observed for one of the repeats in 

group 4. This suggests that the predifferentiatied bottom scaffold may, in the absence 

of any other stimuli for the top scaffolds, either be inducing chondrogenesis in the top 

scaffold or releasing GAG which then diffused in to the other where it was then 

detected. As the scaffolds were separated during histological processing it is not 

possible to analyse the scaffolds in the orientation that they were cultured in. Should 

the staining occur in abutting regions of the two scaffolds then it would be extremely 

hard to tell if the matrix in the top scaffold was produced there in response to 

chondrogenic stimuli from the lower scaffold, or if the GAG was produced in the lower 

scaffold and had diffused in to the top scaffold. However, if the staining in the top 

scaffold occurred away from the areas stained positively in the bottom scaffold then it 

would be likely that the GAG deposition in the top scaffold was driven by a local 

chondrogenic response by the cells rather than diffusion of GAG throughout the 

system. Improved histological processing would allow for the scaffolds to be kept in the 

same relative positions that they were cultured in, providing important additional spatial 

data about the deposition of matrix relative to the source of load and relative to the 

other scaffold in the construct. This would be possible e.g. by placing the scaffolds in a 

mould with OCT compound and then snap freezing; the scaffolds could then be 

cryosectioned together from the same block and then fixed postsectioning, before 

staining. This would also allow for a choice of fixative depending on the requirements of 

more sensitive techniques such as immunohistochemistry, or in-situ hybridisation which 

would be another method for investigating the source of GAG within the constructs. A 

chondrogenic effect of the bottom scaffold on the top scaffold could either be mediated 
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by endogenously produced factors, such as TGF-β, or by exogenously administered 

TGF-β1 taken up by the scaffold during the preculture period which is then slowly 

released over the course of culture, however given the short half-life of activated TGF-β 

in vivo this is the less likely option (Coffey et al., 1987, Wakefield et al., 1990). The 

deposition of GAG in group 3 and 4 freeswelling control scaffolds correlated with the 

gene expression data that suggested an increase in the expression of genes 

associated with MSC chondrogenesis in group 3 and 4 control scaffolds. 

GAG deposition as denoted by Safranin O staining is concentrated around the 

periphery of the scaffolds. This is similar to the pattern of staining seen in Chapter 4, 

and may relate to the potentially reduced levels of nutrition in the center of the fibrin-

poly(ester-urethane) used in this system or the loss of cells from the center of scaffolds 

as described in Chapter 4. 

Histological analysis demonstrated some evidence of potential crosstalk between 

scaffolds containing cells at different stages of differentiation and has provided more 

evidence for chondrogenic responses in group 3 and 4 top control scaffolds that were 

suggested in PCR and biochemical analysis. However, the disruption of scaffold 

orientation during processing and variation between scaffolds means that it is not 

conclusive.  

 

This discussion has highlighted a number of problems associated with the model used 

in this chapter and some of the analytical techniques used to generate the results. One 

of the problems highlighted in this discussion was intra- and inter-donor variation. The 

best way to reduce variation would be to carry out more repeats to generate more data 

and provide a fuller understanding of the behaviour of cells within this system which 

would allow for more concrete conclusions to be drawn.  
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3.5 Conclusions 

The work presented in this chapter has shown that despite some potential histological 

and gene expression evidence for crosstalk between cells at different stages of 

chondrogenic differentiation no clear evidence was obtained that the co-culture model 

system had an effect on the induction of chondrogenesis or hypertrophy in MSCs in the 

presence or absence of load. The model system used in this chapter also provided 

difficulties for data analysis and interpretation. As a result it was decided that a simpler 

model involving spatial but not temporal differences (in terms of stages of cellular 

differentiation) should be developed and used for further work, the development and 

characterisation of this model is described in detail in Chapter 4.  
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Chapter 4 Asymmetrical seeding of MSCs into fibrin-poly(ester-
urethane) scaffolds and its effect on mechanically induced 
chondrogenesis 

 

Aim 

The aims of the work presented in this chapter were to investigate the effect of seeding 

a layer of MSCs on the loaded surface of MSC containing fibrin-poly(ester-urethane) 

constructs on mechanically induced chondrogenesis, and to investigate the effect of 

joint like mechanical load on the activation of endogenously produced TGF-β1 in 

response to mechanical load. 

 

Sections of this Chapter have resubmitted following initial review and revision as two 

separate manuscripts entitled "Asymmetrical seeding of MSCs into fibrin-poly(ester-

urethane) scaffolds and its effect on mechanically induced chondrogenesis" and "Joint 

Mimicking Mechanical Load Activates TGFβ1 in Fibrin-Poly(ester-urethane) Scaffolds 

Seeded with Mesenchymal Stem Cells" to Tissue Engineering and Regenerative 

Medicine. 
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4.1 Introduction 

The results of investigations presented in Chapter 3 suggested that when two separate 

populations of MSCs, at different stages of chondrogenic differentiation, were cultured 

together in a fibrin-poly(ester-urethane) constructs; predifferentiatied cells (that were 

further down the pathway of chondrogenic differentiation) could, potentially, induce 

chondrogenic characteristics in naïve MSCs. This demonstrates that the interaction 

between different populations of MSCs within the same scaffold could potentially be 

used to modify the cells responses to chondrogenic stimuli. However, the restrictions of 

the culture system used made this interaction difficult to verify. The work in this chapter 

followed on directly from the work presented in Chapter 3 by investigating the effect of 

seeding two different populations of MSCs within the same construct. However, to 

remove some of the confounding factors associated with the work performed in 

Chapter 3 the temporal factor (using MSCs at different stages of differentiation) was 

removed and a single 4x8 mm scaffold was used for culture instead of the two 2x8 mm 

scaffolds used to produce the constructs described in Chapter 3. The two separate 

populations were instead created by seeding cells within the fibrin-poly(ester-urethane) 

scaffolds (as previously described) and also seeding a layer of cells on the loaded 

surface of the scaffold.  

The creation of a second population, within a construct, and the potential for that 

population to influence the process of chondrogenesis within the construct as a whole 

was driven by the results seen in Chapter 3. However, the location of the second 

population was chosen based on a previous study carried out in the same mechanical 

loading device described in thesis by another member of our group who studied the 

importance of the two individual components of the load, namely compression and 

shear. Compression and shear were applied both individually, and in combination to 

MSC loaded fibrin-poly(ester-urethane) scaffolds. The results of this work showed that 

the shear component of the load was critical in the induction of chondrogenesis (Schatti 

et al., 2011). When considering that shear loading is important for the chondrogenic 

response, it would suggest that under joint like load, cell location, specifically the 

exposure of the cells to the shear component of the load, may play a role in the results 

that can be obtained. It may be possible to exploit the potentially chondrogenic effect of 

shear load in order to improve the chondrogenic induction and matrix deposition of 

human bone marrow mesenchymal stem cells in the absence of any exogenous growth 

factors by asymmetrically seeding scaffolds with cells to maximise the exposure of a 

small population to the shear component of the load. 

TGF-β is secreted by cells in an inactive, latent form in which the active TGF-β peptide 

is bound to the latency associated peptide (LAP) and a latent TGF-β binding peptide 
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(LTBP). For TGF-β to bind to, and activate, a target receptor (Section 1.7, Figure 1.5) 

the mature TGF-β peptide must first be released from the LAP and if present the LTBP 

(Robertson and Rifkin, 2013). TGF-β activation can occur in a variety of ways including 

protease degradation (e.g. the serine protease plasmin), mechanical stimulation, 

deglycosylation or the application of a number of physiochemical stimuli such as heat, 

extremes of pH and UV light (Robertson and Rifkin, 2013, Lyons et al., 1990). 

Mechanical forces, in a number of different forms, have been shown to activate TGF-β. 

Work by Annes et al. and Wipff et al. has shown that integrin binding and subsequent 

cell generated traction forces are involved in the activation of TGF-β that is bound to 

the extracellular matrix via LTBP, whilst the mechanical activation of TGF-β has also 

been demonstrated in fluid environments in response to the application of fluid shear 

stress or stirring forces (Ahamed et al., 2008, Albro et al., 2012, Annes et al., 2004, 

Wipff et al., 2007). Work by our group using a custom built bioreactor has shown that 

the application of a combination of shear and compressive load, which mimics the load 

of a diarthrodial joint, induces the chondrogenesis of human MSCs via the induction of 

TGF-β1 expression and secretion in stimulated cells, but the activation state of TGF-β1 

has not been investigated (Li et al., 2010a). 

In this chapter the response of MSCs to multi-axial mechanical load that mimics the 

mechanical environment of an articulating joint was investigated. The hypothesis was 

that induction of chondrogenesis, and the deposition of cartilage-like matrix by MSCs in 

response to multi-axial load, could be improved, while maintaining total cell number, by 

seeding the scaffolds with two populations of cells, one population inside the scaffold 

as previously described and a second population on the surface of the scaffold, directly 

exposed to shear load. In order to do this, the scaffolds were seeded asymmetrically 

with a small proportion (10%) of the total number of cells seeded on the scaffold's 

loaded surface, whilst the majority of the cells (90%) were seeded within the scaffold 

itself. As a control, a third group consisting of only 10% of the total number of cells 

were seeded directly on the surface of otherwise acellular fibrin filled scaffolds. This 

was to establish whether the cells applied to the surface of the scaffold were 

completely responsible for the observed response, or whether any changes resulted 

from interactions between cells seeded on the surface of the scaffold and those seeded 

within the scaffold. This work also aimed to further investigate the effect of joint like 

load on MSCs and the TGF-β1 pathway by quantifying not only the effect of multiaxial 

load on the overall production of TGF-β1 but also its activation. The term joint like load 

is used in this chapter to refer to the application of multiaxial shear (generated by a 25° 

rotation of a ceramic sphere on the surface of the scaffold at 1Hz) and compression 

(cyclic 10% compression on top of 10% prestrain at 1Hz). 
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4.2 Materials and Methods 

4.2.1 Donor Information 

MSCs were used from four different marrow aspirates from vertebral bodies; two 

females aged eighteen and forty-nine years and two males aged twenty-two and 

seventy-six years old, as well as one aspirate from the tibial plateau of a forty-eight 

year old male. 

 

4.2.2 Experimental design 

Seeding of fibrin-poly(ester-urethane) scaffolds with different cell distribution patterns 

The number of cells seeded into each scaffold and the location of the cells within the 

scaffolds varied by group. Group 1 scaffolds contained four million cells seeded evenly 

throughout each 4x8mm fibrin-poly(ester-urethane) scaffold. Group 2 scaffolds 

contained three million six hundred thousand cells seeded throughout the scaffolds 

with four hundred thousand cells allowed to adhere to the upper surface of the scaffold. 

The final set of scaffolds (group 3) were filled with fibrin alone and four hundred 

thousand cells were then allowed to adhere to the upper face of the scaffolds (Figure 

4.1). 
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Figure 4.1 

Schematic showing the different seeding patterns used in this study. In group 1, four 

million cells were evenly seeded throughout scaffolds. In group 2, three million six 

hundred thousand cells were seeded evenly throughout the scaffold and four hundred 

thousand seeded on the loaded surface of the scaffold. Group 3 scaffolds were not 

seeded with cells within the scaffold but only with four hundred thousand cells on the 

loaded surface. 
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4.2.3 Seeding of cells on to fibrin-poly(ester-urethane) scaffolds 

In order to seed cells on top of the fibrin-poly(ester-urethane) scaffolds, the scaffolds 

were first seeded with fibrin and cells or fibrin alone as described (Section 2.4 and 

4.2.3), and left to polymerise for one hour. During this incubation period four hundred 

thousand MSCs were resuspended in 100µl of serum free DMEM per scaffold, and 

after one hour this cell suspension was dripped on to the surface of the polymerised 

fibrin-poly(ester-urethane) scaffolds and left in place for twenty minutes at 37°C. After 

this second incubation step the scaffolds were removed from the Eppendorf tube lids 

and placed into PEEK holders for further culture. 

 

4.2.4 Membrane labelling of MSCs with the fluorescent dye PKH26 and seeding 
of labelled MSCs into fibrin-poly(ester-urethane) scaffolds 

An additional six scaffolds were seeded with a mixture of unlabelled MSCs and cells 

that had been labelled with the red fluorescent dye PKH 26 (Sigma-Aldrich, Buchs, 

Switzerland); the role of this fluorescent dye was to establish the location and 

distribution of MSCs in both free-swelling and loaded scaffolds after four weeks in 

culture. In order to apply the dye to MSCs, the cells were first trypsinised and counted 

before being washed in serum free DMEM and resuspended in 500µl of 'diluent C'; this 

was supplied, pre-made, by the company with the dye. A further 500µl of diluent C 

containing 1µl of PKH26 dye per million cells was added to the cell suspension. The 

tube containing the cells was then wrapped in aluminium foil and placed on an orbital 

shaker for five minutes at room temperature. Following incubation, 1ml of serum was 

added to terminate the reaction between the cells and the dye. The stained cells were 

washed three times with 10% FBS DMEM before being used for seeding. 

Two group 1 scaffolds (one non-loaded control and one loaded sample) were seeded 

with four million stained cells that were distributed evenly throughout the scaffold. Two 

scaffolds were seeded as in group 2 with three million six hundred thousand unlabelled 

hMSCs seeded within the scaffold itself and four hundred thousand labelled cells 

seeded on the surface of the scaffold. Two final scaffolds were seeded as group 3 

scaffolds with four hundred thousand labelled cells on top of otherwise acellular 

scaffolds. 

One of each of these pairs of scaffolds were exposed to mechanical load using the 

same protocols and duration of loading as used for scaffolds in group 1,2 and 3 whilst 

the other scaffold was kept in free-swelling culture. 
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4.2.5 Mechanical Loading 

Scaffolds were loaded using a custom-made multiaxial load bioreactor based on 

tribological principles (Wimmer et al., 2004). Loaded scaffolds were exposed to 10% 

compression superimposed on top of a 10% pre-strain and shear loading (±25°) at 1Hz 

for one hour a day five times a week up to a total of 20 cycles. In contrast, control 

scaffolds were kept in free-swelling culture conditions for the entire culture period of 

four weeks. 

 

4.2.6 Sample collection and storage 

Media was collected three times a week at media changes and was pooled by week 

before storage at -20°C for analysis. After 28 days of culture, scaffolds were harvested 

for biochemical analysis (three scaffold halves per group), RNA isolation/real-time PCR 

(four scaffold halves per group) and histology (one scaffold half per group), and 

analysed as described previously in the Chapter 2 (Section 2.6). 

 

4.2.7 Statistical Analysis 

The data presented represents combined data from 3 (real time PCR) or 4 (GAG/DNA 

and TGF-β1 analysis) individual experiments with each performed using different 

donors in quadruplicate (real time PCR and TGF-β1 analysis) or triplicate (GAG/DNA). 

Statistical analyses were performed using GraphPad Prism 6 software (GraphPad 

Software Inc., La Jolla, CA, USA), and significance was defined as P≤0.05. The 

D'Agostino & Pearson omnibus normality test was used to determine if the distribution 

of data within each data set was normal. Following this, the Kruskal-Wallis and Dunn's 

multiple comparison tests were used to analyse biochemical, real-time PCR and 

protein analysis with the exception of collagen type II real time PCR where the Mann-

Whitney test was used as only two groups were being compared. 
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4.3 Results 

 

Due to the use of primary human cells in this work there was a high degree of 

variability between biological repeats. Due to this high level of variation and the 

relatively low numbers of donors tested many of the analyses do not reach significance 

at the 5% level.  As a result both significant changes and non-significant trends within 

the data collected are described and discussed, where relevant, in this chapter.  

 

4.3.1 Fluorescence membrane labelling of MSCs seeded in to fibrin-poly(ester-
urethane) scaffolds 

Fluorescent cell labelling was used to determine the location and distribution of seeded 

cells after four weeks in culture (Figure 4.2). In group 1 scaffolds, where all the cells 

seeded within the scaffold were labelled, the labelled MSCs are present around the 

four edges of the scaffold but not within the center of the scaffold (Figure 4.2A and D). 

The lack of cells in the center of the scaffold after four weeks in culture is likely to be 

due to the restricted nutrition in these areas, leading to cell death or migration of cells 

towards the edge of the scaffolds. The labelling may also be lost as a result of 

proliferation; however, MSCs only undergo limited proliferation in this scaffold system. 

In group 2 and 3 scaffolds, the cells seeded on to the scaffold surface were labelled, 

whereas cells seeded within the scaffold itself were not (Figure 4.2B, C, E and F). In 

these two groups, the labelled cells clearly remain on the upper surface of the scaffold 

after twenty-eight days of culture. In group 2 and 3 control scaffolds (Figure 4.2B and 

C), the labelled cells are distributed throughout the surface layers of the scaffolds. 

However, in group 2 loaded scaffolds the distribution of labelled cells is restricted to the 

upper most layer of the scaffold surface with few detectable cells visible below this 

region (Figure 4.2E), but this was not replicated in group 3 loaded conditions (Figure 

4.2F). The change in cell distribution between group 2 control and loaded scaffolds 

suggests that the application of multiaxial load modifies the distribution of cells seeded 

on the scaffold surface in this model. 
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Figure 4.2 

Representative fluorescent images showing the location of cells labelled with the 

membrane marker PKH26 cells after four weeks of multi-axial load. Cell membranes 

labelled with PKH26 appear red and cell nuclei, counterstained with DAPI, are blue.  

Images A, B and C show control scaffolds from groups 1, 2 and 3 respectively, whilst 

images D, E and F show the equivalent loaded scaffolds. Scale bar represents 200µm. 
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4.3.2 Safranin O and toluidine-blue staining of fibrin-poly(ester-urethane) 
scaffolds seeded with MSCs 

In order to show the deposition of sulphated GAGs, scaffolds were stained with 

safranin O and toluidine blue (Figure 4.3 and 4.4).  As expected, no staining was 

observed in groups 1, 2 or 3 control scaffolds (Figure 4.3 and 4.4A,C and F), however, 

moderate positive safranin O and metachromatic toluidine blue staining was present 

along the upper surface of group 1 loaded scaffolds (Figure 4.3 and 4.4B). Stronger 

positive staining was present in the same region of group 2 loaded scaffolds (Figure 

4.3 and 4.4D), whilst no staining was observed in group 3 scaffolds (Figure 4.3 and 

4.4F). 
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Figure 4.3 

Representative images showing the surface of scaffolds stained with safranin O after 

four weeks of culture. Images A, C and E show control scaffolds from group 1, 2 and 3 

respectively at 2.5x magnification whilst images B, D and F show loaded scaffolds at 

2.5x magnification. Images G, I, K, M, O and Q show group 1 control, group 1 load, 

group 2 control, group 2 load, group 3 control and group 3 load respectively at 20x 

magnification. Images H, J, L, N, P and R show group 1 control, group 1 load, group 2 

control, group 2 load, group 3 control and group 3 load respectively at 40x 

magnification. 
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Figure 4.4 

Representative images showing the surface of scaffolds stained with toluidine blue 

after four weeks of culture. Images A, C and E show control scaffolds from groups 1, 2 

and 3 respectively, whilst images B, D and F show loaded scaffolds. 
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4.3.3 Immunohistochemical labelling of fibrin-poly(ester-urethane) scaffolds 

All immunohistology was performed simultaneously on all groups within each biological 

repeat for all target epitopes.  

Immunohistochemistry showed that collagen type II was not detected in any of the 

control scaffolds (Figure 4.5A, C, E). However, collagen type II was detected in group 1 

(Figure 4.5B) and group 2 loaded scaffolds (Figure 4.5D); no staining was present in 

group 3 loaded scaffolds (Figure 4.5F). Positive labelling of collagen type II in group 1 

and 2 loaded scaffolds was much less diffuse than the staining for collagen type I and 

is observed particularly on the loaded surface of the scaffolds, in areas that also 

stained positively with safranin O and toluidine blue. The staining was patchy in group 

1 loaded scaffolds and stronger in group 2 loaded scaffolds, matching the positive 

staining detected with safranin O and toluidine blue. 

Collagen type VI stained positively in both control and loaded scaffolds in all three 

groups (Figure 4.6) in a pattern very similar to that observed for collagen type I (Figure 

4.8). Positive labelling was detected around the edges of group 1 (Figure 4.6A-B) and 2 

scaffolds (Figure 4.6C-D) and increased with load (Figure 4.6B, D). Deposition of 

collagen type VI in group 3 was higher in control scaffolds (Figure 4.6E) compared to 

those that had been subjected to load (Figure 4.6F). 

The antibody used for collagen type X staining reacted non-specifically with the fibrin 

component of the scaffolds meaning that positive staining occurred in both control and 

loaded scaffolds across all three groups (Figure 4.7). Sequence alignment of the 

Collagen type X alpha-1 chain with α, β and γ fibrinogen chains was determined using 

a protein BLAST search. The collagen type X alpha-1 chain share no sequence 

homology with the fibrinogen  β or γ chains, however, two matches were found with the 

fibrinogen α chain, one of 12 residues with a 42% identity match and 75% similarity 

match and one of 18 residues with 44% identity match and 50% similarity match. 

These similarities in sequence may explain the non-specific staining of the fibrin 

component of the scaffold, however, no further investigation was performed.  Areas in 

group 1 scaffolds (Figure 4.7B), and particularly group 2 loaded scaffolds that stained 

positively for sulphated GAG and collagen type II do not stain for collagen type X (as 

indicated in Figure 4.7D).  

In contrast to collagen type II, collagen type I was deposited around the edges of both 

control and loaded scaffolds in all three groups (Figure 4.8), in a pattern that matched 

the distribution of cells within the scaffolds as observed when imaging fluorescently 

labelled cells (Figure 4.2). In both group 1 and 2 there was an increase in collagen type 

I deposition in response to mechanical load (Figure 4.8B, D). However, in group 3 the 

deposition of collagen type I was higher in control scaffolds (Figure 4.8E), as had been 



134 
 

noted for type VI collagen deposition. Collagen type I expression was distributed in a 

similar manner in group 1 and 2 loaded scaffolds but the labelling intensity was higher 

in group 2 scaffolds. 

Positive immunostaining for TGF-β1 was not observed in any of the scaffold groups, 

but staining did occur in the bone region of the glenoid ligament enthesis section used 

as positive control tissue (data not shown). 
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Figure 4.5 

Representative images showing the surface of scaffolds stained 

immunohistochemically for collagen type II after four weeks of culture. Images A, C and 

E show control scaffolds from group 1, 2 and 3 respectively at 2.5x magnification whilst 

images B, D and F show loaded scaffolds at 2.5x magnification. Images G, I, K, M, O 

and Q show group 1 control, group 1 load, group 2 control, group 2 load, group 3 

control and group 3 load respectively at 20x magnification. Images H, J, L, N, P and R 

show group 1 control, group 1 load, group 2 control, group 2 load, group 3 control and 

group 3 load respectively at 40x magnification. Labelling was performed using the CIICI 

anti-collagen type II IgG antibody made in mouse, the secondary antibody was a 

biotinylated anti-mouse IgG  antibody made in horse and the labelling was detected 

using ImmPACT DAB. 
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Figure 4.6 

Representative images showing the surface of scaffolds stained 

immunohistochemically for collagen type VI after four weeks of culture. Images A, C 

and E show control scaffolds from group 1, 2 and 3 respectively whilst images B, D and 

F show loaded scaffolds. Labelling was performed using the 5C6 anti-collagen type VI 

IgG antibody made in mouse, the secondary antibody was a biotinylated anti-mouse 

IgG  antibody made in horse and the labelling was detected using ImmPACT DAB. 
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Figure 4.7 

Representative images showing the surface of scaffolds stained 

immunohistochemically for collagen type X after four weeks of culture. Images A, C 

and E show control scaffolds from group 1, 2 and 3 respectively whilst images B, D and 

F show loaded scaffolds. Arrows indicate the area of the scaffold rich in cartilage-like 

matrix that appear negative for type X collagen. Labelling was performed using the 

C7974 anti-collagen type X IgM antibody made in mouse, the secondary antibody was 

a biotinylated anti-mouse IgM  antibody made in goat and the labelling was detected 

using ImmPACT DAB. 
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Figure 4.8 

Representative images showing the surface of scaffolds stained 

immunohistochemically for collagen type I after four weeks of culture. Images A, C and 

E show control scaffolds from group 1, 2 and 3 respectively whilst images B, D and F 

show loaded scaffolds. Labelling was performed using the COL-1 anti-collagen type I 

IgG antibody made in mouse, the secondary antibody was a biotinylated anti-mouse 

IgG antibody made in horse and the labelling was detected using ImmPACT DAB. 
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4.3.4 Quantification of GAG and DNA content in fibrin-poly(ester-urethane) 
scaffolds and release into culture media 

The application of multiaxial load to MSC laden fibrin-poly(ester-urethane) scaffolds 

had no effect on the DNA content of scaffolds within individual groups, irrespective of 

cell seeding distribution, after the four week culture period (Figure 4.9A). 

There were no significant differences detected in the production of GAG by embedded 

MSCs in response to mechanical load (Figure 4.9B), although, in group 1 and 2, there 

was a trend towards increased total GAG in response to load. There was a significant 

difference between the total GAG production of both control and loaded scaffolds in 

groups 1 and 2 compared to group 3 scaffolds, both control and loaded (P<0.05) as 

would be expected given the different seeding patterns in the different groups. 

Calculation of the GAG/DNA ratio of each group showed an increased ratio in group 1 

and 2 loaded scaffolds but this was not significant (group 1 control mean value 0.038 

mg/µg ±0.013; group1 load 0.051 mg/µg ±0.014, group 2 control 0.052 mg/µg ±0.022 

group 2 load 0.056 mg/µg ±0.017) (Figure 4.9C). However, the ratio of GAG/DNA of 

group 2 loaded scaffolds was significantly higher than the ratio in group 3 loaded 

scaffolds (P= 0.038). 
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Figure 4.9 

Biochemical analysis of MSCs seeded into fibrin-poly(ester-urethane) scaffolds after 

four weeks in culture. (A) Höchst 33528 dye was used to quantify the DNA in 

proteinase K digests of scaffolds. These data demonstrate the effect of even and 

asymmetric seeding patterns within scaffolds.  (B) DMMB was used to determine the 

total amount of sulphated GAG produced by MSCs from both the collected culture 

media and proteinase K scaffold digests. (C) The GAG/DNA ratio was calculated from 

total DNA and GAG values to show the production of GAG relative to the MSCs 

present in each group. These figures represent data collected from four repeats of the 

experiment, each carried out in triplicate, with four different MSC donors.  Statistical 

significance was defined as P≤0.05 and determined using the Kruskal-Wallis and 

Dunn's multiple comparison tests. * represents P≤0.05, ** represents P≤0.001 and *** 

represents P≤0.0001. 
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4.3.5 Gene expression profiles of MSCS seeded in to fibrin-poly(ester-urethane) 
scaffolds after seven days of culture 

At day 7 real-time PCR was used to determine the relative gene expression levels of 

the chondrogenic marker Sox9, the marker of hypertrophy collagen type X and the 

fibroblast marker collagen type I. The results were normalised to the gene expression 

of cells on day 0 using the ΔΔCt method, the housekeeping gene used was 18s. 

There was no significant difference in the expression of Sox9 mRNA at day seven, with 

all groups demonstrating decreased expression compared to cells in monolayer at day 

0 (Figure 4.10A), despite a trend towards an increase in group 1 loaded compared to 

control MSCs. 

The expression of type X collagen was significantly increased in groups 1 and 3 loaded 

groups when compared to their respective control groups (P<0.05; Figure 4.10B). 

Quantitative analyses demonstrated that cells in control scaffolds expressed collagen 

type X at a lower level than monolayer cells (the mean fold-upregulation compared to 

day 0 for group 1, 2 and 3 respectively were 0.2504, 0.3567 and 1.4224 ), whilst loaded 

scaffolds showed a higher level of expression than monolayer cells (mean values 

2.802,1.864 and 3.011). 

At day 7, there was no significant difference in collagen type I expression in response 

to load within any of the groups (Figure 4.10C). The mean fold-upregulation of collagen 

type I expression ranged from 0.7372 (a 1.35 fold-down regulation) to 2.133 compared 

to MSCs at day 0 showing only a slight variation in expression from monolayer cells. 

This suggests that the culture system used in this work has little effect on the 

production of collagen type I at day seven. 

 

 



147 
 

 



148 
 

Figure 4.10 

Analysis of chondrogenic marker transcript levels  in MSCs at day 7 of culture, 

demonstrating the effect of even and asymmetric seeding patterns within scaffolds as 

determined by real-time PCR, (A) Sox9 (B) Collagen type X (C) Collagen type I. These 

figures represent data collected from three repeats of the experiment, each carried out 

in quadruplicate, with three different MSC donors. Statistical significance was defined 

as P≤0.05 and determined using the Kruskal-Wallis and Dunn's multiple comparison 

tests. * represents P≤0.05, ** represents P≤0.001 and *** represents P≤0.0001. 
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4.3.6 Gene expression profiles of MSCs seeded in to fibrin-poly(ester-urethane) 
scaffolds after twenty-eight days of culture 

At day 28 real-time PCR was used to determine the relative gene expression levels of 

the chondrogenic markers aggrecan, Sox9 and collagen type II, the pericellular matrix 

marker collagen type VI, the fibroblast marker collagen type I, the marker of 

hypertrophy collagen type X and the osteoblast marker Runx2. The results were 

normalised to the gene expression of cells on day 0 using the ΔΔCt method, the 

housekeeping gene used was 18s. 

Mechanical load induced aggrecan transcription in group 1 loaded MSCs compared to 

the unloaded MSC scaffolds at day 28 (P=0.018; Figure 4.11A); a trend towards 

increased aggrecan expression was also observed in group 2 in response to load, but 

this did not reach statistical significance. Group 1 loaded scaffolds showed a 

significantly higher level of expression than group 1 control scaffolds (P<0.018). 

Aggrecan expression was down regulated when compared to cells at day 0 in all 

groups except group 1 and 2 load (the mean fold-upregulation values compared to day 

0 were 15.86 and 3.960 respectively). 

There was also a significant increase in Sox9 expression between group 1 and 2 

loaded MSCs and their respective controls (P<0.05; Figure 4.11B). However, there was 

no increase in Sox9 transcription in MSCs subjected to load in group 3. Furthermore, 

there was no significant difference in Sox9 mRNA levels between loaded scaffolds in 

group 1 and group 2. Sox9 expression was similar to day 0 in all groups except loaded 

group 1 and 2 MSCs (the mean fold-upregulation values compared to day 0 were 5.053 

and 3.520 respectively). 

Collagen type II expression could not be detected in control groups, only in loaded 

groups. As a result, collagen type II expression was normalised to group 1 loaded 

scaffolds, as this represents the work previously carried out in this system and 

therefore was the most appropriate loaded group (collagen type II expressing group) to 

normalise to in the absence of expression in day zero or control scaffolds (Figure 

4.11C). There was significantly higher expression in group 2 loaded scaffolds 

compared to group 3 loaded scaffolds (P=0.004, Figure 4.11C). The mean fold up-

regulation of group 2 scaffolds was 1.163, which shows that the expression was similar 

to group 1 loaded scaffolds, group 3 loaded scaffolds, however, showed decreased 

expression compared to group 1 load (which represents a 4-fold decrease in 

expression). 

The expression of collagen type VI was very similar in all groups and was also similar 

to the expression observed at day 0 (Figure 4.11D). There was a trend towards an 

increase in group 3 control and load compared to group 1 and 2, but significance was 
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only observed for the comparison between control MSCs in group 1 versus group 3 

(P=0.030; Figure 4.11D). (P=0.032 and 0.030 respectively)  

As at day 7, there was a trend towards increased collagen type I expression with load 

on day 28; however, there were no significant increases within groups when comparing 

load and control (Figure 4.11E). There were also no significant differences detected in 

collagen type I expression as a result of the different seeding patterns used in group 1-

3 in loaded or control scaffolds. All groups showed a down-regulation of expression 

compared to day 0. 

The pattern of expression of collagen type X was similar at both days 7 and day 28. 

There was a clear and significant increase in the expression of type X collagen in 

response to load within all three groups relative to their respective unloaded controls 

(P<0.001, P<0.001 and P=0.031 respectively; Figure 4.11F). The expression of 

collagen type X in control groups was similar to day 0 (the mean fold-upregulation 

values compared to day 0 were1.299, 0.6267 (a 1.6-fold decrease) and 1.167 in group 

1, 2 and 3 respectively), however, the expression was much higher in loaded scaffolds 

(the mean fold-upregulation values compared to day 0 were 299.9, 216.0 and 82.00 in 

group 1, 2 and 3 respectively). The fold change in mRNA expression observed for 

collagen type X in response to load is greater than the fold changes detected in the 

other collagens at day twenty-eight. However, within the loaded groups the mean Ct 

values of the other collagens, particularly collagens type I and II are lower than those of 

collagen type X suggesting greater abundance of mRNA for these other collagen types 

(Table 4.1). 

As with the other genes analysed, there was an apparent trend of a load-induced 

increase in Runx2 mRNA expression, but this was not statistically significant (Figure 

4.11G). However, the expression of Runx2 was increased in all groups compared to 

day 0 (mean-fold changes ranged between 2.154 and 3.870). When the Runx2/Sox9 

mRNA ratio was calculated, a clear load-dependent reduction was visible in group 1, 

but this did not reach statistical significance (Figure 4.11H). 
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Figure 4.11 

Relative quantification of gene expression measured at day 28 of culture by real-time 

PCR, demonstrating the effect of even and asymmetric MSC seeding patterns within 

fibrin-poly(ester-urethane) scaffolds. (A) Aggrecan (B) Sox9 (C) collagen type II (D) 

collagen type VI (E) collagen type I (F) collagen type X (G) Runx2 (H) Runx2/Sox9 

ratio. These figures represent data collected from three repeats of the experiment, 

each carried out in quadruplicate, with three different MSC donors. Statistical 

significance was defined as P≤0.05 and determined using the Kruskal-Wallis and 

Dunn's multiple comparison tests. * represents P≤0.05, ** represents P≤0.001 and *** 

represents P≤0.0001. 
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Mean Ct Value and Standard Deviation 

 
Collagen Type I Collagen Type II Collagen Type X 

Group 1 Load 21.86 ± 1.07 22.90 ± 5.53 26.90 ± 2.01 

Group 2 Load 20.89 ± 0.73 21.94 ± 5.99 26.31 ± 2.53 

Group 3 Load 23.52 ± 1.36 28.73 ± 4.24 30.07 ± 2.06 

 

Table 4.1 

The mean Ct values for collagen types I, II and X expressed by MSCs cultured for 28 

days in fibrin-poly(ester-urethane) scaffolds and subjected to load. The lower Ct values 

for collagen type I and II suggest greater amounts of RNA for these two proteins were 

present in the MSCs analysis, despite the greater increase in collagen type X 

expression calculated by the ΔΔCt analysis. The values represents data from three 

different biological repeats each consisting of three technical repeats.  
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4.3.7 Quantification of the total and active TGF-β1 in collected culture media 

The total and active TGF-β 1 was quantified in collected culture media using an ELISA. 

The data presented here represents the absolute concentration of total TGF-β1 within 

the culture media in ng/ml and percentage of the total TGF-β1 content that was in an 

active form .  

During the first week of culture, there was a trend towards increased amounts of TGF-

β1 released into the media from both group 1 and group 2 MSC scaffolds subjected to 

load compared to their respective controls, this however was not significant (Figure 

4.12A). Media collected in the second week of culture showed a significant increase in 

TGF-β1 measured in loaded group 1 MSC scaffolds versus its respective control 

(P=0.026; Figure 4.12B). However, group 1 and group 2 loaded samples were not 

significantly different to each other. There was not a significant difference between 

group 2 control and group 2 loaded scaffolds, despite a trend towards an increase with 

load.   

Week 3 media collected from group 1 loaded MSC scaffolds contained significantly 

more TGF-β1 than group 1 control scaffolds (P=0.050; Figure 4.12C). There was also a 

clear trend towards increased TGF-β1 in response to load in group 2, but due to large 

standard deviations this was not significant at the 5% level.  

Analysis of week 4 media showed that there was increased release of TGF-β1 into the 

media in group 1 and 2 in response to load, however, none of the intragroup changes 

reached significance at the 5% level  (P=0.104, 0.370 and 0.999 for group 1, 2 and 3 

respectively, Figure 4.12D). 

As well as analysing the total amount of load-induced TGF-β1 released into the media, 

the percentage of active TGF-β1 was also quantified (Figure 4.12E). The results from 

week 1 media show that there was a significant increase in active TGF-β1 detected in 

the media in group 1 and 3 loaded samples compared to their respective controls 

(P<0.0001 and 0.0032 respectively). There was also a trend towards an increase in 

group 2 loaded MSC scaffolds compared to control but this was not significant 

(P=0.051) due to the large standard deviation for the loaded values. In weeks 2, 3 and 

4 media, the results show that the amount of active TGF-β1 was significantly higher in 

all three of the loaded groups compared to their three respective control groups 

(P<0.05); a very low percentage of active TGF-β1 was observed in the control MSC 

scaffolds over time in culture. There was no significant difference between loaded 

scaffolds across the three seeding groups or between control scaffolds across the 

three groups (Figure 4.12F-H). 
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Figure 4.12 

Quantification of the total and active TGF-β1 content of media collected during each 

week of culture from MSCs in fibrin-poly(ester-urethane) scaffolds subjected to load; 

unloaded scaffolds served as controls . This data shows the effect of load on TGF-β1 

production and activation in groups with different cell seeding patterns. Media collected 

from each sample at the three media changes performed each week was pooled and 

frozen before ELISA quantification. (A-D) Total media TGF-β1 content measured at 

each week during culture. (E-H) Active TGF-β1 content of media collected over the 

course of culture. The data represents the absolute total and active TGF-β1 content of 

the media that was analysed.  Statistical significance was defined as P≤0.05 and 

determined using the Kruskal-Wallis and Dunn's multiple comparison tests. * 

represents P≤0.05, ** represents P≤0.001 and *** represents P≤0.0001. 
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4.4 Discussion 

Previous work has shown that when multiaxial shear and compression loading was 

applied to MSCs seeded within fibrin-poly(ester-urethane) scaffolds, the cells undergo 

chondrogenesis in the absence of any exogenous growth factors, specifically TGF-β (Li 

et al., 2010a, Li et al., 2010b, Kupcsik et al., 2010, Neumann et al., 2013). This was 

characterised by the up-regulation of genes associated with chondrogenesis, such as 

collagen type II and aggrecan, as well as the deposition of cartilage like matrix 

(containing collagen type II and sulphated GAG) within the scaffolds themselves (Li et 

al., 2010a). This chondro-induction was shown to be driven by endogenously produced 

TGF-β1 and could be blocked using the TGF-β receptor 1 (ALK5) inhibitor LY364947 

(Li et al., 2010a). The induction of collagen II expression is a particularly powerful 

marker of chondrogenesis, as aggrecan and Sox9 were often found in monolayer 

expanded MSCs used as a day 0 controls for real-time PCR analysis, whilst collagen II 

was almost never detected under non-chondrogenic conditions. Further investigation 

showed that the shear component of the load was vital in the induction of 

chondrogenesis and this study set out to take advantage of that, and the potential 

signalling effects that were shown to occur between separate populations of MSCs in 

Chapter 3, to improve the amount of matrix deposition and chondro-induction in 

response to mechanical load. In order to do this, scaffolds were seeded asymmetrically 

with 10% of the total cell number on the loaded surface of the scaffolds in order to 

produce a population of cells that was directly exposed to the shear component of the 

load. Moreover, the absolute cell number remained the same for Groups 1 and 2. 

Alongside this, the media collected from samples during media changes was analysed 

for both total and active TGF-β1 to investigate the effect of multiaxial mechanical load 

on TGF-β1 activation. 

Cells were labelled with a fluorescent dye and visualised after harvesting at 4 weeks in 

order to demonstrate that any effect observed was due to the MCSs seeded on the 

scaffold surface remaining there over the time in culture. MSCs seeded on the surface 

of control scaffolds are found to be distributed throughout the top 200-400 µm of the 

scaffolds after four weeks of culture in both group 2 and 3, however in loaded group 2 

scaffolds the cells appear to form a layer on the scaffold surface. The details of this 

phenomenon however not been studied further.  

 A reduction in cell number and decreased amounts of fibrin hydrogel was observed in 

the center of the scaffold compared to the outer areas of the scaffold after four weeks 

in culture. This is consistent with previous work and is not a result of heterogeneous 

seeding, as histology performed in the first weeks of culture indicated a homogenous 

distribution of cells and hydrogel throughout the scaffold (Zahedmanesh et al., 2014). 
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The changes in cell distribution appear instead to occur in the later stages of culture. 

These changes in distribution may result from the poor diffusion of nutrients and ε-

aminocaproic acid (EACA) into the center of the scaffold leading to fibrin degradation 

and potentially cell death; however this has not been investigated. 

The formation of a cell layer on top of loaded group 2 scaffolds suggests that the MSC 

cells on the surface potentially act as a separate population from the cells that are 

near, rather than on the surface of the scaffold, which despite their proximity remain in 

a 3D environment within the fibrin hydrogel. The distribution of the cells seeded on the 

surface of group 2 loaded scaffolds is restricted to the very surface of the scaffold. The 

position of the cells on the surface may have resulted in the increased polarisation of 

these cells compared to MSCs seeded within the hydrogel itself.  The polarisation of 

the cells may lead to a change in their morphology and cytoskeletal organisation which 

may in turn affect the phenotype of the cells and their response to mechanical load, in 

particular shear (Benya and Shaffer, 1982, Wang et al., 1993). The distinction, and 

possible interaction between these two populations may explain the histological 

differences between groups 1 and 2. 

Results of safranin O and toluidine blue staining shows that there is a clear increase in 

the deposition of sulphated GAG in group 1 and 2 loaded MSC scaffolds compared to 

their respective controls. Staining also improved in group 2 loaded scaffolds compared 

to group 1 loaded scaffolds. This was also true for collagen type II. Increased matrix 

deposition in group 2 loaded scaffolds compared to group 1 loaded scaffolds may 

result from interaction between the population of cells seeded on the scaffold surface 

with the cells seeded within the fibrin hydrogel. This is supported by the lack of staining 

in group 3 scaffolds, which demonstrates that the layer of surface cells alone is not 

able to deposit cartilage-like matrix in a manner similar to that seen in group 2, this 

therefore suggests that the interaction between the two populations is key in the 

increased deposition of matrix seen in group 2. The increased staining for GAG and 

collagen type II labelling was consistently seen using multiple donors. Collagen type X 

deposition also appears lower in areas of matrix that stain positively for sulphated GAG 

and collagen type II in group 2 compared to group 1. However, this interpretation 

requires caution due to the non-specific labelling of the fibrin scaffold by the primary 

antibody and may just appear clearer in group 2 loaded scaffolds due to the larger 

areas of matrix compared to group 1 loaded scaffolds. The labelling of collagens type I 

and VI also clearly increases with load in group 1 and 2, although more so in group 2, 

whilst expression is lower in group 3 load compared to its respective control.  The 

increased expression of collagen type I has been previously described in response to 

load in this system (Li et al., 2010a, Schatti et al., 2011), collagen type I expression has 

also been noted in MSCs loaded in other systems (Huang et al., 2004, Angele et al., 
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2004). These data show the clear chondrogenic effect of load on MSCs in this system 

and the improvement in matrix deposition that can be achieved with an asymmetric 

distribution of cells with the scaffolds. 

 

Isoforms of TGF-β are commonly used to induce chondrogenesis in MSCs in vitro and 

have been shown to be responsible for the induction of chondrogenesis in 

mechanically stimulated cells (Huang et al., 2004, Li et al., 2012, Li et al., 2010a, 

Huang et al., 2005). Therefore, the amount of total TGF-β1 and active TGF-β1 was 

quantified in culture media to investigate possible correlation between the presence of 

this chondrogenic stimulus and any changes observed as a result of asymmetric 

seeding of scaffolds. The results of this work show that the application of load in group 

1 and 2 scaffolds led to an increase in the amount of total TGF-β1 within the culture 

media. Significant differences were observed in response to load within group 1 

scaffolds. However, due to higher standard deviations in the amount of TGF-β1 

quantified in media collected from group 2 control scaffolds, significant differences 

were not observed within group 2 or when compared to  TGF-β1 levels in group 1. This 

increased variability, and the increased basal expression levels in group 2 control 

scaffolds compared to group 1 scaffolds may be due to better nutrition of surface 

seeded cells or increased paracrine signalling by the higher density monolayer model. 

This led to a smaller increase over basal expression levels in group 2, which was not 

investigated further. The production of TGF-β1 by MSCs in response to mechanical 

load has previously been shown under similar conditions by this group as well as by 

others (Li et al., 2010a, Li et al., 2012, Huang et al., 2005). 

Quantification of the percentage of active TGF-β1 in each sample show that in groups 

1, 2 and 3 the percentage of active TGF-β1 in each loaded group was significantly 

upregulated compared to their respective control groups between weeks two and four 

of culture (fig.1 E-H). This clearly shows that the application of joint like load in this 

model system not only leads to an increase in the total production of TGF-β1 but also 

induces the activation of the latent TGF-β released by the MSCs. The activation of 

TGF-β1 has previously been shown in rat bone marrow derived MSCs in response to 

uniaxial compression (Li et al., 2012), however to the authors knowledge this is the first 

time joint like load has been demonstrated to be able to induce the activation of 

endogenous TGF-β1 produced by human bone marrow derived MSCs in response to 

multiaxial mechanical load.  

Over the course of the four weeks in culture no significant differences were observed in 

the percentage of active TGF-β1 between the three loaded groups, despite the 

different distributions of cells within the scaffolds of these groups; this is interesting 
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because the scaffolds of the three groups contained different numbers of cells and the 

cells in the different scaffolds groups were at different stages of chondrogenic 

differentiation. This consistency in the degree of TGF-β1 activation, despite the 

variation in the cell populations within the scaffolds, suggests that the increase in the 

amount of active TGF-β1 in response to load results from a physical activation. This 

finding is similar to that observed by others in response to mechanical load, particularly 

shear, in the absence of cells rather than as a result of enzymatic activation due to 

activity of the cells within the scaffold (Ahamed et al., 2008, Albro et al., 2012). The 

inclusion of the protease inhibitor 6-aminocaproic acid, in order to prevent fibrin 

degradation during culture, in the media also suggests that this activation is unlikely to 

be due to the activity of plasmin, a known TGF-β activator, as it is one of the enzymes 

inhibited by 6-aminocaproic acid (Kupcsik et al., 2009). 

This finding suggests that the multiaxial loading, applied to the MSCs embedded in 

scaffolds in this study, is activating latent TGF-β1 present in the culture media. The 

increase in TGF-β1 production and activation in response to mechanical load in this 

system affirms the importance of mechanical loading of cartilage implants at an early 

stage of culture if cartilage-like repair tissue is to be produced. 

Analysis of gene expression at day 7 of culture showed that there was a trend towards 

the up-regulation of collagen type I and the hypertrophy marker collagen type X in 

response to load when compared to non-loaded controls, but no significant differences 

were observed between the loaded groups. No significant difference was detected in 

response to load in the expression of Sox9, although results suggested a trend towards 

an increase with load in groups 1 and 2. The expression of collagen type X is well 

associated with the chondrogenic induction of MSCs and has previously been shown to 

be induced by load in this system (Johnstone et al., 1998, Li et al., 2010a, Schatti et al., 

2011, Neumann et al., 2013). 

Results of gene expression analysis at day 28 showed that load increases the 

expression of collagen type I in all three groups, but these differences did not reach 

statistical significance. The lack of significance may relate to the high variability 

between cells from different human donors, as a result relevant trends in the data have 

also been discussed in this section. Collagen type II expression was only observed in 

MSCs subjected to load, and similar mRNA levels were detected in groups 1 and 2; 

levels were significantly higher in group 2 compared to group 3. This suggests that 

load-induced transcription of collagen type II mRNA in MSCs may be one of the more 

sensitive chondrogenic markers compared to, for example, aggrecan which can be 

detected consistently in monolayer expanded MSCs. The expression of collagen type 

VI, which is found in the pericellular matrix surrounding chondrocytes in vivo, did not 
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change with load in groups 1, 2 or 3. The expression of type VI collagen does however 

appear elevated (not significantly) in group 3 control and loaded scaffolds compared to 

scaffolds in the other two groups in a similar way to collagen type I. Collagen type X 

expression was significantly increased in all three loaded groups in comparison to their 

respective controls, but there was no significant difference between the individual 

groups. In all three groups, there was a trend toward increased aggrecan production 

with load; however, only in group 1 did load significantly increase aggrecan 

transcription compared to the unloaded control. Group 1 and 2 loaded scaffolds 

expressed significantly higher amounts of Sox9 than their respective control groups; 

furthermore, significantly more Sox9 mRNA was detected in group 1 subjected to load 

when compared to the equivalent  group 3 cells. Increased Sox9 expression in MSCs 

has previously been reported in response to compressive load alone (Huang et al., 

2005, Campbell et al., 2006)  and to the multiaxial load applied by the bioreactor 

described in this chapter (Schatti et al., 2011). The Runx2/Sox9 ratio has been shown 

to be a predictive marker of osteogenesis (Loebel et al., 2014). A trend towards a 

decrease in the Runx2/Sox9 ratio, indicating chondrogenesis, was observed in 

response to load in groups 1 and 2. 

These gene expression results show that load has a chondrogenic effect in both group 

1 and 2, whilst MSCs in group 3 scaffolds adopt a more hypertrophic phenotype. 

However, there was no significant difference in the expression of any of the genes 

tested between group 1 and 2 loaded scaffolds, although, there was a trend towards 

greater aggrecan and Sox9 expression in group 1. The results of biochemical analyses 

of scaffolds and media also demonstrated no significant difference between the 

production of GAG in response to load or between cell seeding in group 1 and 2 

scaffolds. 

 

The results presented here indicate that seeding a layer of MSCs on the surface of a 

fibrin-poly(ester-urethane) scaffold can improve the deposition of matrix in the area 

directly exposed to mechanical load but does not appear to impact on the gene 

expression of the cells within the scaffold or the scaffolds GAG/DNA ratio. The lack of 

any significant changes observed in loaded scaffolds in groups 1 and 2 in PCR and 

GAG/DNA data may be linked to the use of cells from two donors which responded 

strongly (in terms of matrix deposition detectable through the use of histological 

staining) to chondrogenic induction (female 18 years-old and male 22 years-old) and 

two donors that responded weakly (female 49 years-old, male 48 years-old). This led to 

a reduction in the overall differences observed between groups when the results from 

the four donors were collated, therefore generating a greater standard deviation and 



162 
 

subsequent lack of significance at the 5% level. While this deviation can be reduced by 

selecting or pooling donors, the frequency with which a result is observed cannot be 

determined (Stoddart et al., 2012). Previous studies have consistently shown 

significant increases in GAG/DNA in response to load by MSCs in this system (Li et al., 

2010a, Kupcsik et al., 2010).  Results of collagen type II histology and safranin 

O/toluidine blue staining indicate that chondrogenesis occurs in highly localised areas 

as a result of mechanical stimulation. This means that cells in other areas of group 1 

and 2 scaffolds (but not group 3 where all the cells are exposed to load) are not 

expressing markers of MSC chondrogenesis (collagen type II, type X, aggrecan and 

Sox9), but they do produce less specific markers such as collagen type I and type VI 

as demonstrated immunohistochemically. The proteinase K digest and RNA isolation 

procedures used in this study isolated DNA and RNA from one half of a scaffold cut 

vertically in two and, therefore, contains DNA and RNA from cells undergoing 

differentiation (on the upper surface of the scaffold) as well as the non-chondrogenic 

cells expressing more general markers in the rest of the scaffold. A large proportion of 

the cells being analysed in group 1 and 2 scaffolds, therefore, are not responding to the 

chondrogenic stimulus but still contributing 18s rRNA and DNA to the measures used 

to normalise the RT-PCR and GAG data respectively. The effect of this would be to 

'dilute' or mask the apparent up-regulation of genes (e.g. collagen type II, type X, 

aggrecan and Sox9) that were expressed in the small proportion of the total population 

that was responding to load by undergoing chondrogenesis. This would not prevent 

significant differences from being detected in chondrogenic markers between loaded 

samples and control samples as there is a large difference in gene expression between 

loaded scaffolds which are receiving chondrogenic stimulation and control scaffolds 

which receive no chondrogenic stimulation. However, this would mask the, relatively, 

more subtle differences between group 1 and 2 loaded scaffolds, producing similar 

results for both groups. It is of note that the differences were slight for aggrecan, which 

is expressed in monolayer expanded MSCs, whilst collagen type II was only found in 

Group 1 and 2 MSCs subjected to load. 

If this masking was occurring for chondrogenic genes, then it would not be expected for 

the more generally expressed proteins such as collagen type I and collagen type VI 

which are expressed throughout the scaffolds. Collagen type I mRNA levels show a 

trend (not significant) towards an increase in production with load in group 1 and 2 

loaded scaffolds compared to controls, which was also observed by 

immunohistochemistry. No such trend is clear in collagen type VI gene expression, but 

again, increased deposition was detected immunohistochemically in group 1 and 2 

loaded scaffolds, compared to controls. This lack of a clear difference in load and 

control samples at a gene expression level may seem to contradict the idea that gene 
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expression could be masked by non-stimulated cells. However, as genes, such as 

collagen type I and collagen type VI, are widely expressed in this system regardless of 

the application of load, it follows that there would be less clear differentiation between 

control and loaded scaffolds at a gene expression level (as with the lack of 

differentiation between chondrogenic markers in group 1 and 2 loaded scaffolds). This 

is more apparent when compared to markers of chondrogenesis (specifically type II 

collagen), which cannot be detected in non-loaded samples analysed using PCR or 

labelled immunohistochemically. The increased labelling of collagen type I and VI in 

loaded samples may simply be due to increased fluid flow and, therefore, nutrition as a 

result of loading leading to increased production of widely expressed molecules across 

the scaffolds, as opposed to a specific effect of the application of multiaxial load. The 

effect of loading on fluid flow throughout the scaffold could be investigated using 

fluorescently labelled dextran.  

Analysis of the results of group 3 scaffolds provides some evidence for the masking of 

differences in group 1 and 2. The GAG/DNA ratio of group 3 scaffolds is only 

significantly different from group 2 loaded scaffolds, despite the dramatically increased 

production of GAG in both control and loaded scaffolds in group 1 and 2. Histology 

suggests that only a small population of cells near the surface of the scaffold produces 

GAG in groups 1 and 2, therefore, the expected GAG/DNA ratio of the cells producing 

GAG would be expected to be higher than group 3 scaffolds. However, the results 

show that the GAG/DNA ratio of group 3 scaffolds is higher than expected; this may be 

due to the better nutrition that these cells receive on the surface of the scaffold 

compared to cells seeded within the scaffold. Better access to nutrients may increase 

the basal expression of GAG by these cells. As the whole population would be exposed 

to this increased source of nutrients there are no cells to mask the result as in group 1 

and 2 scaffolds, resulting in a higher than expected GAG/DNA ratio. However the 

smaller than expected difference between group 1/2 scaffolds and group 3 scaffolds 

may also be due to dilution of the newly synthesised GAGs with the DNA of cells in 

areas not producing GAG in group 1 and 2; this could contribute to the overall DNA 

measurement but not be reflective of the amount of GAG produced, therefore resulting 

in lower GAG/DNA ratio, in a similar manner to the masking described for the gene 

expression data. In order to investigate this masking effect for both PCR data and 

biochemical analysis mechanically loaded scaffold could be cut vertically in half at the 

end of culture. One half could then be cut again horizontally to isolate the top 25% of 

that half of the scaffold. The top 25% of the scaffold could then be analysed alongside 

the other full scaffold half. Should the non-chondrogenically stimulated cells mask any 

changes in gene expression or GAG/DNA quantification this should be apparent in the 
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results from the full half scaffold compared to the top 25% of the other half of the 

scaffold. 

In group 3 scaffolds there were different patterns of gene expression and matrix 

deposition for types I and VI collagen compared to the scaffolds in other groups.  In 

group 1 and 2, the gene expression is not significantly different in control or loaded 

samples (despite a trend in collagen type I) and there is positive immunohistochemical 

staining which is higher in loaded groups. However, in group 3 scaffolds, the 

expression of these genes is elevated compared to group 1 and 2 scaffolds, potentially 

due to the different environment (seeded as a layer on the surface of the scaffold) 

causing changes in the cell polarisation, morphology and phenotype, but 

immunohistochemical labelling for these two proteins is lower in loaded scaffolds than 

control scaffolds. This difference may be attributable to the increased loss of matrix 

components into the culture media, where collagen would not be detected, by the cells 

on the surface of group 3 loaded scaffolds. Fluorescent cell-tracking has shown that 

MSCs remain on the surface of loaded scaffolds compared to MSCs in free swelling 

constructs, which at day 28 are found throughout the upper layers of the scaffold. 

Analysis of the media GAG/scaffold GAG ratio for each sample demonstrated that 

group 3 scaffolds had the highest ratio of any of the three scaffold configurations, 

demonstrating the lowest ability to retain GAG and, potentially, other matrix 

components within the scaffold (data not shown). This may explain the difference in 

type I and VI collagen labelling between group 3 control and loaded scaffolds 

discussed above and warrants further investigation outside the scope of this thesis. 

Future experiments could address this suggestion by measuring the amount of 

collagen type I and VI released into the media, as opposed to deposition within the 

construct, using these antibodies for Western blotting. 

 

The analysis of scaffolds using biochemical and RT-PCR techniques, and the analysis 

of latent and active TGF-β1 in collected culture media provided no explanation for the 

changes observed histologically between the loaded groups 1 and 2. This emphasises 

the importance of histological analysis to demonstrate actual matrix deposition. In order 

to find an explanation for the differences observed between the data sets a number of 

different approaches, and additional analyses were performed, some of these are 

detailed below. 

The formation of a layer of cells on the surface of the scaffolds was demonstrated in 

this chapter via fluorescent labelling. If the area covered by the MSCs seeded on the 

surface was great enough, then this layer may prevent the diffusion of matrix 

components from the scaffold into the media leading to an increase in scaffold matrix 
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deposition. However, if the media GAG/scaffold GAG ratio is calculated for group 1 and 

2 loaded scaffolds, the ratio is almost identical when statistically tested P>0.999 (data 

not shown). This analysis suggests that there is no difference in media GAG loss in the 

two groups demonstrating that the increase in staining observed in group scaffolds is 

unlikely to be due to increased retention within group 2 scaffolds. 

The binding of TGF-β1 to components of the matrix could increase the amount of 

growth factor available to cells within the scaffolds, but might not be detected by the 

TGF-β1 ELISA measurement. Increased matrix deposition in group 2, could mean 

more TGF-β1 creating a positive feedback loop for chondrogenesis that is not present 

in group 1 and, may explain the different staining between the two groups. In order to 

test this hypothesis the presence of bound TGF-β1 was investigated 

immunohistochemically.  The results of this investigation demonstrated that TGF-β1 

could not be detected in any scaffold despite labelling in the bone region of the glenoid 

ligament enthesis section used as positive control tissue  (data not shown). As a result 

it is unlikely that it is a difference in the binding of TGF-β1 to the scaffold and proteins 

within it causes the difference in matrix deposition between groups 1 and 2. 

The difference could also be the result of a temporal effect, with the cells on the 

surface of the scaffold responding rapidly to load leading to earlier matrix deposition in 

group 2 compared to group 1. Histology has not been performed earlier than day 28, 

however, gene expression analysis on day 7 showed similar patterns of gene 

expression to day 28, suggesting this is unlikely. The results of day 7 gene expression 

analysis did however show an increase in the expression of collagen type I and X 

showing that the cells on the surface of group 3 scaffolds do respond to load, but only 

during the early stages of culture and not by day 28. 

The seeding of cells on the surface of the scaffold could increase their access to 

nutrients in the media and, therefore, increase the amount of matrix deposited. 

However, in group 3 little matrix was produced or deposited suggesting that cross-talk 

between the surface cells and the cells seeded within the scaffold is required to see the 

changes in matrix deposition observed in group 2. 

 

A potential factor that was not investigated is the effect of the high cell density created 

by seeding a layer of 400,000 cells on the surface of a scaffold 8 mm in diameter. High 

cell density is known to be important in chondrogenesis e.g. within developing bones 

and it may be that by seeding cells on the surface the increase in cell density 

contributes to the deposition of cartilage matrix molecules (Goldring et al., 2006).  

Recent work by Schrobback et al. has shown that blocking gap junctions or 

hemichannels can reduce the expression of chondrogenic markers in MSCs in pellet 
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and alginate culture (Schrobback et al., 2015). One way to test the importance of cell-

cell interaction in this system would be to repeat the experiment in the presence of a 

molecule that interferes with gap junction signalling such as 18-α glycyrrhetinic acid, as 

used by Schrobback et al., and observe the effects such an inhibitor has on 

chondrogenesis in response to load in this system. 
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4.5 Conclusions 

The data presented here confirm previous results that have shown that multiaxial 

mechanical load can be used to induce chondrogenesis in MSCs in the absence of any 

exogenous growth factors, principally TGF-β. This work also shows that asymmetric 

seeding leads to clear differences in the deposition of matrix as demonstrated by the 

histological staining present in group 1 and group 2 scaffolds, particularly for sulphated 

proteoglycan and type II collagen. The results suggest that the change in matrix 

deposition is linked to interaction between the cells seeded on the surface of the 

scaffold and the cells seeded within the scaffold. However, these differences were not 

corroborated by changes in the gene expression or biochemical analysis, potentially for 

reasons that have been described. It may be that there are novel physical, chemical or 

biological factors that are involved in the relationship between these two populations of 

cells within these scaffolds that extend beyond the "classical markers" of 

chondrogenesis that have been investigated in this study, that are involved in this 

effect. This work also showed that the application of joint like mechanical load to 

cartilage tissue engineering constructs leads not only to the induction of latent TGF-β1 

release into the culture media, but also the activation of the secreted latent TGF-β1. 

This activation appears to result from the physical forces applied to the system rather 

than enzymatic activation, however further work is required to confirm this mechanism 

of action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168 
 

Chapter 5 A Secretomic Comparison of the Induction of 
Chondrogenesis in Human Mesenchymal Stem Cells via TGF-
β1 and Mechanical Load 

 

Aim 

The aim of this research chapter was to investigate the different secretomic profiles of 

MSCs induced into chondrogenesis through TGF-β1 stimulation and mechanical load 

in order to compare and contrast the effects of these two forms of induction.  As 

mechanical load induces chondrogenesis via a TGF-β1 dependent mechanism, this 

work was designed to investigate if the effect of load was analogous to the exogenous 

application of TGF-β1 or if load has additional effects to TGF-β1, and to identify 

potentially novel bioactive factors for use within MSC cartilage tissue engineering. 

 

Sections of this Chapter have been submitted to European Cells and Materials in a 

manuscript entitled "Differences in human Mesenchymal stem cell secretomes during 

chondrogenic induction" which is currently under review. 
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5.1 Introduction 

Currently, standard protocols for the induction of human mesenchymal stem cell 

(MSCs) chondrogenesis in vitro involve the culture of cells in a 3D environment (e.g. in 

a pellet/micromass culture or encapsulated within a hydrogel) coupled with the 

exogenous application of an isoform of TGF-β (Johnstone et al., 1998, Barry et al., 

2001). This chondrogenic response is induced by TGF-β and mediated by SMAD 

signalling proteins which results in an increase in the expression of chondrogenic 

markers such as the transcription factor Sox9 and the matrix molecules aggrecan and 

type II collagen (Johnstone et al., 1998, Furumatsu et al., 2005, Hellingman et al., 

2011). Following the induction of chondrogenesis both in vitro (Johnstone et al., 1998) 

and in vivo (Mueller and Tuan, 2008), MSCs progress towards hypertrophy, which is 

marked by the expression of molecules such as collagen type X and MMP13, 

eventually leading to cell death (D'Angelo et al., 2001, D'Angelo et al., 2000, 

Johansson et al., 1997). This progression of MSCs from a cartilage producing 

phenotype into a hypertrophic phenotype is reminiscent of the behaviour of 

mesenchymal progenitor cells during bone formation through endochondral ossification 

and presents a major barrier to the use of MSCs for the clinical repair of cartilage tissue 

(Mueller and Tuan, 2008, Goldring et al., 2006, Mackie et al., 2011, Sheehy et al., 

2015). 

Previous work has shown that the application of multiaxial load in our bioreactor 

system can induce chondrogenesis in human bone marrow derived MSCs in the 

absence of exogenous recombinant TGF-β (Li et al., 2010b, Schatti et al., 2011). 

Investigation into the mechanism behind the induction of chondrogenesis showed that 

the induction of chondrogenesis in this system is linked to the TGF-β signalling 

pathway (Li et al., 2010a). Blocking the TGF-β receptor 1 prevents this induction of 

chondrogenesis in response to multiaxial mechanical load (Li et al., 2010a). Work 

presented in Chapter 4 of this thesis shed further light on this mechanism by 

demonstrating that mechanical load can activate the latent TGF-β1 produced by the 

cells in response to load; suggesting that load is required at the production and 

activation level in order to induce chondrogenesis in this system. 

MSCs are known to respond to specific stimuli by synthesising matrix molecules and 

adopting cellular characteristics associated with tissues such as bone, cartilage and 

adipose. In addition to these matrix molecules, MSCs also secrete a large number of 

bioactive factors (Caplan, 2007, Czekanska et al., 2014). These factors provide 

information on the phenotype of the cells producing them, as well as mechanistic 

information about changes that occur in cells in response to certain stimuli, and what 

effect the cells might have on host cells around them in a clinical situation. The 
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secretomes of MSCs are increasingly being studied (Stoddart et al., 2015) and the 

secretomes of MSCs from a range of tissues including bone marrow, umbilical cord 

blood and adipose tissue, as well as MSCs derived from embryonic stem cells, have 

been investigated in a number of culture conditions in recent years (Haynesworth et al., 

1996, Liu and Hwang, 2005, Kinnaird et al., 2004, Sze et al., 2007, Rehman et al., 

2004). These studies have focused on different aspects of MSC biology including; 

angiogenesis, myogenesis and osteogenesis (De Lisio et al., 2014, Hoch et al., 2012, 

Oskowitz et al., 2011). A number of papers have also investigated the effects of 

chondrogenic stimulation on the MSC secretome (Grassel et al., 2009, Arufe et al., 

2011, Rocha et al., 2014, Bara et al., 2014, Rodriguez et al., 2015). These studies 

have demonstrated the upregulation of factors such as VEGF, MMP13 and TIMP1 and 

2. To the best of my knowledge no investigations have been made into the secretome 

of MSCs undergoing chondrogenesis in response to multiaxial load; furthermore, there 

is nothing reported in the literature comparing the secretomes of MSCs following 

mechanical load and TGF-β1 stimulation. 

The work presented in chapter 4 of this thesis showed that it was not possible to 

confirm  the changes in matrix deposition detected histologically between group 1 

compared to group 2 using "classic" markers of MSC chondrogenesis (e.g. GAG/DNA 

quantification and the determination of gene expression for a small number of genes). 

This may be a reflection of the narrow band of markers commonly used in this type of 

work, but also the high degree of complexity within the systems that are being studied. 

The work in this chapter was performed in order to broaden our understanding of the 

effect that inducing chondrogenesis has on MSCs, specifically on the soluble factors 

that they release into their environment.   

The aim of this study was to compare the secretomes of unstimulated hBMSCs, 

hBMSCs cultured with TGF-β1 in order to induce chondrogenesis, and hBMSCs 

cultured in the absence of TGF-β1 but with multiaxial mechanical load in order to 

induce chondrogenesis. It was hypothesised that by analysing the secretomes of MSCs 

cultured in different chondrogenic culture conditions and in different mechanical 

environments it would be possible to compare the individual effects of mechanical load 

and TGF-β1 stimulation on the chondrogenic induction of hBMSCs in order to gain 

greater understanding of the response of cells to these two different stimuli. This 

knowledge could be used to identify interesting and potentially novel bioactive factors 

for MSC based tissue engineering. 
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5.2 Materials and Methods 

5.2.1 Donor Information 

For this study, MSCs were taken from marrow aspirates from the vertebral bodies 

(thoracic or lumber) of three male donors (aged twenty-two, thirty-seven and seventy-

seven years old). 

 

5.2.2 Experimental Design 

In order to determine the specific effects of TGF-β1 and multiaxial mechanical load on 

MSC chondrogenesis, a study was performed on different human MSC donors using 

three experimental groups. All three groups consisted of three 2x8mm fibrin-poly(ester-

urethane) seeded with two million MSCs: group 1 scaffolds were kept in free swelling 

culture and received chondro-permissive medium (as described in Section 2.4); group 

2 scaffolds were kept in free swelling culture and received chondro-permissive medium 

supplemented with 1ng/ml TGF-β1; group 3 scaffolds were cultured in chondro-

permissive medium and received six cycles of mechanical load over the eight day 

culture period (as detailed below). An exogenous TGF-β1 concentration of 1 ng/ml was 

chosen for group 2 as previous studies have shown that mechanically loading MSCs in 

this bioreactor system leads to a media TGF-β1 concentration of 1ng/ml (Li et al., 

2010a), therefore the aim was to keep the chondrogenic stimulus similar between TGF-

β1 stimulated and loaded scaffolds. The media was collected from scaffolds on days 

two, four, six and eight for TGF-β1 quantification and secretome analysis. Experiments 

were repeated three times to confirm the observations. 

Following the results of this work, the study was repeated in order to isolate RNA from 

samples on day 8 for reverse transcription and real-time PCR, with the intention of 

confirming changes seen in the secretome analysis at the transcriptional level in the 

first set of experiments. The experimental design was identical to the initial study, 

except that the groups contained four technical repeats rather than three.  This second 

experiment consisted of three independent repeats using cells from the same MSC 

donors that were used in the first study, and ensuring that the cells were used at the 

same passage as the MSCs used in the first study. The culture media was also 

collected on day days two, four, six and eight for nitrite analysis. 
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5.2.3 Mechanical loading 

Multiaxial shear (±25° at 1Hz) and compression loading (10% compression 

superimposed on top of a 10% pre-strain at 1Hz) was applied for one hour a day, six 

times, over eight days (on days 2-7). 

 

5.2.4 Sample collection 

Culture media was collected on day 2, 4, 6 and 8 of culture. On day 8, scaffolds were 

homogenized in TRI reagent (Molecular Research Centre Inc., Cincinnati, OH, USA) 

and stored at -80°C for RNA isolation and real-time PCR as described in chapter 2. 

 

5.2.5 Characterisation of cytokine profile using a RayBio Human Cytokine 
Antibody Array 

A full list of proteins detected by this kit is provided in Appendix 1. The terms factor or 

bioactive factor are used as a generic terms in this chapter for proteins analysed using 

this array kit. 

Media collected on day 8 of culture was further analysed to determine the presence of 

174 different cytokines within each sample using the RayBio Human Cytokine Antibody 

Array G-Series 2000 protein array according to the manufacturer's instructions. Briefly, 

glass chamber assay slides were brought to room temperature and dried before being 

blocked for 30 minutes using 1x Blocking Buffer. After blocking, 100ul of sample was 

incubated in each well of the assay slides for 16 hours before the wells were washed 

three times with 1x Wash Buffer I and once with 1x Wash Buffer II. Slides were then 

incubated with 1x Biotin-conjugated Anti-cytokine (70ul/well) for two hours before being 

washed as described previously with 1x Wash Buffer I and II; 70ul of 1x Streptavidin-

Fluor was then added to each well of the assay slides and incubated for two hours. The 

assay slides were once again washed with 1x Wash Buffer I and II before the glass 

slides were removed from the chamber assembly, washed twice with 1x Wash Buffer I, 

washed once with distilled water and then centrifuged at 1000 rpm for three minutes 

and left to dry in a laminar flow hood for twenty minutes. The slides were then sent to 

THP Medical Products Vertreibs Gmbh (Vienna, Austria) for measurement. 
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5.2.6 Quantification of media nitrite (Griess Reaction) 

The concentration of nitrite in collected culture media was measured using the Griess 

assay as an indirect method of determining the relative level of nitric oxide in the 

experimental media samples. Griess reagent (modified) was prepared by dissolving 

1.75 g of powder into 44 ml of double distilled water. A standard curve was then 

prepared using sodium nitrite. A 500x stock was prepared by dissolving 0.345 g of 

sodium nitrite in 100 ml of double distilled water, a serial dilution in chondropermissive 

medium was then performed to generate a standard curve consisting of 100 µM, 50 

µM, 25 µM, 12.5 µM, 6.25 µM and 3.125 µM standards. 100 µl of standards and 

samples were then pipetted in duplicate in to a transparent 96 well plate, 100 µl of 

Griess reagent was then added to each well. The reaction was allowed to proceed for 

15 minutes in the dark before absorbance was measured at 530 nm. The standard 

curve was extrapolated to quantify the amount of nitrite in the samples with the lowest 

concentrations. 

 

5.2.7 Statistical analysis 

The results of secretome analysis and TGF-β1 quantification represent data from three 

experimental repeats each performed using MSCs from a different donor repeated in 

triplicate. Real-time PCR results represent data from three experimental repeats in 

quadruplicate. The data presented represents a combination of all the repeats 

performed. 

The results of TGF-β1 quantification, nitrite quantification and real-time PCR analysis 

were tested for normality using the D'Agostino-Pearson omnibus normality test. 

Statistical differences of media TGF-β1, nitrite ions and all genes analysed by real-time 

PCR except leptin and MMP13 within samples was determined using the Kruskal-

Wallis test and Dunn's multiple comparison test. Statistical significance for leptin and 

MMP13 was determined using the Mann-Whitney test as the expression of these 

genes was not detectable in day 0 samples so the expression of loaded and control 

groups were therefore normalised to the expression in control scaffolds. Therefore, as 

the comparison was only between two groups rather than three for these genes the 

Mann-Whitney test was performed instead of the Kruskal-Wallis test. 

The fluorescent intensity levels recorded for each sample from the cytokine array were 

adjusted to remove background interference. Outliers were then removed using the 

ROUT method, normality was determined using the D'Agostino-Pearson omnibus 

normality test and the statistical difference was then determined between control and 

TGF-β1 cultured groups, between load and control and between load and TGF-β1 

cultured groups using Kruskal-Wallis test and Dunn's multiple comparison test. 
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5.3 Results 

 

Due to the use of primary human cells in this work there was a high degree of 

variability between biological repeats. Due to this high level of variation and the 

relatively low numbers of donors tested many of the analyses do not reach significance 

at the 5% level.  As a result both significant changes and non-significant trends within 

the data collected are described and discussed, where relevant, in this chapter.  

 

5.3.1 TGF-β1 Quantification 

On day 2 the amount of TGF-β1 measured in the culture medium of TGF-β1 stimulated 

cells was higher than both control and loaded groups (p<0.039) (Figure 5.1A). This was 

expected as the TGF-β1 cultured group was receiving TGF-β1 in the media at this 

point whilst the other two groups were not. At day 4 of culture (Figure 5.1B), the 

amount of TGF-β1 released into the media from TGF-β1 stimulated scaffolds was 

significantly higher than that of the control group (P=0.002); however, this was not 

significantly different from the loaded group indicating that mechanical load was also 

inducing endogenous production of TGF-β1 by the cells by day 4. By day 6 of culture, 

multiaxial mechanical loading led to a significant increase in TGF-β1 production 

compared to control scaffolds (Figure 5.1C); the level of TGF-β1 released into the 

media by MSCs stimulated with load was comparable to cells treated with TGF-β1 and 

was significantly higher than that of the control group (P=0.021 and <0.001 

respectively). This trend was also observed on day eight, with cells stimulated by TGF-

β1 or load producing significantly more TGF-β1 than untreated MSCs (Figure 5.1D; 

p<0.00- and = 0.006 respectively). 

 

 

 

 

 

 

 

 

 

 



175 
 

 

 

 

 

 

Figure 5.1 

Quantification of TGF-β1 released into the culture media over the initial 8 day period of 

control (untreated), TGF-β1 stimulated or loaded MSCs embedded in scaffolds over 

four weeks of culture. This data represents the release of TGF-β1 over four two day 

windows and does not represent cumulative release. Statistical significance was 

defined as P≤0.05 and determined using the Kurskal-Wallis and Dunn's multiple 

comparison tests. * represents P≤0.05, ** represents P≤0.001 and *** represents 

P≤0.0001. 
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5.3.2 Characterisation of the production of bioactive factors in response to 
chondrogenic stimulation with TGF-β1 and mechanical load  
Media samples collected from control, TGF-β1 stimulated and loaded constructs on 

day eight of culture were analysed for their protein content using a cytokine array. The 

samples were normalised to a positive control which was at the same concentration on 

each individual slide and the background fluorescence was removed. Full factor names 

are provided in Table 5.1. 

All 174 factors were detected at varying levels of intensity in all experimental samples 

(Appendix 2). 55 factors had an average fluorescence intensity across the three groups 

of less than 100 including; leptin (93.79±81.83) and MDC (54.81±9.98). The average 

intensity of 94 factors was between 100 and 500 including; BLC (389.19±557.10), 

MCP3 (201.30±115.94), ALCAM (141.57±37.54), uPAR (286.63±109.39), leptin 

receptor (110.07±29.35), MMP13 (422.77±512.66) and PDGFaa (171.75±76.35). The 

intensity of 11 factors was between 500-1000 including; osteoprotegrin 

(986.16±560.48) and VEGF (938.11±397.31). 12 factors had an average intensity 

between 1000 and 4000 including; angiopoietin-2 (1341.87±937.81), GRO 

(1326.36±1011.64) and LAP (1302.15±752.86). The intensity of two factors was above 

4000; angiogenin (40273.68±7037.95) and TIMP2 (6778.68±2231.98). The factor with 

the highest recorded intensity, by a factor of 10, was angiogenin and the lowest was 

BMP6 (20.50±18.21). 

For each of the 174 factors analysed, three sets of comparisons were performed (i. 

between control (untreated) and TGF-β1 stimulated scaffolds, ii. control and loaded 

scaffolds and iii. TGF-β1 stimulated and loaded scaffolds) and the statistical 

significance between the groups determined. Analysis showed that 19 factors changed 

significantly in at least one of these comparisons (Figure 5.2). The three volcano plots 

in Figure 5.2 graphically represent the results of these three comparisons. These plots 

were produced by plotting the Log10 of the fold change for a factor between one 

condition and another (e.g. control and TGF-β1) on the X-axis against the –Log10 of 

the p-value generated when testing the difference between the two conditions on the Y-

axis. Therefore the further a factor is away from zero on the X-axis the greater the fold 

change up or down, and the further a factor is up the Y-axis the lower the p-value. A p-

value of 0.05 equates to 1.30 on the Y-axis, therefore, any factors above this mark 

underwent a significant change.  

Figure 5.2A shows a volcano plot generated based on the comparison between TGF-

β1 stimulated scaffolds and controls.  Factors that appear on the left side of the Y-axis 

were detected at a higher level in control samples, and factors on the right hand side of 

the axis at a higher level in TGF-β1 stimulated samples. Factors which are significantly 

different between untreated control and TGF-β1 stimulated scaffolds have been 
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labelled. Figure 5.2B shows a volcano plot constructed in the same way as Figure 5.2A 

using data from the comparison between control scaffolds and loaded scaffolds, factors 

that appear on the left side of the Y-axis were detected in a higher level in control 

samples and factors on the right hand side of the axis at a higher level in loaded 

samples. 

The volcano plots for control-TGF-β1 scaffold and control-load scaffolds show both 

similarities and differences between the effects of load and TGF-β1 stimulation 

compared to untreated control scaffolds. In both TGF-β1 stimulated (Figure 5.2A) and 

loaded scaffolds (Figure 5.2B) there is a significant upregulation (found on the right 

hand side of the Y-axis and above 1.30 on the Y-axis) of BLC, MCP3, MIF, VEGF, 

MMP13 and PDGFaa compared to control MSCs (Table 5.1). No factors were 

significantly down regulated in both TGF-β1 stimulated and loaded MSC groups 

compared to controls. GRO was significantly down regulated in response to load but 

did not change significantly in response to TGF-β1 stimulation (P=0.075, Table 5.1). 

Leptin, leptin receptor and MDC were upregulated in TGF-β1 stimulated scaffolds 

compared to controls but did not change in loaded scaffolds compared to controls. 

MIP3α, uPAR, LAP and angiogenin were significantly upregulated in response to load 

compared to control, but did not change in TGF-β1 compared to controls. 

The third volcano plot (Figure 5.2C) shows the results of a direct comparison between 

MSCs from TGF-β1 stimulated scaffolds and loaded scaffolds. In this plot factors that 

were detected at a higher level in media collected from loaded scaffolds are found on 

the left had side of the Y-axis and factors found at a higher level in media from TGF-β1 

stimulated scaffolds are found on the right hand side of the Y-axis. This plot clearly 

shows that the majority of factors measured were found at a higher level in the media 

of MSCs subjected to load. Angiopoietin 2, osteoprotegrin, ALCAM and DR6 were 

found at higher levels in media from loaded constructs than media from TGF-β1 

stimulated scaffolds whilst TGF-β1 was found at higher levels in TGF-β1 stimulated 

medium than loaded medium. 

Further breakdown of these results showed that factors could be separated based on 

which comparisons demonstrated significant differences (Figure 5.3, 4 and 5).  

 

5.3.3 Factors whose concentration was significantly different in media collected 
from loaded constructs compared to controls 

The expression of four factors (MIP3α, uPAR, LAP and angiogenin) was significantly 

increased in loaded scaffolds compared to control scaffolds (P=0.032, 0.036, <0.001 

and 0.002 respectively, Table 5.1, Figure 5.4C, D and E). GRO was significantly down 

regulated in response to load (P=0.027) and was decreased, but not significantly, in 
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response to TGF-β1 stimulation (P=0.075) (Table 5.1, Figure 5.4B). Of all of the factors 

analysed GRO was the only factor to be downregulated significantly in response to 

either of the chondrogenic stimuli applied (TGF-β1 or mechanical load). 

 

5.3.4 Factors whose concentration was significantly different in media collected 
from TGF-β1 stimulated constructs compared to controls 

Leptin, leptin receptor and MDC were found to be significantly upregulated only 

between media from TGF-β1 stimulated scaffolds and media from control scaffolds 

(Table 5.1, Figure 5.3C, D and E). No factors were down regulated in response to TGF-

β1 stimulation compared to controls. TGF-β1 stimulation led to an increase in 

angiogenin production however this was not significant (for the TGF-β1 to control 

comparison P=0.053, mean fluorescence intensity values - control: 33743 ± 6463, 

TGF-β1 stimulated: 42162 ± 3644, loaded: 44916 ± 5449).  

 

5.3.5 Factors whose concentration was significantly different in media collected 
from TGF-β1 stimulated and loaded constructs 

A total of three factors (Angiopoietin-2, osteoprotegrin and DR6) were found to be 

significantly upregulated in loaded samples compared to TGF-β1 stimulated samples 

without significant changes between either group and controls (Table 5.1, Figure 5.3A, 

B and F).  

 

5.3.6 Factors whose concentration was significantly different in media collected 
from TGF-β1 stimulated and loaded constructs compared to controls 

Six factors (BLC, MCP3, MIF, VEGF, MMP13 and PDGFaa) were found to change 

significantly in both TGF-β1 and loaded groups compared to controls. In all of these 

cases the factors were significantly higher in TGF-β1 and loaded groups than controls 

(Table 5.1, Figure 5.5B, C, D, E, F and H). The similarities in the responses of these 

factors indicate similarities in the effects of these two forms of stimulation, potentially 

due to the effect of the TGF-β1 signalling in both systems. 

 

5.3.7 Factors whose concentration was significantly different in media collected 
from either TGF-β1 stimulated or loaded constructs compared to controls 

In contrast, ALCAM was significantly increased in the loaded group over both control 

(P=0.023) and TGF-β1 stimulated groups (P=0.038) showing a clear difference in effect 

between load and TGF-β1 stimulation (Table 5.1, Figure 5.5A). 
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Figure 5.2 

Volcano plots showing the results of the three sets of statistical comparisons made 

between groups made between the results of protein analysis of untreated control 

scaffolds, scaffolds stimulated with 1 ng/ml TGF-β1 and mechanically loaded scaffolds. 

Protein analysis was performed using a RayBio Cytokine Array, These plots have –

Log10 p-value of the comparison on the Y-axis and Log10 fold change of the 

comparison for each factor on the X-axis. As a result the greater the fold change the 

further a factor is away from zero on the X-axis and the lower the p-value of a 

comparison the further away from zero on the Y-axis. Factors that underwent a 

significant change have been labelled. The red line on the Y-axis represents a –Log10 

p-value of 1.3 this is equivalent to a p-value of 0.05, factors above this line underwent a 

significant change. 

Plot A. represents a comparison of factors released into the media from MSCs 

stimulated with 1ng/ml TGF-β1 versus untreated control cells. Factors on the left hand 

side of the Y-axis were higher in controls than TGF-β1 stimulated samples and factors 

on the right hand side were higher in TGF-β1 stimulated samples than controls. 

Plot B. represents a comparison of factors released into the media from MSCs 

stimulated with mechanical load versus untreated controls. Factors on the left hand 

side of the Y-axis were higher in controls than loaded samples and factors on the right 

hand side were higher in loaded samples than controls. 

Plot C. represents a comparison of factors released into the media from MSCs 

stimulated with 1ng/ml TGF-β1 versus mechanically loaded samples. Factors on the 

left hand side of the Y-axis were higher in loaded samples than TGF-β1 stimulated 

samples and factors on the right hand side were higher in TGF-β1 stimulated samples 

than loaded samples. 
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Figure 5.3 

Box plots showing the factors whose medium concentrations were demonstrated by 

cytokine antibody array analysis to significantly change when medium collected from 

TGF-β1 stimulated constructs was compared to media from mechanically loaded or 

untreated controls. Statistical significance was defined as P≤0.05 and determined using 

the Kurskal-Wallis and Dunn's multiple comparison tests. * represents P≤0.05, ** 

represents P≤0.001 and *** represents P≤0.0001. 
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Figure 5.4 

Box plots showing the factors whose medium concentrations were demonstrated by 

cytokine antibody array analysis to significantly change when to medium from 

mechanically loaded constructs was compared to media from TGF-β1 stimulated and 

untreated control constructs. Statistical significance was defined as P≤0.05 and 

determined using the Kurskal-Wallis and Dunn's multiple comparison tests. * 

represents P≤0.05, ** represents P≤0.001 and *** represents P≤0.0001. 
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Figure 5.5 

Box plots showing the factors whose medium concentrations were demonstrated by 

cytokine antibody array analysis to significantly change between two different groups 

(untreated control constructs, constructs stimulated with TGF-β1 and mechanically 

loaded scaffolds). Statistical significance was defined as P≤0.05 and determined using 

the Kurskal-Wallis and Dunn's multiple comparison tests. * represents P≤0.05, ** 

represents P≤0.001 and *** represents P≤0.0001. 
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Table 5.1 

A table showing the results of statistical comparisons made between groups.  All 

factors that showed at least one significant change are included. A p-value displayed in 

red represents a decrease in expression in the group the comparison was made to 

(e.g. a red p-value in the 'TGF-β1-load' column indicates a decrease in the TGF-β1 

stimulated group compared to the loaded group) whilst green represents an increase in 

expression in the group the comparison was made to (e.g. a green p-value in the 'TGF-

β1-control' column indicates an increase in the TGF-β1 stimulated group compared to 

the control group). Abundance demonstrates the overall amount of protein in the 

medium based on the strength of signal detected during measurement, this is only 

arbitrary and acts as a general indicator of the amount of a particular protein relative to 

the others detected (the units are arbitrary and represent fluorescence intensity, Very 

low<100, low 100-500, moderate 500-1000, high 1000-4000 and very high>4000). 
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5.3.8 Differential gene expression in MSCs chondrogenically stimulated with 
TGF-β1 and mechanical load 

Real-time PCR was performed in order to determine the relative gene expression 

levels of factors, synthesised by MSCs stimulated with TGFB1 or multi-axial load on 

day 8 of culture. Target mRNA transcripts were chosen from the factors shown to 

undergo significant changes between groups in the initial secretome analysis (Figure 

5.6). The results were analysed using the ΔΔCt method using 18s as a housekeeping 

gene and normalising to expression at day 0. Of the 19 factors that underwent 

significant changes twelve were chosen for real-time PCR analysis: angiogenin, 

angiopoietin 2, BLC, GROα, leptin, MCP3, MIF, MIP3α, MMP13, OPG, PDGFa and 

VEGF. Aggrecan, collagen type X and Sox9 expression were also analysed to 

compare the chondrogenic effect of TGF-β1 and load after seven days of stimulation. 

DR6 and MDC were not investigated due to the paucity of relevant information found in 

the literature and TGF-β1 was not included due to the ELISA quantification of the 

protein present in the culture medium that had already been used to confirm the 

concentrations in media from different groups. Leptin receptor, ALCAM and uPAR were 

excluded on the basis that as cell surface proteins their detection in the media would 

bear greater relation to the induction of receptor cleavage than changes in gene 

expression; in a similar manner LAP was excluded as this is released during TGF-β1 

activation and its detection therefore is heavily dependent on post-translational 

processes. 

Following the processing of the data generated by real-time PCR the results from BLC, 

MCP3 and MIP3α were excluded after initial investigation due to extremely high 

standard deviations within sample duplicates which were not associated with a low 

level of expression of these factors compared to other factors. This was not a problem 

that was experienced with any of the other 9 genes analysed and was strictly limited to 

these three genes.  

Of the nine factors presented (Figure 5.6), four exhibit gene expression patterns similar 

to the secretome profiles, two have a similar profile in one of the stimulated groups 

(TGF-β1 or load) but not the other and three factors (MIF, VEGF and PDGFaa) showed 

no change in either of the stimulated groups compared to the control group, despite 

showing changes in the secretome analysis.  

Results of real-time PCR for angiopoietin 2 (mean fold-upregulation compared to day 0: 

control 6.69 ± 3.30, TGF-β1 2.53 ±2.23 and load 7.70 ± 5.41, P=0.024 when TGF-β1 

stimulated was compared to control and P=0.013 when compared to load) and 

osteoprotegrin (mean fold-upregulation compared to day 0: control 0.93 ± 0.33, TGF-β1 

0.37 ± 0.33 and load 0.95 ± 0.39,P<0.001 when TGF-β1 stimulated was compared to 

control and P=0.003 when compared to load)  show that, as in the secretome analysis, 
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the expression in the TGF-β1 group is significantly lower than in either the loaded or 

control MSC groups Figure 5.6B and G). The expression of MMP13 was normalised to 

the control group as the expression of MMP13 in cells at day 0 was donor dependent 

and only detected in two out of the three donors. Real-time PCR shows that the 

expression of MMP13 is similar in TGF-β1 stimulated and loaded groups and that also 

the expression in both groups is much higher than control groups whose fold-

upregulation can be considered to be 1 as the other two groups were normalised to it 

(Figure 5.6F). The expression of GRO was also lower than controls in both stimulated 

groups (Figure 5.6C), although not as strongly as suggested by the secretome data 

(Figure 5.2B) or previous results collected by this group (data not shown). 

Secretome analysis showed that leptin was detected at a higher level in media from 

TGF-β1 stimulated scaffolds compared to control MSC scaffolds (Figure 5.2B), whilst 

angiogenin was detected at a higher level in loaded samples than controls (Figure 

5.2A). However, for both of these factors real-time PCR analysis showed no difference 

between stimulated groups in the case of leptin (Figure 5.6A, which as with MMP13 

was normalised to the control groups due to donor dependent expression at day 0), or 

stimulated groups and controls in the case of angiogenin (Figure 5.6D). 

The results of the secretome analysis showed that MIF, PDGFaa and VEGF were all 

detected at higher levels in both TGF-β1 stimulated and loaded groups than controls 

(Figure 5.2), whilst not being significantly different from each other. This was not 

reflected in gene expression analysis where neither stimulated group was found to be 

significantly different from the untreated controls. 

Markers of MSC chondrogenesis, including aggrecan, SOX9 and collagen type X were 

also analysed at the gene expression level (Figure 5.7). Collagen type II was not 

included as previous work has shown its upregulation to be highly inconsistent between 

donors at day 7 in this system (data not shown). Potentially due to the early time point 

(day 8) that mRNA was collected at, significant differences were not observed in the 

expression of aggrecan (Figure 5.7A) and Sox 9 (Figure 5.7C). However a trend 

towards an increase in aggrecan expression is observable in TGF-β1 stimulated and 

loaded groups and a trend towards an increase in Sox 9 expression is evident in 

response to load but not TGF-β1. The expression of collagen type X was significantly 

higher in both groups than in controls (mean fold-upregulation compared to day 0: 

control 6.00 ± 3.67, TGF-β1 52.87 ± 42.87 and load 48.72 ± 32.95, P=0.024 when 

compared to control and P=0.013 when compared to load, P=0.001 when TGF-β1 

stimulated was compared to control and P=0.002 when load was compared to control, 

Figure 5.7C). 
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Figure 5.6 

Box plots showing the results of real-time PCR analysis of TGF-β1 stimulated 

constructs, mechanically loaded constructs and untreated controls to confirm changes 

detected at a protein level at an mRNA level. This figure contains the results of the 12 

factors investigated, each of which had showed a significant change between at least 

one comparison made between groups identified from the secretome analysis (the 

three comparisons were between control and TGF-β1, between load and controls and 

load and TGF-β1). The results were analysed using the ΔΔCt method using 18s as a 

housekeeping gene and normalised to expression at day 0. Statistical significance was 

defined as P≤0.05 and determined using the Kurskal-Wallis and Dunn's multiple 

comparison tests. * represents P≤0.05, ** represents P≤0.001 and *** represents 

P≤0.0001. 
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Figure 5.7 

Box plots showing the results of real-time PCR gene expression analysis of the 

markers of MSC chondrogenesis: aggrecan, collagen type X and Sox 9 in response to 

TGF-β1 stimulation and mechanical load. The results were analysed using the ΔΔCt 

method using 18s as a housekeeping gene and normalised to expression at day 0. 

Statistical significance was defined as P≤0.05 and determined using the Kurskal-Wallis 

and Dunn's multiple comparison tests. * represents P≤0.05, ** represents P≤0.001 and 

*** represents P≤0.0001. 
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5.3.9 The production of nitrite by MSCs in fibrin-poly(ester-urethane) scaffolds 
exposed to exogenous TGF-β1 and mechanical load 

The presence of organic nitrites was detected in the culture media using the Griess 

reaction (Figure 8). Results showed that at all four time points (day two, four, six and 

eight) the level of nitrite detected in the media collected from loaded samples was 

significantly higher than the level of nitrite in the media from the TGF-β1 stimulated 

group (P=0.033 at day 2 and P<0.001 at day 4, 6 and 8). There were also significantly 

higher levels of nitrites in the culture media of loaded scaffolds compared to control 

scaffolds on days four, six and eight (P≤0.001). No significant difference was detected 

between  TGF-β1 stimulated scaffolds and controls at any time point.  
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Figure 5.8 

Quantification of nitrite (as an indirect measure of nitric oxide (NO)) in the culture media 

of MSCs cultured in scaffolds for four weeks and either subjected to  TGF-β1 (1ng/ml) 

or multiaxial load; untreated MSCs served as controls,  Statistical significance was 

defined as P≤0.05 and determined using the Kurskal-Wallis and Dunn's multiple 

comparison tests. * represents P≤0.05, ** represents P≤0.001 and *** represents 

P≤0.0001. 
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5.4 Discussion 

Currently accepted methods for the induction of chondrogenesis in MSCs use a 

combination of 3D culture and the exogenous administration of an active recombinant 

isoform of TGF-β (Johnstone et al., 1998, Barry et al., 2001). Recent work has shown 

that chondrogenesis can be induced in MSCs using multiaxial mechanical load in the 

absence of exogenous TGF-β (Li et al., 2010a, Li et al., 2010b, Schatti et al., 2011). 

The purpose of this investigation was to compare the secretomes of MSCs stimulated 

either with exogenous TGF-β1 or multiaxial load with each other and with unstimulated 

control scaffolds to identify similarities and differences between these two forms of 

chondrogenic induction and determine interesting or potentially novel factors for MSC 

based cartilage tissue engineering. 

In both TGF-β1 stimulated and loaded MSC groups secretome analysis showed that 

there was an increase in the level of BLC, MCP3, MIF, VEGF, MMP13 and PDGF 

compared to media collected from control scaffolds. These factors demonstrate 

similarities between the two forms of chondrogenic induction and may represent a core 

number of factors that are responsive to TGF-β1, which is known to be involved in the 

induction of chondrogenesis in the loaded MSC scaffolds as well as the TGF-β1 

stimulated MSC scaffolds (Li et al., 2010a). MMP13 is associated with chondrocyte and 

MSC hypertrophy, whilst BLC secretion has previously been described at day seven of 

TGF-β driven chondrogenesis of MSCs. MCP3 has been shown to be induced by both 

TGF-β in murine dermal fibroblasts and mechanical stimulation in osteocytes and both 

PDGFaa in osteoblasts and VEGF production in vascular smooth muscle cells and 

murine macrophages is known to be responsive to TGF-β (D'Angelo et al., 2000, 

Cristino et al., 2008, Ong et al., 2009, Tanabe et al., 2006, Jeon et al., 2007, Wang et 

al., 1997, Kitase et al., 2014). These factors therefore have clear links to TGF-β1 or 

TGF-β1 driven chondrogenesis and this may explain the similarities between loaded 

and TGF-β1 stimulated MSC scaffolds when compared to control MSC scaffolds. The 

expression of all six of these factors has also previously been described in MSCs 

(Kinnaird et al., 2004, Rehman et al., 2004, Sze et al., 2007, Palumbo et al., 2014, 

Cristino et al., 2008, Hoch et al., 2012, Ribeiro et al., 2012, Grassel et al., 2009). Some 

of these factors have also previously been associated with similar responses to TGF-β 

in a range of cell types e.g. BLC in MSCs, MCP3 in murine dermal fibroblasts, VEGF in 

vascular smooth muscle cells, MMP13 in cartilage explants and PDGFaa in osteoblasts 

(Ong et al., 2009, Wang et al., 1997, Tanabe et al., 2006, Jeon et al., 2007, Cristino et 

al., 2008, Fitzgerald et al., 2008). 

As well as factors that responded similarly to both forms of chondrogenic induction 

there were a number that underwent opposing responses. Leptin, leptin receptor and 
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MDC were upregulated in TGF-β1 stimulated scaffolds compared to controls, whilst 

there was no change in loaded scaffolds compared to controls. Leptin is associated 

with arthritic changes in cartilage and hypertrophic growth plate chondrocytes (Kume et 

al., 2002, Iliopoulos et al., 2007, Dumond et al., 2003). Work by Zeddou et al. on MSCs 

showed that TGF-β reduces leptin and leptin receptor expression, however, the use of 

a monolayer culture system and umbilical cord MSCs makes comparison between 

these results difficult (Zeddou et al., 2012). Increased levels of MDC in the synovial 

fluid and even serum has also been associated with arthritic joints (Flytlie et al., 2010). 

In media from loaded scaffolds MIP3α, uPAR, LAP and angiogenin were found at 

higher levels than controls, without a corresponding change in TGF-β1 stimulated 

samples compared to controls. GRO was significantly down regulated in loaded 

samples compared to controls as well as in TGF-β1 stimulated scaffolds (although not 

significantly in the case of exogenous TGF-β1). MIP3α and uPAR have both been 

associated with an increase in expression in response to mechanical loading, which 

correlates with the results presented here (Lee et al., 2012, Chu et al., 2006, Chen et 

al., 2013). LAP is released from the mature TGF-β1 peptide during activation 

(Robertson and Rifkin, 2013). Mechanical loading, and in particular shear loading, has 

been shown to activate TGF-β, an effect also seen within the bioreactor culture system 

presented in this thesis (chapter 4) (Albro et al., 2012, Ahamed et al., 2008, Annes et 

al., 2004, Wipff et al., 2007). The increased presence of LAP in the culture media of 

loaded MSC scaffolds is therefore likely to be due to activation of endogenously 

produced pro-forms of TGF-β. GRO has been linked to arthritis, the induction of 

hypertrophic markers such as MMP13 and collagen type X, as well as mineralisation in 

chondrocytes (Merz et al., 2003, Endres et al., 2010, Olivotto et al., 2007). The 

application of endogenous TGF-β has also been shown to decrease GRO expression 

in epithelial cells (Lo et al., 2013). 

Angiopoietin 2, osteoprotegrin and DR6 were detected in the culture media of loaded 

scaffolds at a significantly higher level than TGF-β1 stimulated scaffolds, despite the 

fact that individually neither TGF-β1 stimulated nor loaded groups were significantly 

different from controls.  Significant differences induced between load and TGF-β1, 

without either group changing with regards to the control group, results from low level 

down regulation in TGF-β1 treated samples and/or slight upregulation in loaded 

scaffolds. Both angiopoietin-2 and osteoprotegrin have been shown to be induced by 

the application of shear forces which may be linked to their increased presence in 

media from loaded scaffolds over TGF-β1 stimulated scaffolds (Goettsch et al., 2008, 

Li et al., 2014, Kim et al., 2006). 
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ALCAM was detected at a significantly higher level in media from loaded scaffolds than 

control and TGF-β1 stimulated scaffolds, suggesting a strong link between its 

expression and mechanical load. ALCAM has been shown to be shed from the cell 

surface in response to TGF-β stimulation, although that was not evident in the 

secretome analysis; however, load led to a clear increase in receptor shedding as 

previously reported (Hansen et al., 2014). This effect of loading may result from a 

change in the expression of proteolytic enzymes e.g. ADAM17 which are known to 

cleave surface bound ALCAM (Hansen et al., 2014). 

The amount of TGF-β1 detected in the culture media by cytokine array was significantly 

higher at day eight in TGF-β1 stimulated samples than both control and loaded 

samples. This is at odds with the result of the ELISA quantification of day 8 media, 

which showed that there was no significant difference in the media TGF-β1 

concentration of loaded and TGF-β1 stimulated groups. The ELISA data also indicated 

that both TGF-β1 stimulated groups and loaded groups were significantly higher than 

the control group on day eight. The results of the cytokine array also suggest that the 

overall fold change between TGF-β1 and load was 1.17 and between TGF-β1 and 

control 1.2 suggesting very little overall difference in the total amounts of TGF-β1 

present and is lower than the 1.5-fold change used by Rodriguez et al. to denote 

significance and the 2-fold change used to classify a factor as physiologically relevant 

by Grassel et al. (Grassel et al., 2009, Rodriguez et al., 2015). This result highlights the 

fact that this form of analysis is extremely valuable for identifying the presence of 

potential factors of interest within samples, but more precise techniques such as an 

ELISA should be performed for absolute quantification. For this reason, comparisons 

between TGF-β1 stimulated scaffolds and controls and loaded groups and controls 

may provide clearer differences between groups than direct comparison between the 

TGF-β1 stimulated and loaded groups. 

Following the results of secretome analysis the work was repeated to confirm that 

changes observed at the protein level were also evident at the transcriptional level 

using real-time PCR. The results of this analysis confirmed some of the changes seen 

in the secretome data e.g for angiopoietin 2 and osteoprotegrin, but did not confirm the 

changes seen in all the factors e.g. VEGF and PDGFaa. Gene expression analysis was 

able to confirm the down regulation of the expression of angiopoietin 2 and 

osteoprotegrin in response to TGF-β1 stimulation and the up regulation of MMP13 in 

response to both forms of stimuli. The results also suggested a down regulation of 

GRO in both stimulated groups as seen in the secretome data, but this was not 

significant. The detection of similar changes in both secretome and gene expression 

analysis suggest that the changes seen in these factors are robust; this highlights 

angiopoietin 2, osteoprotegrin, MMP13 and GROa as factors of particular interest. The 



196 
 

changes seen in leptin and angiogenin, however, were not confirmed by real-time PCR. 

This may be due to the small fold changes seen in the secretome results for these 

factors (angiogenin: TGF-β1-control 1.24-fold, load-control 1.33-fold, TGF-β1-load 

0.93-fold, leptin: TGF-β1-control 1.58-fold, load-control 2.22-fold, TGF-β1-load 0.71-

fold).  The low overall fold change in the detected levels of these factors may explain 

the lack of a significant change in gene expression levels despite a significant change 

in the amounts of protein detected.  

The results of the secretome analysis show both clear similarities and differences 

between the effects of load and TGF-β1 on the secretome of stimulated MCS, 

however, this was only backed up in some cases by gene expression analysis. There 

are several factors that may contribute to this mismatch in results. This may be linked, 

in part, to the use of different samples from different experimental repeats which may 

have behaved differently in response to the same stimuli. However, conversely this 

also supports the veracity of the changes in angiopoietin 2, GROα, MMP13 and 

osteoprotegrin, which were similar in both sets of results, despite the analysis of 

samples from completely different experimental repeats. These data may also be 

affected by the fact that the relationship between the level of a certain species of 

mRNA present within a cell, the amount of the corresponding protein translated by the 

cell and the amount of that protein released into the culture media by the cell are 

clouded by a plethora of processes that make direct comparisons hard to draw. This 

was also seen in Chapter 4 where the results of real-time PCR were ambiguous whilst 

the results of histology were clear cut. The timing of sample taking may also play a role 

in the miss match of some of the mRNA and protein data. This is because protein and 

gene expression were determined at the same time point, day 8. As a result the mRNA 

expression may have already peaked and dropped earlier in the culture period which 

the protein was still detectable in the medium. 

Specifically in the case of leptin and angiogenin the specificity and sensitivity of the 

different techniques used may play a role in producing different results where the 

overall change in the total amount of protein is not that large. Variation in the samples 

may play a role in influencing the perceived differences between results; this variation 

is observed both within samples from one donor and between donors (e.g. as seen in 

gene expression data for GROα and MMP13), and may mask changes between the 

groups, repeating this work with more donors would be an option to counter this. 

 A more appropriate way of confirming the results of the cytokine array than RT-PCR 

would be to perform ELISAs for the factors identified on the culture media, however this 

was not possible due to high cost of such an approach and the limited quantity of 

samples available. 
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The gene expression analysis of the MSC chondrogenesis markers aggrecan, collagen 

type X and Sox 9 showed that there may be a stronger initial response to load than 

TGF-β1 stimulation in aggrecan and Sox 9 expression, however the differences 

between the groups were not significant. Previous results comparing load and 1 ng/ml 

TGF-β1 and multiaxial mechanical load reported by Li et al. (2010) showed a similar 

effect of TGF-β1 stimulation and mechanical load on collagen type X expression but 

the authors did not look at Sox9 expression. The gene expression in this study was 

also only performed using the top 10% of the scaffold, removing 90% of the scaffold 

containing unstimulated cells. This may increase the gene expression changes by 

removing unstimulated cells as described in the discussion of Chapter 4. 

Following the initial round of experiments, and processing of the secretome results, the 

literature was consulted for relevant work that was previously carried out on factors that 

were identified during secretome analysis as undergoing significant changes. Study of 

the literature highlighted similar responses to shear forces reported in other cells types 

in other model systems, For example; Kitase et al. demonstrated the upregulation of 

MCP3 in response to shear applied via fluid flow in osteoblasts, whilst angiogenin 2 

has been shown to be upregulated by cyclic fluid shear in human aortic endothelial 

cells and cyclic shear generated by a cone and plate device in HUVECs (Tressel et al., 

2007, Li et al., 2014). Palumbo et al. (2002) also used a cone and plate set up to show 

that shear stress increases the expression of PDGF in bovine aortic endothelial cells. 

The literature also highlighted the increase in nitric oxide (NO) production in response 

to shear loading in endothelial cells in response to mechanical shear forces (Bao et al., 

1999, Goettsch et al., 2008). For this reason, the nitrite concentration in media 

collected during the second round of experiments was determined using the Griess 

reaction (as an indirect measure of media NO). The results of nitrite quantification 

showed that load in this system, as in those described in the literature, leads to higher 

levels of NO being released into the media compared to control and TGF-β1 stimulated 

scaffolds over the first week in culture. NO has been long known as an aggravating 

factor in arthritis and nitric oxide synthase (NOS) suppression has even been shown to 

reduce symptoms of arthritis (McCartney-Francis et al., 1993). This suggests that 

reducing the presence of NO in systems subjected to load could improve the outcome 

of cartilage repair. However further work is required to identify the role of NO in 

response to load and the effect that it has on MSC chondrogenesis. 

 

Mechanical load and TGF-β1 are both known to produce a myriad of effects that are 

dependent on a huge range of factors. A wide search of the literature was performed 

for each factor highlighted by this work with regards to MSCs, chondrogenesis, 
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mechanical load etc. in order to gain an understanding for how the cytokines I analysed 

in this study respond to TGF-β1 and various forms of mechanical load in previously 

published work, and how that matches the results presented here. Many of the factors 

discussed in this chapter have not been broadly studied with regards to MSC 

chondrogenesis, The aim of this literature search was therefore to assess whether the 

effects of these stimuli on other cells in other culture conditions broadly agreed or 

disagreed with the results presented in this study in the absence, in most cases, of a 

directly relevant body of literature. 

Shear loading is a fundamental part of the multiaxial load applied in this system; shear 

load in the form of fluid shear or surface interaction has been shown to have similar 

positive effects to those that were seen in this system on factors such as MCP3 in 

osteocytes (Kitase et al., 2014), angiopoietin-2 in endothelial cells (Goettsch et al., 

2008, Tressel et al., 2007, Li et al., 2014), osteoprotegrin in a bone marrow derived 

stromal cell line (Kim et al., 2006) and PDGF in endothelial cells (Bao et al., 1999, 

Palumbo et al., 2002). However there were some differences between these results 

and the literature e.g. it has been shown that shear can increase GRO production in 

osteoblasts (Govey et al., 2014), although the choice of cell type may also effect GRO 

production. Shear loading has been shown to reduce the activity of MMP13 in 

chondrocyte cultures, in this work no measurement was made of MMP13 activity but an 

increase in total MMP13 was seen in response to load (and TGF-β1 stimulation) 

(Hamamura et al., 2013). In support of the results presented here MMP13 has been 

shown to be induced at an mRNA level in cartilage explants by shear and compression 

loading (Fitzgerald et al., 2008). High levels of shear have also been shown to reduce 

Angiopoietin 2 levels in HUVECs (Goettsch et al., 2008). Due to the importance of 

shear within the vascular system the majority of research into shear forces which 

overlap with these factors has been performed in endothelial cells and other 

vasculature derived cells. The results presented in this chapter, however, reflect the 

effects of shear loading in these systems despite their very different nature. This 

similarity in the effects of shear load on MSCs compared to other cell types in the 

secretome analysis was reflected in the increased presence of NO as determined 

indirectly via the Griess reaction which has previously been described in endothelial 

cells stimulated with shear forces (Goettsch et al., 2008, Bao et al., 1999). 

Literature on other forms of mechanical load e.g. stretch and compression were also 

examined  and corroborate the results of this study. Exposure to cyclic stretch 

increases the expression of MIF in gingival cells, MIP3α in hTERT periodontal ligament 

cells, and angiopoietin-2 and PDGF in HUVECs (Wang et al., 1997, Lee et al., 2012, 

Hashimoto et al., 2002, Morimoto et al., 2003, Chang et al., 2003). Compression has 

been shown to induce the expression of MMP13 and uPAR correlating with the results 
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of this study (Chen et al., 2013, Chu et al., 2006, Fitzgerald et al., 2008). As with the 

effects of shear load in other systems it is impossible to draw direct comparisons with 

our system as these investigations used different types of cells and different types of 

load in different culture systems, however, the bulk of evidence reported corroborates 

the effects of mechanical load observed in our system. 

Similarities and differences between the effects of TGF-β1 stimulation on factors in this 

system and those reported in the literature can also be found. Previous work has 

shown that TGF-β stimulation induces MCP3 in murine fibroblasts, decreases GRO 

expression in human lung carcinoma epithelial cells, increases PDGF expression in an 

osteoclast cell line, induces VEGF and osteoprotegrin in vascular smooth muscle cells, 

upregulates uPAR expression in an epithelial cell line and stimulates BLC expression 

at seven days of hBMSC chondrogenesis (Matsukura et al., 2010, Ong et al., 2009, Lo 

et al., 2013, Wang et al., 1997, Tanabe et al., 2006, Yue et al., 2004, Toffoli et al., 

2011, Cristino et al., 2008). These results corroborate the observations in this system 

and in the absence of further experiments to provide greater, more specific information. 

There were also effects of TGF-β1 reported in the literature that do not fit the results 

produced by the model system used in this study. Cell associated leptin receptor and 

its ligand leptin were decreased in response to TGF-β1 in BMSCs (Zeddou et al., 

2012), however this does not necessarily reflect the effect of TGF-β1 on soluble Leptin 

Receptors as observed in the work presented here. TGF-β1 has been associated with 

the shedding of ALCAM from the cell’s surface, however this was not observed in this 

system despite the clear increase in shedding in response to mechanical load. Recent 

work carried out by Rodriguez et al. investigated the secretome of adipose derived 

MSCs cultured in monolayer stimulated with 3ng/ml TGF-β1 (Rodriguez et al., 2015). 

The results of this work bare some similarities to the data presented in this chapter e.g. 

a decrease in GROα in response to TGF-β1 stimulation. However, clear differences 

were also apparent to the work in this chapter e.g. no change in VEGF expression in 

response to TGF-β1 and a decrease in leptin expression in response to TGF-β1 

stimulation. These differences are likely to result from a combination of the different 

tissue source used for the MSCs (adipose rather than bone marrow) and the different 

culture system (2D monolayer culture as opposed to 3D culture within a scaffold). 

The results of this work not only bare similarities to work carried out in other systems 

but also to secretome studies previously carried out on MSCs. Factors such as GRO, 

VEGF, MIF, MIP3α and OPG were detected in the media of MSCs cultured in high 

density monolayers by Liu et al. (Liu and Hwang, 2005).  Furthermore, a number of 

factors found in the secretome of embryonic stem cell derived MSCs (the HuEs9.E1 

MSC cell line) were also found in this investigation (ALCAM, Angiogenin, MCP3, GRO, 

BLC, MIF, MMP13 and VEGF) (Sze et al., 2007). With specific regard to studies 



200 
 

focusing on MSCs undergoing chondrogenesis MMP13 and VEGF have been shown to 

increase in chondrogenic conditions, as observed in both TGF-β1 and load induced 

chondrogenesis in this system (Grassel et al., 2009, Arufe et al., 2011). 

 

Each of the factors that underwent a significant change between groups was included 

in the review of the literature. The goal of this was to ascertain as much information as 

possible about the factors despite, in some cases, a lack of directly relevant literature. 

The relevant results of this literature search are presented here in a condensed form. 

The search terms used for each factor included the name of the factor and each of; 

cartilage, chondrogenesis, MSC, mechanical, shear, TGF-β and arthritis. 

 

5.4.1 Leptin 

Leptin has previously been described in the growth plate and may play a role in the 

process of endochondral ossification. Leptin has been localised to prehypertrophic 

chondrocytes and hypertrophic chondrocytes associated with invading blood vessels in 

murine growth plates (Kume et al., 2002, Kishida et al., 2005). Leptin knock out models 

show disruption at the growth plate e.g. disrupted column formation in the hypertrophic 

zone, however, the exact role of leptin during endochondral ossification has not been 

elucidated (Kishida et al., 2005). Leptin has, however, been shown to induce Wnt 

signalling in articular chondrocytes (Ohba et al., 2010). 

As well as being localised to the growth plate leptin has also been localised 

immunohistochemically to arthritic cartilage, with the strength of immunohistochemical 

labelling shown to increase with OA severity, from very low levels in normal cartilage 

(Dumond et al., 2003). The expression of leptin at a gene level has also been shown to 

be higher in osteoarthritic chondrocytes compared to cells from normal joints (Iliopoulos 

et al., 2007).  

Matrix metalloproteinases play a key role in cartilage degradation. Leptin has been 

associated with the induction of MMP 1, 2, 9 and 13 (Iliopoulos et al., 2007, Hui et al., 

2012, Simopoulou et al., 2007). The knock down of leptin with siRNA has also been 

shown to lead to a down regulation of MMP13 production by osteoarthritic 

chondrocytes (Iliopoulos et al., 2007). 

 

5.4.2 Leptin Receptor 

The leptin receptor, like leptin has been localised to the murine growth plate, 

specifically in terminally differentiated hypertrophic chondrocytes rather than in cells at 
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an earlier stage of differentiation (Kishida et al., 2005). Leptin receptor has also been 

localised to perivascular cells in the bone marrow; leptin receptor positive cells play a 

key role in adult bone formation and turnover and were the main source of CFU-Fs in 

the samples tested (Zhou et al., 2014). 

Glucocorticoids such as dexamethasone, which was used in both the 

chondropermissive and chondrogenic media used in this work, have been shown to 

induce the expression of leptin receptor in umbilical cord MSCs (Zeddou et al., 2012). 

 

5.4.3 MDC 

MDC is a chemoattractant produced by macrophages and dendritic cells; higher levels 

have been detected in the synovial fluid of those suffering from psoriatic arthritis and 

rheumatoid arthritis than those with osteoarthritis, however, comparisons were not 

made to controls from normal joints (Flytlie et al., 2010). 

 

5.4.4 MIP3α 

Mechanical load has been associated with an increased level of MIP3α production in 

both normal and osteoarthritic chondrocytes (Lee et al., 2012). This upregulation was 

linked to the presence of reactive oxygen species; its presence in loaded samples at a 

significantly higher level than controls may, therefore, be linked to the upregulated 

presence of NO in loaded samples. MIP3α has also been shown to increase the 

expression of MMP13 in chondrocytes cultured in vitro (Mazzetti et al., 2004). 

 

5.4.5 GRO 

GRO as detected by the antibody array represents GROα, β, and γ, not one specific 

isoform. 

The expression of GRO is upregulated in osteoarthritic chondrocytes and is also found 

at higher levels in the synovial fluid of patients diagnosed with rheumatoid arthritis 

(Merz et al., 2003, Endres et al., 2010). GRO has also been shown to induce the 

expression of MMP13 and collagen type X in bovine chondrocytes cultured in vitro 

when applied at concentrations similar to those detected in the synovial fluid of 

inflamed joints (Merz et al., 2003). GRO has been described as having a hypertrophic 

effect by Olivotto et al. who showed that GRO induced both pro and active MMP13 and 

Runx2 in chondrocytes, whilst it down regulated aggrecan expression (Olivotto et al., 

2007). 
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Work by Wenke et al. has showed that GRO can be induced by Sox9 signalling 

through the induction of the transcription factor AP2e, however in this experiment, 

chondrogenic differentiation seems to have the opposite effect on GRO expression 

(Wenke et al., 2011). This decrease may be linked to the presence of TGF-β1 in both 

culture systems which has been shown to block VEGF induced GRO expression in a 

SMAD independent manner (Lo et al., 2013). 

 

5.4.6 uPAR 

A serine protease involved in the activation of the plasmin as well as other proteolytic 

enzymes such as MMPs (in particular MMP9), uPAR has been shown to be involved in 

matrix degradation and is found at higher levels in cartilage with increasing severity of 

osteoarthritis (Yue et al., 2004, Beaufort et al., 2004, Schwab et al., 2004). Mechanical 

load has been shown to upregulate the expression of multiple components of the uPA 

system whilst TGF-β1 has been shown to induce the expression of uPAR in both 

transformed and non-transformed cells (Yue et al., 2004, Chu et al., 2006, Chen et al., 

2013). The response of uPA to load and TGF-β1 may explain the increases observed 

within this system. A number of enzymes including plasmin, MMPs, trypsin and uPAR 

itself can cleave membrane bound uPAR to produce a series of active or inactive 

cleavage products (Montuori et al., 2005, Sidenius et al., 2000). A change in 

expression of one of these enzymes in response to TGF-β1 and mechanical load may, 

therefore be linked to the increase in response to both forms of chondrogenic 

stimulation observed. The identity of the uPAR fragment detected by the cytokine 

antibody array in the culture media has also not been characterised and therefore it is 

not possible to draw conclusions about uPAR shedding from the identity of the 

cleavage product. 

 

5.4.7 LAP 

The removal of the LAP from the TGF-β small latent complex is a key step in TGF-β 

activation and results in the release of the fully active TGF-β homodimer (Maeda et al., 

2002). TGF-β activation can occur in a variety of ways including protease degradation 

(e.g. the serine protease plasmin or MMP13), mechanical stimulation (e.g. shear alone 

or the multiaxial load applied in this system), deglycosylation or the application of a 

number of physiochemical stimuli such as heat, extremes of pH and UV light 

(Robertson and Rifkin, 2013, Lyons et al., 1990, Maeda et al., 2002, Albro et al., 2012, 

D'Angelo et al., 2001). The increased level of LAP produced by MSCs subjected to 

load may result from the activation of endogenously produced TGF-β1 in response to 

load, resulting in LAP release as opposed to the exogenously applied active 
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recombinant TGF-β1 that was used to induce chondrogenesis in TGF-β1 stimulated 

MSCs. 

 

5.4.8 Angiogenin 

As a potent angiogenic factor, angiogenin production is rarely looked at with regards to 

MSC chondrogenesis. Angiogenin has previously been found in the synovial fluid of 

patients suffering from arthritis, in particular inflammatory forms of arthritis such as 

rheumatoid arthritis and crystal induced arthritis (Liote et al., 2003).  

 

5.4.9 Angiopoietin 2 

In contrast to angiopoietin 1, angiopoietin 2 disrupts angiogenesis by acting as an 

antagonist for the Tie2 receptor tyrosine kinase through which angiopoietin 1 signals 

(Horner et al., 2001). Angiopoietin 2 is found in the proliferating and pre-hypertrophic 

regions of the growth plate whilst angiopoietin 1 is found lower in the growth plate, 

suggesting a protective effect against blood vessel invasion and the resulting induction 

of hypertrophy in these regions (Horner et al., 2001). The induction of angiopoietin 2 in 

response to shear forces has been demonstrated by several authors and has also 

been show in response to mechanical stretch (Goettsch et al., 2008, Tressel et al., 

2007, Li et al., 2014, Chang et al., 2003). The stimulatory effect of mechanical load on 

angiopoietin 2 production was also clearly observed in the results presented in this 

chapter. 

 

5.4.10 Osteoprotegrin 

Osteoprotegrin (OPG), along with RANK and RANKL can be found in the surface 

layers of normal articular cartilage; the presence of all three increases in osteoarthritis 

where they can also be found deeper within the mid-zone of cartilage (Komuro et al., 

2001). The expression of RANK, RANKL and OPG can also be found in chondrocytes 

cultured in vitro, however, RANKL has no clear effect on the chondrocyte phenotype in 

vitro (Komuro et al., 2001). In vivo, OPG has been shown to have some protective 

effects in arthritis models, however this may be due to a reduction in damage of the 

subchondral bone through the prevention of degradative changes in response to the 

induction of arthritis (Shimizu et al., 2007, Kadri et al., 2008).  
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5.4.11 DR6 

A member of the Tumour Necrosis Factor receptor superfamily DR6 plays a role in cell 

survival, proliferation and apoptosis (Klima et al., 2009). DR6 is known to act through 

the NFkB pathway to mediate its effects (Wang et al., 2014b). 

 

5.4.12 TGF-β1 

Articular cartilage contains large amounts of TGF-β. Albro et al. showed that 4-6 week 

old bovine femoral condyle cartilage contained 68.5±20.6 ng/mL of TGF-β1, 

predominantly in the latent form (Albro et al., 2013). TGF-β1 has been used since the 

late 1990's to induce the chondrogenesis of MSCs in vitro (Johnstone et al., 1998). All 

three isoforms of TGF-β (1, 2 and 3) have been used to induce chondrogenesis; 

differences in the effect of the three isoforms, however, have not been clearly 

established (Barry et al., 2001, Mueller et al., 2010). The application of TGF-β to MSCs 

induces a phenotype more akin to the growth plate chondrocytes which undergo 

hypertrophy rather than stable articular chondrocytes (Mueller and Tuan, 2008). 

Further studies by this group have shown that TGF-β1 is crucial in the chondrogenic 

effects of multiaxial load, as TGF-β1 is produced by MSCs that are exposed to load 

and that by blocking the TGF-β receptor 1, load induced chondrogenesis is inhibited (Li 

et al., 2010a).  

 

5.4.13 ALCAM 

A cell surface protein, ALCAM is a marker of cells that have tri-lineage potential and is 

considered a putative MSC marker, particularly when used in combination with 

endoglin (CD105) (Chang et al., 2013, Alsalameh et al., 2004, Arai et al., 2002). The 

increased production/release of ALCAM into the media from MSCs subjected to load 

compared to the other groups is likely due to increased receptor shedding. Previous 

work has shown that TGF-β can induce ALCAM shedding (Hansen et al., 2014). This is 

unlikely to be the cause in this model as the TGF-β1 stimulated group did not change 

compared to controls. However the response observed by Hansen et al. was linked to 

an increase in the proteolytic enzyme ADAM17. The results presented in this work may 

therefore be due to the specific upregulation of ADAM17 or another proteolytic enzyme 

in response to load which are not TGF-β1 dependent (Hansen et al., 2014), however 

the mechanism of action remains to be determined. 
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5.4.14 BLC (CXCL13) 

MSCs have previously been shown to express BLC on day seven of chondrogenic 

induction by TGF-β1 in a 3D hyaluronic acid hydrogel (Cristino et al., 2008). This 

observation corroborates the finding of this chapter and suggests that the change in 

BLC may be a response to TGF-β1 stimulation. Neutralisation of BLC with intra-

articular anti-BLC antibodies in an autoimmune arthritis model showed decreased 

levels of cellular invasion and cartilage/bone degeneration (Zheng et al., 2005). The 

authors of this work suggest that the protective effect of anti-BLC antibodies relies on 

changes in the immune response rather than changes within the cartilage itself (Zheng 

et al., 2005). 

 

5.4.15 MCP3 

The presence of MCP3, like GROα has been quantified in the serum of patients 

suffering from rheumatoid arthritis and been shown to be higher than in the synovial 

fluid of non-diseased control joints (Endres et al., 2010). This may be due in part to the 

role that MCP3 plays in the recruitment of monocytes and even MSCs to sites of injury 

(Cheng et al., 2014). The expression of MCP3 has been linked both to the application 

of fluid shear forces and TGF-β, which it is induced by, as well as to autoinduction (Ong 

et al., 2009, Kitase et al., 2014).   

 

5.4.16 MIF 

MIF expression is correlated with the changes in synovial fluid associated with 

rheumatoid arthritis and neutralisation of MIF with intra-articular antibody treatment has 

been shown to prevent degradation in an autoimmune arthritis model (Santos et al., 

2001, Morand and Leech, 2005). The increased secretion of MIF has been linked to 

glucocorticoids both in vitro and in vivo, whilst IL10 has been shown to decrease MIF 

production (Morand and Leech, 2005, Santos et al., 2001). The expression of MIF was 

detected by Fujihara et al. in both unstimulated chondrocytes cultured in vitro and 

chondrocytes cultured in poly-L-lactic acid scaffolds (Fujihara et al., 2010). Mechanical 

load, has been shown to induce production of MIF in vitro and in vivo (Morimoto et al., 

2003). Increased MIF production in response to glucocorticoids may explain the high 

basal level of MIF expression detected in this work and the response to mechanical 

load would explain the changes observed in MSCs subjected to load. However 

changes were also evident in the TGF-β1 stimulated group suggesting an effect of 

TGF-β1 as well as load. A protective role for MIF against senescence has been 

suggested by Palumbo et al. who showed that MIF, in part, mediates the anti-

senescence effects of hypoxia on MSCs (Palumbo et al., 2014). 
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5.4.17 VEGF 

In a similar manner to angiogenin, VEGF is often not considered when assessing MSC 

chondrogenesis, however it was clearly upregulated in response to both load and TGF-

β1 stimulation. VEGF is expressed by hypertrophic chondrocytes in the growth plate as 

well as in chondrocytes cultured in vitro (Bluteau et al., 2007). The role of VEGF in the 

growth plate is associated with vascularisation and the terminal differentiation of growth 

plate chondrocytes. The knocking out of VEGF expression leads to the failure of 

endochondral ossification (Dai and Rabie, 2007). Given the role of VEGF in 

hypertrophy and terminal differentiation in vivo this may provide a research avenue into 

the hypertrophic differentiation of MSCs in vitro. 

The production of VEGF has previously been linked to TGF-β by Tanabe et al. who 

showed that dexamethasone could reduce the TGF-β driven induction of VEGF in 

aortic smooth muscle cells, and by Jeon et al. who showed that TGF-β induces VEGF 

expression in murine macrophages (Tanabe et al., 2006, Jeon et al., 2007). 

Mechanical load, specifically shear has been shown to induce VEGF expression, which 

in turn leads to an increase in angiopoietin 2 via VEGFR2 (Goettsch et al., 2008). 

However, in this system the very similar levels of VEGF in loaded and TGF-β1 

stimulated groups do not reflect this. 

  

5.4.18 MMP13 

MMP13 is considered to be a marker of chondrocyte and MSC hypertrophy in the 

growth plate and in culture in vitro (Mueller and Tuan, 2008, D'Angelo et al., 2000, 

D'Angelo et al., 2001, Tchetina et al., 2007). Mechanical load (in the form of uniaxial 

shear or compression) has been shown to have an effect on the production and activity 

of MMP13 (Fitzgerald et al., 2008, Hamamura et al., 2013). The application of 

supraphysiological mechanical load to murine joints with surgically induced 

osteoarthritis led to a decrease in MMP13 activity and reduced joint degeneration 

(Hamamura et al., 2013). The application of shear load in vitro to human osteoarthritic 

chondrocytes also reduced MMP13 activity (Hamamura et al., 2013). In contrast, 

Fitzgerald et al. showed that shear and compression could induce matrix molecule 

expression and MMP13 expression in cartilage explants (Fitzgerald et al., 2008). 

MMP13 induction by nitric oxide has previously been demonstrated in bovine aortic 

endothelial cells (Zaragoza et al., 2002).The level of expression of these two factors 

follows a similar pattern to the work presented in this chapter suggesting NO may play 

a role in MMP13 induction in response to load (Zaragoza et al., 2002). Work by 

D'Angelo et al. showed that MMP13 and other matrix vesicle associated proteases 
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could activate latent TGF-β; the activation of MMP13 under load therefore may be 

associated with the increased activation of TGF-β1 under load (D'Angelo et al., 2001). 

 

5.4.19 PDGF 

The expression of PDGF has been linked to both mechanical load and TGF-β. The 

application of load using a Flexercell device (which causes biaxial cyclic distortion of 

the membrane that the cells are attached to) was shown by Wang et al. to induce 

PDGF expression in an osteoblast cell line, whilst cyclic shear was demonstrated by 

Bao et al. and Palumbo et al. to induce PDGF expression in endothelial cells (Bao et 

al., 1999, Palumbo et al., 2002). Bao et al. linked the production of PDGF to the 

induction of nitric oxide production by shear loading, however, in this work the very 

similar levels of PDGF in both loaded and TGF-β1 stimulated groups does not reflect 

the difference in nitrite levels detected in the media (Bao et al., 1999). The induction in 

both of these groups may therefore result from TGF-β induction which has previously 

been described in mesenchymal cells (Takaishi et al., 1994). 

 

The factors identified through the secretome analysis, and the subsequent research in 

to the literature surrounding these factors has opened a plethora of potential avenues 

for further work.  

Leptin was shown by secretome analysis to be upregulated in TGF-β1 stimulated 

groups compared to controls. The presence of leptin in hypertrophic growth plate 

chondrocytes (Kume et al., 2002), osteoarthritic compared to normal cartilage (Dumond 

et al., 2003), its upregulation by the ALK1 SMAD 1/5/8 pathway (Zeddou et al., 2012), 

the induction of NO production by leptin (Vuolteenaho et al., 2014), and its role in the 

induction and activation of MMPs, including MMP13 (Iliopoulos et al., 2007), suggest a 

link to terminal chondrocyte differentiation and hypertrophy. Previous work has already 

shown that it is possible through siRNA mediated knockdown of leptin to reduce the 

production of the hypertrophy marker MMP13 in osteoarthritic chondrocytes (Iliopoulos 

et al., 2007). Targeting leptin signalling using siRNA or by using antibodies to target 

soluble leptin in the medium, or the leptin receptor (which was also upregulated in 

TGF-β1 stimulated groups), and then looking at the effect on the induction of 

chondrogenesis and progression towards hypertrophy would show the extent to which 

leptin signalling is involved in MSC hypertrophy, and whether modulating its effects 

could prevent the terminal differentiation of MSCs. 

Another factor linked to chondrocyte hypertrophy, MMP13 induction and activation, 

type X collagen expression and osteoarthritis is GRO (Merz et al., 2003, Olivotto et al., 
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2007, Wenke et al., 2011); in our multiaxial loading system and in response to 1 ng/ml 

TGF-β1 GRO was shown to be down regulated in response to chondrogenic stimuli. 

This is contrary to other results in the literature (Wenke et al., 2011) and poses some 

interesting questions, e.g. the hypertrophic effect of GRO in chondrocytes is well 

documented, but does it have the same effect in MSCs, and if GRO does have a 

hypertrophic effect on MSCs, what is the mechanism behind it and can it be modulated 

to produce a more stable cartilage producing phenotype? The first of these questions 

could be investigated by administering exogenous recombinant GRO to 

chondrogenically differentiating chondrocytes and looking at standard chondrogenic 

and hypertrophic markers. The second would require more detailed investigation into 

the induction and production of GRO in response to chondrogenesis e.g. by examining 

the p38 MAPK pathway that has been linked to the induction of hypertrophy by GRO 

(Wenke et al., 2011), or investigating the link between GRO and the transcription factor 

AP-2e which has also been shown to be regulated by Sox9 in chondrocytes, although 

in a manner contradictory to the results seen here (Wenke et al., 2011, Wenke et al., 

2009). 

The effect of load on TGF-β1 presented in chapter 4 shows the importance not just of 

growth factor production but also of activation in this model system. uPAR's 

involvement in the activation of plasmin, which is a known activator of TGF-β, and 

MMPs (Schwab et al., 2004) as well as its responsiveness to TGF-β and mechanical 

load (Yue et al., 2004, Chu et al., 2006) make it very interesting within this system, 

especially with regards to providing a mechanism for the load induced activation of 

TGF-β1. In order to investigate this it would first be required to determine if uPAR 

activity is positively or negatively regulated by chondrogenic stimuli, as the current 

results show increased uPAR in the media which could be related to a number of 

factors e.g. proteolytic shedding from the cell surface. If the effect on uPAR activity was 

positive then the effect of load on TGF-β activation through plasmin could be 

investigated by loading scaffolds in the presence and absence of different 

concentrations of EACA, a plasmin inhibitor, which was provided in the culture media 

used during the work carried out in this thesis, to prevent fibrin degradation (Kupcsik et 

al., 2009). Another factor that has previously been shown to be responsive to load and 

has the ability to activate TGF-β is MMP13 (Fitzgerald et al., 2008, D'Angelo et al., 

2001). This makes MMP13 another potential candidate for the activation of TGF-β1 in 

response to load, and could be investigated through the use of an MMP blocker in the 

presence of mechanical stimulation. 

Angiopoietin 2 may also be able to provide an insight into the effect of load in this 

system. Other work has shown that angiopoietin 2 is upregulated in response to shear 

load in different systems (Goettsch et al., 2008, Tressel et al., 2007, Li et al., 2014). 
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These investigations have shown that VEGF (Goettsch et al., 2008) and canonical Wnt 

signalling (Li et al., 2014) played a role upstream in the induction of angiopoietin 2 in 

response to shear loading. By blocking VEGF signalling or Wnt signalling in the 

presence of load it would be possible to determine whether these pathways also play a 

role in the response to load in this system by looking at any changes in chondrogenesis 

in response to load. 

A factor not normally discussed with regard to MSC chondrogenesis is VEGF, yet in 

the secretome analysis it was significantly upregulated in response to TGF-β1 

stimulation and load. This may be due to the induction of VEGF by TGF-β1 (Jeon et al., 

2007, Tanabe et al., 2006), although shear has also been shown to induce VEGF 

expression (Goettsch et al., 2008). As described above VEGF may be involved in the 

response of cells to shear forces, but it also induces the expression of GRO (Lo et al., 

2013). VEGF is also a potent angiogenic factor and the chondrocyte specific knock out 

of VEGF leads to failed endochondral ossification (Dai and Rabie, 2007). For these 

reasons the effect of blocking VEGF signalling during the induction of chondrogenesis 

in MSCs, and the progression of cells towards terminal differentiation may provide a 

valuable insight in to the full effect of TGF-β during chondrogenic differentiation, as the 

potential induction of VEGF by the main chondrogenic stimulus, TGF-β1, may also be 

inducing terminal differentiation through GRO rather than stable chondrogenesis. 

Nitric oxide (indirectly measured through nitrite release into the media) was not 

identified by the initial secretome analysis, but was identified as a factor upregulated by 

load in the second round of experiments that was designed to build on the secretome 

analysis data. NO has previously been shown to increase in response to shear loading 

(Goettsch et al., 2008, Bao et al., 1999). NO has also been linked to the production and 

activation of MMP13 (Zaragoza et al., 2002) and is associated with arthritis, as blocking 

NO synthase (NOS) has been shown to reduce the severity of disease in animal 

models of arthritis (McCartney-Francis et al., 1993). This makes NO a very interesting 

factor in this system particularly on the behaviour of MSCs cultured with higher NO 

levels in response to mechanical load; blocking NO synthesis by NOS may improve the 

response of cells cultured in this system by removing this chondro-inhibitory stimulus, 

which may also have an effect on hypertrophy (as suggested by its ability to induce 

MMP13 expression and activation). Load induced production of NO is also relevant in 

the rehabilitation after cartilage repair surgery e.g. microfracture, where the induction of 

NO in response to mechanical load may hinder the repair process, especially as the 

levels detected in culture media in this system in response to load were higher than 

those that have been detected in arthritic joints (Farrell et al., 1992). 
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5.5 Conclusions 

The aim of this chapter was to characterise the secretomes of loaded and TGF-β1 

stimulated cells in order to compare the effects of these two forms of chondrogenic 

stimuli, which have been shown to be related through TGF-β1, and in doing so identify 

potentially novel factors for investigation with regards to cartilage tissue engineering 

with MSCs.  

The results of secretome analysis presented here show that there are clear similarities 

and differences between the secretomes of MSCs stimulated with multiaxial 

mechanical load or TGF-β1. These results indicate that there were a number of factors 

that are, potentially, specifically associated with TGF-β1 that share patterns of 

expression between these two chondrogenic conditions (BLC, MCP3, MIF, VEGF, 

MMP13 and PDGF, as well as GRO and angiogenin which showed similar changes in 

response to TGF-β1 stimulation without reaching significance) whilst other factors are 

associated more specifically with TGF-β1 stimulation or load e.g. leptin or angiopoietin-

2. This indicates that despite the key role of TGF-β1 in both systems multiaxial 

mechanical load and TGF-β1 induced chondrogenesis are not analogous, but both 

have shared and differing effects on differentiating MSCs.  

Nineteen factors were identified by secretome analysis as being significantly different in 

two or more groups. Of particular interest as markers for the process of MSC 

chondrogenesis are the factors that showed similar changes in response to both TGF-

β1 stimulation and mechanical load. In addition the three factors (angiopoietin 2, 

MMP13 and osteoprotegrin) whose changes in secretome profile between the groups 

were mirrored by their changes in gene expression as determined by real-time PCR. 

Alongside the identification of these factors in chondrogenically stimulated MSCs, this 

work, for the first time, also identified the increase in NO production in response to joint 

simulating mechanical load. These factors, and the manipulation of them, offer a 

multitude of potentially interesting avenues for further investigation with regards to 

cartilage tissue engineering. 
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Chapter 6 General Discussion 
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Mesenchymal stem cells hold great potential in the regeneration of musculoskeletal 

tissues such as bone and cartilage. However, the induction of chondrogenesis in MSCs 

with the growth factor TGF-β, or mechanical load, results in a hypertrophic phenotype 

which is closer to that of growth plate chondrocytes than stable articular chondrocytes, 

and hinders the clinical use of MSCs. The aims of this thesis were three-fold. The first 

aim, investigated in Chapters 3 and 4, was to produce MSC containing fibrin poly(ester-

urethane) constructs whose cell populations were spatially and temporally (in terms of 

the stage of chondrogenic differentiation) heterogeneous, and determine the effect of 

signalling between different populations within the constructs on chondrogenic 

differentiation and hypertrophy. The second aim of this thesis was to investigate 

potentially novel markers for chondrogenesis in MSCs (Chapter 5). The need for 

potentially novel markers was highlighted by the inconsistency between the results of 

the different forms of analysis used in Chapter 4. The third and final aim was to 

compare the effect of chondrogenic induction with TGF-β1 or mechanical load on 

MSCs by analysing the profile of the proteins secreted by stimulated cells into the 

culture medium (Chapter 5). 

The approach taken in this work was not that of a classical tissue engineering 

application, whereby steps are taken in order to optimise a culture system in vitro for 

the generation of tissue as similar to that of the tissue targeted for repair in vivo as 

possible.  Instead the approach in this project was to use a bioreactor capable of 

applying joint-like multiaxial load in order to model the effect of the loading environment 

of a diarthrodial joint on MSC containing fibrin-poly(ester-urethane) scaffolds in order to 

investigate the effects of joint loading on regenerative medicine constructs. With this in 

mind, the decision was made to use MSCs, as these are widely considered to be 

candidate cells for regenerative medicine based therapies for a wide range of 

indications, and to use a fibrin scaffold, as this is already in daily clinical use around the 

world. The combination of bone marrow derived MSCs and fibrin scaffold is also similar 

in nature to the repair tissue generated through microfracture, a commonly used 

marrow stimulation technique for cartilage repair. Therefore, the results obtained could 

be informative for rehabilitation protocols. 
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6.1 The effect of temporally and spatially structured scaffolds on 
MSC chondrogenesis and hypertrophy 

It has been hypothesised that the loss of the strict spatial relationships between cells at 

different stages of differentiation that govern the formation of cartilage and bone in vivo 

plays a role in the progression of MSCs towards a hypertrophic phenotype when they 

are chondrogenically differentiated (Pelttari et al., 2006). Currently, well accepted 

models of MSC chondrogenesis, such as the pellet culture, involve the synchronous 

differentiation of a single population of MSCs, driven by the exogenous application of 

10 ng/ml TGF-β1 (Johnstone et al., 1998). Within such a model there is no potential for 

separate populations of cells to interact with each other. Drawing inspiration from the 

growth plate, whilst not aiming to mimic or replicate its processes directly, I aimed to 

both re-introduce a degree of structural organisation, and to expose MSCs to 

populations of cells at different stages of chondrogenic differentiation, to determine the 

effect of such a culture system on the induction of chondrogenesis and hypertrophy in 

mechanically stimulated MSCs (presented in Chapter 3). A degree of structural 

organisation was introduced into scaffolds by stacking 2x8 mm fibrin-poly(ester-

urethane) scaffolds seeded with populations of MSCs at different stages of 

chondrogenic differentiation, one on top of the other. In order to expose MSCs to cells 

at a different stage of chondrogenic differentiation some of the MSC containing 2x8 mm 

scaffolds were exposed to chondrogenic medium containing 10 ng/ml TGF-β1 for one 

or two weeks (group 3 and 4 bottom scaffolds respectively). This allowed for naïve 

MSCs to be cultured in the proximity of scaffolds containing other naïve MSCs or 

MSCs at two different points along the chondrogenic differentiation pathway. The effect 

of this culture system on the chondrogenic response of embedded cells to load was 

then determined biochemically by analysing the DNA content of the scaffolds, the GAG 

content of scaffolds and collected culture media as well as quantifying the the TGF-β1 

content of collected culture media, and performing histological and gene expression 

analysis.  

The results of this work were highly variable. This is common when working with 

primary human cells, particularly in this work where there were clear differences in the 

ability of cells isolated from different bone marrow preparations to undergo 

chondrogenesis. This was evidenced, for example, by the very low or non-detectable 

amounts of collagen type II and aggrecan mRNA that could be isolated from one of the 

donors cells after being cultured under certain experimental conditions, specifically 

control groups and group 1 and 2 scaffolds. Although trends were apparent in many 

situations, these differences did not reach significance at the 5% level, therefore the 

outcome of the study may have been improved by carrying out more repeats of the 

experiment with different donors. It may have also been beneficial to use cells from 
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marrow preparations that have already been shown to be chondrogenic or to use 

another metric e.g. the speed of cell growth during the expansion phase (Glueck et al., 

2015) to select, or more importantly reject certain donors for use in experiments.   

Gene expression analysis demonstrated that load had a significant and positive effect 

on the expression of Sox9 and collagen type X across all of the groups. These data 

suggest that the application of load has a positive chondrogenic effect. Under these 

conditions I could find little evidence that interaction between cells at different stages of 

differentiation affected the progression of cells towards hypertrophy. However, high 

degrees of variation meant that little statistical significance could be shown in the gene 

expression data. The lack of significance in the presence of clear trends within the data 

(e.g. the upregulation of aggrecan gene expression in group 1 in response to load) may 

be related to the low 'n-number' of some groups. A low 'n-number' reduces the number 

of degrees of freedom and therefore increases the threshold for a significant result to 

be recorded. The analysis may also be affected by the large number of groups (14) 

which were being statistically compared using non-parametric tests; this relatively large 

number of comparisons (e.g. compared to work presented in Chapter 4 where 6 groups 

were compared or Chapter 5 where 3 groups were compared) and as a result a lower 

p-value is required in order for a result to pass as significant during a multiple 

comparisons correction (in this case Dunn's Multiple comparison test). In order to 

reduce the number of groups and remove some of the variability in the results the gene 

expression data from control groups alone was also analysed. This highlighted a 

significant increase in collagen type X expression in group 4 top control scaffolds 

(naïve MSCs, placed on top of scaffolds containing MSCs that had undergone two 

weeks of predifferentation) compared to group 1 (naïve MSCs in both top and bottom 

scaffolds) top control scaffolds and a trend towards a similar increase in Sox9 and 

aggrecan mRNA expression. This increase in the expression of markers associated 

with MSC chondrogenesis suggests that the predifferentiatied group 4 bottom scaffolds 

have a chondrogenic effect on group 4 top control scaffolds which is not replicated in 

group 1, where both top and bottom scaffolds contain naïve MSCs. Interestingly, this 

data indicates that the preculture of bottom scaffolds may have a chondrogenic effect 

on top scaffolds, even in the absence of other chondrogenic stimuli such as mechanical 

load or TGF-β1. This potential chondrogenic effect of predifferentiatied bottom 

scaffolds was also evidenced in the results of histological staining for sulphated GAG 

with Safranin O. The results of Safranin O staining of group 3 and 4 control scaffolds 

demonstrated the deposition of sulphated GAG in control top scaffolds, despite the 

application of no other chondrogenic stimulus than the predifferentiatied bottom 

scaffolds. This GAG deposition may result from the diffusion of GAG from the 

underlying scaffold into the top scaffold or it may be due to a chondrogenic effect of the 
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bottom scaffold on the top scaffold. The distribution of the GAG within the top scaffolds 

matches that detected in chondrogenically differentiated scaffolds, suggesting that the 

GAG may have been deposited by chondrogenically differentiating cells in the top 

scaffold. It would be possible to investigate whether this deposition is due to diffusion of 

GAG into the upper scaffold by culturing an acellular fibrin filled scaffold on top of a 

predifferentiatied scaffold and then performing histology on the upper scaffold to 

determine the degree of GAG diffusion into the top scaffold. However, this would 

remove any effect of cross talk between the two scaffolds and may therefore, change 

the level of GAG production. In order to test the potential for direct chondrogenic 

stimulation from the bottom scaffold, the bottom scaffold could be predifferentiatied as 

described and then transferred to chondropermissive media as in this work. The culture 

media could then be collected and analysed for its TGF-β1 content and also applied to 

naïve MSCs in a conditioned media study to ascertain if the bottom scaffolds release 

soluble factors that can stimulate chondrogenesis in an indirect co-culture model. 

In retrospect, a major flaw with the analysis performed in this chapter is the inability to 

account for the relative contribution of each scaffold (top and bottom) to the GAG and 

TGF-β1 quantified in the culture media. This problem arose through the alteration in 

construct design in my work from the solid, one piece 4x8 mm scaffold used in previous 

studies (Li et al., 2010a, Schatti et al., 2011, Neumann et al., 2013) and in the other 

chapters of my thesis, to two 2x8 mm scaffolds stacked on top of each other. This 

alteration in construct design, and my focus on the relative behaviour of the populations 

in the two different scaffolds means that whilst it was previously possible to attribute all 

of the factors released into the medium to one population of cells, this was not possible 

in my work. It is clear from my work that both scaffolds can contribute to the molecules 

released into the culture media (e.g. the media GAG content is clearly affected by the 

bottom scaffolds, particularly in response to load). As a result it was not possible to 

produce a suitable GAG/DNA ratio for the scaffolds, which has previously been an 

important outcome measure for this type of study (Li et al., 2010a, Schatti et al., 2011, 

Neumann et al., 2013). The quantification of GAG and TGF-β1 in the culture media 

also needs to be interpreted with caution as the results represent biosynthesis 

occurring in the scaffold as a complete unit but provides no resolution between the two 

scaffolds. As previously discussed (Section 3.4), tracking the origin of the GAG 

produced in the two scaffolds provides a significant hurdle and is not easily solved. 

Another approach to the analysis of the effect of this system on chondrogenesis would 

be to perform a much more detailed histological analysis, rather than focus on the 

biochemical results. The first step in this process would be to maintain the relative 

orientations of the top and bottom scaffolds as they were during culture throughout the 

histological processing. This would be possible as mentioned in the discussion of 
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Chapter 3 through the snap freezing of scaffolds within a mould. As presented here, 

the only histological analysis performed was Safranin O staining for sulphated GAG. 

Expanded histological analysis could include the immunohistochemical labelling of 

collagen type II, collagen type X (should a suitable antibody that does not cross react 

with fibrin be found) and aggrecan to show the deposition of cartilage extracellular 

matrix components within the scaffolds, relative to the two scaffolds in the system and 

the loaded surface of the top scaffold. In addition to this, fluorescence in-situ 

hybridisation (FISH) could be used to determine where in the scaffolds the mRNA for 

proteins such as collagen type II, collagen type X, Sox9 and aggrecan are being 

produced. This would be extremely useful in determining the relative effect of the top 

and bottom scaffolds on each other e.g. through the relative amounts of matrix 

deposition/mRNA expression along the border of the two scaffolds. This form of 

analysis, in particular FISH, could also be extremely useful for tracking the changes in 

matrix deposition and the expression of different mRNA transcripts both spatially and 

temporally by performing analysis at multiple time points. In the study presented in 

Chapter 3 all gene expression analysis, histology and biochemical analysis of the 

scaffolds were performed at the end of the culture period. By observing the changes in 

matrix deposition/mRNA expression more closely over time it may be possible to better 

compare the effect of this culture system and the MSCs cultured within it on 

chondrogenesis and hypertrophy. 

The investigation performed into the effect of temporally and spatially structured 

scaffolds on MSC chondrogenesis and hypertrophy demonstrated that despite some 

evidence that MSCs at different stages of chondrogenic differentiation could interact 

and, potentially, induce a chondrogenic phenotype in cells that received no other 

chondrogenic stimulation, no clear evidence was obtained that the co-culture model 

system had an effect on the induction of chondrogenesis or hypertrophy in MSCs in the 

presence or absence of load. This lack of evidence was, in part, related to the 

complexity of the model system which involved using cells at different stages of 

differentiation, in multilayer constructs in either the presence or absence of mechanical 

load. As a result, the focus of my work presented in Chapter 4 turned to producing a 

simpler model to investigate the potential effects hinted at by the results presented in 

Chapter 3.  
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6.2 The effect of asymmetrically seeding scaffolds on MSC 
chondrogenesis and hypertrophy 

The work presented in Chapter 4 aimed to investigate the combined observations of 

two previous studies. The first of these observations was the potential for separate 

populations of MSCs to affect their respective chondrogenic differentiation when 

cultured in the same fibrin-poly(ester-urethane) construct (as described in Chapter 3). 

The second observation was that in the loading system described in this thesis the 

application of dynamic mechanical shear alone had a greater chondrogenic effect on 

MSCs than the application of cyclic compression alone (Schatti et al., 2011). The initial 

aim of the work in Chapter 4 was therefore to seed fibrin-poly(ester-urethane) scaffolds 

with two populations of cells; one population seeded inside the scaffold as described 

previously, and a second population on the loaded surface of the scaffold, which would 

be directly exposed to the shear component of the load. The effect of this seeding 

pattern on the chondrogenesis and hypertrophy of the MSCs was then investigated in 

response to multiaxial mechanical load.  

In order to confirm the presence of cells on the surface of scaffolds a number of fibrin-

poly(ester-urethane) constructs were seeded with cells that had been labelled with the 

red fluorescent dye PKH26. Imaging after four weeks of culture demonstrated that the 

cells seeded on the surface appear to remain on/around the surface of the scaffold. 

Furthermore, in group 2 the cells in the control scaffolds appear widely distributed 

throughout the uppermost regions of the scaffold whilst cells seeded on the surface of 

loaded scaffolds surface of the scaffold remained localised only to the very surface of 

the scaffold. The results of this staining therefore suggest that the cells do remain on 

the surface of the scaffold over four weeks of culture. However, the presence of the 

dye does not indicate the viability or activity of the cells. No direct observations were 

made in order to study the nature of the cells seeded on the surface of the scaffolds. 

However, the DNA content of group 3 control and loaded scaffolds after four weeks of 

culture suggests approximately the same number of cells that were seeded onto the 

scaffolds are also found after four weeks of culture. Over the course of processing for 

analysis it was also possible to extract mRNA from group 3 scaffolds. These two facts 

do not directly confirm, but indirectly suggest that there is a viable population of cells on 

the surface of the scaffold after four weeks in culture in group 3, which suggests that 

cells seeded onto the scaffold surface can survive the culture period, and mechanical 

loading, and remain viable and active. Further investigation into the activity of cells 

seeded onto the scaffold surface could be performed on scaffolds seeded in the 

manner of group 3 using a metabolic activity assay such as almar blue or MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Scaffolds could also be fixed 

and processed for histology after an MTT assay had been performed in order to show 
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the location and distribution of metabolically active cells. The fluorescent tracking of the 

cells was performed only once (n=1 for each group), at an early stage of the project, as 

an indication of cell location after four weeks in culture. Due to the subsequent lack of 

clear differences in scaffold behaviour that could be detected biochemically or at the 

transcriptional level, the specific location, phenotype, and interaction of cells seeded on 

the scaffold surface is of greater interest now than at the time this component of the 

study was performed. As a result, repetition of this experiment and expansion to 

include investigation of cell viability, metabolic activity, proliferation and cell-cell 

interactions (e.g. by labelling for the presence and functionality of connexins in the 

scaffolds) may provide more information on the differences between group 1 and group 

2 scaffolds. 

Histological and immunohistochemical analysis of the constructs showed that 

asymmetrically seeded scaffolds (group 2) demonstrated increased deposition of 

cartilage-like matrix in response to load when compared to evenly seeded scaffolds 

(group 1). This analysis also demonstrated that no histologically detectable matrix was 

deposited in group 3 scaffolds. As a result it is likely that the increased staining in 

group 2 scaffolds compared to group 1 scaffold is not due to the activity of the cells 

seeded on the surface themselves but instead the interaction between the cells seeded 

on the surface and the cells seeded within the scaffold. The increased deposition could 

be caused by increased matrix retention in response to the seeding of the cells on the 

surface of the scaffold; however, analysis of total GAG content measured in both the 

scaffolds and culture medium suggests that this is not the case. Interaction between a 

layer of cells on the surface of a cartilage tissue engineering scaffold and cells seeded 

within the scaffold has been recently shown by Mesallati et al. (2015).  This study 

investigated the effect of seeding a layer of MSCs (derived from either bone marrow or 

intra-patellar fat pad) on top of an agarose hydrogel containing articular chondrocytes 

(Mesallati et al., 2015). The results showed that the application of a layer of either bone 

marrow or fat pad derived MSCs onto the surface of the scaffold led to increased 

proliferation of the chondrocytes within the scaffold and the increased deposition of 

sulphated GAG (Mesallati et al., 2015). These data support the results reported in 

Chapter 4 that suggest the potential for increased matrix deposition in response to 

structuring the scaffold in this way, despite the use of a different scaffold system, cell 

sources and chondrogenic stimulation. Proliferation of the cells within the scaffolds was 

identified by Mesallati et al. (2015), however the proliferation of cells within, or on top of 

the scaffold was not characterised in the system presented in Chapter 4.  The 

proliferation of cells in different locations within the scaffold could be assessed using 

bromodeoxyuridine (BrdU) incorporation assay and histological processing. 
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Despite the differences in matrix deposition that were detected histologically, no clear 

differences were detected between group 1 and group 2 scaffolds in the analysis of 

media and scaffold GAG contents, the degree of GAG retention within the scaffolds, 

the relative gene expression levels within scaffolds at day 7 or 28 of culture, the 

deposition of collagen type VI, the total production of TGF-β1, the activation of TGF-β1 

or the retention of TGF-β1 in the deposited extracellular matrix. The exhaustive 

investigation of the "standard" or "classical" markers of MSC chondrogenesis that are 

routinely used to characterise the chondrogenesis of MSCs in vitro yielded no further 

explanation or confirmation of the matrix deposition effects observed at a histological 

level. This suggests that there may be other markers which are not currently being 

investigated that provide useful information about the differentiation state of MSCs. 

Therefore, in order to explore potentially new markers of MSC chondrogenesis the 

work described in Chapter 5 analysed a panel of soluble proteins released by MSCs in 

response to chondrogenic stimulation with TGF-β1 or mechanical load.  

The second aim of the work described in Chapter 4 was to investigate the effect of 

multiaxial mechanical load on the activation of TGF-β1. Previous work by Li et al. 

(2009) has shown that the application of multiaxial load in our bioreactor system leads 

to the production and release of TGF-β1 into the culture medium surrounding the 

scaffolds, which then drives the chondrogenic response observed in mechanically 

stimulated MSCs (Li et al., 2009). Latent TGF-β1 is known to be activated by a number 

of forms of mechanical force including fluid shear and cell generated traction forces 

(Albro et al., 2012, Annes et al., 2004, Wipff et al., 2007), hence the work presented in 

Chapter 4 aimed to determine if the multiaxial load applied using our bioreactor system 

can also activate latent TGF-β1. The percentage of active TGF-β1 was determined in 

the culture medium using an ELISA kit. The results demonstrate that the percentage of 

active TGF-β1 was significantly increased in all three loaded groups compared to their 

respective free swelling controls. The degree of TGF-β1 activation was also similar in 

all three loaded groups at all four time points (week 1, 2, 3 and 4) despite the scaffolds 

containing different numbers of cells and cells at different stages of differentiation. The 

activation of TGF-β1 has previously been well characterised in response to shear 

forces generated through fluid flow or the stirring of a fluid (Albro et al., 2012, Ahamed 

et al., 2008). Work by Li et al. (2012) previously investigated the effect of mechanical 

load on the production and activation of TGF-β1 by rat bone marrow derived MSCs in a 

chondrogenic environment. Uniaxial compression was applied to rat MSCs in alginate 

scaffolds after a seven day preculture period in chondrogenic medium containing TGF-

β1; the results showed that the application of load increased both the production and 

activation of TGF-β1 in response to mechanical load (Li et al., 2012). The increase in 

both the production and activation of TGF-β1 by mechanically stimulated MSCs is very 
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similar to the results described in Chapter 4. The total TGF-β1 content described by Li 

et al. (2012) is similar to but higher than that observed in response to multiaxial load 

(Chapter 4), however, the percentage of active TGF-β1 reported in response to 

application of uniaxial compression is similar to, but lower than, the percentage of 

active TGF-β1 detected in response to multiaxial load in Chapter 4 (Li et al., 2012). 

Uniaxial compression and shear loading have both been shown to activate TGF-β1 in 

different models (Albro et al., 2012, Li et al., 2012); however, the system described in 

Chapter 4 applied a combination of both shear and compression. The importance of 

the shear component of the multiaxial load, above that of compression alone, on 

inducing chondrogenesis in MSCs in our bioreactor system has already been described 

(Section 4.1). However, the investigation described in Chapter 4 did not extend to the 

characterisation of the effects of the separate components of the load on TGF-β1 

activation, rather the application of multiaxial load. This is discussed further in the 

Future Work section of this chapter. Further work could also investigate the effect of 

load on TGF-β2 and 3, as well as TGF-β receptor expression. Previous work has 

shown TGF-β1 to be the most important isoform in this system (Li et al., 2010a); 

however, the changes in cell distribution with in the scaffold may also affect other parts 

of the TGF-β pathway.  

Until the work in Chapter 4 was performed, the established hypothesis for the induction 

of chondrogenesis in our bioreactor system was that the application of mechanical load 

leads to the production of endogenous TGF-β1 by the loaded cells (Li et al., 2010a). 

Endogenously produced TGF-β1 then induces the changes observed in the gene 

expression of chondrogenic markers like collagen type II and aggrecan in MSCs within 

the scaffolds and the associated deposition of cartilage-like extracellular matrix proteins 

(Li et al., 2010a). However, the novel results presented in Chapter 4 suggest that the 

process is actually more complex; the application of multiaxial mechanical load induces 

the endogenous production of latent TGF-β1 by loaded cells, the latent TGF-β1 is then 

activated by the application of further mechanical load which then has a chondrogenic 

effect on the cells within the scaffold. This information provides another level of 

mechanistic understanding of our system and provides a staging post going forwards 

for further study of the effect of joint-like load on MSCs. 

A weakness of the Chapter 4 study is the lack of parallel groups for group 1-3 that are 

stimulated with TGF-β1 rather than mechanical load. Exclusion of these groups means 

that it is not possible with the current data set to determine if the increased matrix 

deposition detected histologically in group 2 loaded scaffolds compared to group 1 

loaded scaffolds is due to the specific stimulation of the surface population with the 

shear component of the mechanical load, or simply due to the presence of the 

population itself, regardless of the chondrogenic stimulus applied. Repeating the work 
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with groups stimulated with TGF-β1 would allow for characterisation of the response of 

cells in the scaffolds to a chondrogenic stimulus that does not directly target the 

surface population, in the way that the mechanical load applied in this work did. Should 

the results in TGF-β1 stimulated scaffolds match that of the mechanically loaded 

scaffolds then that would suggest that the increased matrix deposition observed in 

group 2 scaffolds is due to the presence of the population of cells on the surface of the 

scaffold interacting with the cells seeded inside the scaffold, but independently of the 

effect of mechanical load, specifically shear, on the cells seeded on the scaffold 

surface. 

Another weakness of the study performed in Chapter 4 (and the study described in 

Chapter 3) is the limited characterisation of the effect of this culture system on 

hypertrophy. Collagen type X transcript levels were determined in all groups and 

showed no differences between groups 1 and 2. Immunohistochemistry was also 

performed to label for the presence of collagen type X deposited within the scaffolds 

themselves. Given the importance of histological and immunohistochemical 

characterisation of the molecules deposited in the scaffolds presented in Chapter 4 the 

specific location and relative amount of collagen type X inside the scaffolds was of 

singular interest. However, due to the cross reactivity of the anti-collagen type X 

antibody with the fibrin component of the scaffold this was not possible. The results of 

the collagen type X labelling do suggest that areas that stain positively with safranin O 

and toluidine blue for sulphated GAG and collagen type II, which indicated an area 

undergoing a chondrogenic response, do not stain positively with collagen type X. The 

absence of collagen type X in these areas could not be confirmed due to the 

background staining detected in these sections. Localised detection of collagen type X 

would provide extremely interesting information on the chondrogenic effect of load in 

this system and the potential stability of the cartilage-like tissue that can be generated. 

In the absence of a suitable collagen type X antibody, an in-situ hybridisation approach 

to detect collagen type X mRNA would also provide important information about the 

potential localisation of collagen type X production within the scaffolds, allowing for 

further comparison between groups 1 and 2 and a better understanding on the 

chondrogenic phenotype that is induced by the multiaxial, joint-like mechanical load 

applied in this system. 
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6.3 Using the secretome of chondrogenically stimulated cells to 
investigate potentially novel markers of MSC chondrogenesis and 
compare the effects of TGF-β1 stimulation and multiaxial 
mechanical load on MSCs 

Analysis of the bioactive factors released by MSCs seeded into fibrin-poly(ester-

urethane) scaffolds was performed in Chapter 5 with two aims in mind. The first aim 

was to compare the effect of two different chondrogenic stimuli, namely the exogenous 

application of TGF-β1 and mechanical load, on the secretomes of stimulated cells to 

determine if the two forms of stimulation are analogous or different in the responses 

that they elicit. As previously described in this thesis, the chondrogenic effect of 

multiaxial load is heavily reliant on TGF-β1 as load induces both the production and 

activation of this key chondrogenic stimulus, but the full extent of the relationship 

between load and TGF-β1 has not been characterised. The investigation presented in 

chapter 5 was therefore designed to observe if the effects of mechanical load on the 

secretome of stimulated cells was similar or different to cells stimulated by application 

of exogenous TGF-β1 and vice versa. The second aim of the project was to identify 

soluble protein factors that might act as potentially novel markers for MSC 

chondrogenesis. 

The results of secretome analysis showed that nineteen factors changed significantly 

between control, TGF-β1 stimulated or loaded groups. Of the 19 factors, 11 factors 

changed between the two groups; 

− Leptin, leptin receptor and MDC were upregulated in TGF-β1 stimulated 

scaffolds alone compared to controls,  

− MIP3α, uPAR, LAP and angiogenin were significantly increased in the media 

analysed in loaded groups compared to controls,  

− Angiopoietin 2, osteoprotegrin and DR6 were found at a higher concentration in 

loaded samples compared to TGF-β1 stimulated samples.  

The remaining eight factors changed in two of the three statistical comparisons made 

between control, TGF-β1 stimulated and loaded groups;  

− TGF-β1 was significantly higher in the media of TGF-β1 stimulated scaffolds 

than control and loaded scaffolds,  

− ALCAM was significantly higher in loaded samples than control and TGF-β1 

stimulated samples,  

− BLC, MCP3, MIF, VEGF, MMP13 and PDGFaa were significantly higher in 

loaded and TGF-β1 stimulated samples than controls.  

These results clearly show that there is a cohort of proteins with similar expression 

patterns in response to both forms of chondrogenic stimulation (e.g. BLC, MMP13, 
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VEGF and GRO), whilst there are other factors which are differentially upregulated in 

response to TGF-β1 (leptin and leptin receptor or load (e.g. uPAR and angiopoietin 2). 

Interestingly, these data demonstrate that there are clear similarities between the effect 

of TGF-β1 and multiaxial mechanical load on MSCs, which is to be expected, given the 

role of TGF-β1 in both systems, but also that these two forms of chondrogenic 

stimulation are not analogous. In fact, both forms of stimulation appear to have effects 

on factors and pathways that are not affected by the other (e.g. the effect of exogenous 

TGF-β1 on the leptin pathway). 

A wide search of the literature was performed for each factor identified by this 

secretome study with regards to MSCs, chondrogenesis, mechanical load etc. in order 

to gain an understanding for how the bioactive factors that were differentially expressed 

in this study respond to TGF-β1 and various forms of mechanical load in previously 

published work, and how that matches the results presented here. Many of the factors 

discussed have not been broadly studied with regards to MSC chondrogenesis, 

therefore, the aim of this literature search was to assess whether the effects of these 

stimuli on other cells in other culture conditions broadly agreed or disagreed with the 

results presented in this study in the absence, in most cases, of a directly relevant body 

of literature. 

Shear loading is a fundamental part of the multiaxial load applied in this model system; 

shear load in the form of fluid shear or surface interaction has been shown to have 

similar positive effects to those that were observed in this system on factors such as 

MCP3 in osteocytes (Kitase et al., 2014), angiopoietin-2 in endothelial cells (Goettsch 

et al., 2008, Tressel et al., 2007, Li et al., 2014), osteoprotegrin in a bone marrow 

derived stromal cell line (Kim et al., 2006) and PDGF in endothelial cells (Bao et al., 

1999, Palumbo et al., 2002). However, there were also differences between the results 

presented in this thesis and the literature e.g. it has been shown that shear can 

increase GRO production in osteoblasts (Govey et al., 2014), although the choice of 

cell type may also affect GRO production. Shear loading has been shown to reduce the 

activity of MMP13 in chondrocyte cultures (Hamamura et al., 2013), however in my 

study no measurement was made of MMP13 activity but an increase in total MMP13 

was detected in response to load (and TGF-β1 stimulation). In support of the results 

presented here, MMP13 has been shown to be induced at an mRNA level in cartilage 

explants by shear and compression loading (Fitzgerald et al., 2008). High levels of 

shear have also been shown to reduce Angiopoietin 2 levels in HUVECs (Goettsch et 

al., 2008). Due to the importance of shear within the vascular system the majority of 

research into shear forces which overlap with these factors has been performed in 

endothelial cells and other vasculature derived cells. The results described in this 

chapter, however, reflect the effects of shear loading in these systems despite their 
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very different nature. This similarity in the effects of shear load on MSCs compared to 

other cell types in the secretome analysis was reflected in the increased presence of 

NO as determined indirectly via the Griess reaction which has previously been 

described in endothelial cells stimulated with shear forces (Goettsch et al., 2008, Bao 

et al., 1999). 

Literature on other forms of mechanical load e.g. stretch and compression were also 

examined and corroborate the results of this study. Exposure to cyclic stretch increases 

the expression of MIF in gingival cells, MIP3α in hTERT periodontal ligament cells, and 

angiopoietin-2 and PDGF in HUVECs (Wang et al., 1997, Lee et al., 2012, Hashimoto 

et al., 2002, Morimoto et al., 2003, Chang et al., 2003). Compression has been shown 

to induce the expression of MMP13 and uPAR correlating with the results of this study 

(Chen et al., 2013, Chu et al., 2006, Fitzgerald et al., 2008). As with the effects of shear 

load in other systems it is impossible to draw direct comparisons with our system as 

these investigations used different types of cells and different types of load in different 

culture systems, however, the bulk of evidence reported corroborates the effects of 

mechanical shear observed in our system. 

Similarities and differences between the effects of TGF-β1 stimulation on factors in this 

system and those reported in the literature can also be found. Previous work has 

shown that TGF-β stimulation induces MCP3 in murine fibroblasts, decreases GRO 

expression in human lung carcinoma epithelial cells (Lo et al., 2013), increases PDGF 

expression in an osteoclast cell line (Wang et al., 1997), induces VEGF and 

osteoprotegrin in vascular smooth muscle cells (Toffoli et al., 2011, Tanabe et al., 

2006), upregulates uPAR expression in an epithelial cell line (Yue et al., 2004) and 

stimulates BLC expression at seven days of hBMSC chondrogenesis (Cristino et al., 

2008). These results corroborate the observations in this system and in the absence of 

further experiments to provide greater, more specific information. There were also 

effects of TGF-β1 reported in the literature that do not fit the results produced by the 

model system used in this study. Cell associated leptin receptor and its ligand leptin 

were decreased in response to TGF-β1 in BMSCs (Zeddou et al., 2012), however this 

does not necessarily reflect the effect of TGF-β1 on soluble Leptin receptors as 

observed in the work presented here, as the shedding of leptin receptor into the culture 

medium may be due to processes outside the influence of TGF-β. TGF-β1 has been 

associated with the shedding of ALCAM from the cell’s surface, however this was not 

observed in this system despite the clear increase in shedding in response to 

mechanical load. Recent work carried out by Rodriguez et al. investigated the 

secretome of adipose derived MSCs cultured in monolayer stimulated with 3ng/ml 

TGF-β1 (Rodriguez et al., 2015). The results of this work bare some similarities to the 

data presented in this chapter e.g. a decrease in GROα in response to TGF-β1 
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stimulation. However, clear differences were also apparent to the work in this chapter 

e.g. no change in VEGF expression in response to TGF-β1 and a decrease in leptin 

expression in response to TGF-β1 stimulation. These differences are likely to result 

from a combination of the different tissue source used for the MSCs (adipose rather 

than bone marrow) and the different culture system (2D monolayer culture as opposed 

to 3D culture within a scaffold). 

The results of this work not only bare similarities to work carried out in other systems 

but also to secretome studies previously carried out on MSCs. Factors such as GRO, 

VEGF, MIF, MIP3α and OPG were detected in the media of MSCs cultured in high 

density monolayers by Liu et al. (Liu and Hwang, 2005).  Furthermore, a number of 

factors found in the secretome of embryonic stem cell derived MSCs (the HuEs9.E1 

MSC cell line) were also found in this investigation (ALCAM, Angiogenin, MCP3, GRO, 

BLC, MIF, MMP13 and VEGF) (Sze et al., 2007). With specific regard to studies 

focusing on MSCs undergoing chondrogenesis, expression of MMP13 and VEGF have 

been shown to increase in chondrogenic conditions (Grassel et al., 2009, Arufe et al., 

2011), as observed in both TGF-β1 and load induced chondrogenesis in this system. 

The differential expression of specific factors identified in my study may act as potential 

markers to track the progression of chondrogenesis in MSCs, particularly those factors 

whose expression was affected by either TGF-β1 stimulation or mechanical load 

compared to controls (angiogenin, BLC, GRO, MCP3, MIF, VEGF, MMP13 and 

PDGFaa). Among these factors are those whose role in, or relation to, MSC 

chondrogenesis still needs to be established; examples of this include BLC, which has 

previously been shown to be upregulated in response to MSC chondrogenesis induced 

over the first week of stimulation with TGF-β1 (Cristino et al., 2008), MIF and GRO, as 

well as those that have been studied with regards to MSCs but not extensively within 

MSC chondrogenesis such as angiogenin, and VEGF. Others, such as MMP13 have 

been well studied with regards to MSC chondrogenesis (Mueller and Tuan, 2008). The 

factors presented here may in fact provide options for determining the progression of 

MSCs towards hypertrophy, rather than the induction of chondrogenesis. Currently the 

determination of chondrogenic induction in MSCs is performed by looking for a range of 

gene expression markers (e.g. Sox9, aggrecan, collagen type II) and accompanying 

matrix molecules, whereas hypertrophy is most commonly characterised using, just 

one, collagen type X. It has even been suggested that collagen type X may not be a 

good marker of hypertrophy (Mwale et al., 2006). A number of the factors detected in 

this system such as GRO (Merz et al., 2003, Olivotto et al., 2007), MMP13 (Mueller 

and Tuan, 2008) and VEGF (Bluteau et al., 2007)  have all been linked to hypertrophy. 

With further characterisation these factors may be useful to provide further details 

about the progression of MSCs towards hypertrophy. 
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Although not a factor detected in the cytokine array used to investigate the secretome 

of chondrogenically stimulated cells, the presence of nitric oxide was also shown to be 

differentially affected in loaded scaffolds compared to both controls and TGF-β1 

stimulated scaffolds. Nitric oxide has previously been shown to be produced in 

response to shear loading in endothelial cells (Goettsch et al., 2008) and MSCs (Riddle 

et al., 2006, Tjabringa et al., 2006).  However, to the best of my knowledge, this is the 

first time nitric oxide has been shown to be produced in MSCs being chondrogenically 

stimulated with multiaxial mechanical load. The absence of nitric oxide production by 

MSCs in scaffolds stimulated with exogenous TGF-β1 demonstrates that NO 

production is directly linked to the mechanical loading and not the chondrogenesis of 

MSCs. 

 

As a result of the experimental design used in this study there are certain weaknesses 

which would need to be addressed for continuation of this work.  

The first is that the samples used for the secretome analysis were collected in a 

separate experiment from those used for the real-time PCR gene expression analysis. 

The gene expression corroboration was not included in the initial experiment as whilst 

designing this set-up it was not considered important. This however, was a gross 

oversight, and may well have caused increased variation between these two data sets 

that would not have been present had the RNA for gene expression analysis been 

isolated from the same scaffolds used to condition media for the secretome analysis. 

The collection of samples from different experimental repeats, even though they were 

performed with cells from the same bone marrow preparations and had undergone the 

same passage number, may have played a role in the low rate of subsequent 

corroborative confirmation of changes detected at a protein level with the gene 

expression data. However, for factors such as angiopoietin 2 and osteoprotegrin, 

whose media protein levels were matched by their gene expression, this suggests a 

certain degree of robustness in the changes detected in their production in response to 

TGF-β1 stimulation and mechanical load.  

The work presented in chapter 5 was also limited to a certain extent by the cytokine 

antibody array used to perform the secretome analysis. The first of these limitations 

was based around the method of analysis itself.  As covered in the discussion of 

Chapter 5, this kind of analysis is suitable for the binary identification of factors in 

different media samples, but does not provide as sensitive a level of quantification that 

is comparable to other methods e.g. ELISA. As a result, comparison between TGF-β1 

stimulated samples and their respective controls and loaded samples and respective 

controls may  provide clearer differences between groups than the direct comparison 
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between the two chondrogenically stimulated groups where the changes in expression 

are likely to be more subtle. Further work could use the ELISA method to more 

accurately determine the relative levels of target factors in media collected from 

different experimental groups.  The choice of kit also presents certain limitations in 

terms of the proteins detected by the array; it would have been advantageous for the kit 

to detect e.g. extracellular matrix molecules such as aggrecan and collagen type II, and 

focus on more factors that are known to be associated with cartilage and 

chondrogenesis e.g. PTHrP. However, the inclusion of factors that are not widely 

studied with regard to MSC chondrogenesis has also provided interesting results (e.g. 

the down regulation of GRO in response to both TGF-β1 stimulation and mechanical 

load) that would otherwise not have been observed. Further work could further 

enhance the analysis of the secretome of secreted cells e.g. the use of mass 

spectroscopy would allow for the detection of a much larger range of proteins including 

matrix molecules allowing for further comparison between the different groups (Sze et 

al., 2007, Wagner and Ho, 2007).  

Efforts were made to ensure that both TGF-β1 stimulated and loaded groups received 

similar chondrogenic stimuli through the use of 1 ng/ml in the TGF-β1 stimulated group. 

This concentration was chosen, as a concentration of 1 ng/ml TGF-β1 is regularly 

detected in the media collected from MSC containing fibrin-poly(ester-urethane) 

scaffolds in response to the multiaxial mechanical load described in this thesis. 

However, in order to ensure that the chondrogenic stimulation was as similar as 

possible it would also have been necessary to apply TGF-β1 only from day 2, which is 

the point that loading began and therefore the point at which cells in the loaded 

scaffolds would start being exposed to TGF-β1. This was not done, and as a result 

TGF-β1 stimulated MSCs received an additional two days of chondrogenic stimulation 

than loaded scaffolds.  This may have affected the results of the comparisons between 

the two groups, however, the extent to which it may have had an effect is not easily 

determined. 

Both of the stimuli used in this system have been shown to be chondrogenic in 

previously published work (Li et al., 2009, Li et al., 2010a). However, due to the time 

frame chosen in this experiment it was not possible to tie the effect on different factors 

to a chondrogenic outcome. Performing the same analysis (as well as including 

histological analysis) at a later time point e.g. day 21 or day 28 would allow for such a 

comparison. The reason an earlier time point was chosen was to investigate potential 

factors involved in the induction of MSC chondrogenesis. 
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6.4 Future work 

The results of the work carried out in this thesis lay the platform for a large amount of 

potentially interesting follow on work. Some of the most interesting avenues of 

investigation are detailed below. 

The activation of TGF-β1 in response to multiaxial mechanical load was demonstrated 

in Chapter 4.  Work conducted by another group has shown that latent TGF-β1 within 

samples of synovial fluid could be activated by the application of fluid shear (Albro et 

al., 2012), but that latent TGF-β1 within articular cartilage explants could not be 

activated by the application of uniaxial compression (Albro et al., 2013). These findings 

pose an interesting question with regards to the activation of latent TGF-β1 in the 

system described in Chapter 4. As a result it would be informative to apply shear and 

compression alone and in combination to MSC loaded fibrin-poly(ester-urethane) 

scaffolds to determine the effect of the individual loading components on TGF-β1 

production and activation.  

A mechanism could not be elucidated to explain the differences in matrix deposition 

detected histologically and immunohistochemically between groups 1 and 2 in Chapter 

4. The investigations performed to date focused on the use of markers of 

chondrogenesis and articular cartilage to detect differences between the groups. A 

change in approach may, however, prove to be more informative with regards to the 

differences between the groups. An important next step would be to investigate the 

response of the three different scaffold configurations to exogenous TGF-β1 rather 

than mechanical load. This would demonstrate if the response is due to the specific 

effect of load on the surface population, or if the effect is independent of mechanical 

load. It would also be interesting to investigate the presence of gap junctions in group 1 

and group 2 scaffolds as the increase in cell density may affect cell-cell signalling 

which in turn may affect chondrogenesis.  Proliferation was identified by Mesallati et al., 

(2015) who investigated the effect of a similarly structured co-culture approach on 

chondrogenesis; this has not so far been investigated in this system and labelling of 

proliferation cells with BrdU may be informative as to the differences observed between 

groups 1 and 2. 

The nature of the secretome analysis performed in Chapter 5 leads to a large number 

of potential follow on studies that could be performed. Of particular interest are factors 

such as GRO, leptin and nitric oxide. 

GRO has been shown to be associated with hypertrophy in studies by Merz et al. 

(2003) and Olivotto et al. (2007) and is also the only factor to be down regulated in 

response to either factor. The role of GRO in MSC chondrogenesis has not been 

characterised to date. Characterisation of the expression of GRO by chondrogenically 
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differentiating MSCs and investigation of the effect of the addition of exogenous GRO 

in culture media, or knock down of GRO expression on MSC chondrogenesis would 

also be extremely interesting and may provide a novel mechanism for the 

chondrogenic differentiation of MSCs.  

Media from TGF-β1 stimulated cells showed an increase in the presence of leptin and 

leptin receptor that was not detected in media from loaded scaffolds. Leptin signalling 

has been associated with osteoarthritis (Dumond et al., 2003), MMP expression and 

activation (Hui et al., 2012, Iliopoulos et al., 2007) and has also been localised to a 

population of hypertrophic chondrocytes in the growth plate (Kume et al., 2002). 

Therefore, the upregulation of two members of this pathway in response to TGF-β1 but 

not mechanical load is interesting. Characterisation of the expression of leptin in 

chondrogenically differentiating MSCs as well as its exogenous application and knock 

down (in a similar manner to that suggested for GRO) may provide an insight in to the 

progression of MSCs towards hypertrophy in response to TGF-β1 stimulation. 

Nitric oxide has been shown in a number of cell types (including MSCs) to respond to 

various forms of shear stress (Goettsch et al., 2008, Riddle et al., 2006, Tjabringa et 

al., 2006). Nitric oxide was shown to be specifically produced in response to multiaxial 

mechanical load in Chapter 5.  The nitric oxide produced in response to load may be 

involved upstream in the production of TGF-β1 in response to load, or may be separate 

from this process. This could be determined through the application of a nitric oxide 

synthase inhibitor to the MSCs subjected to load and observing the effect of such an 

inhibitor on chondrogenesis. Should nitric oxide be involved in the chondrogenic 

response to load then this would provide another step in the mechanism involved in 

load induced chondrogenic stimulation of MSCs. If nitric oxide is not involved in this 

response then blocking nitric oxide synthase may prove to be a way of reducing the 

presence of this anti-chondrogenic stimulus without affecting the chondrogenesis of 

cells within a loaded scaffold. This may also have potential clinical benefits for those 

undergoing cartilage repair e.g. microfracture. 
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6.5 Summary 

The novel results presented in this thesis allow for the drawing of certain conclusions 

about the chondrogenesis of MSCs in fibrin-poly(ester-urethane) scaffolds in response 

to, and in the absence of mechanical load.  

The first is that separate populations of cells within the same construct can interact and 

effect the induction of chondrogenesis in the other cell population. This was first, 

partially, demonstrated by the potentially chondrogenic effects of predifferentiatied 

bottom scaffolds on top scaffolds containing naïve MSCs in Chapter 3. This was then 

subsequently demonstrated in Chapter 4 where a substantial improvement in matrix 

deposition was noted when a population of MSCs was seeded onto the loaded surface 

of an MSC containing fibrin-poly(ester-urethane) scaffold.  

The work presented in Chapter 4 described the activation of endogenously produced 

TGF-β1 by the application of multiaxial mechanical load. This novel observation 

improves our understanding of the response of MSCs to multiaxial mechanical load by 

demonstrating that mechanical load not only induces the production of TGF-β1 but is 

also required for its activation, and therefore the chondrogenic effects of TGF-β1.  

Secretome analysis performed in Chapter 5 demonstrated that exogenous TGF-β1 

stimulation and multiaxial mechanical load have notable differential effects on the 

soluble proteins secreted by MSCs over the first week in culture. The results showed 

that although both forms of stimulation had similar effects on a number of factors, 

which is likely to be linked to the role of TGF-β1 in both systems, both forms of 

stimulation also led to changes in factor expression that were not noted in response to 

the other stimulus. 

Subsequent to the secretome analysis in Chapter 5, nitric oxide was also identified as 

being upregulated in response to the application of mechanical load. To the best of my 

knowledge, the upregulation of nitric oxide production in MSCs chondrogenically 

stimulated with multiaxial load is also a novel finding. 

These data provide useful information with regards to the spatial design of potential 

constructs for cartilage tissue engineering/regenerative medicine as well as providing a 

further insight into the effect of joint-like mechanical load on the induction of 

chondrogenesis in MSCs. 
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Appendix 1 

The 174 proteins detected by the RayBio Human Cytokine Array G-series 2000 

described in Chapter 5. 

 

Adiponectin (ACRP30) 

Activin A 

AgRP 

ALCAM (CD166) 

Amphiregulin 

Angiogenin 

Angiopoietin-2 

Axl 

CD80 (B7-1) 

BDNF 

bFGF 

BLC (CXCL13) 

BMP-4 

BMP-5 

BMP-6 

BMP-7 

beta-NGF 

Betacellulin (BTC) 

Cardiotrophin-1 (CT-1) 

CCL28 (MEC) 

CD14 

Ck beta 8-1 (CCL23) 

CNTF 

CTACK (CCL27) 

CXCL16 
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DR6 (TNFRSF21) 

Dtk 

EGF 

EGFR 

ENA-78 (CXCL5) 

Endoglin (CD105) 

Eotaxin-1 (CCL11) 

Eotaxin-2 (MPIF-2/CCL24) 

Eotaxin-3 (CCL26) 

ErbB3 

E-Selectin 

Fas (TNFRSF6/Apo-1) 

Fas Ligand (TNFSF6) 

FGF-4 

FGF-6 

FGF-7 (KGF) 

FGF-9 

Flt-3 Ligand 

Fractalkine (CX3CL1) 

GCP-2 (CXCL6) 

GCSF 

GDNF 

GITR (TNFRSF18) 

GITR Ligand (TNFSF18) 

GM-CSF 

GRO alpha/beta/gamma 

GRO alpha (CXCL1) 

HCC-4 (CCL16) 

HGF 
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I-309 (TCA-3/CCL1) 

ICAM-1 (CD54) 

ICAM-2 (CD102) 

ICAM-3 (CD50) 

IFN-gamma  

IGFBP-1 

IGFBP-2 

IGFBP-3 

IGFBP-4 

IGFBP-6 

IGF-1 

IGF-1 R 

IGF-2 

IL-1 R2 

IL-1 R4 (ST2) 

IL-1 R1 

IL-10 

IL-10 R beta 

IL-11 

IL-12 p40  

IL-12 p70 

IL-13 

IL-13 R alpha 2 

IL-15 

IL-16 

IL-17A 

IL-18 BP alpha 

IL-18 R beta (AcPL) 

IL-1 alpha (IL-1 F1) 
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IL-1 beta (IL-1 F2) 

IL-1 ra (IL-1 F3) 

IL-2 

IL-2 R beta (CD122) 

IL-2 R gamma (Common gamma Chain) 

IL-2 R alpha 

IL-21 R 

IL-3 

IL-4 

IL-5 

IL-5 R alpha 

IL-6 

IL-6 R 

IL-7 

IL-8 (CXCL8) 

IL-9 

IP-10 (CXCL10) 

I-TAC (CXCL11) 

LAP 

Leptin 

Leptin R 

LIF 

Light (TNFSF14) 

L-Selectin (CD62L) 

Lymphotactin (XCL1) 

MCP-1 (CCL2) 

MCP-2 (CCL8) 

MCP-3 (MARC/CCL7) 

MCP-4 (CCL13) 
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M-CSF 

M-CSF R 

MDC (CCL22) 

MIF 

MIG (CXCL9) 

MIP-1 alpha (CCL3) 

MIP-1 beta (CCL4) 

MIP-1 delta (CCL15) 

MIP-3 alpha (CCL20) 

MIP-3 beta (CCL19) 

MMP-1 

MMP-13 

MMP-3 

MMP-9 

MPIF-1 (CCL23) 

MSP alpha/beta 

NAP-2 (PPBP/CXCL7) 

NGFR (TNFRSF16) 

NT-3 

NT-4 

Oncostatin M 

Osteoprotegerin (TNFRSF11B) 

PARC (CCL18) 

PDGF-AA 

PDGF R alpha 

PDGF R beta 

PDGF-AB 

PDGF-BB 

PECAM-1 (CD31) 
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PLGF 

Prolactin 

RANTES (CCL5) 

SCF 

SCF R (CD117/c-kit) 

SDF-1 alpha (CXCL12 alpha) 

SDF-1 beta (CXCL12 beta) 

gp130 

Siglec-5 (CD170) 

TNF RII (TNFRSF1B) 

TNF RI (TNFRSF1A) 

TARC (CCL17) 

TECK (CCL25) 

TGF alpha 

TGF beta 1 

TGF beta 2 

TGF beta 3 

Thrombopoietin (TPO) 

Tie-1 

Tie-2 

TIMP-1 

TIMP-2 

TIMP-4 

TNF alpha 

TNF beta (TNFSF1B) 

TRAIL R3 (TNFRSF10C) 

TRAIL R4 (TNFRSF10D) 

uPAR 

VE-Cadherin (CDH5) 
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VEGF-A 

VEGFR2 

VEGFR3 

VEGF-D 
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Appendix 2 

Tables grouping the 174 factors analysed using the RayBio Cytokine Antibody Array 

described in Chapter 5 by level of expression. 

<100 (55) Average: SD: 

BMP-6 20.50 18.21 

EGF 75.33 10.40 

Eotaxin-2 39.48 18.96 

FGF-6 89.09 26.08 

Fractalkine 56.08 13.77 

GCP-2 59.52 13.74 

I-309 76.70 36.40 

IGFBP-4 65.48 18.32 

IGF-I 38.10 23.48 

IL-16 40.97 9.05 

IL-4 59.48 9.60 

Leptin 93.79 81.84 

MDC 54.81 9.98 

MIP-1-delta 39.08 9.73 

MIP-3-alpha 75.85 26.79 

NAP-2 60.29 9.54 

SCF 91.19 48.69 

TARC 62.49 15.76 

TGF-beta 3 47.79 10.99 

Acrp30 92.64 28.07 

Amphiregulin 78.92 26.50 

Axl 74.55 15.60 

bFGF 50.84 15.77 

b-NGF 31.23 6.16 
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CCL-28 96.26 19.50 

Dtk 92.56 36.24 

FGF-4 48.68 11.16 

FGF-9 57.97 12.64 

GITR-Ligand 94.24 19.10 

GITR 91.73 19.21 

ICAM-1 70.90 16.08 

ICAM-3 23.25 8.45 

IGFBP-3 62.24 17.13 

IGF-I SR 95.10 16.48 

IL-1 RI 95.14 20.68 

IL-11 94.45 20.56 

IL-12 p40 47.83 12.96 

IL-12 p70 67.27 11.85 

IL-17 81.16 22.51 

IL-6 R 81.78 18.31 

I-TAC 32.52 12.19 

Lymphotactin 44.30 12.07 

MIP-1alpha 66.21 14.88 

MIP-1beta 56.87 14.37 

MIP-3beta 78.51 14.50 

MSP-alpha 60.32 12.03 

NT-4 85.51 31.98 

Oncostatin M  97.90 17.10 

sTNF RII 26.36 7.70 

Thrombopoietin  92.97 17.15 

TRAIL R4 94.62 17.76 

VEGF-D 59.82 14.37 
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Activin A 69.51 14.01 

B7-1(CD80) 68.33 16.72 

CD14 54.92 11.76 

 

100-500 (94) Average: SD: 

BDNF 130.47 41.75 

BLC 389.19 557.10 

BMP-4 229.76 79.62 

CK beta 8-1 113.93 19.88 

CNTF 258.56 59.82 

Eotaxin 132.06 54.81 

Eotaxin-3 198.10 28.94 

FGF-7 156.22 65.72 

Flt-3 Ligand 189.15 17.52 

GDNF 114.19 24.11 

GM-CSF 325.87 36.63 

GRO-alpha 172.27 34.27 

IGFBP-1 152.43 72.68 

IL-10 343.34 39.00 

IL-13 389.92 43.08 

IL-15 384.77 29.87 

IL-1alpha 369.92 39.26 

IL-1beta 205.15 40.82 

IL-1ra 181.88 34.77 

IL-2 324.53 35.47 

IL-3 198.45 31.83 

IL-5 464.88 47.99 

IL-7 335.49 36.04 
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LIGHT 106.33 21.95 

MCP-2 137.79 17.39 

MCP-3 201.30 115.94 

MCP-4 100.62 19.51 

M-CSF 213.08 27.74 

MIG 268.03 35.67 

NT-3 119.82 24.16 

PARC 176.32 30.46 

PDGF-BB 177.73 23.14 

RANTES 194.34 92.11 

SDF-1 369.86 51.40 

TGF-beta 1 356.93 52.22 

TNF-alpha  394.93 34.84 

TNF-beta 331.52 32.76 

AgRP 138.77 27.18 

BTC 110.81 19.19 

CTACK 141.73 29.40 

EGF-R 226.63 69.53 

ENA-78 111.72 21.62 

Fas/TNFRSF6 228.27 44.93 

HCC-4 113.30 17.39 

IGFBP-6 253.67 100.85 

IL-1 R4/ST2 140.43 35.96 

IL-2 Rapha 127.43 18.74 

IL-8 254.23 46.30 

PIGF 179.83 81.59 

sgp130 179.39 55.54 

sTNF-RI 261.63 52.62 
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TECK 103.40 19.38 

TRAIL R3 149.90 46.16 

uPAR  286.63 109.39 

ALCAM 141.57 37.54 

BMP-7 391.91 30.34 

Cardiotrophin-

1 283.75 22.50 

CXCL- 16 310.47 246.81 

DR6 

(TNFRSF21) 475.82 43.25 

Endoglin 216.47 24.47 

ErbB3 250.70 23.87 

E-Selectin 280.31 29.89 

IGF-II 141.18 13.38 

IL-1 R II 161.46 16.37 

IL-10 Rbeta 167.60 15.98 

IL-13 Ralpha2 281.21 26.02 

IL-18 BPalpha 256.06 22.80 

IL-2 Ralpha 264.41 36.49 

IL-2 Rgamma 281.51 37.37 

IL-21R 182.63 20.02 

IL-5 Ralpha 117.80 26.67 

IL-9 396.57 36.02 

Leptin R 110.07 29.35 

L-Selectin 271.88 24.01 

M-CSF R 201.78 12.37 

MMP-13 422.77 512.66 

MPIF-1 275.30 29.12 

PDGF AA 171.75 76.35 
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PDGF-AB 112.36 15.06 

PDGF Ralpha 110.84 17.79 

PDGF Rbeta 218.53 21.39 

Prolactin 196.60 14.22 

SCF R 354.31 27.75 

SDF-1beta 253.54 24.27 

Siglec-5 183.85 14.85 

TGF-alpha 108.03 20.05 

Tie-1 217.61 27.44 

Tie-2 198.07 22.48 

VE-Cadherin 199.29 19.49 

VEGF R3 453.38 41.64 

MMP-1 82.60 11.42 

MMP-9 50.13 14.07 

PECAM-1 66.09 10.20 

VEGF R2 95.96 26.73 

 

500-1000 (11) Average: SD: 

IFN-gamma 642.52 73.33 

GCSF 599.35 183.60 

Osteoprotegerin  986.16 560.48 

VEGF 938.11 397.31 

BMP-5 599.05 62.87 

Fas Ligand 659.85 75.51 

ICAM-2 565.95 63.26 

IL-18 Rbeta 757.35 106.17 

IL-2 Rbeta 518.06 54.93 

NGF R 549.36 67.07 
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TGF beta2 986.62 186.00 

 

1000-4000 

(12) Average: SD: 

IGFBP-2 1894.01 937.81 

IL-6 1310.90 136.14 

MCP-1 2371.32 1079.86 

Angiopoietin-2 1341.87 1446.09 

GRO 1326.36 1011.64 

HGF 2217.95 1406.70 

MIF 2290.84 1109.49 

TIMP-1 1214.70 258.73 

IP-10 1052.02 98.75 

LAP 1302.15 752.86 

LIF 1227.15 114.97 

TIMP-4 1310.38 779.88 

 

>4000 (2) Average: SD: 

Angiogenin  40273.68 7037.95 

TIMP-2 6778.68 2231.98 
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Appendix 3 

List of Publications Oral Presentations and Poster Presentations 

 

Publications 

Gardner OFW, Archer CW, Alini M, Stoddart MJ. Chondrogenesis of mesenchymal 

stem cells for cartilage tissue engineering. Histology and histopathology. 2013;2823-

42. 

Glück M, Gardner OFW, Czekanska E, Alini M, Stoddart MJ, Salzmann GM, Schmal H. 

Induction of osteogenic differentiation in human mesenchymal stem cells by crosstalk 

with osteoblasts. Biores Open Access. 2015 Jan 1;4(1)121-30. 

Neumann AJ, Gardner OFW, Williams R, Alini M, Archer CW, Stoddart MJ. Human 

articular cartilage progenitor cells are responsive to mechanical stimulation and 

adenoviral-mediated overexpression of bone-morphogenetic protein 2. PLoS One. 

2015 Aug 20;10(8)e0136229. doi 10.1371/journal.pone.0136229. 

 

Articles Under Review 

Gardner OFW, Musumeci G, Eglin D, Archer CW, Alini M, Stoddart MJ. Asymmetrical 

seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on 

mechanically induced chondrogenesis. 

Gardner OFW, Alini M, Stoddart MJ. Joint Mimicking Mechanical Load Activates 

TGFβ1 in Fibrin-Poly(ester-urethane) Scaffolds Seeded with Mesenchymal Stem Cells. 

Gardner OFW, Fahy N, Alini M, Stoddart MJ. A Secretomic Comparison of the 

Differences in human Mesenchymal stem cell secretomes during chondrogenic 

induction. 

 

Book Chapter 

Gardner OF, Alini M, Stoddart MJ. Mesenchymal stem cells derived from human bone 

marrow. Methods in Molecular Biology Cartilage Tissue Engineering – Methods and 

Protocols. Humana Press. 2015. 

 

 

 

 



259 
 

List of Oral and Poster Presentations 

Academica Rhaetia 2012 

Oral presentation 'Cartilage Tissue Engineering'. Gardner OFW, Neumann AJ, Archer 

CW, Alini M, Stoddart MJ. 

Prize: Science award for best presentation. 

 

Belgium Symposium on Tissue Engineering 2012 

Oral and poster Presentation 'Co-culture of mesenchymal stem cells at different stages 

of chondrogenic differentiation within a tissue engineering construct effects on 

chondrogenesis and hypertrophy'. Gardner OFW, Neumann AJ, Archer CW, Alini M, 

Stoddart MJ. 

 

Gordon Research Conference - Cartilage Biology and Pathology 2013 

Poster presentation 'The role of asymmetrical cell distribution during mechanically 

induced chondrogenesis of human bone marrow derived stem cells'. Gardner OFW, 

Musumeci G, Archer CW, Alini M, Stoddart MJ. 

 

AO Foundation Exploratory Research Board "Where science meets clinics" 2013 

Oral presentation 'Mechanically induced chondrogenesis of mesenchymal stem cells 

can be improved by manipulating the location of cells within a tissue engineering 

scaffold'. Gardner OFW, Musumeci G, Archer CW, Alini M, Stoddart MJ. 

 

Orthopaedic Research Society Annual meeting 2014 

Poster presentation 'Asymmetric Cell Seeding Enhances the Mechano-Induction of 

Chondrogenesis in Human MSCs in the Absence of Exogenous Growth Factors'. 

Gardner OFW, Musumeci G, Archer CW, Alini M, Stoddart MJ. 

 

TERMIS EU 2014 

Oral presentation 'Improving the deposition of cartilage-like matrix by mechanically 

stimulated MSCs in the absence of growth factors through the asymmetrical seeding of 

fibrin-polyurethane scaffolds'. Gardner OFW, Musumeci G, Archer CW, Alini M, 

Stoddart MJ. 



260 
 

European Cells and Materials 2014 

Poster presentation 'Comparing the secretomes of unstimulated and mechanically 

loaded MSCs'. Gardner OFW, Archer CW, Alini M, Stoddart MJ. 

 

Academica Rhaetia 2014 

Poster presentation 'Improving the deposition of cartilage-like matrix by mechanically 

stimulated MSCs in the absence of growth factors through the asymmetrical seeding of 

fibrin-polyurethane scaffolds'. Gardner OFW, Musumeci G, Archer CW, Alini M, 

Stoddart MJ. 

 

Stem cells in development and disease 2014 

Poster presentation 'Tribological Tissue Engineering of Cartilage'. Gardner OF, 

Musumeci G, Archer CW, Alini M, Stoddart MJ. 

 

Orthopaedic Research Society Annual meeting 2016 

Oral presentation ' A Secretomic Comparison of the Induction of Chondrogenesis in 

Human Mesenchymal Stem Cells via TGF-β1 and Mechanical Load'. Gardner OFW, 

Fahy N, Alini M, Martin Stoddart MJ 


	Declaration
	Thesis Summary
	Acknowledgements
	Contents
	Figures
	Tables
	Abbreviations
	Chapter 1 General Introduction and Thesis Aims
	1.1 Introduction
	1.2 Cartilage, chondrocytes and extracellular matrix
	1.3 Conservative and surgical options for the treatment of damaged cartilage
	1.4 Cell Based Therapies
	1.5 Mesenchymal Stem Cells
	1.6 Endochondral ossification
	1.6 Hypertrophy
	1.6.1 Chondroptosis
	1.6.2 Molecular Mechanisms Regulating Hypertrophy

	1.7 Transforming Growth Factor β
	1.8 Mechanostimulation
	1.8.1 Hydrostatic pressure
	1.8.2 Compression
	1.8.3 Shear
	1.8.4 Shear and compression

	1.9 Load and endogenous TGF-β production
	1.10 Thesis Aims

	Chapter 2 Materials and Methods
	2.1 Materials
	2.2 Poly(ester-urethane) and Scaffolds Preparation
	2.3 MSC Isolation and Proliferation
	2.4 Seeding of Fibrin-Poly(ester-urethane) Scaffolds
	2.5 Application of Multi-axial Mechanical Load
	2.6 Sample Collection and Preparation
	2.7 Glycosaminoglycan and DNA Quantification
	2.8 TGF-β1 quantification
	2.9 RNA Extraction
	2.10 cDNA Synthesis
	2.11 Real-time PCR
	2.12 Histological Analysis
	2.12.1 Toluidine Blue staining
	2.12.2 Safranin O/Fast Green staining
	2.12.3 Immunohistochemistry

	2.13 Microscopy
	2.14 Statistical analysis

	Chapter 3 Investigating the potential for crosstalk between mesenchymal stem cells at different stages of chondrogenic differentiation within multi-layer fibrin poly(ester-urethane) constructs
	3.1 Introduction
	3.2 Materials and Methods
	3.2.1 Donor Information
	3.2.2 Experimental Design
	3.2.3 Mechanical Loading Regimen
	3.2.4 Sample Collection and Storage
	3.2.5 Statistical Analysis

	3.3 Results
	3.3.1 Differential gene expression in response to co-culture and mechanical load
	3.3.2 Quantification of TGF-β1 release from MSCs in response to co-culture and mechanical load
	3.3.3 Quantification of DNA and GAG content of scaffolds containing MSCs and GAG released into the culture media
	3.3.4 Histology

	3.4 Discussion
	3.5 Conclusions

	Chapter 4 Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Donor Information
	4.2.2 Experimental design
	4.2.3 Seeding of cells on to fibrin-poly(ester-urethane) scaffolds
	4.2.4 Membrane labelling of MSCs with the fluorescent dye PKH26 and seeding of labelled MSCs into fibrin-poly(ester-urethane) scaffolds
	4.2.5 Mechanical Loading
	4.2.6 Sample collection and storage
	4.2.7 Statistical Analysis

	4.3 Results
	4.3.1 Fluorescence membrane labelling of MSCs seeded in to fibrin-poly(ester-urethane) scaffolds
	4.3.2 Safranin O and toluidine-blue staining of fibrin-poly(ester-urethane) scaffolds seeded with MSCs
	4.3.3 Immunohistochemical labelling of fibrin-poly(ester-urethane) scaffolds
	4.3.4 Quantification of GAG and DNA content in fibrin-poly(ester-urethane) scaffolds and release into culture media
	4.3.5 Gene expression profiles of MSCS seeded in to fibrin-poly(ester-urethane) scaffolds after seven days of culture
	4.3.6 Gene expression profiles of MSCs seeded in to fibrin-poly(ester-urethane) scaffolds after twenty-eight days of culture
	4.3.7 Quantification of the total and active TGF-β1 in collected culture media

	4.4 Discussion
	4.5 Conclusions

	Chapter 5 A Secretomic Comparison of the Induction of Chondrogenesis in Human Mesenchymal Stem Cells via TGF-β1 and Mechanical Load
	5.1 Introduction
	5.2 Materials and Methods
	5.2.1 Donor Information
	5.2.2 Experimental Design
	5.2.3 Mechanical loading
	5.2.4 Sample collection
	5.2.5 Characterisation of cytokine profile using a RayBio Human Cytokine Antibody Array
	5.2.6 Quantification of media nitrite (Griess Reaction)
	5.2.7 Statistical analysis

	5.3 Results
	5.3.1 TGF-β1 Quantification
	5.3.2 Characterisation of the production of bioactive factors in response to chondrogenic stimulation with TGF-β1 and mechanical load
	5.3.3 Factors whose concentration was significantly different in media collected from loaded constructs compared to controls
	5.3.4 Factors whose concentration was significantly different in media collected from TGF-β1 stimulated constructs compared to controls
	5.3.5 Factors whose concentration was significantly different in media collected from TGF-β1 stimulated and loaded constructs
	5.3.6 Factors whose concentration was significantly different in media collected from TGF-β1 stimulated and loaded constructs compared to controls
	5.3.7 Factors whose concentration was significantly different in media collected from either TGF-β1 stimulated or loaded constructs compared to controls
	5.3.8 Differential gene expression in MSCs chondrogenically stimulated with TGF-β1 and mechanical load
	5.3.9 The production of nitrite by MSCs in fibrin-poly(ester-urethane) scaffolds exposed to exogenous TGF-β1 and mechanical load

	5.4 Discussion
	5.4.1 Leptin
	5.4.2 Leptin Receptor
	5.4.3 MDC
	5.4.4 MIP3α
	5.4.5 GRO
	5.4.6 uPAR
	5.4.7 LAP
	5.4.8 Angiogenin
	5.4.9 Angiopoietin 2
	5.4.10 Osteoprotegrin
	5.4.11 DR6
	5.4.12 TGF-β1
	5.4.13 ALCAM
	5.4.14 BLC (CXCL13)
	5.4.15 MCP3
	5.4.16 MIF
	5.4.17 VEGF
	5.4.18 MMP13
	5.4.19 PDGF

	5.5 Conclusions

	Chapter 6 General Discussion
	6.1 The effect of temporally and spatially structured scaffolds on MSC chondrogenesis and hypertrophy
	6.2 The effect of asymmetrically seeding scaffolds on MSC chondrogenesis and hypertrophy
	6.3 Using the secretome of chondrogenically stimulated cells to investigate potentially novel markers of MSC chondrogenesis and compare the effects of TGF-β1 stimulation and multiaxial mechanical load on MSCs
	6.4 Future work
	6.5 Summary

	References
	Appendix 1
	Appendix 2
	Appendix 3

