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Phosphate-based bioactive glasses containing fluoride ions offer the potential of a biomaterial which
combines the bioactive properties of the phosphate glass and the protection from dental caries by
fluoride. We conduct accurate first-principles molecular dynamics simulations of two compositions of
fluorinated phosphate-based glass to assess its suitability as a biomaterial. There is a substantial amount
of FeP bonding and as a result the glass network will be structurally homogeneous on medium-range
length scales, without the inhomogeneities which reduce the bioactivity of other fluorinated bioactive
glasses. We observe a decrease in the network connectivity with increasing F content, caused by the
replacement of bridging oxygen atoms by non-bridging fluorine atoms, but this decrease is small and can
be opposed by an increase in the phosphate content. We conclude that the structural changes caused by
the incorporation of fluoride into phosphate-based glasses will not adversely affect their bioactivity,
suggesting that fluorinated phosphate glasses offer a superior alternative to their silicate-based
counterparts.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Phosphate-based glasses [1] are increasingly used as bio-
materials for implants in the body, owing to several valuable
properties. Certain glass compositions are bioactive, that is, they
react chemically when placed in a physiological environment.
These glasses dissolve completely in aqueous environments, as
found in the body, with a dissolution rate that varies over several
orders of magnitude, dependent on composition [1,2]. Since these
glasses can be synthesised using the ions normally found in the
body, they have been employed in a wide range of biomedical ap-
plications [1,3], including fixation of bone fractures [4], tubular
forms to aid neural repair [5] and the controlled release of anti-
microbials [6] or drugs [7], among many others. Phosphate-based
glasses are typically very soluble, and they also decompose to
products which can be harmlessly eliminated by the body [1]. The
addition of dopants and changes in composition allow for the
possibility of tuning the dissolution rate tomake the glass suited for
a specific application. Although they have been less widely used
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clinically than other biomaterials [8], the increased solubility of
phosphate-based glasses makes them eminently suitable for use as
bioactive degradable materials, where the biomaterials or their
dissolution products play an active role in tissue engineering.

Fluorine is used in dentistry where it has three beneficial effects:
it enhances tooth enamel remineralisation, and inhibits deminer-
alisation and the action of bacterial enzymes [9]. In particular,
during enamel remineralisation in the presence of fluoride ions, the
phosphate mineral fluorapatite is formed, which is much less sus-
ceptible to acid attack than hydroxyapatite, the primary con-
stitutent of enamel. Fluoride-containing silicate-based bioactive
glasses (BG) have been synthesised and are used in e.g. toothpaste
for sufferers of dentine hypersensitivity. The structure and prop-
erties of fluorinated bioactive glasses (F-BG) have also been studied
in experiment [10,11] and simulation [12e14]. The incorporation of
fluorine into BG has deleterious effects on the bioactivity. During
the formation of hydroxyapatite on F-free BG, a thick silica-rich gel
layer is formed [15]. In vitro and in vivo studies show that this layer
is less homogeneous on F-BG than on F-free BG [16], and under
certain conditions is small or even absent [17,18]. The reason for this
inhomogeneity has been identified as a structural one. Fluorinated
silicate glasses show a very small amount of FeSi bonding [10,13]
and hence a separation on medium-range length scales into
under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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phosphosilicate-rich and Na/Ca/F-rich regions [12]. Ionic clustering
is known to reduce bioactivity [19e21], and the surface reactivity of
the glass will vary across the different regions, which is the likely
cause of the disrupted formation of the silica gel layer.

Given this problem with fluorinated silicate BG, and the more
controllable dissolution of phosphate-based bioactive glasses, it
was logical to investigate fluorinated phosphate-based bioactive
glasses (F-PBG) that would combine the beneficial effects of fluo-
ride with superior bone bonding properties. Experimentally, it was
found to be difficult to synthesise these glasses with consistent
fluoride levels due to fluorine volatility [1], but the loss of fluoride
could be controlled to a manageable level by minimising the use of
P2O5.

In this work, we concentrate on the effects of incorporating
fluorine on the structure, and hence the bioactivity, of phosphate-
based glasses. Computer simulation is an ideal tool to investigate
the structure and properties of glasses, as it allows us to understand
material properties from the atomistic level, which is particularly
useful for F-PBG due to the lack of experimental data. Simulation
has been widely used to study the structures and properties of
many different types of glasses [22e29], including those implanted
into the body for biomedical reasons [19,20,30e32], as well as
providing insight into the interactions of the glass with the physi-
ological environment [33e35]. We use first-principles Born-
Oppenheimer molecular dynamics (MD) simulations to create
realistic, unbiased models of two phosphate glass compositions
with different fluorine contents, where the interatomic forces are
computed from a quantum-mechanical representation of the
electronic structure. Although the high computational cost of this
approach limits us to relatively small models, this disadvantage is
offset by the high accuracy inherent in this parameter-free
approach, which does not rely on the generation of an empirical
force field. Models of diverse glass compositions prepared using
first-principles MD have previously been used to complement
experimental studies and provide vital information on the atomic
structure and properties and their effect on the suitability of the
different glasses for biomedical applications [13,36e38].
2. Materials and methods

Born-Oppenheimer molecular dynamics simulations were performed by the
mixed plane-wave/Gaussian-basis-set CP2K code [39], using the generalised
gradient approximation (GGA) to density-functional theory (DFT) with PBE
exchange-correlation functionals [40]. All atomic species were represented using a
double-zeta valence polarised (DZVP) basis set [41]. The plane-wave energy cutoff
was 700 Ry, and theMD timestepwas 1.0 fs. Periodic boundary conditions were used
throughout.

Two compositions were modelled, based on the metaphosphate glass compo-
sition, one with 2 mol % CaF2 (hereafter called F2) and one with 6 mol % CaF2 (F6).
The glass compositions were also chosen to have the same ratio of numbers of P
atoms to O atoms as each other and as the reference metaphosphate composition.
The precise compositions are given in Table 1. The densities of the fluorinated
compositions were not obtainable experimentally, nor available via glass property
modelling databases, and we have therefore estimated the effect on the density of
incorporating fluorine to the metaphosphate composition, based on the fractional
increase of density observed when fluorine was added to ternary silicate-based
glasses by Brauer et al. [42] For the starting configurations, atoms were placed
randomly and independently in a cubic periodic box subject only to the constraint
Table 1
The simulated compositions (in CaF2 mol %) and their densities and sizes. The
fluoride-free F0 composition is included for reference.

Composition P2O5 Na2O CaO CaF2 Density
(g cm�3)

Number
of atoms

Cell
size (Å)

F0 50.0 20.0 30.0 0.0 2.585 [43] Not
simulated

F2 49.0 19.6 29.4 2.0 2.593 363 17.0718
F6 47.0 18.8 28.2 6.0 2.610 197 13.9227
that no two atoms were closer than about 80e90% of their expected interatomic
separation. The size of the box was chosen to give the appropriate density (Table 1)
and kept constant throughout the simulation. To ensure that there were sufficient
fluorine atoms in each model to obtain reliable statistics of their structures, the F6
model contains 197 atoms, of which six are fluorine, but due to its lower F content,
the F2 model contains 363 atoms, of which four are fluorine.

For each composition, an MD run was started from the initial quasi-random
configuration in the NVT ensemble at 2500 K until the model was well equili-
brated, which was confirmed by computing the actual and mean-square atomic
displacements. This typically took 20 ps of MD simulation time. Then, each model
was run for 10 ps in NVT ensembles at each of the following temperatures: 2200 K,
1900 K,1600 K,1300 K,1000 K, 750 K and 500 K, before being run for 20e25 ps in the
NVT ensemble at 300 K. The production run, overwhich all data given in this paper
are averaged, constitutes the last two-thirds of this room-temperature run. This
protocol corresponds to a total simulation time of 110 ps, and an effective cooling
rate of just over 30 K ps�1. Although this cooling rate is substantially faster than that
used to prepare glasses experimentally, simulated cooling rates of this order of
magnitude have been used to prepare accurate structural models of glasses in
agreement with experimental results using first-principles [13,37,38] molecular
dynamics, whereas even the cooling rates achieved in classical molecular dynamics
simulations [22,29] are less than an order of magnitude slower.
3. Results

The aim of this work is to characterise the atomic structure of
fluorinated phosphate-based glasses, and the likely effect of the
inclusion of fluorine on their bioactivity. The structures of various
fluorine-free phosphate-based glasses with related compositions
have already been characterised through simulation [29] and
experiment [6,44e49], and in this section we will therefore
concentrate on the structure around the fluoride ions.

Fig. 1 shows views of the simulated F2 and F6 compositions. The
basic building block of the (F-free) phosphate glass network is the
PO4 tetrahedron. In a fully connected phosphate glass, three of the
oxygen of each PO4 group are bridging oxygen (BO) atoms which
are also bonded to another PO4 tetrahedron, whilst the fourth is a
terminal oxygen (TO) atom, double-bonded to the phosphorus
atom. The presence of modifier atoms like sodium and calcium
causes PeOeP bonds to break, thereby forming non-bridging ox-
ygen (NBO) atoms and fragmenting the network which increases
the solubility.
3.1. Local environments of phosphorus

For both compositions, the first peak in the phosphoruseoxygen
partial pair-correlation function, gPO(r) (Fig. 2(a)), occurs at similar
distances and resolves the two types of PeO bonding: the shorter
distance (bond length 1.50 Å) is the P-TO peak, and the larger
(1.63 Å) is the P-BO peak, in agreement with previous simulations
of F-free phosphate glasses [29]. Hoppe et al. [49] showed the
experimental PeO bond lengths to be sensitive to the molar ratio
y ¼ n(M2/vO)/n(P2O5), where n(x) is the molar content of moiety x,
and n is the charge of the modifier M. According to this observation
[49], compositions with y ¼ 1.0, like ours, have P-TO distances of
1.51 Å and P-BO distances of 1.62 Å, very close to those found in
these simulations. In gPF(r) (Fig. 2(b)), only one peak at 1.58 Å is
seen for both compositions, at distances intermediate to the two Pe
O bond lengths. In an F-free glass, the PeO coordination number
would be exactly four, reflecting the tetrahedral structure around
the P; however, in these glasses, we find a PeO coordination
number slightly below four: 3.96 for F2 and 3.93 for F6. On
examining gPF(r) and the PeF coordination numbers, which are
0.04 for F2 and 0.07 for F6, we see that a small amount of the ox-
ygen atoms in the PO4 tetrahedron have been replaced by fluorine
atoms. The phosphorus atoms are essentially always (99.8% for F2,
100.0% for F6) four-coordinated when both oxygen and fluorine are
taken into account. When PeF bonding occurs, one of the fluorine
atoms takes the place of one of the oxygen atoms in a PO4 unit,



Fig. 1. Views of the (a) F2 and (b) F6 compositions. The colours are: phosphorus (brown), oxygen (red), sodium (dark blue), calcium (light blue), fluorine (yellow). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Partial pair-correlation functions (a) gPO(r) and (b) gPF(r) for the F2 (black) and
F6 (red) compositions. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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creating a PO3F tetrahedron instead. Fig. 3 shows representative
examples of these structural units. No bridging F atoms were
observed, that is, atoms in a PeFeP bridge; these are extremely
unlikely to occur due to the F ion’s single negative charge which
would be unable to charge-balance two phosphorus atoms, unlike
an oxygen atom with its double negative charge.

To underline the tetrahedral nature of the phosphate units, the
OePeO bond-angle distributions were computed (Fig. 4(a)),
showing a distribution peak close to the ideal tetrahedral angle
(109.5�) for both compositions. The OePeF bond-angle distribu-
tions (Fig. 4(b)) peak at similar angles, but show a slight difference
between the two compositions. The distribution for the F2
composition has a shoulder at angles of about 95�, which may be
due to poor statistics, while that for the F6 composition is a single
smooth peak as for the OePeO distribution. The F2 composition
typically has only nine OePeF bond angles in the model, and even
small fluctuations suffice to move the distribution away from a
smooth monomodal peak. The tetrahedral environment of the
phosphorus atoms is maintained.
3.2. Fluorine bonding and coordination numbers

In the F2 composition, three of the four fluorine atoms are
bonded to a phosphorus atom, i.e. an FeP coordination number of
0.75, and in the F6 composition, three of the six fluorine atoms are
so bonded, with an FeP coordination number of 0.5. Whilst we
cannot define a reliable generic FeP coordination number due to
the small number of fluorine atoms in each of our models, it is clear
that the amount of FeP bonding is substantially larger than the
amount of FeSi bonding in silicate-based bioactive glasses, which
had a simulated FeSi coordination number of only 0.17 [13],
whereas FeSi was not observed (i.e. coordination number of 0.0) in
NMR spectra [10]. Based on our much larger calculated FeP coor-
dination number, we predict that FeP bonding would be observed
in NMR.

The fluorine-modifier bonding has a different character. For
both compositions, the FeNa bond length is about 2.3 Å, and the Fe
Ca bond length is slightly shorter at about 2.2 Å for F2 and 2.25 Å for
F6. The peaks in the corresponding partial pair-correlation func-
tions, gFNa(r) and gFCa(r) (Fig. 5), are all broader than the typical FeP



Fig. 3. Examples of (a) PO4 and (b) PO3F tetrahedra; surrounding atoms have been shrunk for clarity. (P atoms are gold, O red, F pink.) (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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peak, implying a wide range of coordination numbers and sub-
stantial disorder in the local environments. However, the small
number of fluorine atoms and FeNa and FeCa bonds again lead to
substantial noise in the data.
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Fig. 4. The (a) OePeO and (b) OePeF bond-angle distributions.
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F6 (red) compositions. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)



Fig. 6. The q ¼ 0.3e isosurface of the electrostatic potential around oxygen (red) and
fluorine (pink) atoms bonded to a central phosphorus atom. Other atoms and elec-
trostatic information around them have been removed for clarity. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Significant differences are observed between the FeNa and Fe
Ca bonding. The first peak in the partial pair-correlation function
gFCa(r) is sharper than the equivalent peak in gFNa(r), implying that
there is less variation in the FeCa bond length than in the FeNa one
(Fig. 5). The FeCa peak also falls quickly to near zero, giving a good
separation between the first and subsequent coordination shells.
Using the first minimum in the partial pair-correlation functions as
nearest-neighbour cutoffs (2.55 Å for F2 and 2.72 Å for F6), the Fe
Ca coordination number is 0.50 for F2 and 0.83 for F6. The FeNa
peaks do not approach zero so closely, blurring the distinction
between the first and subsequent neighbour shells, which in any
case occurs at larger distances, namely 3.65 Å for F2, and 3.6 Å for
F6. The FeNa coordination number is then 0.75 for F2, and 1.54 for
F6.

The differences are largely attributable to the small number of F
atoms in the models, and the large changes in the statistics that
slightly different bonding environments produce. The fluorine
bonding environments are given in Table 2. We see that fluorine
atoms which are bonded to one phosphorus atom bind tomodifiers
in a substantially different manner compared to fluorine atoms that
are not bonded to phosphorus. Fluorine atoms bonded to a phos-
phorus atom are also bonded to 0.67 (F2) and 0.88 (F6) sodium
atoms but not to calcium atoms. The difference in PeF bonding
between the models is enough to change the P-modifier coordi-
nation numbers substantially.

To underline this result, Mulliken charge analysis was per-
formed on the fluorine atoms, and a substantial difference was
found between fluorine atoms bonded to phosphorus and those not
bonded to phosphorus. For both compositions, fluorine atoms
bonded to phosphorus had Mulliken charges between �0.15
and �0.23, indicating substantial covalency in the FeP bond. Those
fluorine atoms not bonded to phosphorus, i.e. only to modifiers, are
much more ionic in character, with Mulliken charges
between �0.63 and �0.73. Fig. 6 shows an isosurface of the elec-
trostatic potential around anions in a PO3F tetrahedron. Very little
difference is seen between the potential around the oxygen atom or
the fluorine atom, implying that the covalent character of the PeO
and PeF bonds is similar.
Table 3
3.3. Modifier atoms bonding

Table 3 shows the Na and Ca coordination numbers taking ac-
count of both oxygen and fluorine in the first coordination shell.
The coordination numbers are between 6.1 and 7.2, taking into
account coordination to both oxygen and fluorine, with six and
seven as the most common coordination numbers for both sodium
and calcium. Fig. 7 shows the OeMeO, OeMeF and FeMeF bond-
angle distributions, whereM is either of the modifiers Na or Ca. The
OeMeO and OeMeF distributions follow the same broad shape
with a main peak at 80� and a secondary peak at 140�. The FeMeF
distributions correspond to a very small number of instances, and
are included here for completeness. These distributions imply that
the structure of the first coordination shell around the modifier
Table 2
The local fluorine environments, and their abundances, in the models studied.

Environment F2 F6

FPNa 50% 44%
FP 25% 3%
FNaCa2 25% 12%
FNa2Ca2 0 21%
FNa3Ca 0 17%
FPNa2 0 3%
other 0 0.5%
atoms is a distorted octahedron. A perfect octahedron would show
bond angles at 90 and 180�; since the average coordination number
of the modifier atoms is slightly larger than six, geometric con-
straints mean that these bond angles would shrink slightly. So-
dium, with its lower field strength than calcium, has a peak in its
OeNaeO bond-angle distribution at about 60�, corresponding to
two oxygen atoms bonded to the same phosphorus atom, or so-
called “intra-tetrahedral” bonding [32,50].
3.4. Network connectivity and the Qn distribution

One of the main atomistic properties which affects the bioac-
tivity of a glass is the network connectivity (NC) and the associated
Qn distribution [19]. A network-forming cation, phosphorus in
these glasses, is Qn if it has n bridging oxygen atoms which connect
one PO4 tetrahedron to another. NC is obviously a sensitive function
of composition, and the presence of modifier cations will alter the
Qn distribution considerably, typically pushing the distribution to
lower values, and so reducing the network connectivity, which is
the mean value of n [19]. Although the small size of these models
The Na-T and Ca-T coordination numbers, where T ¼ O or F.

Na Ca

CN F2 F6 F2 F6

4 4% 2% e e

5 22% 13% 1% 7%
6 40% 30% 16% 37%
7 27% 39% 48% 41%
8 6% 12% 32% 15%
9 1% 4% 2% 1%
M-O 6.02 6.01 7.12 6.32
M-F 0.10 0.58 0.08 0.33
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and the concomitant small number of fluorine atoms affect any
quantitative predictions, it is still important to discuss the con-
nectivity of the networks in the models, particularly bearing in
mind that the compositions were constructed to have the same
ratio of numbers of O atoms to P atoms. The Qn distributions and
network connectivities are given in Table 4. We see that, for both
compositions, the majority of phosphorus atoms are Q2 with small
proportions of Q1 and to a lesser extent Q3, implying a structure
made up mostly of phosphate chains with few branches, while
there is a slight decrease in the network connectivity with
increasing F content (the F-free F0 metaphosphate composition has
a network connectivity of 2.0).
4. Discussion

We have computed the changes in the structure of phosphate-
based glasses brought about by the inclusion of fluorine, to estab-
lish how this doping affects the suitability of these glasses for
biomedical implantation. We have shown that there is a significant
amount of PeF bonding, and that where this occurs the fluorine
atom replaces one of the oxygen atoms in a PeO bond, preserving
the tetrahedral structure around the phosphorus atoms. We have
also observed a decrease in the network connectivity with
increasing fluorine content, which we suggest, is due to the lack of
bridging fluorine atoms, because of the fluorine’s single negative



Table 4
The Qn distributions, and the network connectivities (NC), in the models
studied.

n F2 F6

0 0.2% e

1 17% 23%
2 74% 70%
3 9% 8%
NC 1.92 1.85
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charge. Increasing the fluorine content increases the PeF coordi-
nation number (and decreases the PeO coordination number) and
hence decreases the network connectivity.

A decrease in network connectivity will typically increase the
bioactivity of a glass by making the network more fragmented and
more soluble. We have seen in other glasses [32,50] that a decrease
in network connectivity caused by the increase in some active
modifying component can be compensated by increasing the con-
tent of the network former, phosphate in this case. Since the
decrease in network connectivity is rather small (2.0e1.84) even
with moderate (6 mol %) amounts of CaF2, it seems likely that any
undesirable increase in solubility for a given application could be
countered by an increase in the phosphate content, enabling the
network connectivity to be tuned to that required for the specific
application.

The network connectivity is not the only structural parameter
which affects the bioactivity. In the case of fluorinated silicate
bioglasses, it is clear from experiment [10], classical [12] and first-
principles [13] simulations that fluorine overwhelmingly prefers to
bond to the modifier atoms, sodium and calcium, leading to
segregation of the glass into modifier-rich and phosphosilicate-rich
regions on length scales of several nearest neighbours. Clustering of
modifier atoms is associated with more durable, less bioactive glass
networks [20,21], and experimentally the formation of the silica gel
layer during reaction of these glasses with the physiological sur-
roundings was disrupted, reduced or missing [16,18], with associ-
ated changes in the surface reactivity compared to the F-free glass
[12,17].

In contrast, in the case of the fluorinated phosphate glasses
studied here, the order of magnitude of the FeP coordination
numbers is much the same as for the FeNa and FeCa coordination
numbers. This implies that any such mesoscale segregation will be
much smaller and less important and that the observed reduction
in bioactivity in fluorinated silicate-based bioglass will not occur in
the fluorinated phosphate-based glass.
5. Conclusion

We conclude, therefore, that there are likely to be two effects on
the bioactivity of phosphate glasses caused by the incorporation of
fluorine. The first, where the replacement of an oxygen atom in a
PO4 tetrahedron by a non-bridging fluorine atom causes a slight
reduction in the glass network connectivity, is likely to increase the
bioactivity, but only to such an extent that it can be corrected for
any reasonable amount of fluorine content. The second effect,
namely the segregation of the glass network into modifier-rich and
network-rich regions with an attendant decrease in bioactivity, is
likely to be insignificant due to the sizable amount of PeF bonding
observed. We propose, therefore, that fluorinated phosphate-based
glasses will not suffer the same decrease in bioactivity as fluori-
nated silicate-based glasses, and that fluorinated phosphate-based
glasses are strong candidates for biomaterials with a dissolution
rate tunable to specific biomedical applications, andwith the added
benefits that fluorine incorporation brings.
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