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Abstract

This thesis represents largely the two sides to both theory and econometrics of dynamic

macroeconomics, namely stationary and non-stationary models and data. The stationary

part concludes with Chapter 3 and in Chapter 4, I look at the non-stationary side.

More speci�cally, I preview the thesis in Chapter 1 highlighting the modelling and

econometric approaches commonly found in the economics literature; also I report some

key results. In Chapter 2, I provide a comprehensive, but certainly far from being exhaus-

tive, review of the literature dating back to the publication of Stanley Jevon�s (1866) The

Coal Question, but with the main discussion beginning with Harold Hotelling�s (1931) The

Economics of Exhaustible Resources. I develop a two-sector open economy extension to

the Kydland and Prescott (1982), Long and Plosser (1983) and Kim and Loungani (1992)

models in Chapter 3 and estimate it on H-P �ltered annual U.S. data covering 64 years,

with the main purpose of discovering how energy price along with other supply-side and

demand-side shocks (imported and domestic) impacts on the U.S. economy. The model

presented only contains the current account and I restrict trade to balance in every pe-

riod. I �nd that model �ts the data for my benchmark variables of interest in the auxiliary

model: output, real exchange rate, energy use, and consumption. When more variables

and in particular sectoral variables are added, meanwhile, to the auxiliary model, I �nd

that the model�s performance especially as it relates to this estimated model parameters

did not �t. What I take from this is that the estimated structural parameters are not

globally applicable within this economic environment.

This model is then further extended by including the capital account in Chapter 4

before re-estimation, but now also on non-stationary data, which I suppose is more repre-

sentative of reality. I focus on the �t of the model to output and the economy�s measure
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of competitiveness: the real exchange rate. I �nd that the energy price and technology

shocks have major e¤ects on the U.S. output and relative competitiveness. The mecha-

nisms by which these e¤ects are transmitted are two-fold. First is via the terms of trade

occurring as a resource drain on the economy as the U.S. would need to �nd extra resource

to commit to the import of crude oil. The second is via household�s reduced investment

activity. Both channels can be explained by the fact that the substitution away from oil

is happening at too slow a pace because of low estimated elasticities parameters. This

agrees with Hamilton who argued that oil shock works via demand contraction. I have in

this thesis veri�ed his conjecture via a well-motivated and detailed microfounded dynamic

stochastic general equilibrium (DSGE) model.

Finally, I review the thesis speculating on possible future extensions in Chapter 5.
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Chapter 1

Preview

Energy has di¤erent meanings to di¤erent people hence an engineer�s view of energy

and that of an economist is di¤erent. In fact, how we discuss energy may be as varied as

the number of di¤erent professionals at the table. This is why the study and interpretation

of energy related a¤airs would di¤er markedly across the many interconnected disciplines

of energy economics. The rami�cations of these views are observable in what interests the

researchers in such �elds of studies. There are two issues at least that are paramount and

to which virtually every one of us may agree: (1) that energy is progressive; and (2) that

the availability and the cost of energy is a security concern.

This thesis provides a macroeconomics take on the two points raised above whose com-

bined e¤ect is what I refer to as the energy question. It will evaluate the interrelationship

of energy and energy price with other prices (aggregate and sectoral, global and local) and

key macroeconomic variables like output, real exchange rate and consumption. Through-

out this thesis, the theme remains the same, which is to investigate how noticeable on

economic activities are changes in the energy market henceforth taken to be the crude oil

market.

The thesis is a collection of three essays beginning in Chapter 2, where I provide a

comprehensive, but not exhaustive, review of the economic literature on energy (price)

and aggregate economic �uctuations. It catalogues a number of in�uential contributions
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and debates by many esteemed economists to this strand of economic research. In doing

this, a few econometric and theoretical models are discussed in more details than the rest,

but the message is clear: social scientists, just like the pure scientists, have been grappling

with the energy question.

Building on the literature, I study an open economy that is subjected to vagaries of

decisions by its trading partners especially the oil bloc. The question in mind then is

can a model be organised to approximate the behaviour of a multi-sector economy such

as the U.S. given a supply-side shock such as an energy (price) shock? Further, given

an array of supply- and demand-side shocks perturbing the economy per period, how

important is the e¤ect of energy (price) shock? How are these shocks transmitted through

the economy? Which is more disturbing between the impact and the transition e¤ects of

an energy (price) shock?

Developing functional model(s) to represent such a system could be a daunting exercise

because of the several numbers of contending variables and parameters. Thus beginning

with Chapter 3, I turn my attention to designing a two-sector computable dynamic sto-

chastic general equilibrium (CDSGE) open economy model of the U.S. that formally admit

energy into the production process in a way that can generate plausible parameter val-

ues with which an applied study can deal with a broad range of economic issues. The

model in this chapter falls in the lineage of Kydland-Prescott-Long-Plosser-Kim-Loungani

(KPLPKL, 1982, 1983, 1992) model in which I assume that (1) representative agents re-

side in a perfectly competitive economy making decisions regarding consumption, labour,

investment, and output; (2) representative agents in the domestic country trade with their

foreign counterparts; (3) imported crude oil is essential for production; and also (4) pro-

duction takes place in two sectors and four types of goods are available for consumption

and investment purposes.

Twelve shocks, domestic and imported, are allowed in the model and I require as a

benchmark that the model �ts the data for output, real exchange rate, energy use, and

consumption: output because it serves as a measure of a country�s total income; real

exchange rate because it serves as a determinant of a country�s relative competitiveness;
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energy use because it serves as an indicator of special inputs into a country�s production

process; and consumption because it serves as a yardstick for evaluating a country�s wel-

fare. In Chapter 4, I examine the role of energy price shocks in e¤ecting changes both at

the aggregate and sectorial levels further by extending the model of the previous chapter

to include capital account and re-estimating the model on non-stationary sets of data. I

review the thesis, make concluding remarks, and speculate on possible future extensions

in Chapter 5.
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Chapter 2

The Energy Question

It borders on intrigue that we are still faced by many energy related questions almost

a century on since Harold Hotelling�s (1931) Journal of Political Economy paper, "The

Economics of Exhaustible Resources." The problem of the day was �nancial as America

and the rest of the world were neck-deep in the Great Depression. This work, therefore,

was visionary. It was a general exposition on the problem of limits that is placed on a

society�s economic growth and development by its continued access to, or not, cheaply

sourced commodity inputs of which energy in the form of crude oil was and remains

principal.

He posed several questions many of which the profession is yet to satisfactorily provide

answers to. It, however, goes without saying that he laid a very solid foundation for the

study of resource economics theorising by exploiting his mathematical prowess on integrals

with �nite and in�nite constraints - calculus of variations. The work stood out - fresh and

robust, but still alone. A renowned outcome of this bold e¤ort is the Hotelling�s rule

p = p0e

t (2.1)

which states that each unit of an exhaustible resource costs exactly same in every time

period, where the period t price is denoted by p, starting date t = 0 price is denoted by
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p0, and 
 denotes interest rate.1

Now, go back some 65 years and there was Stanley Jevons having a similar experience

as he wrote that �... coal is all powerful�referring to the �Iron Age�as the �Age of Coal�.

These show how commodities (replaceables and exhaustibles alike) have always been very

material to progress, but was never really given a prime seat in the congress of aggregate

macroeconomic determinants. It seems that mankind often focused on the marvel (Iron)

at the expense of the what derived it (Coal).

This is of course not intended to be an exhaustive review of the history of energy,

or the discovery of its usefulness for that matter. Thus, for the purpose of the present

review, let us fast forward to the 1970s when what happens in the energy sector began

to also pronouncedly a¤ect what happens in the non-energy sectors adversely.2 In the

current review, there is a tendency of bias towards pure consideration of the empirics and

theories of energy macroeconomics as relating to how these energy market changes impact

on output without much thoughts given to presumably demacating approaches that will

come to the fore when authors are grouped into schools or methodologies. When this

approach is taken, it must be for convenience of delivering the message.

In this period, the primary task of many of the authors was to improve the econometric

modelling of output-input relations. The problem was the assumption of negligible sub-

stitutability between energy and the other more traditional inputs (capital and labour),

which formed the main ingredients in the neoclassical considerations of production as

captured by authors such as Cobb and Douglas (1927) and Leontief (1953). Also, other

intermediate materials�inputs are treated mostly in isolation.3 A major limitation of the

empirical practices in these early periods is that energy (inputs) and prices are either

completely excluded from the procedure or treated as the only inputs.

1This result has been questioned on a few grounds. One is that it only holds under perfect competition
as already pointed out by Hotelling himself. Another one is that future cumulative production would run
up the costs of extraction such that it gets costlier to postpone extraction in which case Hotelling�s rule
breaks down [see for example studies by Cummings (1969), Schulze (1974), Weinstern and Zeckhauser
(1975), Peterson and Fisher (1977), and Arrow and Chang (1978) for early contributions in this area].

2See Devarajan and Fisher (1981) for comments on what transpired in the intervening years between
Hotelling�s paper and the oil crises of the 1970s.

3See Darmstadler et al. (1971), Dupree and West (1972), Schurr et al. (1960), Baxter and Rees
(1968), and Mount et al. (1973) for such analysis.
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Parks (1971) is one of the �rst authors to bring output and inputs together in a macro

econometric environment where cross-price elasticities of substitution and complementar-

ity can be studied. Building on this approach and in the aftermath of the 1973-74 oil

crisis, Berndt and Wood (1975) investigated how �rms choose their technology when pre-

sented with the prices of both their energy and non-energy input factors. So, they went

a step further than Parks (1971) by explicitly including energy inputs in their production

function. They argued that the �rms�decision depends on the substitution possibilities

available and considered the case where the required level of output comes from employing

capital, labour, energy, and materials (KLEM). They devised a translog (production) cost

function4 and using the iterative three-stage least squares (I3SLS) estimator on the U.S.

manufacturing time series data for the period 1947-1971, they �nd that energy demand is

price responsive with own price elasticity of roughly �0:5, that the Allen partial elasticity

of substitution between energy and labour is approximately 0:65 implying that the two

have low substitutability, that energy and capital are complements with Allen partial elas-

ticity of substitution of about �3:2, and also, their �nding lends support to the already

established high substitutability between capital and labour [see, for example, Berndt and

Wood (1975), Tables 4-5, pp. 264-265].5

To validate the results in the above studies Gri¢ n and Gregory (1976) applied the

same translog methodology to a panel of international manufacturing time series data,

which according to them is pertinent to the improvement they sought. Speci�cally, they

observed that there is too little variability in the price data from the previous studies, and

they stated three reservations of which I only mention the one they investigated, which is

that the results of both Berndt and Wood (1975) and Hudson and Jorgensen (1974) have

only general implications for the short-run cost functions. The following di¤erence must

be noted: unlike Berndt and Wood (1975) and Hudson and Jorgensen (1974), Gri¢ n and

Gregory assumed weak separability because of non-reliable intercountry price for interme-

diate materials such that they supposed that their translog cost function is homothetic in

capital, labour and energy (KLE) taking the form 
 = 
 [Y;
1 (Pk; Pl; Pe) ; Pm; t] where

4This belongs to a class of cost functions that are twice di¤erentiable. For more on this type of cost
function, see Christensen et al. (1971, 1973).

5For corroborating results, see Berndt and Jorgensen (1973), Denny and Pinto (1976), Fuss (1977),
among others.
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Pi=k;l;e;m denote the input prices. Then, they collected data for manufacturing in nine

industrialised countries and estimated the model using iterative Zellner e¢ cient (IZEF)

procedure.

In presenting their results, they stated that if the assumption of weak separability is

not upheld, their results may be biased just as it could do from simultaneous equation bias

by not applying iterative three-stage least squares (I3SLS) estimator. Notwithstanding,

the main contribution of their work is that they point out the likelihood of sign reversals

in the estimates of capital-energy elasticities depending on time horizons: they obtained

positive numbers ranging from 1:02 for Belgium and 1:07 for the U.S. [see Gri¢ n and

Gregory (1976), Table 2, p. 851].6 The story would then be that long-run elasticities

are better captured by using panel data if the model one adopts involves a translog cost

function.

Beginning with the seminal contribution of Hamilton (1983), variations in the price of

oil has become an important correlate to study in relation to observed variations in many

indicators of aggregate and sectoral economic activities. In this work, Hamilton showed

with evidence that representing relative price of energy as an exogenous process is a good

practice. A large strand of theoretical and empirical literature has since been built around

this idea with results dividing macroeconomists on the relative importance of primary

energy or its price. It is not surprising today, with the bene�ts of more time series data

available and with characteristics that are indeed distinct to those that Hamilton studied,

to see all these opposing viewpoints. In fact, the economic e¤ects of energy price changes

on macroeconomic variables such as output, consumption, and investment appear to have

been reversed in studies that spanned beyond the Hamilton�s sample period to say late

1980s, or early 1990s [see, for example, Hooker (1997), Dhawan and Jeske (2008), and

6The intuition they provided for their result is supported by Berndt and Wood who argued that in
response to (positively) large and persistent changes in the price of factor inputs, e.g. Organisation of
Petroleum Exporting Countries (OPEC) causing energy price rises of 1973, the engineering profession
would seek "the redesign and retro�tting potential of durable capital to facilitate interfuel substitution or
improved energy e¢ ciency..." [see Berndt and Wood (1977, p. 2)]. Given this, the economics profession
would solve its cost minimisation problem on the grounds that the engineer�s technological optimisation
problem has been solved. Thus, in the long-run, energy and capital are expected to be substitutes
especially when the reference for energy is fossil fuel. A word of caution is that Berndt and Wood
(1977) submitted that this explanation is based on a two-input analysis and holds up the result of
complementarity between capital and energy citing their 1975 econometric account. Still, Pindyck (1977)
also using KLE approach on international pooled cross-section and time-series data, �nds in support of
Gri¢ n and Gregory (1976).
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Blanchard and Gali (2007)].

Just as empirical studies between output and inputs su¤ered from not including energy

and non-energy inputs simultaneously prior to Berndt andWood (1975), theoretical model

did before the pioneering work of Kim and Loungani (1992) who studied the role of energy

in a real business cycle (RBC) model of the U.S. Their work can be viewed as a second wave

of extensions brought to the �rst generation re�tting of Solow�s (1956) neoclassical growth

model. Here, I consider Kydland and Prescott (1982) and Long and Plosser (1983) as the

�rst generation extension of Solow�s concept to technology shocks. Due to the success of

these papers, many extensions were carried out in the decade following to someimes lend

support to the �ndings while at some other times to point out their shortcomings. See

Kim and Loungani for references to some of the extensions, which I refer to as the �rst

wave extensions to Solow�s �rst generation extensions.

With many calls that the proponents of the RBC model should �nd a way other

than unobserved Solow residual technology to evaluate its explanatory powers. Kim and

Loungani picked up on the suggestions of, or perhaps, the challenge posed by two papers.

First, McCallum (1989) asks for the need to start incorporating more supply-side e¤ects

such as the energy price shocks into the RBC model, "Presumably, future RBC studies

will explicitly model these terms-of-trade e¤ects and thereby reduce their reliance on

unobserved technology shocks." The fact was that Kydland and Prescott and Long and

Plosser have no foreign sectors such that imported shocks were localised wrongly as part

of Solow residuals.7

Second, Christiano and Eichenbaum (1991) points out that RBC models were over-

predicting the correlation between real wage and hours proposing that a way to resolve this

issue would be to introduce measurable shocks, which they took to be government spending

shocks. Reconciling the two propositions, what was important in the contribution of Kim

and Loungani is that the very introduction of the energy price shocks was able to achieve

both goals of reducing reliance on unobserved Solow residuals and of moving the theory

closer to the data regarding its prediction of wage-productivity correlation.

7The �nding by Hall (1988) that Solow residual measurement is sensitive to changes in energy prices
also supports this standpoint.
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I now brie�y summarise their model and results. They worked with a modi�ed version

of Kydland and Prescott and Hansen�s (1985) indivisible labour model in which prices and

wages are perfectly �exible. Like Kydland and Prescott, they chose a constant-elasticity-

of-substitution (CES) production function with constant returns to scale property, but

unlike them, they included primary energy input in the production function instead of

inventory stock; while they admitted to have worked with both divisible and indivisible

labour economy, they presented results for only the latter. Further, while their model is

still a closed economy model of the U.S. it indeed is implicitly an open economy model

because the U.S. is a net importer of crude oil.8

Overall, they �nd that the model that simpli�es to the Cobb-Douglas production

function with three inputs achieves better results than the model with the CES form.

Speci�cally, a model with the energy price only was able to explain about 35% of output

volatility in the Cobb-Douglas case but just 16% in the CES case and when the Kydland-

Prescott-Hansen basic RBC model augment with energy price shock is considered, the

predicted correlation between real wage and productivity dropped by 17% in the Cobb-

Douglas case and by 11% in the CES case.9 Meanwhile, they obtained mixed results

in regards to the importance of energy shocks as mechanised by the exogenous relative

price of energy citing three possible channels of transmission via which their work could

be improved: (1) introduction of price and wage rigidity as in, for example, Gordon

(1975) and Phelps (1978), among others; (2) consideration of the e¤ects of uncertainty on

irreversible investment decisions as in Bernanke (1983); and (3) incorporating energy price

shocks into a multi-sector RBC model as pushed for by, for example, Loungani (1986) and

Hamilton (1988), among others.

Consequently, in an attempt to amplify the e¤ects of the changes in energy price

shocks on the variations in output volatility, Rotemberg and Woodford (1996) introduced

imperfect competition into the mix. They had two main intentions in the paper. The

�rst was to show that a model of imperfect competition can replicate the magnitude of

the quantitative e¤ects of energy price shocks on economic activity, especially output and

8Finn (1991) clari�es this interpretation of openness. Nevertheless, both theirs and Finn�s models are
still treated as closed economy because trade in other goods and services are not admitted.

9They noted that the drop in hours-wages correlation of 17% is comparable to the e¤ects of 20%
brought about by government spending shock in Christiano and Eichenbaum (1991).
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real wage, better than would a perfectly competitive model. The second was to observe

the innovations in the energy price shock that is exogenous part observable in the data

based on a previous study in which they investigated the role of innovations to military

purchases on output and real wages [Rotemberg and Woodford (1992)].

I �nd their approach to be quite interesting for two reasons. One, though the important

variable is the real price of crude oil, they followed Hamilton (1985) in identifying the

exogeneity of energy price shocks using the nominal price of oil. They referenced the fact

that Texas Railroad Commission (TRC) hugely controlled the nominal price of oil in the

U.S. In fact, Hamilton (pp. 99-100) wrote that

The standard operating procedure of the commission was to forecast each

month the demand for next month�s production and use this forecast to prorate

allowable production levels for each of the state�s producing wells. As a result,

gradual �uctuations in demand for petroleum were matched one-for-one by

regulatory adjustments in supply, so that discounts or premiums were rarely

allowed to continue long enough to lead to a change in posted prices. The

state commissions were largely successful in accomodating gradual adjustments

in demand associated with cyclical economic factors and the secular trends

of imports and new discoveries. However, I will argue ... that they were

generally unable to or unwilling to accomodate sudden shocks of an essentially

supply-based character, and ... that a "regulatory �lter" has been applied to

the obvious endogenous economic factors responsible for changes in petroleum

demand, so that only large exogenous shocks speci�c to petroleum sector show

up in the historical price series. For this reason, I argue that the nominal posted

price of crude oil in the United States ... uniquely tracked a series of exogenous

historical shocks to the petroleum sector during the regulatory regime.

Thus, to exclude the innovations in the real price of crude oil that may be due to

other domestic shocks, e.g. technology, taste, investment, or in�ation shocks, they opted

to recover the shocks to the real price of oil through the nominal price of oil. Two, they

set up a structural model that nests four types of market assumptions and simulate the
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models to see which best matched their estimated responses of output and real wage to

the exogenous energy price shocks extracted from the above procedure. I next brie�y

review their model�s distinct features and summarise their �ndings.

More speci�cally on the model, they considered Kim and Loungani (1992) and Finn

(1991) type model under imperfect competition - this is implemented via the production

structure. To this end, they worked with a modi�ed production function of Gordon (1984)

and Bruno and Sachs (1985), where symmetric �rms combine an index of value-added

input, Vt,10 energy input, Et, and materials input, Mt, to produce gross output, Yt.11

Moreover, their speci�cation of the economy-wide resource constraint is also worth

mentioning. In a way, they stated that: Ct + It +Gt = Yt �Mt explaining that there are

no resource cost to be associated with energy production. Some collusive oligopolistic �rms

are just the �lucky�ones to be selling energy at the exogenous price, pEt, and redistributing

the resulting gains back to households who are the shareholders in the �rms. This is

clearly di¤erent from the interpretation of the economy-wide resource constraint in Kim-

Loungani-Finn speci�cation: Ct + It + Gt = Yt �Mt � pEtEt, which carries with it the

more realistic idea that it is what is left over after the costs of both materials and energy

inputs have been deducted from output that is available to the economy for use as either

consumption, investment, or government expenditure. Having said this, one must admit

that the results from both speci�cations are going to be congruent in that it really does

not matter whether the �rms or the households paid directly for the energy input.

Also important for mention is that four theories of mark-ups, denoted by �t, were

considered, viz: (1) perfect competition where �t = 1; (2) monopolistic competition

with homothetic tastes where �t = � > 1; (3) customer market model of Phelps and

Winter (1970) where �t = � (Xt=Yt) is decreasing in its arguments; and (4) implicit

collusion model of Rotemberg and Saloner (1986) where �t = � (Xt=Yt) is increasing in its

arguments.12 Finally, they stated an ad hoc equation to take into account the fact that

output of the economy contains domestic supply of energy but this was not modelled.

10Vt is composed of capital, Kt, and labour, Ht.
11Formally, Yt = Q (Vt; G (Et;Mt)) with Vt = F (Kt; ztHt)� �t.
12See Rotemberg and Woodford (1991, 1992, 1995) for details.
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This they did by assuming that some constant fraction, sD 2 (0; 1), of energy, Et, used

for production in the economy is domestically-produced, Ed
t , and imposed this on the

economy-wide resource constraint to obtain: Yt�Mt� pEtEt+ pEtEd
t . They set sD = 0:5

claiming that it approximates the share of U.S. oil usage that is produced domestically.

They �nd the following. The contraction in output generated by the competitive model

after a positive shock to the energy price is smaller than indicated by the data plus this

version failed to predict that output decline in the second year after the shock should be

greater than in the �rst year. On the static monopolistic competition model, they showed

that by just making the mark-up, �, equal to 1:2 instead of unity the contraction of

output 5� 8 quarters after the shock is double what it was under the perfect competition

model though the impact e¤ect is less. The customer market model was less successful

in predicting the second year level of output decline but got the most decline on impact.

The most successful of the models they presented is the implicit collusion model where

output contraction after 5 quarters is biggest and most persistent. More importantly,

given their parameterisation, only the implicit collusion model has a predicted path that

lies within the estimated con�dence interval. Finally, just as in the case of output, the

implicit collusion model achieves the best outcome of replicating the data statistics for

real wage.

Now, in a series of papers spanning over a decade and especially as a response to

Rotemberg and Woodford, Finn (2000)13 maintains that perfect competition can achieve

the same results so far capital utilisation rate is modelled to depend on energy usage -

this way, the main channel via which energy enters the production function is capital

utilisation, and not directly. A unique feature of this model is that capital utilisation

rate works endogenously to reduce output when energy prices go up while at the same

time posing a higher cost to the use of capital via increased depreciation costs. What

is important here is that Rotemberg and Woodford did not model endogenous capital

utilisation probably because Kim and Loungani�s perfect competition model on which

they base their version of perfect competition model did not.

13See also Finn (1991, 1995, 1996).
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On the other hand, Finn describes a production function giving a standard neoclas-

sical appearance (output is produced using labour and services of capital as inputs)

albeit with a hidden trick - capital services is given as a function of capital utilisa-

tion.14 Formally, assuming a Cobb-Douglas form, Finn derived: yt = (ztlt)
� (ktut)

(1��) =

(ztlt)
�

�
k

�
1� 1

�1

�
t

�
�1
�0
et

� 1
�1

�(1��)
because energy-capital complementarity is assumed to be

given by the technology relation: et
kt
= a (ut) where a (ut) =

�0u
�1
t

�1
such that ut =

�
�1
�0

et
kt

� 1
�1 .

The above is the direct channel as in Kim and Loungani and Rotemberg andWoodford,

which Finn claims needed the addition of the indirect channel under the perfect compe-

tition model to generate e¤ects of the magnitude obtained in models assuming imperfect

competition particularly the implicit collusion model.15 Finn presents results for the en-

dogenous capital utilisation and the constant capital depreciation models. She �nds that

the former model performs better than the latter and can match the estimated responses

of output and real wage to energy price increases just as did the imperfect competition

models of Rotemberg and Woodford.

My focus in this thesis is not to join the debate on which theory, perfect or imper-

fect competition, is right or wrong in explaining the question posed by the large negative

impact caused by energy price jump, especially when one considers its size in national

output. However, I �nd it odd though that limited research e¤ort has gone into consis-

tently building dynamic stochastic general equilibrium (DSGE) models around this clearly

important macroeconomic variable.

14This can be interpreted as a version of the idea of utilised capital put forth in Jorgensen and Griliches
(1967). Instead of having a composite of energy and capital, Finn introduces a form of energy usage that
is an increasingly costly function of capital utilisation.

15See a few references in Finn (2000) of models with endogenous capital utilisation. Today, this is now
almost common place to allow for this real rigidity in RBC modelling, where it is modelled to primarily
transmit via the capital accumulation equation, and is based on Keynes�idea of user cost of capital.

14



Chapter 3

Energy Business Cycles

... the interesting question raised by the ... model is surely not whether it can

be accepted as �true�... Of course the model is not �true�: this much is evident

from the axioms on which it is constructed. We know from the outset in an

enterprise like this (I would say, in any e¤ort in positive economics) that what

will emerge - at best - is a workable approximation that is useful in answering

a limited set of questions. Robert E. Lucas, Jr. (Models of Business Cycles,

1987, p. 45).

3.1 Introduction

Shocks come and they go often leading to and leaving behind unusual business cycle

realisations. Like the Hurricanes we like to name these events with examples including

the Great Depression in the 1930s, Stag�ation of the 1960s, Oil Crises in the 1970s,

the Great Moderation commencing in the 1980s, Japan�s lost decade for the 1990s, and

the Great Recession of the 2000s. Accompanying each of these experiences are usually

in�uxes of research e¤orts trying to explain what has happened, and sometimes o¤er

policy instruments for resolving the problem(s). The current chapter is related to such

studies seeking to explain causes, consequences, and paths to recovery following an adverse

15



shock. It is however di¤erent in one important dimension: it is a study not reacting per

se to a particular oil price shock but mainly adding to the ever growing body of work

on energy economics. Meanwhile, as in Blanchard and Gali (2007) exempting the policy

implications, this work is connected to the literature on both the impact e¤ect of energy

price movements on economic activities as put forth by Bruno and Sachs (1985) and the

surprisingly small changes to economic activities over time when energy prices move.

The above raised two further points of debate. First is that one of the important

questions that have been circulating in the economics profession since the Great Moder-

ation is, �Is the reduced in�uence of energy price shocks on output volatility observed in

the data since the mid-1980s the new norm? This is a legitimate concern if we consider

for instance that the positive percentage energy price change reached a high of 145% in

2008 having been climbing from 2002 and yet the Great Recession was attributed to the

demand shock of housing default and supply shock of �nancial credit constraint.

To answer this question, among others, a large strand of theoretical and empirical

literature has been built around a dividing line with many continuing to lend support to

the seminal contribution of Hamilton (1983), which showed that variations in the price of

oil is an important correlate to study in relation to observed variations in many indicators

of aggregate and sectoral economic activities. However, it is not surprising that with the

bene�ts of more time series data that is available and with economic characteristics that

are distinct to those that Hamilton studied, the economic e¤ects of energy price changes

on macroeconomic variables such as output, consumption, and investment appear to have

been reversed in studies that spanned beyond the Hamilton�s sample period to say late

1980s, or early 1990s [Hooker (1997)].

The second is like the �rst: there seems to be no agreement in outcome because of

the linear structure between oil (prices) and output assumed originally in Hamilton�s

empirical work, which technical interpretation and speci�cation has been carried over

into theoretical modelling [see, for example, Kim and Loungani (1992), Rotemberg and

Woodford (1996), and Finn (2000)]. This is a problem arising from treating energy price

shocks symmetrically. Indeed, researchers of oil-macroeconomic relationships in the late
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Note: Crude oil price series is from the Energy Information Administration (EIA).
Shaded bars are the NBER-dated recessions for 1949-2012. a: log of real crude oil
price scaled up by 100; b: �rst-di¤erence of the log of real crude oil price; c: net oil price
increases obtained by setting negative �rst-di¤erences to zero; d: net oil price decreases
obtained by setting positive �rst-di¤erences to zero.

Figure 3.1: Crude oil price and the U.S. recessions

1970s and early 1980s did not face this problem because the evidence before them was that

energy shocks were mainly price rises. This has made Mork (1989) to advocate the need to

correct for the true e¤ects of energy price shocks by assuming asymmetry. That is, given

the log of real crude oil price series as depicted in panel a of Figure 3.1, Hamilton�s original

approach of symmetry would admit panel b, which is equivalent to the �rst-di¤erence of

the log of real crude oil price, while Mork�s treatment encourages to split panel b into

panels c and d, which respectively, de�nes the �rst-di¤erence of the positive and negative

regions of panel b. His point is that we should study the respective contributions towards

output variations of price rising and falling separately.

While this adaptation of the oil price series may appear unnecessary pre-1970, it clearly

seems like a convincing experiment to carry out post-1970 as the decades of true oil volatil-

17



ities was ushered in. However, my benchmark approach is to treat energy price shocks

symmetrically. Hooker�s (1997) �nding that data does not support nonlinear and asym-

metric representation of the oil-macroeconomic variable interaction permits this launch

pad plus I am mainly interested in how energy price shocks impact aggregate macroeco-

nomic variables. Moreover, on theoretical grounds, this is the right place to start given

that my model does not capture asymmetric response of macroeconomic variables.

The remainder of this chapter proceeds as follows. In Section 3.2, I describe the main

features of the two-sector model in general form. In Section 3.3, I provide brief discussions

of the econometric method of indirect inference (II) used in estimating the model, the data

serving as the empirical counterparts to model variables, and the initial parameter values

used to initialise the starting points for the Simulated Annealing (SA) algorithm. I present

the main �ndings in Section 3.4 and conclude with Section 3.5.

3.2 The Model

The model is based on Long and Plosser (1983) as augmented by the model of Kim

and Loungani (1992). I set this up as a two-sector open economy model that is essential

to characterising the data properties of a two-sector U.S. open economy. I suppose that

the �nished goods of the two sectors are imperfect substitutes for similar products being

produced abroad; that is, trade is assumed necessary and made possible by representative

households in di¤erent countries who are willing to buy from other countries goods similar

to those being produced in their own countries mainly because they attribute di¤erent

qualities to products based on production origin. In what follows, I suppose that the econ-

omy is populated by a continuum of mass 1 of households, and a continuum of mass 1 of

�rms for each sector in each country. On the supply side, there are two production sectors

consisting of �rms producing two types of goods with di¤erent levels of energy intensities.

The �rms requiring greater amount of energy for production make up the energy intensive,

e, sector producing energy intensive goods, Ye, and the remaining �rms are the non-energy

intensive, n, sector producing non-energy intensive goods, Yn. The crude assumption is
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that any product that is energy (non-energy) intensive in its production is likewise energy

(non-energy) intensive in its consumption. As is appropriate in this economy, the �rms

are supposed to engage three factors of production, namely: labour hours, capital services,

and primary energy. Labour hours and capital services are assumed to be internationally

immobile, but the domestic �rms import their primary energy requirement.1 Further, the

demand side consists of the households who demand composite consumption good, C,

make decisions on investment, I, pay taxes to or receive bene�ts from the government, T ,

and supply aggregate labour hours, H, which is costlessly shared to the two production

sectors of the domestic economy given the wage rate, W . Households can invest in two

types of physical capital, Ke and Kn, assumed to be subject to capital adjustment cost,

and have access to domestic bonds, B. Hence, they accumulate income from hiring their

labour hours and capital services out to the �rms and from pro�ts accruing due to their

ownership of the �rms and government debts. Lastly, I assume that households carry

out all trades in goods and services with the rest of the world while �rms trade in crude

oil. To simplify matters, the model economy has been described in terms of the domestic

country.2 Meanwhile, all prices have been expressed relative to the general price level

in the rest of the world, which has been chosen to be the numeraire, Pim = 1. I next

characterise the activities of domestic agents mostly in general forms.3

1The U.S. is a net oil importer.
2Many open economy models, at least, whenever countries being modelled are allowed to produce

more than one good, are usually assumed to have such products as tradable and non-tradable, exportable
(importable) and non-exportable (non-importable), etc. This is a valid assumption, however, given that
this has been studied extensively, but also and very importantly due to the focus of my study, I have
shut down the non-tradable (/ non-exportable/ non-importable) of the model economies such that for
the purpose of my exercise, I have assumed that all produced goods and services are tradable between
the domestic country and the rest of the world. It is meant to be heuristic and I then use this to draw
attention to a four-goods world. This is supported by Engel (1999) and Chari et al. (2002): they found
that variations in the relative price of non-tradable are unimportant for accounting for the changes in real
exchange rate. Hence, unlike in Stockman (1980), there is no complete specialisation in the production
of goods.

3I present the main functional forms in a later section, but for detailed and explicit set-up and
characterisation of the agents�optimisation problems, the �rst-order conditions, and the log-linearised
version, see the Supplementary Notes: Chapter 3. Foreign agents�problems and solutions can be inferred
from those of the domestic agents. On the notation, I use the following: UPPER-CASE lettersX 0 � Xt+1,
X � Xt, and X�1 � Xt�1 for dynamic variables for next, current, and last period, respectively; lower-case
letters, say x, to denote non-stochastic steady state of variables; hatted letters, �^�, to denote variables
in their log-linear form; and sans serif along with the Greek letters denote the exogenous state variables.
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Households

The discussion begins with the households�decisions by considering �rst their links

with the domestic �rms and I leave till later their links with the rest of the world. The

lifetime utility function of the representative households is described by

E
X1

0
��U (C � �C�1; �H) (3.1)

where � denotes the �xed discount factor, � denotes the exogenous intertemporal pref-

erence shock, C denotes aggregate consumption, � denotes the exogenous labour supply

shock, H denotes the supply of labour hours, and � denotes the degree of habit formation.

The function U (�) is assumed to obey standard regularity conditions.

The sequential budget constraint of the household is given by

ER0B0 + C + I + T = B +WH +ReUeKe;�1 +RnUnKn;�1 + � (3.2)

which states that households�expenditure must be equated by their income. E is an ex-

pectation�s operator, ER0 = 1
R
denotes the stochastic discount factor with ER0B0 de�ning

period t�s price of period t+ 1�s random payment of B0, and R denoting interest rate, B

denotes domestic government�s bonds, T denotes lump-sum taxes or transfers, W denotes

consumer real wage rate, Re and Rn are sector-speci�c rental rates of capital services, Ue

and Un are sector-speci�c indexes of capital utilisation rates of the beginning-of-the-period

sector-speci�c capital stocks, Ke;�1 and Kn;�1, and � denotes the pro�t income from their

ownership of �rms.

Further, it is assumed that households choose the stocks of physical capital, Ke;�1 and

Kn;�1, which are, for j = e; n, the beginning-of-the-period t stock of capital in j sector.

Essentially, households determine these variables in period t�1, and are assumed to have

access to the following technologies for altering the quantities of e and n capital stocks
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from period t� 1 to period t

Ke = (1� � (Ue))Ke;�1 + ZeIe �	e
�

Ke

Ke;�1

�
(3.3)

and

Kn = (1� � (Un))Kn;�1 + ZnIn �	n
�

Kn

Kn;�1

�
(3.4)

respectively, where Ij denotes sector-speci�c gross investment, Zj denotes sector-speci�c

exogenous investment-speci�c technological shock, � (�) denotes sector-speci�c time-varying

depreciation rate of physical capital and is assumed to possess the following properties:

0 � � (�) � 1, �� (�) > 0, and��� (�) > 0,4 and 	j (�) denotes the assumption that chang-

ing the stocks of physical capital is subject to convex adjustment costs5 and is assumed

to possess the following properties: 	j (�) = �	j (�) = 0, and ��	j (�) > 0 as in Baxter

and Crucini (1995). Aggregate investment is de�ned as the sum of the sector-speci�c

investments

I = Ie + In (3.5)

Households choose sequences fC, H, I, Ie, In, B0, Ue, Un, Ke, Kng10 by maximising the

utility function (3.1) subject to equations (3.2), (3.3), (3.4), (3.5), and a borrowing con-

straint of the form

lim
t!1

ER0B0 � 0 (3.6)

Hence, the �rst-order necessary conditions of the households�maximisation problem con-

sist of the sequential budget constraint (3.2), capital accumulation equation for the energy

intensive investment goods (3.3), capital accumulation equation for the non-energy inten-

sive investment goods (3.4), aggregate investment (3.5), the borrowing constraint (3.6)

4� denotes �rst derivative; �� denotes second derivative.
5Where I have followed Kose (2002) in assuming that there is capital adjustment costs for both types

of capital goods.
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holding with equality, and the following

��U2 (C � �C�1; �H)

U1 (C � �C�1; �H)
= W (3.7)

�U1 (C � �C�1; �H)

�E� 0U1 (C 0 � �C; � 0H 0)
= R (3.8)

Re =
�� (Ue)

Ze
(3.9)

Rn =
�� (Un)

Zn
(3.10)

�
1 + 	e

�
Ke

Ke;�1

��
= �E

� 0U1 (C
0 � �C; � 0H 0)

�U1 (C � �C�1; �H)

Ze
Z0e

�
1�	e

�
K 0
e

Ke

�
(3.11)

+R0eU
0
eZ
0
e � � (U 0e) + �	e

�
K 0
e

Ke

�
K 0
e

Ke

�

and

�
1 + 	n

�
Kn

Kn;�1

��
= �E

� 0U1 (C
0 � �C; � 0H 0)

�U1 (C � �C�1; �H)

Zn
Z0n

�
1�	n

�
K 0
n

Kn

�
(3.12)

+R0nU
0
nZ

0
n � � (U 0n) + �	n

�
K 0
n

Kn

�
K 0
n

Kn

�

where U% denotes partial derivative of U with respect to its % � th argument. Equilib-

rium condition (3.7) states that the marginal rate of substitution between labour and

aggregate consumption is equal to the wage rate. Equilibrium condition (3.8) states that

the intertemporal marginal rate of substitution in the aggregate consumption is equal

to the relative price of bonds such that households are indi¤erent between consumption

and saving, or put another way, they are indi¤erent between consumption today and con-

sumption tomorrow. Equilibrium conditions (3.9)-(3.10) equate, for each type of physical

capital stocks, marginal user cost to marginal use bene�ts. Lastly, equilibrium conditions

(3.11)-(3.12) relate marginal costs and returns to optimal choices between consumption

and investments in the two types of physical capital stocks.
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Firms

Aggregate output of the domestic country, denoted by Y , is de�ned as the sum of the

gross output6 of the two production sectors of the economy

Y = Ye + Yn (3.13)

where output has been measured in volumes to follow standard practices in computing

national accounts. The energy intensive sector output, Ye, is assumed to be produced with

a homogeneous-of-degree-one production function, which di¤ers from the standard neo-

classical production function mainly because I have included primary energy use speci�c

to this sector, Ee, as an essential input into production

Ye = AeF
e (He; UeKe;�1;OeEe) = Dd

e + EXe (3.14)

where Ae denotes the neutral sector-speci�c productivity shock, He denotes the sector�s

demand for labour hours, UeKe;�1 denotes the sector�s demand for capital services, and

Oe denotes an exogenous sector-speci�c shock to the productive e¢ ciency of energy input,

capturing the productivity e¤ect of changing the quantity/ type of energy, and/ or the

impacts of developing or gaining access to a better technology for delivering the energy

input into the production process.7 The expression to the right of the second equal sign

says that the output of the energy intensive sector can either be absorbed domestically,

Dd
e , or exported to the rest of the world, EXe.8 Further, the function F e (�) is assumed

to obey standard regularity conditions.

Firms in this sector are assumed to be perfectly competitive in both the product and

6Following Kydland and Prescott (1982) and Christiano (1988), these should actually be de�ned as
value added output. That is, gross output less the usage of energy, and also to match the measurement
of the empirical counterparts to Ye and Yn.

7Suggestions by Greenwood (1983) and McCallum (1989) among others prompted the need to study
an environment where production function is allowed to have other exogenous �avour other than the
unobserved technology shock.

8Note that these two decisions are households�after they have taken delivery of Ye. This is assumed
also for the output of the non-energy intensive sector.

23



factor markets, maximising their pro�ts, which is given by

maxfPeYe � [WHe +ReUeKe;�1 + QEe]g (3.15)

subject to (3.14), where Pe denotes the relative price of energy intensive goods in the

domestic country, and Q denotes the exogenous price of primary energy assumed to be

determined on the world market. This is one channel of openness in this model given that

it is assumed that all primary energy input by �rms are imported from the rest of the

world.

The demand for labour hours, capital services, and primary energy by �rms in this

sector are given, respectively, by

PeAeF
e
He (He; UeKe;�1;OeEe) =W (3.16)

PeAeF
e
UeKe;�1 (He; UeKe;�1;OeEe) = Re (3.17)

and

PeAeOeF
e
Ee (He; UeKe;�1;OeEe) = Q (3.18)

Likewise, output of the non-energy intensive sector, Yn, is produced using a homogeneous-

of-degree-one production function given by

Yn = AnF
n (Hn; UnKn;�1;OnEn) = Dd

n + EXn (3.19)

where all the variables now have non-energy intensive sector interpretations analogous to

those given to the energy intensive sector variables, and the function F n (�) is also assumed

to obey standard regularity conditions. The pro�t-maximisation problem is similar

maxfPnYn � [WHn +RnUnKn;�1 + QEn]g (3.20)
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subject to (3.19), such that the demand for labour hours, capital services, and primary

energy by �rms in this sector are given, respectively, by

PnAnF
n
Hn (Hn; RnUnKn;�1;OnEn) =W (3.21)

PnAnF
n
UnKn;�1 (Hn; RnUnKn;�1;OnEn) = Rn (3.22)

and

PnAnOnF
n
En (Hn; RnUnKn;�1;OnEn) = Q (3.23)

Note that perfect competition implies that the �rms��rst-order conditions in both sectors

simply equate the marginal product of each input to its marginal cost.

Government

The government is also included in the current model and assumed to face the following

sequential budget constraint

G+B = T + ER0B0 (3.24)

where G denotes the exogenous government spending shock, and I follow An and Schorfheide

(2007) and Justiniano et al. (2009) in assuming that the �scal stance of the government

is fully Ricardian. Thus, the government through the Treasury can raise or reduce taxes

or transfers, and via the Federal Reserve increase or lower the short-term nominal interest

rate to achieve its policy stance.
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Trade in Goods with the Rest of the World

So far I have discussed the model economy as if it was a closed one except for the

mention of the purchase of primary energy by �rms on the world market. This has

been done intentionally hoping that this structure helps in making the model interactions

more intelligible. I am now ready to open the model up more both between sectors

and between countries. My working assumption is that consumption, investment, and

government spending in the domestic country and rest of the world are composites of

domestic and the rest of the world�s energy and non-energy intensive goods. Clearly, I

have assumed away any extra costs that may arise due to import or export of a good or

service such as transport costs. Thus, I can de�ne the bundles of consumption, investment,

and government spending, respectively, as

C = �C
�
Cdp
e ; C

dp
n ; C

fp
e ; C

fp
n

�
(3.25)

I = �I
�
Idpe ; I

dp
n ; I

fp
e ; I

fp
n

�
(3.26)

and

G = �G
�
Gdpe ;G

dp
n ;G

fp
e ;G

fp
n

�
(3.27)

where, for f = C; I;G, the aggregator function �f is supposed to be increasing and

homogeneous-of-degree-one in all its arguments, and for variable V = C; I;G, superscript

dp (fp) with subscript e (n) implies demand for domestically produced (foreign-produced)

energy (non-energy) intensive goods.

One way to proceed from here would be to choose a functional form for �f , and

given that households and the government have chosen their expenditures on C, I, and

G, then their respective problems reduce to that of maximising their utilities and pro�ts

by optimally allocating their aggregate expenditures among the components of each of C,

I, and G. This will yield the result I am looking for, but the number of variables and

expressions will, indeed, increase with this approach, and needlessly so, especially given
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that my research goal does not require this much level of disaggregation. So, I do not

pursue this approach.

A second approach would be to continue to think in terms of aggregate variables as

much as is possible without compromising on the research goal. In fact, it so happens that

an easier way to deal with this is to remember that the sum of aggregate consumption,

aggregate investment, and aggregate government spending de�nes the aggregate spend-

ing of domestic households (or equivalently, is the domestic absorption), which can be

formalised as

D = C + I + G (3.28)

where, by implication, D is a composite of all the four types of goods

D = �
�
Dd; IM

�
(3.29)

where the aggregator function � is supposed to be increasing and homogeneous-of-degree-

one in both its arguments, Dd denotes the quantity of domestically produced goods de-

manded by domestic residents, and IM denotes total spending of domestic residents on

imports. I �nd it more tractable, therefore, to pursue the analysis this way in terms of

aggregate demand rather than in terms of its components. As shown by Backus, et al.

(1995), the above aggregator function is su¢ cient for use if one is modelling two countries

with two goods as they did. However, I have a model of two countries and four goods

such that I need further disaggregation.

Again, at this junction, I could proceed in either of two ways. First, one could de�ne

the components of D as functions of energy and non-energy intensive goods; that is,

Dd = �d (De; Dn) and IM = �m (IMe; IMn). Second, one could just go back and deal

with D itself �rst de�ning it as a function of energy and non-energy intensive goods, and

given that, one could also split IM into a function of energy and non-energy intensive
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goods. I favour this latter approach. Hence, both D and IM are de�ned, respectively, by

D = �(De; Dn) (3.30)

and

IM = � (IMe; IMn) (3.31)

where the aggregator functions� and � are supposed to be increasing and homogeneous-of-

degree-one in their arguments, De denotes total spending of domestic residents on energy

intensive goods, Dn denotes total spending of domestic residents on non-energy intensive

goods, IMe denotes total spending of domestic residents on imported energy intensive

goods, and IMn denotes total spending of domestic residents on imported non-energy

intensive goods.

Next, I cast the problems facing domestic residents in light of choices between domes-

tically produced and imported of each type of goods. First, they

minfP dDd + IM � PDg (3.32)

subject to equation (3.29), where P d is the price index for composite domestically produced

goods, P is the consumer price index in the domestic country, and the assumption is that

the consumer price index in the rest of the world, or equivalently the price of imported

composite goods, Pim, is the numeraire. Hence, P is also the real exchange rate.9

I can likewise state another problem for the agents, which consists in

minfPeDe + PnDn � PDg (3.33)

subject to equation (3.30). Then, relying on Walras�law, I shut down activities in the

9This is a crude appropriation of the purchasing power parity hypothesis by using the ratio of the
export and import prices to proxy the exchange rate between two economies.

28



market for the non-energy intensive goods since when the market for energy intensive

goods clear, the law implies that the market for the non-energy intensive goods clear.10

In addition, domestic residents choose the share of expenditure on imported goods

that must be allocated to the purchase of imported energy intensive goods by

minfPime IMe + P
im
n IMn � IMg (3.34)

subject to equation (3.31), where Pime and Pimn are prices of imported energy and non-

energy intensive goods, respectively, and are treated as exogenous variables to the domestic

agents.11

Hence, domestic agents choose sequences fDe; IM; IMeg10 and the �rst-order condi-

tions associated with these choices are

�2
�
Dd; IM

�
=
1

P
(3.35)

�1 (De; Dn) =
Pe
P

(3.36)

and

�1 (IMe; IMn) = P
im
e (3.37)

where for function � = �;�;�, �% denotes partial derivative of � with respect to its %� th

argument.

In the same vein, I assume that the problems of agents in the rest of the world are a

mirror image to that of agents in the domestic country. Hence, I use the import functions of

foreign households to infer the export functions for the domestic country. More explicitly,

I want to know the quantities of aggregate exported goods and exported energy intensive

10Clearly,Dn = D�De. Thus, having obtained aggregate domestic absorption and domestic absorption
of energy intensive goods implies a solution for the non-energy intensive goods and its components.

11Only Pime appears in the model simulation because of the reason given in the previous footnote.
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goods. To do this, I assume for the rest of the world that

Dw = �w
�
Df ; IM f

�
(3.38)

where Dw = Cw + Iw + Gw denotes the aggregate world spending or demand, Df denotes

rest of the world�s demand for its own goods, and IM f denotes the aggregate import of

goods by the rest of the world from the domestic economy, which incidentally is equal

to the export of goods to the rest of the world by the domestic country denoted by

EX. So, I �nd it convenient to replace IM f (and its components) with EX (and its

components). Also, �w is supposed to be increasing and homogeneous-of-degree-one in

both its arguments. The required �rst-order condition is with respect to EX and is given

by

�w2
�
Df ; EX

�
= P (3.39)

where �w% denotes partial derivative of �
w with respect to its % � th argument. Noting

that EX is also a composite de�ned by

EX = �w
�
IM f

e ; IM
f
n

�
= �w (EXe; EXn) (3.40)

where the aggregator function �w is supposed to be increasing and homogeneous-of-degree-

one in both its arguments. The required �rst-order condition is with respect to EXe and

is given by

�w1 (EXe; EXn) =
Pe
P

(3.41)

where �w% denotes partial derivative of �
w with respect to its %� th argument.

I conclude this sub-section by de�ning the real exchange rate, P , in the domestic
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country as a function of the relative prices of energy and non-energy intensive goods

P = �(Pe; Pn) (3.42)

Market Clearing and Equilibrium Constraints

In order to close the model, I de�ne some aggregate variables and market-clearing

conditions. Aggregate demand for labour hours by the �rms is the sum of the two sectors�

demand for labour hours and is equal to the supply of labour hours by the households

H = He +Hn (3.43)

Aggregate demand for primary energy input by the �rms is the sum of the two sectors�

demand for primary energy imported from the rest of the world

E = Ee + En (3.44)

I assume for feasibility that the current account constraint is satis�ed in each period

PEX = QE + IM (3.45)

That is, the value of exports equals the value of imports: foreign demand for domestically

produced goods equals domestic demand for primary energy and foreign-produced goods.

A re-interpretation of the prices in the above is that P is the terms of trade in goods and

services, while P=Q is the oil terms of trade.

Given that the current account holds, total demand is, therefore, equal to total supply

D = Y (3.46)
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Additionally, the sectoral market for energy intensive goods clear

Ye = De + EXe � IMe (3.47)

I am now able to round up this section by providing the de�nition of a competitive

equilibrium for the model.

De�nition 1 A competitive equilibrium is a set of 28 endogenous stochastic processes fC,

I, Ie, In, H, He, Hn, Ke, Kn, Ue, Un, E, Ee, En, Y , Ye, Yn, D, IM , IMe, De, EX, EXe,

P , Pe, Pn, W , Rg10 satisfying equations (3.3), (3.4), (3.5), (3.7), (3.8), (3.11), (3.12),

(3.13), (3.14), (3.16), (3.17), (3.18), (3.19), (3.21), (3.22), (3.23), (3.28), (3.35), (3.36),

(3.37), (3.39), (3.41), (3.42), (3.43), (3.44), (3.45), (3.46), and (3.47), given the set of

12 exogenous stochastic AR(1) processes fAe, An, Dw, G, �, Oe, On, Pime , Q, � , Ze, Zng10 ,

and the initial conditions C�1, Ke
�1, K

n
�1 and B0.

12

3.3 Econometric Methodology

In this section, I discuss the method of indirect inference used to evaluate and estimate

the model, and provide a documentation of the data used for estimation.

Indirect Inference

The econometric method of indirect inference (II) is adopted to evaluate the model�s

capacity to �t the data. This procedure is originally proposed in Minford et al. (2009)

and subsequently with a number of re�nements by Le et al. (2011) who evaluate the

method using Monte Carlo experiments. I only provide a brief overview here.13 The

approach employs an auxiliary model that is completely independent of the theoretical

12Note that in de�ning the competitive equilibrium and in the model simulation, I have combined
the �rms��rst-order conditions with respect to capital services, (3.17) and (3.22) with the households�
�rst-order conditions with respect to capital utilisation rates, (3.9) and (3.10).

13Interested readers may consult Minford et al. (2009) and Le et al. (2011, 2012), and the references
therein for details.
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one to produce a description of the data against which the performance of the theory

is evaluated indirectly. Such a description can be summarised either by the estimated

parameters of the auxiliary model or by functions of these; I will call these the descriptors

of the data. While these are treated as the �reality�, the theoretical model being evaluated

is simulated to �nd its implied values for them.

II has been widely used in the estimation of structural models [see, for example,

Smith (1993), Gregory and Smith (1991, 1993), Gourieroux et al. (1993), Gourieroux

and Monfort (1995), Canova (2005)]. Here I make a further use of II, which is to evaluate

a calibrated or estimated structural model. The common element is the use of an auxiliary

time series model. In model estimation the parameters of the structural model are chosen

such that when this model is simulated it generates estimates of the auxiliary model

similar to those obtained from the actual data. The optimal choices of parameters for the

structural model are those that minimise the distance between a given function of the two

sets of estimated coe¢ cients of the auxiliary model. Common choices of this function are

the actual coe¢ cients, the scores or the impulse response functions.

In model evaluation the parameters of the structural model are taken as given. The

aim is to compare the performance of the auxiliary model estimated on simulated data

derived from the given estimates of a structural model - which is taken as a true model

of the economy, the null hypothesis - with the performance of the auxiliary model when

estimated from the actual data. If the structural model is correct then its predictions about

the impulse responses, moments and time series properties of the data should statistically

match those based on the actual data. The comparison is based on the distributions of the

two sets of parameter estimates of the auxiliary model, or of functions of these estimates.

The testing procedure, thus, involves �rst constructing the errors implied by the previ-

ously calibrated/ estimated structural model and the data. These are called the structural

errors and are backed out directly from the equations and the data.14 These errors are then

bootstrapped and used to generate for each bootstrap new data based on the structural

14Some equations may involve calculation of expectations. The method I use here is the robust in-
strumental variables estimation suggested by McCallum (1976) and Wickens (1982): I set the lagged
endogenous data as instruments and calculate the �tted values from a VAR(1) - this also being the
auxiliary model chosen in what follows.
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model. An auxiliary time series model is then �tted to each set of data and the sampling

distribution of the coe¢ cients of the auxiliary time series model is obtained from these

estimates of the auxiliary model. A Wald statistic is computed to determine whether

functions of the parameters of the time series model estimated on the actual data lie in

some con�dence interval implied by this sampling distribution.

In the present model, the shocks are stationary such that I follow Le et al. (2012) in

taking a VAR(1) as the auxiliary model.15 Thus, the auxiliary model in practice is given

by

Ax = B (L)x�1 + � (3.48)

where A and B (L) are, respectively, an n by n matrix of coe¢ cients and polynomials in

the lag operator, L, �t is an n by 1 vector of a mean zero, serially uncorrelated random

structural disturbances such that E
�
�; �

0�
= � represents its �nite diagonal variance-

covariance matrix, and I treat A�1B (L) as the descriptors of the data the VAR coe¢ cients

on the endogenous variables, and var[�] as the VAR error variances. The Wald statistic is

computed from these. Thus, e¤ectively I am testing whether the observed dynamics and

volatility of the chosen variables are explained by the simulated joint distribution of these

at a given con�dence level. The Wald statistic is given by

(���)0
X�1

(��)
(���) (3.49)

where� is the vector of VAR estimates of the chosen descriptors yielded in each simulation,

with � and
P

(��) representing the corresponding sample means and variance-covariance

matrix of these calculated across simulations, respectively.

The joint distribution of the � is obtained by bootstrapping the innovations implied

15See Canova (2005), Dave and DeJong (2007), Del Negro and Schorfheide (2004, 2006), and Del Negro
et al. (2007a, b), and also the comments of Christiano (2007), Gallant (2007), Sims (2007), Faust (2007),
and Kilian (2007). Further, I restrict the VAR lag to order one as high-order will only impose a more
stringent overall test on the model, and will likely worsen the �t.
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by the data and the theoretical model; it is, therefore, an estimate of the small sample

distribution.16 Such a distribution is generally more accurate for small samples than the

asymptotic distribution; it is also shown to be consistent by Le et al. (2011) given that

the Wald statistic is �asymptotically pivotal�; they also showed it had quite good accuracy

in small sample Monte Carlo experiments.17

This testing procedure is then applied to a set of structural parameters, which have

been derived from calibration, estimation, or both, and put forward as the true ones; this

is the null hypothesis: H0. Regardless of how the parameters are obtained, the test then

asks, "Could these coe¢ cients within this model structure be the true numerical data

generating process?" Of course only one true model with one set of coe¢ cients is possible.

Nevertheless, one may have chosen coe¢ cients that are not exactly right numerically, so

that the same model with other coe¢ cient values could be correct. Only when one has

examined the model with all coe¢ cient values that are feasible within the model theory

will one have properly tested it. For this reason I later extend the procedure by a further

search algorithm, in which I seek other coe¢ cient sets that could do better in the test.

Thus, I calculate the minimum-value Wald statistic for each period using a powerful

algorithm based on Simulated Annealing (SA) in which search takes place over a wide

range around the initial values, with optimising search accompanied by random jumps

around the space.18 In e¤ect, this is estimation of the model by II; however, this estimation

is being done here to �nd whether the model can be rejected in itself and not for the sake

of �nding the most satisfactory estimates of the model parameters. Nevertheless of course

the method does this latter task as a by-product so that I can use the resulting unrejected

model as representing the best available estimated version. The merit of this extended

16The bootstraps in the tests are all drawn as time vectors so contemporaneous correlations between
the innovations are preserved.

17Speci�cally, they found on stationary data that the bias due to bootstrapping was just over 2% at
the 95% con�dence level and 0:6% at the 99% level. Meenagh et al. (2012) found even greater accuracy
in Monte Carlo experiments on nonstationary data.

18I use a Simulated Annealing algorithm due to Ingber (1996). This mimics the behaviour of the
steel cooling process in which steel is cooled, with a degree of reheating at randomly chosen moments
in the cooling process - this ensures that the defects are minimised globally. Similarly, the algorithm
searches in the chosen range and as points that improve the objective are found it also accepts points
that do not improve the objective. This helps to stop the algorithm being caught in local minima. I
�nd that this algorithm improves substantially here on a standard optimisation algorithm. My method
used a standard testing method: I take a set of model parameters (excluding error processes), extract the
resulting residuals from the data using the LIML method, �nd their implied autoregressive coe¢ cients
[AR(1) here] and then bootstrap the implied innovations with this full set of parameters to �nd the
implied Wald value. This is then minimised by the SA algorithm.
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procedure is that one is able to compare the best possible versions of each model type

when �nally doing the comparison of model compatibility with the data.19

Data

Figure 3.3 displays the time paths for the data series that I make use of in the evaluation

and estimation of the model. These are U.S. annual data covering the period 1949-2013,

and are logarithmically transformed, real [using Bureau of Labour Statistics (BLS) series:

consumer price index (CPI, 2009=100)] per capita [using Bureau of Labour Statistics

(BLS) series: civilian non-institutionalised population over 16 years old] terms except for

wage rate, interest rate, real exchange rate, relative prices, and capital utilisation rates.

All series are �ltered following Hodrick and Prescott (1981, 1997) procedure setting the

smoothing parameter to 400. A detailed description of the data sources and construction

of the 28 observables (empirical counterparts to the endogenous variables) are presented

in the Supplementary Notes: Chapter 3.

3.4 Results

The presentation of results in this section is divided into two parts: the calibrated

version of the model is analysed in the �rst sub-section, and in the second sub-section, I

summarise the results from the estimated version of the model.

Empirical Analysis 1

In this part, I discuss the simulation of the model, the choice of speci�c functional

forms, the calibration of the model parameters, and quantitatively test the �t of the

model to data for a number of key macroeconomic variables.

19See Le et al. (2013) for a discussion of the advantages of using II method.
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Note: E denotes energy intensive; N denotes non-energy intensive.

Figure 3.2: HP-�ltered data

Model Simulation Following Christiano (1988) and King et al. (1988a, b, 2001), I

solve the model by �rst obtaining the equilibrium conditions based on the chosen func-

tional forms, add the market-clearing conditions and the assumed laws of motion for the

model�s structural errors. Then, I derive the deterministic version of the model where

all the standard deviations of innovations are identically equal to zero, and it is around

these values that I express the decision variables of the model as a linear approximation

using a Taylor-series expansion. This result gives a solution that permits a state-space

representation of the model�s endogenous variables in a way that allows for a possible
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matching of a set of observables.

Functional Forms Next, I choose functional forms for preferences, technologies, time-

varying depreciation rates, capital adjustment costs, and the aggregator functions. The

utility function is taken to be of the form

U

 
(C � �C�1)

1��

1� �
� �

H1+!

1 + !

!
(3.50)

I assume that the sectoral production functions are Cobb-Douglas in labour hours and

constant-elasticity-of-substitution (CES) in capital services and primary energy input

Ye = Ae (He)
1��e ��e (UeKe;�1)

��e + (1� �e) (OeEe)
��e���e

�e (3.51)

Yn = An (Hn)
1��n ��n (UnKn;�1)

��n + (1� �n) (OnEn)
��n���n

�n (3.52)

As in Basu and Kimball (1997), I de�ne the time-varying rates of depreciation by

� (Ue) = �e0 +
�e1 (Ue)

�e

�e
(3.53)

� (Un) = �n0 +
�n1 (Un)

�n

�n
(3.54)

The adjustment cost functions adopted are standard
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I take the aggregator functions �, �, �, �w, and �w as CES given, respectively, by

D =

�
�
1
�
�
Dd
���1

� + (1� �)
1
� (IM)

��1
�

� �
��1

(3.57)
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D =
�
�
1
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&�1
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1
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(3.58)

IM =
�
�
1
� (IMe)

��1
� + (1� �)

1
� (IMn)

��1
�

� �
��1

(3.59)

Dw =

�
�

1
�w
w

�
Df
��w�1

�w + (1� �w)
1
�w (EX)

�w�1
�w

� �w
�w�1

(3.60)

and

EX =

�
�

1
�w
w (EXe)

�w�1
�w + (1� �w)

1
�w (EXn)

�w�1
�w

� �w
�w�1

(3.61)

I describe the parameters in the next sub-section.

Calibration The assessment of the quantitative workings of the model can only begin

when one has chosen values for the model parameters such that one is able to simulate

the model. In this sub-section, I discuss how to obtain these values. Table 3.1 docu-

ments the calibrated parameter values. Notably, I follow the procedure of Iacoviello et al.

(2011) in providing parameters with numerical values.20 Their approach requires that the

parameters be divided into three groups, namely: (1) Parameters whose values are �xed

throughout the exercise; (2) Parameters whose values are estimated but for which I must

provide initial values as suggestions for the Simulated Annealing (SA) search algorithm

during the estimation process;21 and (3) Parameters whose values are derived given values

of parameters in groups one and two, and the average values of some observed data ratios.

In the �rst group are the discount factor, �, which I �x at 0:96 suggesting that I

have taken the annual real rate of interest to be 4%, which is consistent with the average

post-WWII interest rate for the U.S., and the steady state of the depreciation functions

for the two types of investment goods, �ue and �un, which are set equal to the long-run

average data values of investment-capital ratios for the energy and non-energy intensive

goods. Then, all the 12 shocks are normalised to unity in steady state such that I can

20The classic references for calibration remains, of course, Kydland and Prescott (1982) and Prescott
(1986).

21Note that, unlike Iacoviello et al. (2011) who estimated their model using Bayesian techniques, I
have adopted the method of Indirect Inference discussed in the previous section. In a way, my initial
parameters may be likened to Bayesian priors.
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proceed to the second group.

Table 3.1: Calibration
Description Symbol Values
Discount factor � 0:96
Inverse of Frisch elasticity of labour supply ! 5
Consumption elasticity " 2
Habit formation parameter � 0:7
Energy intensive sector SoCE �e 0:43
Non-energy intensive sector SoCE �n 0:28
Energy intensive sector EoS btw capital services and energy �e 0:7
Non-energy intensive sector EoS btw capital services and energy �n 0:7
Energy intensive sector marginal CoCU �e1u

�e 0:132
Energy intensive sector depreciation EoCU �e 1:463
Non-energy intensive sector marginal CoCU �n1u

�n 0:102
Non-energy intensive sector depreciation EoCU �n 1:694
ACP for energy intensive goods  e 0:001
ACP for non-energy intensive goods  n 0:001
DC�s EoS btw domestic and imported �nal goods � 1:5
FC�s EoS btw foreign and exported �nal goods �w 1:5
DC�s EoS btw imported energy and non-energy goods � 0:44
FC�s EoS btw exported energy and non-energy goods �w 0:44
Bias for energy intensive goods in the DC � 0:55
Bias for domestically produced goods in the DC � 0:7
DC�s EoS btw energy and non-energy intensive goods & 0:9
Steady state DF of energy intensive investment goods �ue 0:09
Steady state DF of non-energy intensive investment goods �un 0:06
Weight on capital services of the energy intensive sector �e 0:9903
Weight on capital services of the non-energy intensive sector �n 0:9961
Note: SoCE: share of capital services and energy; EoS: elasticity of substitution;
CoCU: cost of capital utilisation; EoCU: elasticity of capital utilisation; ACP: adjust-
ment cost parameter; DF: depreciation function; DC: domestic country; FC: foreign
country.

The second group is made up of 12 autocorrelation parameters, 12 standard devia-

tions of innovations, and 20 deep structural parameters of the model. To calibrate the

shocks, I assume that the twelve exogenous processes follow AR(1) stationary processes

in logarithm. Further, by supposing that the innovations are serially uncorrelated, their

24 parameters can be calculated based on twelve derived series. More formally, eight be-

havioural errors: intertemporal preference, labour supply, two sectoral productivities, two

investment-speci�c technologies, and two sectoral energy e¢ ciencies; and four exogenous

processes: energy price, government spending, world demand, and the price of imported
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energy intensive goods are calculated part-sequentially as22

bG = bY � (c=y) bC � (i=y) bI
(g=y)
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22I have followed Blankenau et al. (2001) who used "the observable endogenous variables and the
orthogonality conditions implied by the Euler equations to recover the exogenous shocks ..." p. 874. The
point to take from this is that this allows me to use the model equivalent of the four observed exogenous
variables. This way, I have maintained one of the early open economy model assumptions in the lineage
of Fleming (1962) and Mundell (1964) that treat current account transactions mainly as residuals. In the
next chapter, I relax this manner of deriving the parameters of the observed shock processes making use
of their corresponding actual observations, which follow the literature interpreting changes in the current
account as emerging from planned behaviour of agents [see, for example, Sachs (1981), Aizenman (1983),
Frenkel and Razin (1984), Razin (1984), and Dornbusch (1985) for earlier accounts].
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Nine of the above equations are without expectations such that the structural errors are

backed out directly as residuals. For the last three (intertemporal preference, and energy

and non-energy intensive investment-speci�c technology shocks) that are with expecta-

tions, the residuals are derived using the instrumental variable method recommended by

McCallum (1976) and Wickens (1982), where the instruments are the lagged values of the

endogenous variables. I then �t a univariate, AR(1), model to each of the calculated series

for the shocks - Table 3.2 documents the results.

As for the remaining twenty parameters that are later on estimated, I calibrate their

starting values here. I set the elasticity of labour supply, !, equal to 5,23 �x consumption

elasticity, �, at 2, and preserve the CES form of the production functions by setting the

respective sector�s elasticity of substitution between capital services and e¢ cient energy

use, �e and �n, equal to 0:7.24 I suppose that there is some degree of habit formation

23A value of zero for ! implies perfect labour mobility between sectors. This type of perfect factor
mobility is prevalent in the RBC literature especially as it relates to the labour market activities. However,
su¢ ce it to say that this is as much plausible as, for example, the degree of sector-speci�c skilled labour
that is needed. Hence, as ! ! 1 so does the degree of sector-speci�city. I am inclined to begin the
analysis from a more Walrasian context such that I set ! closer to 0.

24Kim and Loungani (Table 2, p. 180) provide a justi�cation for using this value. They also considered
a value of 0:001 suggesting a Cobb-Douglas form and high elasticity of substitution between capital services
and energy use. I, however, stick to the parameter value that preserves the general form of speci�cation
and leave the optimal choice of parameter value to the estimation stage later on.
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for agents in this model setting the initial parameter value to 0:7, which is in line with

previous estimates in the literature for a developed country such as the U.S. A very small

value of 0:001 is chosen for the parameters that relate to the adjustment costs of capital,

 e and  n, following a popular practice in the literature.

Table 3.2: Driving Processes
Shocks �s �s
Energy intensive sector productivity, bAe 0:4930 0:0203

Non-energy intensive sector productivity, bAn 0:2594 0:0285

World demand, bDw 0:6144 0:1968

Government spending, bG 0:4076 0:0572

Labour supply, b� 0:4888 0:1235

Energy intensive sector energy e¢ ciency, bOe 0:5881 0:5161

Non-energy intensive sector energy e¢ ciency, bOn 0:5873 0:5470

Price of imported energy intensive goods, bPime 0:5572 0:0405

Energy price, bQ 0:5366 0:3127
Intertemporal preference, b� 0:5760 1:1988

Energy intensive goods investment-speci�c technology, bZe 0:2996 0:0733

Non-energy intensive goods investment-speci�c technology, bZn 0:2990 0:0730
Note: �s and �s are, respectively, the persistence parameters and the standard
deviations of each shock, s.

Moving on to the component parameters of the two depreciation functions, the steady

state implies that �uj = �j0+ �j1
�
�j
��1

(uj)
�j for j = e; n, for which I note that only four

of their six parameters that needed identifying are �e0, �n0, �e and �n. So, conditional

on the values of the discount factor and the real rental rates, I calibrate the parameters

governing the elasticities of marginal depreciations with respect to capital utilisation rates

using �e =
��e1u�e

�(1+�e1u�e )�1 = 1:463 and �n =
��n1u�n

�(1+�n1u�n )�1 = 1:694, which are reasonably

located in the range found in the literature.25 Moreover, with no loss of generality, I �x the

25Basu and Kimball (1997) suggested the upper bound of 2 based on a 95% con�dence band. Further,
to calibrate this parameter, I have gone for the more restricted form of the depreciation function by
setting �e0 = �n0 = 0. Basu and Kimball (1995, 1997), though used the more general form in their
empirical work and concluded that there is no statistical evidence in support of the non-zero value for
the �xed component of the depreciation function as assumed by many other authors in the literature
[see, for example, Greenwood et al. (1988) and Burnside and Eichenbaum (1996)]. I �conclude� that
my values are not far (not a statistical conclusion) from that usually employed in the literature [see, for
example, Greenwood, et al. who used a value of 1:42, and Burnside and Eichenbaum using their factor-
hoarding model and data on output and capital calibrated � to be 1:56 (� = 0:56)]. I must note that the
speci�cation for time-varying depreciation is less general in these other studies. Statistically, however,
both values are not rejected by the data. This is done noting one of the concerns of Basu and Kimball
(1997) that "...our method makes clear that � is a parameter that needs to be estimated, and in fact is
not pinned down very precisely by the data because it has to be estimated as the reciprocal of a fairly
small number. Thus, even the small standard error of the reduced-form parameter necessarily implies
that there is large uncertainty about the structural parameter �. Consequently, economic modellers
should conduct sensitivity analysis of their results using a wide range of values for this parameter." And
also that "variable depreciation does not seem a signi�cant source of error in the capital stock �gures
reported by the BEA." Speci�cally, they concluded that this issue "strikes us as second-order." This thus
asks the question of sensitivity analysis regarding our results in response to various values that could
be used for � (�). Once I have assessed the performance of the model under this calibration approach,
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values for �e1 and �n1 at unity.26 The idea is that �j1 and uj are admitted into the model

only jointly as �j1 (uj)
�j such that �j1 = 1 has a trivial implication that �j1 (uj)

�j = (uj)
�j .

In addition, using household�s optimality conditions with regards to capital utilisation

rates conditioned on the values for the respective sector�s rental rate of capital in the

steady state, one can show that �j1 (uj)
�j = rj = 1=� � (1 � � (uj)), which simpli�es to

give the values reported in the table for �e1u�e and �n1u�n of 0:132 and 0:102, respectively.

Parameters governing the elasticities of labour hours in the energy and non-energy

intensive sectors, �e and �n, are found to be 0:43 and 0:28, respectively, being calibrated to

match the respective sector�s capital-output ratios. The values chosen for the elasticities of

substitution parameters in the aggregator functions are all standard in the trade literature:

� = �w = 1:5, � = �w = 0:44, and & = 0:99 [see, for example, Stern and Schumacher

(1976), Whalley (1985), and Shiells and Reinert (1993)].

Finally, the parameters in the third group (�e, �n) are calibrated given the �xed and/

or estimated parameters and an array of target steady state ratios of the model. These

weight parameters are pinned down by the respective sector�s average energy-capital ra-

tio over the sample period, given values of some other underlying structural parameters

using the expression, �j =
�
1 + 1

�j1u
�j

�
ej
kj

�1+�j��1
. The values mainly change with the

parameters �j. The initial values chosen for the bias parameters, � and �, are 0:55 and

0:7, respectively.27

Assessing the Fit of the Calibrated Model Now, I would like to know if the model

can be �tted to the data for the macroeconomic variables I am most interested in. David-

son et al. (2010, 2011) showed that the more the number of variables included the more

di¢ cult it becomes for the model to �t the data, and also that the joint distribution of

variables of interest depends more on the covariances between the VAR coe¢ cients and

the above arguments make more important my next empirical exercise, which is to estimate the model�s
underlying structural parameters. In fact, a prior study by Basu and Kimball (1995) had put the value
of � at roughly 7 with a standard error of about 8. To this end, I impose a wider boundary of [0; 10] in
the estimation exercise.

26See, for example, Burnside and Eichenbaum (1996), Boileau and Normandin (1999), King and Rebelo
(2000), and Leduc and Sill (2004).

27I provide more interpretation for parameters and the implications of their values below when I discuss
the estimated model.
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not necessarily by the individual cross-correlation of variable coe¢ cients.28 Similar idea

was put forth by Le et al. (2011) such that for the auxiliary VAR(1) model for which I

present results, I have restricted the number of variable combinations and/ or lag order

to a maximum of four - this is because a more rigorous pass criteria is set the higher the

number of variables and/ or lags. The importance of this Directed Wald test is that it

helps to narrow down the economic questions that can be addressed using the constructed

economic model.

Hence, the primary goal is the result from the joint disstribution. Therefore, as a

benchmark, I would particularly like to �t the model to the data on aggregate output,

which serves as a measure of domestic country�s total income, the real exchange rate,

which serves as a measure of the domestic country�s competitiveness against the rest of

the world, energy use since this is an energy real business cycle (ERBC) model and because

it is an indicator of inputs into the production process, and possibly consumption, which

may serve as a measure of the agents welfare.

Now, one can assess Table 3.3 for the results on the model�s predictions of individual

and joint distributions of output, real exchange rate, energy use, and consumption. The

model is rejected for the joint distribution test of the dynamics plus volatilities, and for

separate tests on the dynamics and volatilities, where for the three auxiliary models, the

Wald statistic is 100, and the respective transformed Mahalanobis distances are 40:14,

39:33, and 14:21. This can be expected as the model was only able to replicate the

individual distribution of thirteen of the twenty VAR coe¢ cients.

Particularly, it failed to capture the e¤ects of lagged energy use on current real ex-

change rate, the e¤ects of lagged consumption on current real exchange rate, and the

e¤ects of lagged consumption on current energy use. In two of the three instances, the

model under-predicted the co-movements observed in the data, but under-predicted it in

one. More interestingly, the dynamic coe¢ cients that lie outside the 95% bounds relates

to the cross-e¤ects of consumption and real exchange rate with each appearing twice.

Also, all the four data variances lie outside of the 95th percentile; speci�cally, the model
28This was already implied by Long and Plosser (1983, p. 39) in the introduction to Real Business

Cycles when they wrote that the "... term business cycles refers to the joint time-series behaviour of a
wide range of economic variables ...".
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Table 3.3: VAR Results for the Calibrated Model
Coe¢ cients Actual Lower Bound Upper Bound Mean

�bY ;bY 0:4913 �0:2048 1:2775 0:5753
� bP ;bY �0:0076 �0:8295 0:9103 0:0572
� bE;bY �0:0354 �0:1424 0:1600 0:0121
� bC;bY 0:1080 �0:1121 0:1875 0:0255
�bY ; bP 0:0047 �0:6448 0:3742 �0:1102
� bP ; bP 0:6797 �0:1720 0:9948 0:4269

� bE; bP 0:1341{ �0:1331 0:0861 �0:0226
� bC; bP 0:4435{ �0:1358 0:0862 �0:0207
�bY ; bE 0:4621 �1:6359 1:7728 0:1506
� bP ; bE �0:1641 �2:3913 1:9571 �0:0564
� bE; bE 0:4959 0:1970 0:8475 0:5445

� bC; bE �1:2027{ �0:3194 0:4214 0:0378
�bY ; bC 0:0697 �1:3391 0:7529 �0:2228
� bP ; bC 0:0041 �1:3542 0:9729 �0:1666
� bE; bC �0:0198 �0:1893 0:2235 0:0173
� bC; bC 0:5978 0:5854 0:9816 0:8255

�2bY 0:0009\ 0:0139 0:0369 0:0241

�2bP 0:0314\ 0:0077 0:0199 0:0128

�2bE 0:0413\ 0:0778 0:2410 0:1514

�2bC 0:0004\ 0:0485 0:2361 0:1230
Dynamics+Volatilities Dynamics Volatilities

Wald (%) 100 100 100
TMD 40:14 39:33 14:21
Note: �i;j denotes the VAR coe¢ cient of a lagged variable i on a variable j;
�2j denotes the variance of variable j; bY denotes aggregate output; bP denotes

the real exchange rate; bE denotes aggregate energy use; bC denotes consumption;
TMD denotes transformed Mahalanobis distance. {The VAR coe¢ cients that lie
outside of the 95% con�dence bounds; \the data variances of the variables that
lie outside of the 95% con�dence bounds.

over-projects the volatilities of output, consumption, and energy use, but under-projects

the variability in real exchange rate.

Empirical Analysis 2

Parameter Estimates I begin the discussion of the empirical results by considering the

estimated parameters in Table 3.4 where the calibrated values from Table 3.1 serve as the

initial values for the SA algorithm. Three of the parameters are kept �xed throughout the

exercise: �, �ue, and �un (the last two are indeed the steady state representations of the

depreciation functions), and two are derived from the calibrated/ estimated parameters:

�e and �n. Some of the estimates have values that are not too far from the suggested
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initial values, while others have values that are quite far o¤.29 In the �rst category are

the values for !, ", �, �e, �n, �e1u�e, �n1u�n, �e, �n,  e,  n, �w, �, �w, �, and �, whose

values changed by less than 100 percent in absolute terms relative to the initial values; in

the second category are �e, �n, �, and &, whose values changed by more than 100 percent

in absolute terms relative to the starting values.

Consumption elasticity is one of the highly di¢ cult parameters to pin down in eco-

nomics. The estimate of its inverse is 5:59, which is arguably within the range of estimates

found in many DSGE models [Hall (1988) and Smets and Wouters (2003, 2005)]. Con-

sumption elasticity of 0:18 found here implies that households are less willing to smooth

consumption across time in response to a change in the real interest rate.30 Compared

to the initial value, the estimated value of the habit formation parameter interestingly

is suggesting that household�s utility in period t is less dependent on past consumption.

Speci�cally, the estimated value of roughly 0:4 reduces the level of consumption inertia

to transitory shocks; this should perhaps remove the hump-shape nature of consump-

tion impulse response functions [see Fuhrer (2000)]. Theoretically, there is no judgement

against this result, but quantitatively, it is too low relative to evidence of past estimates

for a developed country [see Boldrin et al. (2001), Smets and Wouters (2004), Juilliard et

al. (2004), and Christiano et al. (2005); however, low habit persistence has mainly been

found in studies relating to emerging countries - see Uribe and Yue (2006)].

The high value for Frisch elasticity (!�1 = 0:12) says that labour hours react more

to changes in the real wage. The estimated values for the share of capital services and

energy in production in both sectors are a bit low but not unreasonable. 1 + �e (1 + �n)

is a measure of the inverse elasticity of substitution between capital services and primary

energy use in the energy (non-energy) intensive sector such that the values of �e = 0:12

and �n = 0:07 imply that the two production functions are more Cobb-Douglas than

the assumed general CES form, particularly in the non-energy intensive sector. Both

29This is no concern so far they are permitted by economic theory this much freedom/ �exibility, e.g.
the elasticity parameters.

30This implies that agents would respond less to substitution e¤ect than to wealth e¤ect. A value of
between zero and one is uncontroversial in the literature [see, for example, Kocherlakota (1988) advocated
for a value close to zero]. Meanwhile, Campbell (1992) used values ranging from zero to in�nity in his
analysis. For more on the range of values and other estimates of consumption elasticity, see, for example,
Nelson and Nikolov (2002), Bergin (2003), and Cromb and Fernandez-Corugedo (2004).
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Table 3.4: Estimation

Description Symbol Initial Values] Estimation
Discount factorz � 0:96 0:96
Inverse of Frisch elasticity of labour supply ! 5 8:64
Consumption elasticity " 2 5:59
Habit formation parameter � 0:7 0:38
Energy intensive sector SoCE �e 0:43 0:43
Non-energy intensive sector SoCE �n 0:28 0:39
Energy intensive sector EoS btw capital services and energy �e 0:7 0:12
Non-energy intensive sector EoS btw capital services and energy �n 0:7 0:07
Energy intensive sector marginal CoCU �e1u

�e 0:132 0:32
Energy intensive sector depreciation EoCU �e 1:463 5:51
Non-energy intensive sector marginal CoCU �n1u

�n 0:102 0:44
Non-energy intensive sector depreciation EoCU �n 1:694 4:32
ACP for energy intensive goods  e 0:001 0:003
ACP for non-energy intensive goods  n 0:001 0:002
DC�s EoS btw domestic and imported �nal goods � 1:5 0:16
FC�s EoS btw foreign and exported �nal goods �w 1:5 34:8
DC�s EoS btw imported energy and non-energy goods � 0:44 0:51
FC�s EoS btw exported energy and non-energy goods �w 0:44 2:12
Bias for energy intensive goods in the DC � 0:55 0:48
Bias for domestically produced goods in the DC � 0:7 0:68
DC�s EoS btw energy and non-energy intensive goods & 0:9 0:27
Steady state DF of energy intensive investment goodsz �ue 0:09 0:09
Steady state DF of non-energy intensive investment goodsz �un 0:06 0:06
Weight on capital services of the energy intensive sector{ �e 0:9902 0:9631
Weight on capital services of the non-energy intensive sector{ �n 0:9961 0:9833
Note: SoCE: share of capital services and energy; EoS: elasticity of substitution; CoCU: cost of capital util-
isation; EoCU: elasticity of capital utilisation; ACP: adjustment cost parameter; DF: depreciation function;
DC: domestic country; FC: foreign country. ]Calibrated values are used to initialise the simulated annealing
search algorithm; zparameters that are �xed throughout the exercise; {parameters that are derived based
on �xed and estimated parameters.

estimates for the adjustment cost parameters are close to zero though they have di¤erent

quantitative impacts on the model. As it is, the value of 0:003 for the energy intensive

capital adjustment cost parameter compared to the 0:002 for the equivalent non-energy

intensive parameter means that the marginal user cost in the energy intensive sector

responds by 50% more to changes in interest rate than does the marginal user cost in the

accumulation of non-energy intensive capital goods.

Further, the estimate of the marginal costs of capital utilisation is 32% in the energy

intensive sector while it is 44% in the non-energy intensive sector. These di¤erent estimates

simply indicate that return to investment/ marginal product of capital services in the non-

energy intensive sector is higher. Greenwood et al. (1988) and related literature [see, for

example, Finn (1991, 1996), Burnside and Eichenbaum (1995), Baxter and Farr (2002),

and Leduc and Sill (2004)] suggest that there is yet to be an empirical guide on the choice

of a value (magnitude) for the elasticity of capital utilisation rate with Basu and Kimball

(1995) admitting that it is a problematic parameter to correctly value. My estimates
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here are 5:51 and 4:32, respectively, for the energy and non-energy elasticities of capital

utilisation rates. Lastly, all the elasticity of substitution parameters in the aggregator

functions are sensibly in the ballpark of other estimates found in the literature.

Error Properties of the Estimated Model Using the parameter estimates reported

in Table 3.4, the functional forms provided in the previous section, the relevant log-

linearized equilibrium conditions, and the actual time series shown in Figure 3.3, I extract

for the twelve exogenous variables the structural errors from the model. The estimated

AR(1) equations are given by

bAe = 0:4641bAe;�1 + "a
e

, "ae
i:i:d:v N

�
0; 0:01742

�
(3.62)

bAn = 0:2171bAn;�1 + "a
n

; "ae
i:i:d:v N

�
0; 0:04022

�
(3.63)

bDw = 0:6625bDw�1 + "d
w

, "d
w i:i:d:v N

�
0; 4:62142

�
(3.64)

bG = 0:4076bG�1 + "g, "g
i:i:d:v N

�
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�
(3.65)
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i:i:d:v N

�
0; 0:21572

�
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�
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�
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�
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�
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bQ = 0:4353bQ�1 + "q, "q
i:i:d:v N

�
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�
(3.70)

b� = 0:5759b��1 + "� , "�
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�
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Figure 3.3: Shocks of the estimated model.
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Figure 3.4: Innovations of the estimated model.

Figures 3.3 and 3.4 plot the shocks and innovations respectively of the estimated model. I

observe that all the shocks are mildly persistent with the highest AR coe¢ cient being that

of the world demand shock and the lowest that of non-energy intensive sector productivity

shock. It is also observed that world demand, labour supply, energy intensive sector energy

e¢ ciency, non-energy intensive sector energy e¢ ciency, energy price, and intertemporal

preference shocks are the most volatile.
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Assessing the Fit of the Estimated Model Table 3.5 documents the estimates of the

VAR coe¢ cients given the estimated structural errors. Compared to the results reported

in Table 3.3 for calibrated parameter values, the present results are a big improvement

for the tests of individual and joint distributions of the model vis-à-vis the data, but

especially regarding their joint distribution. More speci�cally, evaluating the estimated

model against the data for output, real exchange rate, energy use, and consumption, the

model �ts the data jointly well having acceptance at roughly 93% level when both the

dynamics and volatilities of the four variables are included. The transformed Mahalanobis

distance (TMD) is 1:46. The dynamic �t of the model to the data passes slightly better

the Wald test at the 91:7% level with an associated TMD of 1:3. This is suggesting a

strong causality between the four VAR components. However, the model continues to fail

massively in capturing the data variances both for the individual and joint distributions;

there is evidence that the model�s predictions of these variables have a deteriorating e¤ect

on the model �t. Evidently, the model is predicting wrongly the size of the joint data

variances.

Figure 3.5 lends support to these �ndings. The estimated model matches well the

persistence of each of the four macroeconomic variables - plotted on the diagonal. Only

real exchange rate, at lags 6 � 7, failed to fall within the 95% bound. I plot the cross-

correlations of the four variables on the o¤-diagonal points of the graph. This replicates

qualitatively the quantitative results discussed above that the model is unable to match

the individual cross-correlations found in the data. The model appears to capture well

the negative and positive cross-e¤ects at lags and leads of 2 with the best �ts involving

real exchange rate correlations. On all occasions, the simulated and actual data depart

on contemporaneous cross-e¤ects between these variables.

Regarding the individual distributions of the VAR coe¢ cients, all but one of the sixteen

dynamic VAR parameters measuring autocorrelations and cross-correlations lie within the

95% con�dence bounds, which is also an improvement over the results obtained for the

calibrated parameter values. The only cross-e¤ects that lies outside of the 95% con�dence

bounds being that from consumption to energy use. Meanwhile, all four data variances

are now over-predicted by the model. In particular, the calibrated and estimated model
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Figure 3.5: Cross-correlations: data vs. estimated model.
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Table 3.5: VAR Results for Estimated Model
Coe¢ cients Actual Lower Bound Upper Bound Mean

�bY ;bY 0:4913 0:0316 1:0204 0:5756
� bP ;bY �0:0076 �0:0628 0:0982 0:0132
� bE;bY �0:0354 �0:0720 0:0646 �0:0039
� bC;bY 0:1080 �0:0767 0:1086 0:0107
�bY ; bP 0:0047 �2:2335 3:3631 0:5176
� bP ; bP 0:6797 0:0987 0:8771 0:5107
� bE; bP 0:1341 �0:3020 0:4652 0:0780
� bC; bP 0:4435 �0:4135 0:5990 0:0769
�bY ; bE 0:4621 �5:1792 4:1954 �0:6893
� bP ; bE �0:1641 �0:8366 0:6663 �0:0840
� bE; bE 0:4959 �0:2948 1:0473 0:3765

� bC; bE �1:2027{ �1:0638 0:7703 �0:0884
�bY ; bC 0:0697 �0:6549 1:8098 0:5547
� bP ; bC 0:0041 �0:2242 0:1765 �0:0225
� bE; bC �0:0198 �0:1247 0:2351 0:0556
� bC; bC 0:5978 0:4833 0:9146 0:7138

�2bY 0:0009\ 0:0019 0:0068 0:0040

�2bP 0:0314\ 0:0364 0:2030 0:0971

�2bE 0:0413\ 0:1614 0:4604 0:2851

�2bC 0:0004\ 0:0198 0:0633 0:0374
Dynamics+Volatilities Dynamics Volatilities

Wald (%) 93:1 91:7 98:1
TMD 1:46 1:30 2:61
Note: �i;j denotes the VAR coe¢ cient of a lagged variable i on a variable j;
�2j denotes the variance of variable j; bY denotes aggregate output; bP denotes

the real exchange rate; bE denotes aggregate energy use; bC denotes consumption;
TMD denotes transformed Mahalanobis distance. {The VAR coe¢ cients that lie
outside of the 95% con�dence bounds; \the data variances of the variables that
lie outside of the 95% con�dence bounds.

di¤er in their predictions of the variances of the real exchange rate with the data variance

for real exchange rate closer to the lower bound of acceptance interval for the estimated

model. The result is opposite for the calibrated model.

Turning next to the VAR impulse response functions of output, real exchange rate,

energy use, and consumption to the twelve shocks as a way to gleaning more intuition

regarding the dynamic behaviour of the estimated model economy. These are shown in

Figures 3.6-3.17, where the VAR shocks have been identi�ed using the structural model.

There appears to be congruence in the responses of both the model and the data to all

the shocks for output, real exchange rate, and energy use, with their responses placed

inside the 95% bounds both in the short- and the long-term. This is an interesting result

yielding con�dence on possible usability of the model for policy-related work by adapting
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Figure 3.6: VAR IRFs of aet .
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Figure 3.7: VAR IRFs of ant .

the structural impulse response functions to determine the in�uences of shocks and in

creating appropriate policy responses [see Christiano et al. (2005)].

Nevertheless, I cannot say the same for consumption as there is a consistent short-run

di¤erences between the model and the data, especially for non-energy intensive sector

productivity, energy intensive sector energy e¢ ciency, non-energy intensive sector energy

e¢ ciency, imported price of energy intensive goods, and energy price shocks. I have not

included all the other shocks notably the energy intensive sector productivity, labour

supply, and non-energy intensive investment-speci�c technology shocks chie�y because

there is little di¤erence between borderline non-rejection/ rejection given the very stringent

econometric procedure I have applied [see Davidson et al. (2010)].
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Figure 3.8: VAR IRFs of dwt .
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Figure 3.9: VAR IRFs of gt.
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Figure 3.10: VAR IRFs of �t.
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Figure 3.11: VAR IRFs of oet .
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Figure 3.12: VAR IRFs of ont .

Accounting for the U.S. Business Cycles Post-WW II To further study the busi-

ness cycle implications of the estimated model, I report the standard deviations of real

exchange rate, energy use, and consumption relative to that of output in Table 3.6, and

plot the model�s prediction of recession compared to that of the data in Figure 3.18.

Given the identi�ed recessions in both data and model, I conclude this sub-section by

providing a ranking of the behaviour of the four macroeconomic time series included in

the estimation following the realisation of the shock in Figure 3.19. Before generating the

model statistics and the plots, I simulate 1000 arti�cial economies each with same length

as the actual data observations. The model statistics and the plots are averages of the

1000 simulations.

56



0 10 20­0.05

­0.04

­0.03

­0.02

­0.01

0

0.01

0.02

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 s

te
ad

y 
st

at
e

Years

Output

0 10 20­5

­4

­3

­2

­1

0

1

2

3

4 x 10 ­3

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 s

te
ad

y 
st

at
e

Years

Real Exchange Rate

0 10 20­3

­2

­1

0

1

2

3

4 x 10 ­3

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 s

te
ad

y 
st

at
e

Years

Energy Use

0 10 20­8

­6

­4

­2

0

2

4

6 x 10 ­3

P
er

ce
nt

ag
e 

de
vi

at
io

n 
fro

m
 s

te
ad

y 
st

at
e

Years

Consumption

Figure 3.13: VAR IRFs of pime;t .
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Figure 3.14: VAR IRFs of qt.

It is reported in Table 3.6 that the model predicts values of the relative volatilities

of real exchange rate and energy use that are quite similar to that found in the data.

On the other hand, it failed to capture the relative volatility observed for consumption

with massive over-prediction. All in all, the model generates higher volatilities for the

four time series compared to the data. Further, the model matches very well the timing

and persistence of recessions, but it is less successful in replicating the recovery rate.

The economy is normally back to its pre-recession level of output 3 years after the shock

according to the data. Whereas, the model requires a much longer time.

Overall, it can be seen in Figure 3.19 that the model is able to preserve the after-shock
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Figure 3.15: VAR IRFs of � t.
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Figure 3.16: VAR IRFs of zet .
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Figure 3.17: VAR IRFs of znt .
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Table 3.6: Business Cycle Statistics

Statistic �(Y )
�(Y )

�(RXR)
�(Y )

�(E)
�(Y )

�(C)
�(Y )

Data 1:00 5:86 6:72 0:65
Model 1:00 4:76 8:49 3:10

�(YDATA)
�(YMODEL)

�(RXRDATA)
�(RXRMODEL)

�(EDATA)
�(EMODEL)

�(CDATA)
�(CMODEL)

�(>DATA)
�(>MODEL)

0:48 0:60 0:38 0:10

Note : > = Y;RXR;E;C where RXR is real exchange rate, and � denotes stan-
dard deviation.

business cycle behaviour of real exchange rate in relation to output, but not much that

of energy use and consumption. In the data, energy use relative to output does not move

much, but the model is picking up a decline in demand for energy given a rise in its price.

Lastly, perhaps due to the lower consumption inertia estimated, there is little consumption

smoothing in the model such that it drops instantly in response to the shock.

3.5 Conclusion

The model presented in this chapter has worked reasonably well both in �tting the

model to data for my benchmark macroeconomic variables of output, real exchange rate,

energy use, and consumption and also in capturing some salient facts regarding the

macroeconomic-oil relationship. Clearly, the model was only able to explain my selected

features leaving many questions unanswered. To investigate whether this is a model prob-

lem, or just a circumstance of the parameters in use, I carried out a further Directed

Wald test. The main outcomes include that (1) if estimated using the SA algorithm, the

model appear capable of �tting the data for several variable combinations, (2) when any

parameter set (that �ts the model to the data) for certain variable combination is used

as a benchmark on which di¤erent variable combinations are evaluated, I �nd that the

model can only explain along some lines and fails to �t the data for the rest suggesting

that the parameters are not globally useful within the context of this model. What I take

from this is a simple lesson on which a research endeavour must emanate from: that is,

there must be a focused, de�nitive question of enquiry posed a priori. Given this, a model

can then be applied to answer the proposed question.

Therefore, it is a matter for future research to extend this model to deal with economic
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issues along other dimensions and it is my hope that this model will be adjusted appro-

priately to answer many other macroeconomic questions particularly those that concern

energy issues and their policy implications. To kick-start such an agenda, I motivate two

particular possibilities in this concluding remark. First, the complete inter-country e¤ects

through (in)complete risk sharing and uncovered interest parity can be studied by allow-

ing both the domestic and foreign residents investment opportunities in both the domestic

and foreign bonds [see, for example, Gali and Monacelli (2005) and Corsetti et al. (2005)].

Having introduced capital accounts into the model, a second important and new e¤ort

could be to work with non-stationary data set. It is to these two exercises I now turn in

Chapter 4.
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Chapter 4

So, Do Energy Price Shocks Still

Matter?

A parameter that is valid for a model in one economic environment cannot be

uncritically applied to a model embedded in a di¤erent economic environment.

Martin Browning, Lars Peter Hansen, and James J. Heckman (Handbook of

Macroeconomics, 1999, p. 546).

4.1 Introduction

Changes in oil prices are mostly unanticipated and are exogenous world events with

several macroeconomic implications for many countries, developed and developing. The

purpose of this study is to investigate how these occasional movements, in particular

positive percentage changes, in the price of oil go on to a¤ect the output and competitive-

ness (as measured by real exchange rate) of a typical oil-importing industrialised country

against the rest of the world. I take the U.S. as the example domestic country for this

exercise. To put this into perspective, I display in Figure 4.1 the historical data on U.S.

output (1929-2013) and its trend identi�ed by using the Hodrick-Prescott (HP, 1981, 1997)

�lter with the smoothing parameter set to 400 in row 1, oil price-output (1949-2013) re-
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lationship in row 2, oil price-real exchange rate (1949-2013) relationship in row 3, and

output-real exchange rate (1949-2013) relationship in row 4.

Row 1 shows two of the measures by which economic downturns can be represented.

First is when outputs in consecutive periods are below the HP trend and the second is just

by observing the coincidence between output drops and the shaded bars, which are the

National Bureau of Economic Research (NBER) identi�ed recession dates. The time paths

of the oil price and output in row 2 shows that they often travel in opposite directions,

especially during periods of radical upswing in prices (i.e., oil price shocks). Clearly,

output is a lot less volatile than oil price. Oil price leads real exchange rate changes in

row 3, but the overall picture is that they move in the same direction. The reason for

this is that higher oil price gets transmitted into the consumer price index in the domestic

country such that using the ratio of export price to import price as a measure of the real

exchange rate implies that oil price and real exchange rate are positively correlated. The

last row shows that real exchange rate appears to also follow output with roughly 2-3 lags.

So, in the current chapter, I add to the signi�cantly growing body of literature that

is debating if energy price shocks still matter.1 This issue is addressed by building on

the seminal works of Kydland and Prescott (1982) and Long and Plosser (1983), which

have been extended in several ways with the closest in spirit to what I am studying here

being the pioneering works of Kim and Loungani (1992) and Finn (1991). In particular, I

combine the Kim and Loungani model with the multi-sector approach of Long and Plosser

in order to investigate the impacts of changes in the exogenous price of a factor input -

real price of oil - in in�uencing the U.S. business cycles and competitiveness vis-à-vis the

rest of the world. My model has the following important features: (1) production takes

place in two sectors with energy explicitly included as an input; (2) there is trade in goods

and services, and �nancial assets across countries; (3) the model is augmented with an

1The background to this work encompasses many strands of the macro econometric literature. An
interested reader can consult Asafu-Adjaye (2000), Berndt and Wood (1975, 1979), Burbidge and Harrison
(1984), Cavallo and Wu (2006), Darby (1982), De Gregorio et. al. (2007), Eldestein and Kilian (2007),
Gri¢ n and Gregory (1976), Hamilton (1983, 1985, 1996, 2003, 2011), Hamilton and Herrara (2000),
Herrera and Pesavento (2007), Hooker (1996, 1997, 2002), Hunt et. al. (2001), Kilian (2008), and Mork
(1989), among others for empirical discussions; Blanchard and Gali (2010), Darby (1981), Dhawan and
Jeske (2006, 2008), Dhawan et. al. (2010), Finn (1991, 1995, 2000), Gillingham et. al. (2009), Harris
et. al. (2009), Kim and Loungani (1992), Loungani (1986), Rotemberg and Woodford (1996), Schmidt
and Zimmermann (2005), among others for theoretical underpinnings; and policy related papers, see, for
example, Barsky and Kilian (2002), Bernanke et. al. (1997), Blanchard and Simon (2001), Chakravorty
(1997), Leduc and Sill (2004, 2006), and Stock and Watson (2003).
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Figure 4.1: Output, oil price, and real exchange rate. U.S. Data 1929-2013
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array of real rigidities and is driven by a number of exogenous shocks; and (4) the model

is estimated on un�ltered data of the U.S. covering the period 1949-2013 on an annual

frequency using the formal econometric method of indirect inference.

Thus, while it is a useful contribution that the model as it is spelt out in the next

section as a two-sector energy and non-energy model is to my best knowledge a new and,

as I will discuss later, an important set-up, I will like to draw attention to the fact that

the model has been estimated on non-stationary data. In reality, most macroeconomic

variables are non-stationary implying that we may be removing critical information when

we �lter them.2 Therefore, it is useful whenever technically permissible to develop a model

that can be used to describe un�ltered data. This is a major and novel contribution of

this chapter and in doing this, we have responded to the call by Kim and Loungani (1992)

that "... it may be fruitful, in future research, to develop versions of our model which can

accommodate nonstationarity in the price process."

The main �nding is that energy price shocks is not able to directly generate the

magnitude of economic downturn observed in the data. However, it possesses a strong

indirect transmission link that endogenously spread its e¤ect erroneously through the

system. This leads me to conclude that previous results that attribute minimal importance

to oil price shocks must be focusing on the energy cost share of gross domestic product.

I also �nd that external shocks have been responsible for explaining the volatility in U.S.

economic activities for a long time. This leads me to conclude that modelling the U.S. as

a closed economy assumes away a sizeable set of very relevant factors.

The remainder of this chapter proceeds as follows. In Section 4.2, I describe the main

features of the two-sector model in log-linearized form. In Section 4.3, I provide brief

discussions of the econometric method of indirect inference (II) used in estimating the

model, the non-stationary data serving as the empirical counterparts to model variables,

and the initial parameter values used to initialise the starting points for the Simulated

Annealling (SA) algorithm. I present the main �ndings in Section 4.4 and conclude with

Section 4.5.
2See King and Rebelo (1993), Cochrane (1994), Cogley and Nason (1995), Canova (1998), Stock

and Watson (1999), and the references in them, for a review of �ltering methods and the strengths and
weaknesses associated with each.
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4.2 The Model

The model is described in this section. I am now more equipped to consider what

I refer to as a complete model in the sense that the theoretical model being considered

here is essentially that discussed in Chapter 3, but is being extended to include the capital

account. I suppose that I have a complete model such that at the end of this section, I could

be con�dent that I have developed an open economy model that incorporates many of the

features of the national income account. Essentially, this introduces an additional �rst-

order condition on the household�s side: the uncovered interest parity (UIP) condition and

both the balance of payment (BOP) account and the economy-wide resource constraint

are extended to include the capital account. Further, note that more shocks are added

and for this reason the �rst-order conditions on the �rm and trader�s side are also altered.

Because of these changes, I re-present the model set-up.

Households

I begin with the characterisation of aggregate choices. Particularly, these are the

consumer decisions. Hence, the stand-in consumer chooses consumption of goods, Ct, and

labour hours, Ht, in order to maximise the utility function

E0
1X
t=0

�t� tU

 
(Ct � �Ct�1)

1��

1� �
� �t

H1+!
t

1 + !

!
(4.1)

subject to the following sequential budget constraint

Bt +
Ft
Pt
+ Ct + Tt +

Ke
t

Zet
+
Kn
t

Znt
+ 0:5 e

�
Ke
t

Ke
t�1

� 1
�2 Ke

t�1
Zet

(4.2)

+0:5 n

�
Kn
t

Kn
t�1

� 1
�2 Kn

t�1
Znt

+
0:5 f
Pt

(Ft � f)2 = (1 + rt�1)Bt�1

+
�
1 + rft�1

� Ft�1
Pt

+

�
Re
tU

e
t +

1� �e0 � �e1 (U
e
t )
�e =�e

Zet

�
Ke
t�1

+WtHt +

�
Rn
t U

n
t +

1� �n0 � �n1 (U
n
t )

�n =�n
Znt

�
Kn
t�1 + �t
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In the utility function, E is the operator signifying mathematical expectations based

on the information set available to the agents at period zero thereby introducing some

elements of uncertainty into the model, 0 < � < 1 is the discount factor, � is the external

habit formation parameter, � is elasticity of consumption, ! is the inverse of Frisch elastic-

ity of labour supply, and the exogenous stochastic variables are � t denoting intertemporal

preference shock and �t denoting labour supply shock. I describe the processes for these

and subsequent shocks later and also, I assume that the utility function is continuously

di¤erentiable, increasing in its arguments, and concave.

In the budget constraint,  e and  n are the respective energy and non-energy intensive

adjustment cost parameters, �e0 and �n0 are the respective constant portions of the steady

state level of energy and non-energy intensive physical capital, �e1 and �n1 are the respec-

tive slopes of the energy and non-energy intensive depreciation functions, and �e and �n

govern the respective energy and non-energy intensive elasticities of marginal deprecia-

tions with regards to capital utilisation rates. Moreso, the stand-in consumer invests in

two types of assets: two types of physical capital (energy intensive, Ke
t , and non-energy

intensive, Kn
t ) and two types of �nancial assets (domestic bonds, Bt, and foreign bonds,

Ft); Wt is the wage rate, Re
t is the rental rate of energy intensive physical capital, R

n
t

is the rental rate of non-energy intensive physical capital, U e
t is energy intensive capital

utilisation rate, Un
t is non-energy intensive capital utilisation rate, rt is the net return to

domestic bonds, Tt is the lump-sum taxes/ transfers from the government, �t = �et +�
n
t

de�nes the pro�t received by the stand-in consumer as lump-sum transfers from owning

�rms in the two production sectors of the economy, Pt is the real exchange rate, and the

exogenous stochastic variables are Zet denoting energy intensive investment-speci�c tech-

nology shock, Znt denoting non-energy intensive investment-speci�c technology shock, and

rft denoting the exogenous net return to foreign bonds.

Also, I �nd it convenient to assume that consumers in the foreign bonds market face

a quadratic portfolio adjustment or transaction cost similar to Schmitt-Grohe and Uribe
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(2003),3 Iacoviello and Minnetti (2006), and Fernandez-Villaverde et al. (2011).4 In

this formulation, f is the steady state value of the stock of foreign bonds and  f is the

adjustment cost parameter.

Further, indexing the two sectors by j = e; n, investments in the two stocks of physical

capital by the stand-in consumer are given by

ijt = i
j
1k

j
t � ij2k

j
t�1 + i

j
3u

j
t � zjt (4.3)

where

ij1 = 1=�uj

ij2 =
�
1� �uj

�
=�uj

ij3 = �j1u
�j=�uj

and as can be expected, current investment depends positively on currently installed

physical capital stock, but negatively on lagged installed physical capital stock and in-

vestment/capital shock. Note that I assume that one period is su¢ cient to transform an

investment good into a productive capital.

The stand-in consumer chooses the paths for Ct, Ht, Bt, Ft, Ke
t , and K

n
t , in order to

maximise the utility function (4.1) subject to the constraints (4.2)-(4.3), and a no-Ponzi-

game constraint of the form

lim
T!1

FTQT
t=0 r

f
t

� 0 (4.4)

taking as given the paths of prices, taxes, and pro�ts Pt, Wt, Re
t , R

n
t , rt, Tt, and �t, the

paths of the exogenous stochastic processes � t, �t, r
f
t , z

e
t , and z

n
t , and the initial conditions

3They also provide a number of alternative methods for inducing stationarity in models where foreign
bonds may lead to some endogenous variables, especially consumption and the level of foreign debt,
following a unit root process. Further, Uribe and Yue (2006) provided a theoretical justi�cation for the
incorporation and use of portfolio adjustment cost in a model where a banking sector is implicit.

4See also Goodfriend and McCallum (2007), Aliaga-Diaz and Olivero (2010), Curdia and Woodford
(2010), and Iacoviello (2014) for similar ideas.
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C�1, B�1, F�1, Ke
�1, and K

n
�1. The �rst-order conditions for the consumer�s problem are

equations (4.2)-(4.4) holding with equality, and

ct = c1Etct+1 + c2ct�1 + c3 (� t � Et� t+1 � c4rt) (4.5)

wt = !ht + �t + w1 (ct � �ct�1) (4.6)

rt = r
f
t + pt � Etpt+1 � r1ft (4.7)

ket = ke1 (ct � �ct�1)� ke2 (Etct+1 � �ct) + k
e
3 (Et� t+1 (4.8)

�� t � Etzet+1 + zet
�
+ ke4Etuet+1 + ke5

�
�Etket+1 + ket�1

�

knt = kn1 (ct � �ct�1)� kn2 (Etct+1 � �ct) + k
n
3 (Et� t+1 (4.9)

�� t � Etznt+1 + znt
�
+ kn4Etunt+1 + kn5

�
�Etknt+1 + knt�1

�

with

c1 =
1

1 + �
, c2 =

�

1 + �
, c3 =

1� �

� (1 + �)
, c4 = �r = 1� �;

w1 =
�

1� �
; r1 =  ff ;

kj1 = kj2 =
�= (1� �)

 j (1 + �)
, kj3 =

1

 j (1 + �)
, kj4 =

��j1u
�j
�
�j � 1

�
 j (1 + �)

, kj5 =
1

1 + �
for j = e; n;

where I have substituted out the marginal utility of consumption, �t, and the sectoral

rental rates of physical capital, Re
t and R

n
t .
5 Consumption decision for goods by the con-

sumer is intertemporal and is determined in equation (4.5): this equilibrium condition is

a relatively standard forward-looking consumption Euler equation and states that current

consumption is a¤ected positively by future and lagged consumption because of the desire

to smooth consumption over time, and the ratio of the current to future intertemporal

5�t is subbed out by combining relevant household�s �rst-order conditions, while Ret and Rnt are
subbed out using relevant �rst-order conditions of the �rms: the resulting expression for the rental/
capital utilisation rates are provided along with the �rms��rst-order conditions in the next sub-section.
See the Supplementary Notes: Chapter 4 for details.
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preference shock, but negatively by the current net return to domestic bonds. The im-

pact of the ratio � t=Et� t+1 being positive implies that a stand-in consumer weighs current

consumption more than investment, and hence, future consumption, among other things,

depends on the real return to domestic bonds. That is, a rise in the latter will lead to

a decrease in current consumption and causing investment to go up contemporaneously.

One can think of a similar impact on current consumption when there is a positive jump in

�nancial investment, which incidentally is an expected outcome whenever, say, the system

is hit by a positive interest rate shock.

Equilibrium condition (4.6), which determines how the stand-in consumer will supply

their labour hours to the production sectors, or equivalently the level of equilibrium wage,

says that equilibrium wage reacts positively to labour hours, current consumption, and

labour supply shock, but negatively to lagged consumption. Equilibrium condition (4.7)

summarises the uncovered interest parity condition stating that the net returns to domestic

and foreign bonds will be the same except for when current and expected real exchange

rates di¤er, and also domestic interest rate depends inversely on the volume of foreign

bonds. Capital Euler equations yield the equilibrium conditions (4.8) and (4.9), which

state that the respective physical capital is a positive function of current consumption,

lagged capital stock, both the expected physical capital and capital utilisation rate, the

ratio of future to current intertemporal preference shock, and the ratio of current to future

investment/ capital shock, but a negative function of expected consumption. Again, the

trade-o¤ between consumption and investment is highlighted in how the stocks of the two

physical capitals respond to the ratio of current-to-future intertemporal preference shocks.

Firms

I proceed with the characterisation of the disaggregate choices. Particularly, these

begin with the decisions of the producers. There are two sectors indexed by j in this

economy using a constant-elasticity-of-substitution (CES) production function, which is

de�ned to be Cobb-Douglas in labour hours and a CES aggregate in capital services and

71



energy services as

yjt = a
j
t + y

j
1h

j
t + y

j
2

�
ujt + kjt�1

�
+ yj3

�
ojt + ejt

�
(4.10)

where

yj1 = 1� �j, y
j
2 =

�j

1 +
1��j
�j

�
ej

kj

���j , yj3 = �j

1 +
�j
1��j

�
ej

kj

��j
with 0 < 1� �j < 1 being the elasticity of output with respect to labour hours in sector

j, 0 < �j < 1 being the weight of capital services in the CES production function for

sector j, 0 < �j <1 is minus 1 plus the inverse of the elasticity of substitution between

capital services and energy services in sector j, yjt is the output produced in sector j,

hjt is the demand for labour hours of sector j, k
j
t is the capital demand of sector j, and

ejt is the energy demand of sector j.
6 The exogenous stochastic variables are ajt denoting

sector-speci�c neutral productivity shocks and ojt denoting sector-speci�c energy e¢ ciency

shocks.

Thus, the stand-in producers choose the paths for Hj
t , U

j
tK

j
t�1, and E

j
t in order to

maximise

�t =
P

j=e;n�
j
t (4.11)

=
P

j=e;n

�
P j
t Y

j
t � (Wt + �jt)H

j
t � (Rj

t + #jt)U
j
tK

j
t�1 � QtE

j
t

�

subject to production functions (4.10) taking as given the paths of prices, P j
t and Wt,

and the paths of the exogenous stochastic processes Ajt , Qt (the exogenous world price

of energy), �jt (the exogenous sector-speci�c wage bill shifter), #
j
t (the exogenous sector-

speci�c capital cost shifter), and Ojt . The �rst-order conditions of the producers�problem

are the production functions (4.10), and

hjt = pjt + yjt � hj1wt � h
j
2�
j
t (4.12)

6Capital utilisation rates, ujt , have been discussed under households�problem.
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ujt = u
j
1

�
pjt + yjt + u

j
2z
j
t

�
+ uj3k

j
t�1 + u

j
4

�
ojt + ejt

�
� uj5#

j
t (4.13)

ejt = e
j
1

�
pjt + yjt � qt

�
+ ej2

�
ujt + kjt�1

�
� ej3o

j
t (4.14)

where the coe¢ cients are

hj1 =
w

1 + w
, hj2 =

1

1 + w
; uj1 =

1
�j�1

1+ 1

�j1u
�j

+ �j + 1� �j

1+
1��j
�j

�
ej
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The equilibrium condition (4.12) states that labour hours demanded in each sector j

respond positively to both an increase in the price of own goods and sector�s output, but

negatively to both the wage rate and the exogenous wage bill shocks. Regarding the stand-

in producers�usage of capital, equilibrium condition (4.13) shows that the demand for

capital usage in each sector j depends positively on the price of own goods, sector�s output,

lagged physical capital stock, energy usage, and energy e¢ ciency shock, but negatively

on capital cost shock and investment/capital demand shock. The stand-in producers

are allowed to also optimally choose the amount of energy input they buy on the world

market. So, the sectoral energy demand is determined e¢ ciently according to equilibrium

condition (4.14), which implies that primary energy requirement depends negatively on

the exogenous world price of energy and energy e¢ ciency shock, but positively on the

price of own goods, the supply or output of these goods, and capital services.
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Government

The government is assumed to face the following budget constraint

Gt = Tt + bt � (1 + rt�1) bt�1 (4.15)

which states that the exogenous government spending is �nanced by lump-sum taxes/

transfers and the evolution of domestic bonds, and I have followed Correia et al. (1995),

An and Schorfheide (2007), and Justiniano et al. (2009) in assuming that the �scal stance

of the government is fully Ricardian.

Trade in Goods with the Rest of the World

Moving on to the domestic country�s choices regarding the components of the aggregate

consumption and investment by the stand-in private consumers, and consumption and

investment by the government. That is, the characterisation of the model equations that

determine the import and export functions of this country noting that I have imposed

Walras�s law on the market clearing conditions for sectoral goods. More formally, the

stand-in trader chooses the paths for De
t , IMt, and IM e

t in order to maximise

Pt
P

z=g;lD
z
t + IMt �

�
P d
t D

d
t + IMt + P e

t D
e
t + P n

t D
n
t + P

im
e;tIM

e
t + P

im
n;tIM

n
t

�
(4.16)

subject to the aggregator functions

Dl
t =

�
�
1
�
�
Dd
t

���1
� + (1� �)

1
� $t (IMt)

��1
�

� �
��1

(4.17)

Dg
t =

�
�
1
& 
t (D

e
t )

&�1
& + (1� �)

1
& (Dn

t )
&�1
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� &
&�1

(4.18)

IMt =
�
�
1
�'t (IM

e
t )

��1
� + (1� �)

1
� (IMn

t )
��1
�

� �
��1

(4.19)
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and one can infer the paths for EXt and EXe
t chosen by the stand-in trader in the foreign

country by maximising

Dwt + EXt �
h
P f
t D

f
t + PtEXt + P e

t EX
e
t + P n

t EX
n
t

i
(4.20)

subject to the aggregator functions

Dwt =

 
�

1
�w
w

�
Df
t

��w�1
�w + (1� �w)

1
�w $w

t (EXt)
�w�1
�w

! �w
�w�1

(4.21)

EXt =

�
�

1
�w
w 'wt (EX

e
t )

�w�1
�w + (1� �w)

1
�w (EXn

t )
�w�1
�w

� �w
�w�1

(4.22)

taking as given the paths of prices Pt, P e
t , P

n
t , P

d
t , and P

f
t and the paths of the exogenous

stochastic processes $t (preference for aggregate imported goods in the domestic coun-

try), $w
t (preference for aggregate imported goods in the foreign country), 
t (preference

for energy intensive goods in the domestic country), 't (preference for imported energy

intensive goods in the domestic country), 'wt (preference for imported energy intensive

goods in the foreign country), Dwt (exogenous world demand), P
im
e;t (exogenous price of

imported energy intensive goods), and Pimn;t (exogenous price of imported non-energy in-

tensive goods). In the above problem, 0 � �; �; �; �w; �w � 1 are, respectively, the share

of domestically produced goods, Dd
t , in total domestic demand of goods by location of

production, Dl
t, the share of energy intensive goods, D

e
t , in total domestic demand of

goods by type of production, Dg
t , the share of imported energy intensive goods, IM

e
t , in

the domestic country�s total imports, IMt, the share of foreign-produced goods, D
f
t , in

total foreign demand, Dwt , and the share of exported energy intensive goods, EX
e
t , in the

domestic country�s total exports, EXt; �; &; �; �w; �w > 0 are measures of the elasticity

of substitution between domestically produced and imported goods in total domestic de-

mand of goods by location of production, the elasticity of substitution between domestic

demand of energy and non-energy intensive goods in total domestic demand of goods by

type of production, the elasticity of substitution between imported energy and non-energy

intensive goods in domestic country�s total imports, the elasticity of substitution between
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foreign-produced and exported goods in total world demand by location of production,

and the elasticity of substitution between exported energy and non-energy intensive goods

in total domestic country�s exports, respectively. I treat the price of composite import,

Pimt , as the numeraire, P
d
t is the price index for the bundle of domestically produced

demand, and P f
t is the price index for the bundle of foreign-produced demand.

7

The �rst-order conditions of the trader�s problem are

det = &
t + & (pt � pet ) + dt (4.23)

imt = �$t + �pt + dt (4.24)

ime
t = �'t � �pime;t + imt (4.25)

ext = �w$
w
t � �wpt + d

w
t (4.26)

exet = �w'
w
t + �w (pt � pet) + ext (4.27)

where equilibrium conditions (4.23)-(4.27) describe the total demand for energy intensive

goods, total domestic imports, imports of energy intensive goods, total domestic exports,

and exports of energy intensive goods, respectively. (4.23) says that the demand for energy

intensive goods depends positively on the real exchange rate, total domestic demand, and

the preference shock for energy intensive goods in the domestic country, but negatively

on own price of energy intensive goods.

(4.24) says that total import depends positively on the real exchange rate, total domes-

tic demand, and the preference shock for the aggregate imported goods in the domestic

country. (4.25) says that the imports of energy intensive goods is a negative function of

the exogenous price of energy intensive goods produced in the rest of the world, but a pos-

itive function of both the total domestic demand for imports and the preference shock for

imported energy intensive goods in the domestic country. (4.26) says that total exports is

negatively related to the real exchange rate, but positively related to both the total world

7I treat Dl
t and D

g
t identically as Dt. This distinction is only used here to formalise the problem. See

the Supplementary Notes: Chapter 4 for details. Also, P dt , P
f
t , and P

im
n;t do not enter the equations used

for simulation of the model.
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demand and the preference shock for the aggregate imported goods in the foreign country.

Finally, (4.27) says that the exports of energy intensive goods is a negative function of

the price of energy intensive goods and a positive function of the real exchange rate, total

world demand for exports, and the preference shock for imported energy intensive goods

in the foreign country. What is quite interesting about these expressions is the e¤ect of

the relative price of the goods. A stand-in consumer will clearly be more favourable to

buying the type of consumption goods that is cheaper assuming one abstracts from any

other distinguishing attributes of these goods. Hence, an increase in the price of domestic

goods will likely reduce the competitiveness of exporters of the domestic goods and also

increase the share of imported goods.

Market Clearing and Equilibrium

The model is closed by de�ning the relevant aggregate and market clearing conditions.

In particular, the general price level, aggregate labour hours, aggregate investment, aggre-

gate capital, aggregate energy, aggregate output, sectoral goods market clearing condition,

total domestic absorption, GDP/ economy-wide resource constraint, and the evolution of

foreign bonds, in that order, are given by

pt = p1 (&
t + pet) + p2p
n
t (4.28)

ht = (h
e=h)het + (h

n=h)hnt (4.29)

it = (i
e=i) iet + (i

n=i) int (4.30)

kt = (k
e=k) ket + (k

n=k) knt (4.31)

et = (e
e=e) eet + (e

n=e) ent (4.32)

yt = (y
e=y) yet + (y

n=y) ynt (4.33)

yet = (d
e=ye) det + (ex

e=ye) exet � (ime=ye) ime
t (4.34)
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dt = (c=d) ct + (i=d) it + (g=d) gt (4.35)

yt = (c=y) ct + (i=y) it + (g=y) gt + (ex=y) ext � (im=y) imt � (e=y) (qt + et) (4.36)

and

ft =
�
1 + rft�1

�
ft�1 + (ex=y) (pt + ext)� (im=y) imt � (e=y) (qt + et) (4.37)

where p1 = �
& (pe=p)1�& and p2 = (1� �) (pn=p)1�& .

I am now able to round up this section by providing the de�nition of a competitive

equilibrium for the model.

De�nition 2 Competitive equilibrium. Taking as given prices (pt, pet , p
n
t , wt, rt),

shocks (aet , a
n
t , d

w
t , 't, '

w
t , 
t, gt, �t, o

e
t , o

n
t , p

im
e;t , qt, r

f
t , � t, #

e
t , #

n
t , $t, $w

t , �
e
t , �

n
t , z

e
t , z

n
t ),

and the initial conditions for consumption, bonds, and capital (c�1, b�1, f�1, ke�1, k
n
�1),

a competitive equilibrium is characterised by a set of endogenous stochastic processes (ct,

ht, het , h
n
t , ft, it, i

e
t , i

n
t , u

e
t , u

n
t , k

e
t , k

n
t , yt, y

e
t , y

n
t , et, e

e
t , e

n
t , dt, d

e
t , imt, ime

t , ext, ex
e
t , wt,

rt, pt, pet , p
n
t ) satis�ed by the solutions to the stand-in consumer, producer, and trader�s

problems, and the bond, labour, capital, energy, and good markets clear.

4.3 Econometric Methodology

In this section, I discuss the methodology used to choose parameter values - this con-

sists of the standard calibration approach and estimation using indirect inference approach.

I then provide a brief description of the data used for estimation.

Calibration

I know that the assessment of the quantitative workings of the model can only begin

when one has chosen values for the model parameters of preference and technology func-

tions, and hence, is able to simulate the model. This I have done by a combination of
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Table 4.1: Calibration
Description Symbol Value]

Discount factorz � 0:96
Inverse of Frisch elasticity of labour supply ! 5
Consumption elasticity " 2
Habit formation parameter � 0:7
Energy intensive sector SoCE �e 0:43
Non-energy intensive sector SoCE �n 0:28
Energy intensive sector EoS btw capital services and energy �e 0:7
Non-energy intensive sector EoS btw capital services and energy �n 0:7
Energy intensive sector marginal CoCU �e1u

�e 0:132
Energy intensive sector depreciation EoCU �e 1:463
Non-energy intensive sector marginal CoCU �n1u

�n 0:102
Non-energy intensive sector depreciation EoCU �n 1:694
ACP for energy intensive goods  e 0:001
ACP for non-energy intensive goods  n 0:001
ACP for foreign bonds  f 0:001
DC�s EoS btw domestic and imported �nal goods � 1:5
FC�s EoS btw foreign and exported �nal goods �w 1:5
DC�s EoS btw imported energy and non-energy goods � 0:44
FC�s EoS btw exported energy and non-energy goods �w 0:44
Share of energy intensive goods in the DC � 0:55
DC�s EoS btw energy and non-energy intensive goods & 0:90
Steady state DF of energy intensive investment goodsz �ue 0:09
Steady state DF of non-energy intensive investment goodsz �un 0:06
Weight on capital services of the energy intensive sector{ �e 0:9966
Weight on capital services of the non-energy intensive sector{ �n 0:9931
Note: SoCE: share of capital services and energy; EoS: elasticity of substitution;
CoCU: cost of capital utilisation; EoCU: elasticity of capital utilisation; ACP: ad-
justment cost parameter; DF: depreciation function; DC: domestic country; FC: for-
eign country. ]Calibrated values are used to initialise the simulated annealing search
algorithm; zparameters that are �xed throughout the exercise; {parameters that are
derived based on calibrated (later estimated) and �xed parameters.

calibration and indirect inference estimation techniques. Going forth, I divide the struc-

tural parameters into three groups. In the �rst group are �, �ue, �un, �e, and �n. Table

4.1 reports the values for these parameters - I �x the values of the �rst three parameters

throughout the exercise: the discount factor, �, at 0:96 suggesting that I have taken the

annual real rate of interest to be about 4%, which is consistent with the average post-

WWII interest rate for the U.S. and the values used by Kydland and Prescott (1982) and

Prescott (1986); also, the steady state of the depreciation functions for the two types of

investment goods, �ue and �un, which are set equal to the long-run average data values

of investment-capital ratios for the energy and non-energy intensive goods. The share

parameters for capital services in the two sectors, �e and �n, are pinned down by the

respective sector�s average energy-capital ratio over the sample period, given values of

some other underlying structural parameters using the expressions, 1

1+ q
�e1u

�e (
ee

ke )
1+�e and

1

1+ q
�n1u

�n (
en

kn )
1+�n .

8

8The values yielded by these expressions will only alter to the extent that estimated elasticity para-
meters, �e and �n, change during the Simulated Annealing searching.
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In the second group are the steady state parameters/ ratios which values are deter-

mined directly from the data except for the exogenous world price of energy and wage

rate, which are normalised to unity in steady state: see Table 4.5 for the calibrated val-

ues. There is not much to say about the parameters in the �rst two groups, but that their

values are kept �xed throughout the econometric exercise except for the sectoral capital

services share parameters.

In the third group are the model parameters I intend to estimate: !, ", �, �e, �n,

�e, �n, �e1u�e, �n1u�n, �e, �n,  e,  n,  f , �, �w, �, �w, �, and &. Table 4.1 provides

the initial values serving as a guide to the Simulated Annealing (SA) algorithm (details

below) to �nd a more optimal values. Hence, as a starting point, I set the elasticity of

labour supply equal to 5, �x consumption elasticity at 2, and preserve the CES form of the

production functions by setting the respective sector�s elasticity of substitution between

capital services and e¢ cient energy use, �e and �n, equal to 0:7.9 Elasticities of labour

hours in the energy and non-energy intensive sectors, 1��e and 1��n, are calibrated to

be 0:57 and 0:72, respectively. I also suppose that there is some degree of habit formation

for agents in this model setting the initial parameter value to 0:7.

Next, I turn to calibrate the component parameters of the two depreciation functions.

In the steady state, these are given by �U e = �e0 + �e1 (�e)
�1 (U e)�e and �Un = �n0 +

�n1 (�n)
�1 (Un)�n for which I note that only four of the six parameters needed identifying

are �e0, �n0, �e and �n. Thus, with no loss of generality, I �x the values for �e1 and �n1

at unity.10 The idea is that, for j = e; n, �j1 and U j are admitted into the model only

jointly as �j1 (U j)
�j such that �j1 = 1 has a trivial implication that �j1 (U j)

�j = (U j)
�j .

Then, using household�s optimality conditions with regards to capital utilisation rates

conditioned on the values for the respective sector�s real rental rate of capital in the

steady state, I have that �j1 (U j)
�j = Rj = 1=� � (1 � � (U j)), where I have already

calibrated � (U j). The previous expression then simpli�es to give the values reported in

the table for �e1u�e and �n1u�n of 0:132 and 0:102, respectively.

9Kim and Loungani (Table 2, p. 180) provide a justi�cation for using this value. They also considered
a value of 0.001 suggesting a Cobb-Douglas form and high elasticity of substitution between capital services
and energy use. I, however, stick to the parameter value that preserves the general form of speci�cation
and leave the optimal choice of parameter value to the estimation stage later on.

10See, for example, Burnside and Eichenbaum (1996), Boileau and Normandin (1999), King and Rebelo
(2000), and Leduc and Sill (2004).

80



Conditional on the values of the discount factor and the real rental rates, I calibrate

the parameters governing the elasticities of marginal depreciations with respect to capital

utilisation rates as �e =
�e1(Ue)

�e

1+�e1(Ue)
�e�1=� = 1:463 and �n =

�n1(Un)
�n

1+�n1(Un)
�n�1=� = 1:694, which

are reasonably located in the range found in the literature.11 For me, the point of adding

adjustment costs is mainly technical rather than for imposing a prori a very high friction

into the model. Thus, I have set the parameters that relate to the adjustment costs of

capital and foreign bonds,  e,  n, and  f to a very small value of 0:001 to follow a

standard practice in the literature. This way I am permitting the model to inform me

when it has been estimated whether there is more or less real rigidity in the system. The

values chosen for the shares and elasticities of substitution parameters in the aggregator

functions are all standard in the literature.

Indirect Inference

The next task was to test how good my choices of parameters were by taking the

model to the data. If they �t each other, my job was done; otherwise, I would need to

proceed to estimating the twenty parameters in group three above. Now, I brie�y give an

overview of the method of indirect inference (II), which has increasingly been shown in

the literature to be statistically powerful in helping to evaluate models and in estimating

a model�s structural parameters to improve its performance. I am mainly concerned with

11Basu and Kimball (1997) suggested the upper bound of 2 based on a 95% con�dence band. Further,
to calibrate this parameter, I have gone for the more restricted form of the depreciation function by
setting �e0 = �n0 = 0. Basu and Kimball (1995, 1997), though used the more general form in their
empirical work and concluded that there is no statistical evidence in support of the non-zero value for
the �xed component of the depreciation function as assumed by many other authors in the literature
[see, for example, Greenwood et al. (1988) and Burnside and Eichenbaum (1996)]. I �conclude� that
my values are not far (not a statistical conclusion) from that usually employed in the literature [see, for
example, Greenwood, et al. who used a value of 1:42, and Burnside and Eichenbaum using their factor-
hoarding model and data on output and capital calibrated � to be 1:56 (� = 0:56)]. I must note that the
speci�cation for time-varying depreciation is less general in these other studies. Statistically, however,
both values are not rejected by the data. This is done noting one of the concerns of Basu and Kimball
(1997) that "...our method makes clear that � is a parameter that needs to be estimated, and in fact is
not pinned down very precisely by the data because it has to be estimated as the reciprocal of a fairly
small number. Thus, even the small standard error of the reduced-form parameter necessarily implies
that there is large uncertainty about the structural parameter �. Consequently, economic modellers
should conduct sensitivity analysis of their results using a wide range of values for this parameter." And
also that "variable depreciation does not seem a signi�cant source of error in the capital stock �gures
reported by the BEA." Speci�cally, they concluded that this issue "strikes us as second-order." This thus
asks the question of sensitivity analysis regarding our results in response to various values that could
be used for � (�). Once I have assessed the performance of the model under this calibration approach,
the above arguments make more important my next empirical exercise, which is to estimate the model�s
underlying structural parameters. In fact, a prior study by Basu and Kimball (1995) had put the value
of � at roughly 7 with a standard error of about 8. To this end, I impose a wider boundary of [0; 10] in
the estimation exercise.
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using the method for estimation in this chapter, but given how the procedure works I have

discussed both how it is used for evaluation and estimation purposes here.

Minford et al. (2009) originally proposed the use of II for evaluating a model�s capacity

in �tting the data, and subsequently with a number of re�nements by Le et al. (2011) who

evaluate the method using Monte Carlo experiments. The approach employs an auxiliary

model that is completely independent of the theoretical one to produce a description of

the data against which the performance of the theory is evaluated indirectly. Such a

description can be summarised either by the estimated parameters of the auxiliary model

or by functions of these; I will call these the descriptors of the data. While these are

treated as the �reality�, the theoretical model being evaluated is simulated to �nd its

implied values for them.

II has been widely used in the estimation of structural models [see, for example,

Smith (1993), Gregory and Smith (1991, 1993), Gourieroux et al. (1993), Gourieroux and

Monfort (1995), and Canova (2005)]. Here, my approach is two-fold - one is estimation and

the second is making a further use of II to evaluate structural model. The common element

is the use of an auxiliary time series model. In estimation the parameters of the structural

model are chosen such that when this model is simulated it generates estimates of the

auxiliary model similar to those obtained from the actual data. The optimal choices of

parameters for the structural model are those that minimise the distance between a given

functions of the two sets of estimated coe¢ cients of the auxiliary model. Common choices

of this function are the actual coe¢ cients, the scores or the impulse response functions. In

model evaluation the parameters of the structural model are taken as given. The aim is to

compare the performance of the auxiliary model estimated on simulated data derived from

the given estimates of a structural model - which is taken as a true model of the economy,

the null hypothesis - with the performance of the auxiliary model when estimated from

the actual data. If the structural model is correct then its predictions about the impulse

responses, moments and time series properties of the data should statistically match those

based on the actual data. The comparison is based on the distributions of the two sets of

parameter estimates of the auxiliary model, or of functions of these estimates.
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The testing procedure thus involves �rst constructing the errors implied by the previ-

ously estimated/ calibrated structural model and the data. These are called the structural

errors and are backed out directly from the equations and the data.12 These errors are then

bootstrapped and used to generate for each bootstrap new data based on the structural

model. An auxiliary time series model is then �tted to each set of data and the sampling

distribution of the coe¢ cients of the auxiliary time series model is obtained from these

estimates of the auxiliary model. A Wald statistic is computed to determine whether

functions of the parameters of the time series model estimated on the actual data lie in

some con�dence interval implied by this sampling distribution.

Following Meenagh et al. (2012) I use as the auxiliary model a VECM which I re-

express as a VAR(1) for the macroeconomic variables of interest with a time trend and

with some residuals entered as exogenous non-stationary processes (these two elements

having the e¤ect of achieving cointegration).13 Thus, the auxiliary model, unlike in the

previous chapter where the model/ data is stationary, in practice is given by

yt = [I �K]yt�1 + 
xt�1 + gt+ vt (4.38)

where xt�1 is the stochastic trend in productivity, gt are the deterministic trends, and

vt are the VECM innovations. I treat as the descriptors of the data the VAR coe¢ cients

(on the endogenous variables only, I � K) and the VAR error variances (var[v]). The

Wald statistic is computed from these.14 Thus, e¤ectively I am testing whether the ob-

served dynamics and volatility of the chosen variables are explained by the simulated joint

12Some equations may involve calculation of expectations. The method I use here is the robust in-
strumental variables estimation suggested by McCallum (1976) and Wickens (1982): I set the lagged
endogenous data as instruments and calculate the �tted values from a VAR(1) - this also being the auxil-
iary model chosen in what follows. Given that I am working with non-stationary data, the actual auxiliary
model chosen is a VECM that got re-written as a VAR(1).

13See Le et al. (2013).
14I do not attempt to match the time trends and the coe¢ cients on non-stationary trend productivity; I

assume that the model coe¢ cients yielding these balanced growth paths and e¤ects of trend non-stationary
shocks on the steady state are chosen accurately. However, I am not interested, for the exercise here, in
any e¤ects on the balanced growth path, as this is �xed. As for the e¤ects of the non-stationary shocks
on the steady state I assume that any inaccuracy in this will not importantly a¤ect the business cycle
analysis I am carrying out - any inaccuracy would be important in assessing the e¤ect on the steady state,
but this is not my focus. Thus, m assessment of the model is as if I was �ltering the data into stationary
form by regressing it on the time trends and trend productivity.
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distribution of these at a given con�dence level. The Wald statistic is given by

(���)0
X�1

(��)
(���) (4.39)

where� is the vector of VAR estimates of the chosen descriptors yielded in each simulation,

with � and
P

(��) representing the corresponding sample means and variance-covariance

matrix of these calculated across simulations, respectively. The joint distribution of the

� is obtained by bootstrapping the innovations implied by the data and the theoretical

model; it is therefore an estimate of the small sample distribution.15 Such a distribution is

generally more accurate for small samples than the asymptotic distribution; it is also shown

to be consistent by Le et al. (2011) given that theWald statistic is �asymptotically pivotal�;

they also showed it had quite good accuracy in small sample Monte Carlo experiments.16

This testing procedure is applied to a set of (structural) parameters put forward as

the true ones (H0, the null hypothesis); they can be derived from calibration, estimation,

or both. However derived, the test then asks: could these coe¢ cients within this model

structure be the true (numerical) model generating the data? Of course only one true

model with one set of coe¢ cients is possible. Nevertheless one may have chosen coe¢ cients

that are not exactly right numerically, so that the same model with other coe¢ cient values

could be correct. Only when one has examined the model with all coe¢ cient values that

are feasible within the model theory will one have properly tested it. For this reason I

later extend the procedure by a further search algorithm, in which I seek other parameter

sets that could do better in the test.

Thus, I calculate the minimum-value full Wald statistic for each period using a powerful

algorithm based on SA in which search takes place over a wide range around the initial

values, with optimising search accompanied by random jumps around the space.17 In

15The bootstraps in the tests are all drawn as time vectors so contemporaneous correlations between
the innovations are preserved.

16Speci�cally, they found on stationary data that the bias due to bootstrapping was just over 2% at
the 95% con�dence level and 0.6% at the 99% level. Meenagh et al. (2012) found even greater accuracy
in Monte Carlo experiments on non-stationary data.

17I use a Simulated Annealing algorithm due to Ingber (1996). This mimics the behaviour of the steel
cooling process in which steel is cooled, with a degree of reheating at randomly chosen moments in the
cooling process� this ensuring that the defects are minimised globally. Similarly the algorithm searches
in the chosen range and as points that improve the objective are found it also accepts points that do not
improve the objective. This helps to stop the algorithm being caught in local minima. I �nd that this
algorithm improves substantially here on a standard optimisation algorithm. The method used follows
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e¤ect this is Indirect Inference estimation of the model; however here this estimation is

being done to �nd whether the model can be rejected in itself and not for the sake of

�nding the most satisfactory estimates of the model parameters. Nevertheless of course

the method does this latter task as a by-product so that I can use the resulting unrejected

model as representing the best available estimated version. The merit of this extended

procedure is that I can then compare the best possible versions of each model type when

�nally doing my comparison of model compatibility with the data.

Data

Figures 4.2-4.3 display the time paths for the data series that are used in the cali-

bration, estimation, and evaluation of the model. These are un�ltered U.S. annual data

covering the period 1949-2013, and are logarithmically transformed, real [using Bureau of

Labour Statistics (BLS) series: consumer price index (CPI, 2009=100)] per capita [using

Bureau of Labour Statistics (BLS) series: civilian non-institutionalised population over

16 years old] terms except for wage rate, interest rate, real exchange rate, and capital util-

isation rates.18 Meanwhile, just as the U.S. variables are de�ated by the U.S. CPI, world

CPI is used to de�ate world series, especially world demand and is also the numeraire.

4.4 Results

In this section, which I organise into two sub-sections, the main �ndings of the exercise

are discussed. Firstly, I examine the estimated parameter values. Secondly, I look at

the properties of the estimated model by considering some qualitative and quantitative

outcomes. While doing these, I emphasise at every opportunity the main focus of this

chapter, which is to determine how well this energy model of open economy can reproduce

the business cycle implications of output and real exchange rate of the U.S.

a standard testing method: I take a set of model parameters (excluding error processes), extract the
resulting residuals from the data using the LIML method, �nd their implied autoregressive coe¢ cients
(AR(1) here) and then bootstrap the implied innovations with this full set of parameters to �nd the
implied Wald value. This is then minimised by the SA algorithm.

18A detailed description of the data sources and construction of the observables are presented in the
Appendix.
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Figure 4.2: Data used for estimation.
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Figure 4.3: Data used for estimation (contd.).
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Parameter Estimates

Structural Parameters Estimates of the model parameters are summarised in the up-

per panel of Table 4.2. Consumption elasticity, ", is one of the highly di¢ cult parameters

to pin down in economics. The estimate of its inverse is 1:24, which is arguably within

the range of estimates found in many DSGE models [Hall (1988) and Smets and Wouters

(2003, 2005)]. Consumption elasticity of 0:81 found here implies that households are more

willing to smooth consumption across time in response to a change in real interest rate.19

Compared to the initial value, the estimated value of the habit formation parameter in-

terestingly is suggesting that household�s utility in period t is less dependent on past

consumption. Speci�cally, the estimated value of 0:3 reduces any forms of consumption

inertia to transitory shocks; hence, the hump of consumption impulse response functions

becomes more sharpened - see Fuhrer (2000). Theoretically, there is no judgement against

this result as the focus of the research is not that of accounting for asset market relations,

but quantitatively, it is quite low for a developed country [see Boldrin et al. (2001) who

estimated a value of 0:7; Smets and Wouters (2004) who reported a value of 0:55; Chris-

tiano et al. (2005) who obtained a point estimate of 0:65]. In fact, low habit persistence is

usually associated with developing nations; for example, Uribe and Yue (2006) estimated

this to be 0:2 using a panel data for emerging countries.

Labour elasticities in the two sectors are 0:75 and 0:63 for the energy and non-energy

intensive sector, respectively. The high value for Frisch elasticity (!�1 = 0:17) says that

labour hours react more to changes in the real wage. 1 + �e (1 + �n) is a measure of

the inverse elasticity of substitution between capital services and primary energy use in

the energy (non-energy) intensive sector such that the values of �e = 0:29 and �n = 0:27

implies that there are high elasticities of substitution between the two factors in both

sectors. All estimates for the adjustment cost parameters are close to zero: the values of

0:0001, 0:0007, and 0:0001 for  e,  n, and  f , respectively, which are all smaller than the

initial values by at least 30% justi�es my decision to assume that the cost of adjusting all

19This implies that agents would respond more to substitution e¤ect than to wealth e¤ect. A value of
between zero and one is uncontroversial in the literature [e.g., Kocherlakota (1988) advocated for a value
close to zero]. Meanwhile, Campbell (1994) used values ranging from zero to in�nity in his analysis. For
more on the range of values and other estimates of consumption elasticity, see, for example, Nelson and
Nikolov (2002), Bergin (2003), and Cromb and Fernandez-Corugedo (2004).
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Table 4.2: Structural parameters and Wald statistics
a. �1
Discount factor � 0:96
e investment-capital ratio �ue 0:09
n investment-capital ratio �un 0:06

b. �2a
Frisch elasticity ! 6:03
Consumption elasticity " 1:24
Habit formation � 0:30
e share of capital and energy �e 0:25
n share of capital and energy �n 0:37
e elasticity of substitution between capital and energy �e 0:29
n elasticity of substitution between capital and energy �n 0:27
e marginal cost of capital utilisation �e1u

�e 0:03
e depreciation elasticity of capital utilisation �e 1:90
n marginal cost of capital utilisation �n1u

�n 0:06
n depreciation elasticity of capital utilisation �n 4:72
e adjustment cost parameter  e 0:0001
n adjustment cost parameter  n 0:0007
Adjustment cost parameter for foreign bonds  f 0:0001
Substitution elasticity, ddt � imt goods � 0:97
Substitution elasticity, dft � ext goods �w 0:43
Substitution elasticity, ime

t � imn
t goods � 0:07

Substitution elasticity, exet � exnt goods �w 0:04
Weight of det goods � 0:26
Substitution elasticity, det � dnt goods & 0:44
e weight on capital services �e 0:997
n weight on capital services �n 0:993

c. �3 [Estimated on output and real exchange rate] Wald TMD
Initial values 100 49:64
Estimated model 89:2 1:04
Note: e is energy intensive, n is non-energy intensive; TMD: transformed Ma-
halanobis distance; see notes to Table 4.1 for the description of the parameters.

types of investments from period to period may be small relatively. Further, the estimate

of the marginal costs of capital utilisation is 3% in the energy intensive sector while it is

6% in the non-energy intensive sector. These estimates might be indicative that return

to investment/ marginal product of capital services in the non-energy intensive sector is

higher. Greenwood et al. (1988) and related literature [see, for example, Finn (1991,

1996), Burnside and Eichenbaum (1995), Baxter and Farr (2002), Leduc and Sill (2004)]

suggest that there is yet to be an empirical guide on the choice of a value (magnitude)

for the elasticity of capital utilisation rates, �e and �n, with Basu and Kimball (1995)

admitting that it is a problematic parameter to correctly value. My estimates here are

1:90 and 4:72, respectively, for the energy and non-energy elasticities of capital utilisation

rates. Lastly, all the elasticity of substitution parameters are sensibly in the ballpark of

other estimates found in the literature. Without putting too much emphasis, the implied
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coe¢ cients for the way the model was written in Section 3.2 are reported in Table 4.7.

Driving Processes There are 22 exogenous stochastic processes in the model: 17 be-

havioural shocks and 5 exogenous variables. Figures 4.4-4.5 plot the 22 shocks both for

calibrated (in blue lines) and estimated (in dashed red lines) models - these errors are either

extracted directly from the model �rst-order conditions as in the cases of the behavioural

shocks, or observed directly in the data as in the cases of the exogenous variables. 14 of

the relevant equations are without expectations such that the structural errors are backed

out directly as residuals; for the remaining 3: intertemporal preference, and energy and

non-energy intensive investment-speci�c technology shocks that are with expectations, the

residuals are derived using the instrumental variable method recommended by McCallum

(1976) and Wickens (1982), where the instruments are the lagged values of the endogenous

variables. The accompanying estimated innovations for these shocks are shown in Figures

4.6-4.7.

Meanwhile, until now I have been silent about the processes that these shocks follow.

Given that I am working with un�ltered data, one cannot arbitrarily impose a �rst-order

autoregressive process on them all. Table 4.6 reports the unit root tests carried out for

each of the shocks (based on calibrated values) showing the conclusions I reached. For now,

the econometric procedures were carried out for 11 I (1) shocks modelled as ARIMA(1, 1,

0) processes and 11 I (0) shocks modelled as ARIMA(1, 0, 0). More speci�cally, I estimate

the former group of shocks as �rst-order autoregressive processes in �rst di¤erences and

estimate the latter group of shocks as �rst-order autoregressive processes in levels.

The results for the persistence parameters and the standard deviations of innova-

tions are shown in Table 4.3. Observe that many of the shocks are mildly persistent

except for the AR parameters coming out of �rst-di¤erenced annual data for the shocks

that are treated as non-stationary; the highest AR coe¢ cient belongs to world interest

rate. It is also observed that the sectoral energy e¢ ciency shocks are the most volatile,

while intertemporal preference, world interest rate, and energy and non-energy intensive

investment-speci�c technology shocks are among the least volatile.
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Figure 4.4: Shocks.
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Figure 4.5: Shocks (contd.).
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Figure 4.6: Innovations.

Properties of the Estimated Model

One of the main agenda in this section is to interrogate the estimated model about

the role of energy price shocks in causing the U.S. business cycles and especially in an

economic environment littered with a host of other shocks chief among which are the

productivity and other imported shocks. The main result is that the model can explain

the observed quantitative response of output to oil price increases, and I provide a the-
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Figure 4.7: Innovations (contd.).
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Table 4.3: Estimated Parameters and Driving Processes
Shocks aet ant dwt 't 'wt 
t gt �t oet ont pime;t
�s �0:004 �0:006 0:0051 0:0453 �0:062 0:2459 0:5057 �0:010 0:6601 0:5678 0:0371
�s 0:0263 0:0470 0:1555 0:3094 0:5527 0:0347 0:0230 0:3584 2:7803 2:7600 0:1470

Shocks qt rft � t #et #nt $t $w
t �et �nt zet znt

�s �0:006 0:9601 0:6453 0:0936 0:0364 0:6785 0:0666 0:0297 0:0395 0:3407 �0:003
�s 0:2086 0:0086 0:0072 0:0099 0:0057 0:2038 0:6232 0:3234 0:3241 0:0077 0:0231
Note : �s and �s are, respectively, the persistence parameter and the standard deviation of each shock, s.

oretical explanation to account for the empirical outcome. I start with the theoretical

interpretation of the results.

The Propagation Mechanism of Energy Price Shocks I begin the illustration

of the model�s implications for economic activities by providing some qualitative inter-

pretations for the propagation mechanism of energy price shocks in the model. I focus

the exposition on two markets, namely labour and capital markets with references to how

these e¤ects translate into the goods market, and ultimately, a¤ecting the imports-exports

market (and thus, the real exchange rate and the current account positions). In any case,

these are all interesting because they have implications for both output and real exchange

rate dynamics. To this end, I make two propositions.

Proposition 3 Impact e¤ect: oil price increases depress the economic system intratem-

porally by working through the labour-consumption channel.

Proof.

The analysis is illustrated in Figure 4.8. Working with the general forms of the model de-

scribed in Section 3.2 and abstracting from other shocks and real frictions (like habit

formation and adjustment costs), household�s decision in the labour market is given

by �UH (Ct; Ht) =UC (Ct; Ht) = Wt for all t, which is the condition equating the mar-

ginal rate of substitution between labour and consumption to the marginal product of

labour - the left-hand side determines the schedule for labour supply; they also obtain

UC (Ct; Ht) =�UC (Ct+1; Ht+1) = (1 + rt) in the capital market for all t, which is the con-

dition that makes them indi¤erent between consuming today or tomorrow. Further, com-

bining the two previous �rst-order conditions yield: �UH (Ct; Ht) =�UC (Ct+1; Ht+1) =

(1 + rt)Wt, which is the intertemporal labour-consumption choice determining the ability
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to smooth not just consumption, but also labour over time. This particular representation

makes explicit that household�s supply of labour depends on both the wage rate and the

stock of initial or current wealth (this is represented by the upward sloping curve in Figure

4.8). Meanwhile, on the production side and imposing symmetry between sectors (or work-

ing with the aggregate economy for the moment) to simplify the analysis, it is straightfor-

ward to derive the labour-energy ratio as FH (Ht; Kt; Et) =FE (Ht; Kt; Et) =Wt=Qt, where

the relative productivities on the left-hand determines the schedule for labour demand

(this is represented by the downward sloping curve in Figure 4.8). For a required level of

crude oil, a positive shock to its price, ceteris paribus, will lead to a fall in demand for

labour. Speci�cally, all things being equal, as Qt rises, Wt=Qt falls such that to maintain

the equal sign the ratio FH (Ht; Kt; Et) =FE (Ht; Kt; Et) must likewise go down, and sup-

pose that the required quantity of energy is �xed, the labour quantity demanded falls.20

Moreover, without assuming �xed energy necessary for production, labour demand can still

fall because of the fall inWt=Qt that signals to the �rms falling productivity of labour rel-

ative to energy use.21 Bringing the consumers and the producers together, equilibrium in

the labour market is given by: �UH (Ct; Ht) =�UC (Ct+1; Ht+1) = (1 + rt)Wt = Wt=Qt =

FH (Ht; Kt; Et) =FE (Ht; Kt; Et) which I �nd useful broken up into prices (1 + rt)Wt =

Wt=Qt implying that Qt = 1=� (1 + rt) and quantities �UH (Ct; Ht) =UC (Ct+1; Ht+1) =

FH (Ht; Kt; Et) =FE (Ht; Kt; Et), which equates intertemporal labour-consumption deci-

sion to the ratio of the two marginal products. The price relation gives a hint of the

connection to investment implying that when Qt goes up, rt must fall to maintain equi-

librium since the discount factor is constant.22 All things being equal, the resource drain

e¤ect can be shown to be given by: dYt
dQt

��
H;K

= 	(�) � 0 where 	 always takes a negative

value for an oil-importing country like the U.S. and (�) include energy use and structural
20As is standard in the literature when analysing short-run production function that labour is the

input that can be varied most quickly. An alternative way to see how this may happen is to write
an expression for the marginal cost of energy input as Q = Wt

FH(Ht;Kt;Et)=FE(Ht;Kt;Et)
. Obviously, as Q

rises the numerator and/ or the denominator of the right-hand side must change appropriately to ensure
equality.

21Formally, we assume that E 2
�
E;E

�
indicating that there is a minimum level of energy required, E,

for �rms to be operational and a maximum level, E, that the �rms would import depending either on cost
or production possibility frontier. Further, note that the e¤ects of oil price shocks in this model are not
direct on the households because they are not modelled to use imported crude oil [see, for example, Dhawan
and Jeske (2008) for an analysis that integrated imported crude oil into household utility function]. But
to the extent that the pro�ts of the �rms are a¤ected will the return to household�s investment be. This
is one of the channels by which the negative spiral of this shock permeates the system.

22A re-arrangement of the intertemporal indi¤erence curve of the households that would lead to simi-
lar conclusion is UC (Ct;Ht) =�UC (Ct+1;Ht+1) = (1 + rt) = �UH (Ct;Ht) =�UC (Ct+1;Ht+1)Wt, which
implies that UC (Ct;Ht)Wt = �UH (Ct;Ht).
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model parameters (e.g., share of energy use in production and elasticity of substitution

parameter).23 As drawn, the demand for labour is that which achieves point B in panel a

of Figure 4.8 with a corresponding lower output level YH1;K0;E0 in panel b.

The above result appears rooted in the notion that the model is able to generate

intertemporal labour-consumption substitution, which in itself is not a new idea, but to

my best knowledge this particular re-interpretation in relation to the impact e¤ect on

aggregate and sectoral macroeconomic variables is novel.24

Proposition 4 Transition e¤ect: oil price increases depress the economic system in-

tertemporally by working through the consumption-investment channel.

Proof.

The proof of the transition e¤ect follows from that of the impact e¤ect. Speci�cally, the

domestic �rms having absorbed the impact e¤ect transfers it to the households in the

form of job losses, possible lower wage rate, and lower return to last period�s investment

(end-of-period t pro�t declines). All told, this implies that the household�s stock of wealth

has declined, and since it is the households that make investment decisions in this model

what they have available to supply for capital formation against next period is reduced

creating the link to probable further output decreases in period t + 1. We illustrate this

outcome in Figure 4.8 shown by point C in panel a and output level YH2;K1;E1 in panel b.

I round this sub-section up by looking at the sectoral output �uctuations to which

the above results are tied and show how this impacts on aggregate output. Speci�cally,

when the price of imported energy goes up, this takes resources from the domestic country

transferring it to the RoW - this is easily seen by examining the economy-wide resource

constraint. The resulting e¤ect is that the total net imports must fall, unless the oil

23This value, 	(�), lost by the oil-importer is gained by the oil-exporter at least to the extent that the
supply of exports fails to match this amount [see for example Darby (1981)].

24See Lucas (1972a, 1972b, 1973) for the theoretical development of labour smoothing. Meanwhile, a
closely related interpretation brought to my attention after this analysis was put forth is that of factor-
price frontier done for an aggregate economy by Blanchard and Gali (2010) in which oil is allowed to
enter both consumption and production functions. While they discussed results that are similar to the
impact e¤ect for their aggregate economy, they did not discuss transition e¤ect. Arguments in Eastwood
(1992) appear to follow this line of enquiry.
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Figure 4.8: Propagation mechanism of oil price shock.
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exporter buys at least an equivalent amount of goods from the domestic country. I abstract

from this possibility and explain the complementary outcome to the above propositions in

relation to international trade and competitiveness of the domestic country. Additionally,

an increase in the price of energy means that the price of goods that are more energy

intensive in their production also rises. These mechanisms of propagating the e¤ects of

energy price shocks via the sectors are explained next.

From the �rst-order conditions, both prices of energy and non-energy intensive goods

in the domestic country are derived endogenous, but of importance is that we can write

the solution to the price of non-energy intensive goods as a function of both the aggregate

price level and the price of energy intensive goods. My focus is on the latter and Figure

4.9 is used to illustrate this mechanism. Note that the vertical axes on both panels a and

b of the graph are labelled P e
t because of the reason just given. In particular, because the

energy intensive sector is assumed to be relatively both oil and capital more intensive, its

supply curve is drawn to be steeper such that the increase in the supply of energy intensive

goods due to P e
t rising is less than the drop in the supply of non-energy intensive goods

due to a fall in P n
t . Thus, output falls and the demand for both types of goods fall to

reduce net exports as consumers are poorer. The e¤ect on real exchange rate is actually

ambiguous as it depends on a host of other factors.25

Accounting for Two Recessions Using the U.S. data over the sample period, I de�ne

an episode as involving abnormal growth if there is an annual growth of gross domestic

product (GDP) above 3.5%, which is the average growth rate of U.S. GDP over the sample

period. Also, I de�ne recession as any negative change in output. For both growth and

recession, I take as one episode every successive occurrence. I then seek to understand

these excessive U.S. business cycles. To undertake this study, I adopt the dating of the

U.S. recessions by the National Bureau of Economic Research (NBER) and the dating (and

causes) of oil crises and recession provided in Table 4.12, which is based on Hamilton�s

(1985, 2011) calculations.

25See Krugman (1983) and some of the references therein for factors that work to determine real
exchange rate position after an oil price shock.

99



Figure 4.9: Sectoral propagation mechanism of oil price shock.
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Then, I carry out the following experiments: (1) for output and real exchange rate

for which I have �tted the model to data and working with two selected sub-samples,26

I decompose each growth and recession/ depression according to the model based on the

twelve structural shocks - I depict the results in Figures 4.10-4.13; (2) I consider the role

played by each shock over these periods by examining the accumulated shocks for each

episode of abnormal growth and recession as shown in Figures 4.17-4.20; and (3) I generate

a pseudo data for 62,000 years using Monte Carlo techniques and use it to guess oil price-

macroeconomic relationship over my sample period - I then compare these predictions to

actual data as presented in Table 4.13 and Figure 4.21.

To investigate the e¤ects of energy related shocks on the historical macroeconomic

experiences of the U.S. in a model bu¤eted by numerous supply-side and demand-side

shocks, I construct the time paths for output and real exchange rate for the two sub-periods

opting for an orthogonalisation scheme that orders energy price shock �rst followed by the

remaining permanent shocks and then the transitory shocks. To this end, any contribution

due to the correlation between the shocks, say energy price shocks and the remaining

shocks (take the energy intensive sector productivity shock for example) is attributed to

the energy price shock. I extend this approach down the line till I reached the last shock,

which according to my ordering is the non-energy intensive investment-speci�c technology

shock.

Further, the shock decompositions for the variables are analysed in groups, viz: pro-

ductivity shocks, which include the energy and non-energy intensive sectors�neutral pro-

ductivities (aet and a
n
t ), energy and non-energy intensive sectors� energy e¢ ciencies (o

e
t

and ont ), and energy and non-energy intensive goods�investment-speci�c technologies (z
e
t

and znt ); preference shocks, which include the intertemporal preference (� t), labour supply

(�t), preference for imported energy intensive goods ('t), preference for exported energy

intensive goods ('wt ), preference for energy intensive goods (
t), preference for aggregate

imported goods ($t), and preference for aggregate exported goods ($w
t ); cost-push shocks,

which include energy and non-energy intensive capital cost shifters (#et and #
n
t ), energy

26The two chosen sub-samples are 1967-1984 and 1995-2012 and are of equal lengths. The former
period is characterised by strike, reduction in Libyan supply, bursting of the Trans-Arabian pipeline,
Iranian revolution, and the Iran-Iraq War; the latter period is characterised by the Second Gulf War,
Venezuela unrest, and the overshooting of demand over supply.
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Figure 4.10: Shock decomposition for output.

and non-energy intensive sectors�wage bill shifters (�et and �
n
t ); energy price shock (qt);

and the exogenous variables, which include world demand (dwt ), government spending (gt),

the price of imported energy intensive goods (pime;t ), and foreign interest rate (r
f
t ).

27

Considering the prediction of the model for output over the two sub-periods �rst,

I show in Figures 4.10 and 4.12 that other exogenous variables generally drive output,

albeit more in the earlier sub-period; these are again very important in 2009 when the

U.S. output dropped massively. My model was able to correctly predict the year-on-year

direction of output changes over the two sub-periods, and more importantly I show in

Figure 4.12 that the model�s predicted time path for output in the last Great Recession

preserved the ranking of changes observed in the actual data. A similar story can be

told for productivity shocks though they have lesser e¤ects in moving output in the face

of these other shocks. It is notable meanwhile to observe that productivity shocks were

responsible for keeping output up in the late 1960s in the face of negative pulls from the

exogenous variables - Figure 4.10.

27The primary results for both the impulse response functions and variance decompositions below have
also been presented in these groupings for convenience of seeing the overall picture at a glance. Detailed
variance decomposition with the e¤ects of each shock shown individually are also included.
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Figure 4.11: Shock decomposition for real exchange rate.

On the other hand, energy price shocks are occasional disturbances whose in�uences

on output �uctuations can be underlined by the downward trajectory of output in the

1973-74, 1979-82, 2002, and 2007-12, which all correspond to speci�c times when energy

price experienced a hike - see Table 4.12. You can see an exception with the predicted

response of output to energy price rise in 1999-2000, which was mainly caused by demand

overshooting supply.

Then, in Figures 4.11-4.13 for the real exchange rate, the exogenous variables and

energy price shocks continue to dominate the other shocks followed by the productivity

shocks. For the most part of the earlier sub-period, productivity and exogenous variables

reinforced each other against the energy price shocks. This trend is reversed in the 1980s

when exogenous variables and energy price teamed up against productivity and preference

shocks. In all, preference shocks worked to keep real exchange rate positive. For the latter

sub-sample, energy price and exogenous variables move the real exchange rate in the same

direction and usually opposite that of the productivity shocks, but for a few exceptions.

Finally, my assessment of the bootstrap simulated data reveals a few interesting facts

of which I emphasise two: the �rst is the frequency of occurrence of the two events (ab-
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Figure 4.12: Shock decomposition for output.

Figure 4.13: Shock decomposition for real exchange rate.
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normal growth and recession) in tango with oil price changes (down and up); the second is

the percentage of events involving oil price changes. I have shown by the results that the

adopted de�nitions of growth and recession are integral to the business cycle experiences

of the U.S. and that this would be the benchmark against which to judge every other

experience. More speci�cally, I �nd that of the times when there has been an abnormal

growth (a recession), about 17 (16) percent involve oil price decreases (increases). Unfor-

tunately, I am unable to quantify the magnitude of the e¤ects of these price changes on

output �uctuation, and thus are unable to say much on the asymmetric e¤ects attributes

of oil price changes. In addition, the experiment suggests that there will be no recession

(abnormal growth) and no oil price increases (decreases) in about every 2 years, and that,

on average, in about every 5 years, there is an oil price rise (fall) that does not impact on

output �uctuation. I split the sample period into two periods (pre-1980 and post-1980)

and �nd that the results remain similar across time.

Impulse Response Functions I now turn to a discussion of some of the impulse

response functions to grasp the dynamics implied by the model shocks. I mainly study the

e¤ects of a one-o¤standard deviation positive shock to some of the key exogenous variables

on selected variables focusing especially on output and real exchange rate (Figures 4.14-

4.16).28 Su¢ ce it to say that most of the variables have expected responses to each shock;

for when this is not so because of any feature(s) of my model, I underlined this in the

explanation that follows. Note that I have used the actual values of the shocks as either

extracted from the model or observed in the data, and have scaled the vertical axis of the

plots by 100 to make it easier for presentation.

I begin with the productivity shocks by �rst looking at the sectoral Solow residuals

- see rows 1 and 2 of Figure 4.14. Next, let us consider the productivity shocks starting

with the sectoral Solow residuals where it is obvious that the impact e¤ects generated

by sectoral productivity shocks in the energy intensive sector are di¤erent to that of

sectoral productivity shocks of the non-energy intensive sector. Given that there are

positive shocks to both sectoral productivities, Aet and A
n
t , respectively, (that is, �ae ; �an >

28See Figures 4.22-4.43 for the impulse responses of all the variables to all the exogenous variables.
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Figure 4.14: Impulse response functions.

0), one would expect the outputs of both sectors to increase, causing an increase in

factor demand accompanied by increased factor prices and a falling relative prices for

each sector�s goods. My model did not particularly lead to these standard outcomes,

which are mainly generalisations of expected results in aggregate, or one sector, economic

models.

However, the transmission mechanisms at work in multi-sector models sometimes lead
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to contradicting dynamics as I see here. In fact, it is the case that permanent productivity

shocks in the energy and non-energy intensive sectors a¤ect some of the interesting model

variables di¤erently. For instance, productivity in the non-energy intensive sector lead to

standard results in output (aggregate and sectoral), consumption, wages, sectoral relative

prices, real exchange rate, and components of the BOP, but it is less so for productivity of

the energy intensive sector. I surmise that what is going on here is a form re-structuring

of resources. More speci�cally, contrary to standard results where one may expect that

a positive productivity shock would work by raising the productivity of factor inputs,

and hence, all of sectoral hours, capital utilisation rates, capital, and energy use should

increase, the model suggests that a positive productivity shock in the energy intensive

sector will raise productivity and hence, output of the energy intensive sector, but the

spill-over e¤ects to the non-energy intensive sector is negative.

Given that the magnitude of the increased output of the energy intensive sector is far

smaller than that of the fall in the non-energy intensive sector output, aggregate output

declines after energy intensive sector productivity shock hits the system. Consequently,

there is an accompanying fall in the demand for/ use of the factor inputs mainly because

aggregate demand (of output and investment) dropped signi�cantly more than the rise

of consumption aggregate demand. While it is puzzling that a positive technology can

end up depressing the economy, it is not for both the marginal costs of inputs and the

prices of the goods fell. The former is due to �rms reducing demand for inputs while the

latter serves as a devise to encourage more aggregate economic activities. This negative

response of hours to productivity shock has also been found in other studies [see, for

example, Christiano et al. (2003)].29 With regards to international trade, a fall in income

implies that there is an immediate drop in imports and rise in exports since foreigners are

relatively more well o¤. Real exchange rate depreciation occurs to aid in the re-balancing

of balance of payments accounts and thus, imports and exports begin to gradually travel

in opposite directions.

The remaining four productivity shocks in rows 1 and 2 of Figure 4.15 and rows 6 and

29However, the mechanism by which this contraction is e¤ected in their model is di¤erent to that in
mine. I put forth a story of structural/ sectoral re-allocation of resources, while they explore the notion
of nominal rigidity of prices.
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7 of Figure 4.16 show that the remaining productivity shocks all produce standard results

for most of the key macroeconomic variables. I note the following exceptions. First, the

energy e¢ ciency shocks have the model implications of lowering the energy BTU input per

unit of the volume of output. Hence, all energy (aggregate and sectoral) usage dropped in

response to these shocks and because the amount of an input required has fallen, cost of

production also fell such that sectoral prices of goods followed suit. Second, I point out the

impact a¤ects of energy and non-energy intensive investment-speci�c technology shocks

on consumption - because these shocks move resources from consumption to investment,

it can be seen how the time paths for consumption and investment are almost a perfect

mirror image of each other.

Next, I investigate the impulse responses to the preference shocks beginning with the

labour supply shock. A positive shock has a negative correlation with output - see row 8 of

Figure 4.14. This result originates from the �rst-order condition (4.6), which implies that

@Ht=@�t < 0. This indeed has both the intratemporal and intertemporal e¤ects of drops

in both the aggregate consumption and investment though the latter in the non-energy

intensive sector still rose. Additionally, the substitution assumption between labour hours

and the CES of capital services and energy use implies that capital utilisation rate, capital,

and energy use all had to increase. This is what I observe except for capital demand in

the energy intensive sector, which also fell. An explanation for this can be o¤ered: the

model is, in this sense, indicating that labour hours and capital are complements in the

energy intensive sector. This contraction in labour supply and investment would lead to

a rise in wages and interest rate. It is now costlier to produce output in the two sectors;

hence, the jump in the sectoral prices.

The consequence is a rise in the country�s real exchange rate, signifying a drop in

competitiveness vis-à-vis the rest of the world so that imports and exports go up and

down, respectively. That is, as would be expected, the substitution e¤ects kicks into

full gear as the domestic economy runs down its foreign reserves. The dynamics of the

remaining preference shocks are quite interesting to look as depicted in rows 4 to 6 of

Figure 4.14, row 6 of Figure 4.15, and rows 2 and 3 of Figure 4.16. What is particularly

unique about these shocks, except the intertemporal preference shock, is that they act as
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Figure 4.15: Impulse response functions (contd.).

a switcher of preferences between goods and/ or services intratemporally. For instance,

a preference for energy intensive goods shocks changes household�s preference away from

non-energy intensive goods to energy intensive goods. Put simply, these are good-/ service-

/ product-speci�c demand shocks.

Given this, I illustrate the remaining preference shocks with intertemporal preference
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shocks and shocks to the preference for energy intensive goods.30 With the former, utility

per unit of consumption rises for households such that they are content to smooth con-

sumption intertemporally leading to higher investment and thus, output also jumps on

impact. This will lead to higher factor demands and concurrently increases in factor prices

to incentivise the households to supply. Higher costs of production mean higher sectoral

prices such that imports increases and exports decreases. Clearly, the real exchange rate

appreciates as the domestic country becomes less competitive relative to the rest of the

world. Likewise, the impulse responses of the model�s variables to the one-o¤ standard

deviation of a positive shock to the preference for energy intensive goods are qualitatively

similar to that of the intertemporal preference shocks, except for the e¤ects on consump-

tion and non-energy intensive output and inputs. These results can be due to: (1) the

estimated weight of energy intensive goods in the aggregator function is 26%; (2) there

is re-allocation of resources from the non-energy intensive sector to the energy intensive

sector as demand increases for output of the latter.

Let us turn to the analysis of the impulse response functions to a positive standard

deviation shock to the energy price in row 4 of Figure 4.15. Unlike the productivity

shocks, an increase in the energy price worsens income. On the production side, the

rise in the energy price will lead to a decline in energy usage with the immediate e¤ect

being that of reducing capital utilisation. Concurrently, under-utilisation of other factors

of production sets in such that output has to fall. There is a strong intratemporal and

intertemporal substitution e¤ects at work here acting to re-allocate resources because of

capital utilisation rate. For instance, given a lowered capital utilisation rate, there is a

lower marginal product of labour (wage rate falls), and investment falls in response to

lower marginal product of capital (interest rate falls) so that consumption falls due to the

created negative wealth e¤ect. Energy usage falls because its cost as an input has gone

up, and there is a decrease in capital because of the complementarity with energy. Two

things to note regarding trade with the rest of the world: �rst, I observe that an increase

in the price of energy has the e¤ects of worsening the current account balance of a net

oil importer like the U.S.; second, to stimulate demand, �rms have to lower the sectoral

30Other good-/ service-/ product-speci�c demand shocks can be interpreted from the shocks to the
preference for energy intensive goods.
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Figure 4.16: Impulse response functions (contd.).

prices of goods with the rest of the world bene�tting the most as exports increased. Then,

as the real exchange rate begins to rise, the trade balance improves.

Now, I examine the e¤ects of the group of shocks labelled cost-push in row 7 of Figure

4.15 and rows 1, 4, and 5 of Figure 4.16. One thing to note here is that these shocks

are predominantly sector-speci�c and any impacts they generate on other variables are
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spill-over e¤ects. Moreover, only energy intensive sector wage bill shifter generated non-

standard results and so, I only discuss this shock under cost-push group and in relation

basically to output. I conjecture that the fall in labour hours demanded by �rms in the

energy intensive sector because of wage bill hike does not lead to a fall in output of the

energy intensive sector that is su¢ cient to lower aggregate output.

Finally, I consider the time paths of the endogenous variables to the observed exoge-

nous variables beginning with the impulse response functions to a positive world demand

shock - see row 3 of Figure 4.14. It is easy to interpret the distinct responses of the sectoral

variables to this shock. Considering each sector�s level of openness to international trade,

the share of energy intensive sector goods in cross-border trade is much larger such that

world demand shock a¤ects the sector�s output more. Further, the real exchange rate

appreciation occurred because the rest of the world increased their demand for domestic

exports. The impulse responses to world interest rate (see row 5 of Figure 4.15) are qual-

itatively alike to that of the energy price shock. This is because both are aggregate price

increases unlike a positive one-o¤ standard deviation shock to the imported price of energy

intensive goods in row 3 of Figure 4.15. Essentially, an increase in the imported price of

energy intensive goods will lead to fall in the import of such goods and consumption falls

for two reasons: �rst is that aggregate consumption is a composite involving imported

energy intensive goods and second is that domestic sectoral prices have been driven up

by positive imported price movement such that consumption goods are now more expen-

sive. Lastly, the crowding out e¤ects of government spending means that consumption

and investment fell on impact, and because government spending is non-productive in

the current model, it leads to a decrease in output, which particularly contradicts some

�ndings in the literature [for example, Finn (1998) and Ravn et al. (2012)]. I see that

the fall in consumption is trivial as households are able to smooth consumption overtime.

A further e¤ect is that both aggregate and sectoral labour hours increased on impact re-

�ecting household�s willingness to sacri�ce some leisure during hard times. Consequently,

wages fall as labour supply increases. This will cause output to start rising to lessen the

adverse wealth e¤ect accompanying the government spending shock.
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Variance Decompositions To explain the percentage of variation in each variable that

is due to the di¤erent shocks, one can examine Table 4.4, which documents the variance

decomposition of the endogenous variables. It shows that every group is important to

some degree, in most cases, to explaining the variations in all variables. Looking at these

broad categorisations, exogenous variables are the most important to output followed by

the preference shocks and energy price is the least useful. In fact, for all variables, energy

price shocks make the least contribution to accounting for their movements. This is not

su¢ cient to shake my belief that energy price shock is (should be) a main covariate of

macroeconomic variables. For example, energy price shock is only approximately 4:55% of

the shocks in the model and accounts for 8:86% of movements in aggregate output, while

the productivity shocks make up approximately 27:27%, but are only able to account for

18:06% of movements in aggregate output. Proportionally and as would be expected,

energy price shock is more important to aggregate and sectoral energy usage being re-

sponsible for nearly a quarter, which will in turn lead to a drop or rise in output/ welfare

depending on whether it was a positive or a negative energy price shock. This latter com-

parison is even more pronounced when I observe that preference shocks, which make up

roughly 32% of the shocks can only determine 3:96% of aggregate energy use �uctuation,

2:85% of energy intensive sector energy use �uctuation, and 2:03% of non-energy intensive

sector energy use �uctuation. This is not surprising though given that energy use is not

modelled for the household and so there is a weak link between preference shocks and

energy usage.

Perhaps, a look at Tables 4.8-4.9 can provide a better insight into which shocks are

individually most (least) important. The key shocks are the permanent shocks accounting

for well over 90% of movements in all variables considered with the other shocks appearing

to be passengers in most contexts. For instance, the two sectoral Solow residuals are

the most important of the productivity shocks causing over 97% of the 18:06% share of

productivity shock in aggregate output volatility. This evidence can be seen in the share

of permanent shocks in the remaining categories reported in Table 4.4 as expanded in

Tables 4.8-4.9. It is interesting to see that variability in imports (aggregate and energy

intensive), exports (aggregate and energy intensive), and interest rate are dominated by
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Table 4.4: Variance Decomposition
Shocks, 1949-2013

Variable, symbol Productivity Preference Energy Price Cost-push Exogenous Variables
Aggregate output, yt 18:06 26:20 8:86 17:56 29:32
Energy intensive output, yet 18:22 24:76 8:30 18:49 30:22
Non-energy intensive output, ynt 18:37 25:56 8:58 18:93 28:57
Aggregate investment, it 12:69 12:72 5:15 10:20 59:25
Energy intensive investment, iet 27:56 9:89 3:67 7:69 51:20
Non-energy intensive investment, int 31:64 4:40 2:15 3:83 57:98
Aggregate hours, ht 18:15 27:20 9:06 18:19 27:41
Energy intensive hours, het 17:84 26:81 8:89 19:13 27:34
Non-energy intensive hours, hnt 18:03 26:98 8:97 19:00 27:02
Aggregate energy use, et 29:32 3:96 24:9 3:74 38:09
Energy intensive energy use, eet 34:10 2:85 23:0 3:00 37:10
Non-energy intensive energy use, ent 44:55 2:03 24:8 1:60 27:06
Domestic absorption, dt 17:69 25:83 8:76 17:36 30:37
Aggregate imports, imt 14:23 9:11 1:98 4:50 70:18
Energy intensive imports, ime

t 13:83 8:65 1:48 3:53 72:51
Domestic aborption of energy intensive goods, det 17:91 25:30 8:55 18:09 30:14
Aggregate exports, ext 12:43 26:87 4:41 9:21 47:08
Energy intensive exports, exet 11:22 27:79 3:69 7:62 49:68
Wage, wt 10:64 9:00 3:22 22:18 54:97
Interest rate, rt 32:53 3:78 1:51 3:53 58:66
Price of energy intensive goods, pet 19:96 22:75 7:59 20:90 28:80
Price of non-energy intensive goods, pnt 22:32 22:85 7:65 17:20 29:98
Net foreign assets, ft 22:81 25:91 7:63 15:32 28:33
Consumption, ct 18:61 26:60 9:04 18:18 27:57
Energy intensive capital, ket 17:20 25:59 8:65 17:35 31:21
Non-energy intensive capital, knt 18:14 26:10 8:67 17:28 29:81
Energy intensive capital utilisation rate, uet 17:29 23:62 7:99 16:07 35:02
Non-energy intensive capital utilisation rate, unt 17:65 25:66 8:64 17:27 30:77
Real exchange rate, pt 26:24 18:20 6:15 13:82 35:59

Note : Productivity shocks: sum of sectoral Solow residuals (aet and a
n
t ), energy and non-energy intensive investment-speci�c technologies

(zet and z
n
t ), and energy and non-energy intensive energy e¢ ciencies (o

e
t and o

n
t ); preference shocks: sum of intertemporal preference (�t),

labour supply (�t), preference for imported energy intensive goods ('t), preference for exported energy intensive goods ('
w
t ), preference

for energy intensive goods (
t), preference for aggregate imported goods ($t), and preference for aggregate exported goods ($
w
t ); energy

price shock (qt); exogenous variables: sum of world demand (dwt ), government spending (gt), the price of imported energy intensive goods
(pime;t), and foreign interest rate (r

f
t ); cost-push shocks: sum of energy intensive sector capital cost shifter (#et ), non-energy intensive sector

capital cost shifter (#nt ), energy intensive sector wage bill shifter (�
e
t ), non-energy intensive sector wage bill shifter (�

n
t )

world demand (66:5%, 69:7%, 38:3%, 42:3%, and 56:5%, respectively). It is, however,

startling that volatility in the U.S. wage rate is explained 48:9% by world demand.

Further, labour supply, foreign interest rate, intertemporal preference, and energy and

non-energy intensive sector capital cost shifters play a very negligible role in e¤ecting

volatilities in any of the model variables. Regarding labour supply shock, my �nding

disagrees with Meenagh et al. (2010) who �nd that it contributed 25:34% and 28:11%

to output and consumption, respectively. My results on the importance of interest rate

shocks agree with studies by Mendoza (1991), Schmitt-Grohe (1998), and Correia et al.

(1995) who all �nd that it exerts too minimal impacts on model variables to be a source

of big variations. This is in sharp contrast to the �ndings of Blankenau et al. (2001) that

interest rate shock transmission channels may generate su¢ ciently large enough responses

from model variables. Moreover, unlike Stockman and Tesar (1995) and Garcia-Cicco et

al. (2010), I did not �nd introducing intertemporal preference shock to be adding anything

to the variability of model variables.
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4.5 Conclusion

I have developed and estimated a two-sector dynamic stochastic equilibrium open

economy model of the United States in which imported oil is assumed to be crucial to

production in order to study the response of output and real exchange rate to the exoge-

nous positive movement in the price of oil. The main channels through which this shock

work are by raising the costs of production (when energy price shoots up) with the added

e¤ect of lowering the marginal productivity of the remaining inputs (i.e., labour and capi-

tal) on the production side and by acting as a resource drain in the economy-wide resource

constraint. I have shown qualitatively that output is a¤ected both intratemporally - the

impact e¤ect - and intertemporally - the transition e¤ect - and quantitatively assess these

results in the estimated model. I �nd that the macroeconomic e¤ects of oil price shock

are still sizeable and that real exchange rate moves to account for these changes after each

shock.

Meanwhile, it would be interesting to carry out the preceding exercises for a number of

countries and study how output and their competitiveness measured in real exchange rate

change with changes in the exogenous world price of crude oil. In doing this, it is perhaps

necessary and preferable to extend this model to include an energy-producing sector if

we were to fully grasp the e¤ects of oil price increases on the general price level and the

relative sectoral price. Further, it may be important to investigate more fully the cross-

country sectoral terms of trade. One may want to study if there are any cross-country

sectoral correlations of recessions. An advantage to this would include the opportunity

to study also the sectoral competitiveness along with the aggregate. In addition, it is

likely that there is a gap between theory and data regarding certain measurements that I

have used. Thus, it may be informative to have a version of this model augmented with

measurement error estimated in a future research. Finally, in the current paper I have

explained what happens to output and real exchange when there is an exogenous increase

in the real price of oil without any particular o¤er of a plausible policy recommendation

for accommodating such occurrences. Therefore, as a next step it will be interesting to

incorporate a monetary and/ or �scal channels by which there could be policy responses
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as already been done in the literature. However, I think such an exercise within this

theoretical framework, when properly motivated, could lead to a more optimal plan of

actions.
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Table 4.7: Value of Coe¢ cients
Symbol De�nition Value Symbol De�nition Value
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Figure 4.17: Accumulated shocks, 1967-1984.
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Figure 4.18: Accumulated shocks, 1967-1984 (contd.).
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Figure 4.19: Accumulated shocks, 1995-2012.
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Figure 4.20: Accumulated shocks, 1995-2012 (contd.).
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Figure 4.21: Year-on-Year Change in RGDP per capita and Crude Oil Price.
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Figure 4.25: IRFs to 't.
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Figure 4.28: IRFs to gt.

2 4 6 8 10 12

­1

0

1
Output

P
er

ce
nt

Years
2 4 6 8 10 12

­2

0

2
Energy Intens ive Output

P
er

ce
nt

Years
2 4 6 8 10 12

­1

0

1
Non­energy Intensive Output

P
er

ce
nt

Years
2 4 6 8 10 12

­0.06
­0.04
­0.02

0

Consumption

P
er

ce
nt

Years
2 4 6 8 10 12

­4
­2

0
2
4
6

Investment

P
er

ce
nt

Years

2 4 6 8 10 12
­10

0

10
Energy Intens ive Investment

P
er

ce
nt

Years
2 4 6 8 10 12

­5

0

5

Non­energy Intensive Investment

P
er

ce
nt

Years
2 4 6 8 10 12

­3
­2
­1

0
1

Hours

P
er

ce
nt

Years
2 4 6 8 10 12

­3
­2
­1

0
1

Energy Intens ive Hours

P
er

ce
nt

Years
2 4 6 8 10 12

­2
­1

0
1

Non­energy Intensive Hours

P
er

ce
nt

Years

2 4 6 8 10 12
0
1
2
3

Energy Intens ive Util isation

P
er

ce
nt

Years
2 4 6 8 10 12

0

0.5

1

Non­energy Intensive Util isation

P
er

ce
nt

Years
2 4 6 8 10 12

­0.8
­0.6
­0.4
­0.2

0
0.2

Energy Intens ive Capital

P
er

ce
nt

Years
2 4 6 8 10 12

0

0.5

1

Non­energy Intensive Capital

P
er

ce
nt

Years
2 4 6 8 10 12

0

1

2

Energy

P
er

ce
nt

Years

2 4 6 8 10 12

0
1
2
3

Energy Intens ive Energy

P
er

ce
nt

Years
2 4 6 8 10 12

­0.5
0

0.5
1

1.5

Non­energy Intensive Energy

P
er

ce
nt

Years
2 4 6 8 10 12

0
1
2
3
Energy Intens ive Sectoral Prices

P
er

ce
nt

Years
2 4 6 8 10 12

0
1
2

Non­energy Intensive Sectoral Prices

P
er

ce
nt

Years
2 4 6 8 10 12

­2
0
2
4
6
8

Wages

P
er

ce
nt

Years

2 4 6 8 10 12
0

0.5
1

1.5

Interest Rate

P
er

ce
nt

Years
2 4 6 8 10 12

0
1
2

Real Exchange Rate

P
er

ce
nt

Years
2 4 6 8 10 12

­0.4

­0.2

0

Foreign Bonds

P
er

ce
nt

Years
2 4 6 8 10 12

­1
0
1
2

Domestic Absorption

P
er

ce
nt

Years
2 4 6 8 10 12

­1
0
1
2

Energy Intensive Domestic  Absorption

P
er

ce
nt

Years

2 4 6 8 10 12

0

1

2
Imports

P
er

ce
nt

Years
2 4 6 8 10 12

0

1

2
Energy Intensive Imports

P
er

ce
nt

Years
2 4 6 8 10 12

­1
­0.5

0

Exports

P
er

ce
nt

Years
2 4 6 8 10 12

­1
­0.5

0

Energy Intens ive Exports

P
er

ce
nt

Years
2 4 6 8 10 12

0
10
20

Labour Supply

P
er

ce
nt

Years

Figure 4.29: IRFs to �t.
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Figure 4.30: IRFs to oet .
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Figure 4.37: IRFs to #nt .
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Figure 4.38: IRFs to $t.
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Figure 4.40: IRFs to �et .
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Figure 4.41: IRFs to �nt .
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Figure 4.42: IRFs to zet .
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Figure 4.43: IRFs to znt .
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Chapter 5

Summary and Concluding Remarks

Problems of exhaustible assets are peculiarly liable to become entangled with

the in�nite. Not only is there in�nite time to consider, but also the possibility

that for a necessity the price might increase without limit as the supply van-

ishes. If we are not to have property of in�nite value, we must, in choosing

empirical forms for cost and demand curves, take precautions to avoid as-

sumptions, perfectly natural in static problems, which lead to such conditions.

Harold Hotelling (1931, p. 139).

I provide a summary of the exercises carried out in this thesis and make some con-

cluding comments on possible ways to extend the work in the future. Generally, I have

reviewed some of the earlier contributions to the literature in the �eld of energy macroeco-

nomics and extended the standard closed economy representative agent model of Kydland

and Prescott (1982), Long and Plosser (1983) and Kim and Loungani (1992) to a novel

open economy model in which trade is carried out in four goods and one commodity,

namely: (1) domestic energy intensive goods; (2) domestic non-energy intensive goods;

(3) foreign energy intensive goods; (4) foreign non-energy intensive goods; and (5) crude

oil. Overall, I �nd that energy price shocks still matter both for aggregate and sectoral

economic �uctuations. I argue that the focus should be more on the cross-e¤ects of energy

price movements on the changes in other factors of production such as labour and capital,
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and less on the balance of payments�e¤ects once this shock hits the system.

Particularly, in Chapter 2, I comprehensively reviewed the extant literature on energy

(price) and aggregate economic �uctuations, citing a number of important contributions

and debates by many esteemed economists to this strand of economic research. In doing

this, a few econometric and theoretical models were discussed. Building on the literature,

I studied an open economy of the United States that is subjected to vagaries of decisions

by its trading partners especially the oil bloc. The questions in mind were, "Can a model

be organised to explain the behaviour of a multi-sector economy such as the U.S. given a

supply-side shock such as an energy (price) shock? Further, given an array of supply- and

demand-side shocks perturbing the economy per period, how important is the e¤ect of

energy (price) shock? How are these shocks transmitted through the economy? Which is

more disturbing between the impact and the transition e¤ects of an energy (price) shock?"

Thus beginning with Chapter 3, I turned my attention to designing a two-sector com-

putable dynamic stochastic general equilibrium (CDSGE) open economy model of the

U.S. that formally admit energy into the production process in a way that can generate

plausible parameter values with which an applied study can deal with a broad range of

economic issues. The model in this chapter falls in the lineage of Kydland and Prescott

(1982), Long and Plosser (1983), and Kim and Loungani (1992) models in which I assume

that (1) representative agents reside in a perfectly competitive economy making decisions

regarding consumption, labour, investment, and output; (2) representative agents in the

domestic country trade with their foreign counterparts; (3) imported crude oil is essential

for production; and also (4) production takes place in two sectors and four types of goods

are available for consumption and investment purposes. Twelve shocks, domestic and

imported, were added to the model and I required as a benchmark that the model �ts

the data for output, real exchange rate, energy use, and consumption: output because it

serves as a measure of a country�s total income; real exchange rate because it serves as

a determinant of a country�s relative competitiveness; energy use because it serves as an

indicator of special inputs into a country�s production process; and consumption because

it serves as a yardstick for evaluating a country�s welfare.
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Furthermore, in Chapter 4, I examine the role of energy price shocks in e¤ecting

changes both at the aggregate and sectorial levels further by extending the model of

Chapter 3 to include capital account, added more domestic and imported shocks and

frictions before re-estimating the model on non-stationary data sets using the method of

indirect inference. The focus of the explanation in this chapter was output and the real

exchange rate. I showed that the main channels through which imported oil shock works

are by raising the costs of production (when energy price shoots up) with the added e¤ect

of lowering the marginal productivity of the remaining inputs (i.e., labour and capital)

on the production side and by acting as a resource drain in the economy-wide resource

constraint. I have shown qualitatively that output is a¤ected both intratemporally through

what I termed the impact e¤ect and intertemporally through what I labelled the transition

e¤ect. In addition, a quantitative assessment of the results in the estimated model model

was presented. A main contribution is that I was able to use a micro-founded multi-sector

DSGE model to �nd results that support some already established facts in relation to the

size of the e¤ects of oil price shock on macroeconomic variables like output and the real

exchange rate.

Next, I speculate on a few possible extensions to the model that could yet prove

fruitful in a future research endeavour. First, a useful extension for model implications

regarding energy policies and welfare evaluation would be to consider an economy with

money (M=P ) and energy use (Eh) by household,1 which can be achieved by increasing

the arguments in the utility function 4.1

E
X1

0
��U

�
C � �C�1; �H; jE

h; v
M

P

�
(5.1)

where j and v are optional exogenous disturbances to energy use and real money balances,

respectively. Then, depending on if we are interested in considering the extent of price

�exibility in the economy, quadratic adjustment costs for nominal wage and price rigidities

can be speci�ed [see, for example, Hairault and Portier (1993) and Kim (2000)]. Moreover,

explicit modelling of the four goods may be important. I do think that the most rele-
1As an example, see Dhawan and Jeske (2008) and Blanchard and Gali (2010) who modelled energy

use by household providing stylised facts on the share of household energy use in total GDP in the vicinity
of that reported for the �rms.
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vant contribution for this approach may be pursued by allowing traded goods to not only

be used for consumption/ investment purposes, but to be translated into the production

process as not all exchanged goods are completely �nished goods [see, for example, Gold-

berg and Campa (2010), Bergholt and Sveen (2014), and Eyquem and Kamber (2014)].2

This particular extension may have the following added advantages: (1) Beyond incorpo-

rating the level of energy intensity, this should help to admit the di¤erent levels of trade

intensities of the two sectors; and (2) We may also be able to examine the terms of trade

for goods of both sectors with the addition of extra cost channels via trade in intermediate

goods - this would be an extension to many open economy models that only analyse ag-

gregate terms of trade [see for example Backus et al. (1995), Mendoza (1995), and Backus

and Crucini (2000)]. Meanwhile, an extra dimension can be introduced if we are content

to assume that government spending is productive as in Finn (1998). Lastly, there are

two features of the model that have also been shut down to make the experiment less

complicated. The �rst is the non-inclusion of the non-traded sector, which Bruno (1976)

refers to as an "unimportant appendage" perhaps included for completeness. It has how-

ever been studied as an important sector of the economy since [see, for example, Tesar

(1989), Stockman (1990), Stockman and Tesar (1995)]. In fact, Stockman (1990) wrote

that "Both theory and evidence on open economies suggest the inclusion of non-traded

goods and multiple traded goods", which in that sense could further improve the model

presented in this thesis.

Finally, the story of this thesis is that we cannot continue to relegate interests in the

study of commodities in particular those that enter into the production process at one

stage or form to only when a shock occurs. There should indeed be a concerted and

maintained curiosity in the research of energy resources and this is not just in economics,

but a call to all disciplines that have been brought together by this matter. I belief that

this is the only way by which we will solve the energy question.

2A simplifying assumption in the model presented in Chapters 3 and 4 is that imported/ exported
goods can directly be consumed or invested on arrival without any need for added value. This is rarely
the case.
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Appendix A

Data Sources

Below is a detailed list and sources of the raw/ borrowed data that are made use

of in constructing the data series serving as the empirical counterparts to the model

macroeconomic variables in the main text.

A.1 Chapter 2

Bureau of Economic Analysis (www.bea.gov), 1949-2013

National Data, GDP and Personal Income

1. Table 1.1.5: Gross Domestic Product, billions of dollars, seasonally adjusted at

annual rate, extracted: 27 January, 2015.

2. Table 1.1.9: Implicit Price De�ators for Gross Domestic Product, 2009=100, sea-

sonally adjusted at annual rate, extracted: 27 January, 2015.

3. Table 2.4.5: Personal Consumption Expenditures by Type of Product, billions of

dollars, seasonally adjusted at annual rate, extracted: 30 January, 2015.

4. Table 3.9.5: Government Consumption Expenditures and Gross Investment, billions

of dollars, seasonally adjusted at annual rate, extracted: 30 January, 2015.

5. Tables 6.4B-6.4D: Full-Time and Part-Time Employees, extracted: 31 January, 2015.
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6. Tables 6.5B-6.5D: Full-Time Equivalent Employees by Industry, extracted: 31 Jan-

uary, 2015.

7. Tables 6.7B-6.7D: Self-Employed Persons by Industry, extracted: 31 January, 2015.

8. Tables 6.8B-6.8D: Persons Engaged in Production by Industry, extracted: 31 Janu-

ary, 2015.

9. Tables 6.9B-6.9D: Hours Worked by Full-Time and Part-Time Employees by Indus-

try, extracted: 31 January, 2015.

National Data, Fixed Assets

1. Table 1.1: Current-Cost Net Stock of Fixed Assets and Consumer Durable Goods,

billions of dollars, seasonally adjusted at annual rate, extracted: 25 February, 2015.

2. Table 2.1: Current-Cost Net Stock of Private Fixed Assets, Equipment, Structures,

and Intellectual Property Products by Type, billions of dollars, seasonally adjusted

at annual rate, extracted: 30 January, 2015.

3. Table 2.7: Investment in Private Fixed Assets, Equipment, Structures, and Intellec-

tual Property Products by Type, billions of dollars, seasonally adjusted at annual

rate, extracted: 30 January, 2015.

4. Tables 7.1A-7.1B: Current-Cost Net Stock of Government Fixed Assets, billions of

dollars, seasonally adjusted at annual rate, extracted: 30 January, 2015.

5. Tables 7.5A-7.5B: Investment in Government Fixed Assets, billions of dollars, sea-

sonally adjusted at annual rate, extracted: 30 January, 2015.

6. Table 8.1: Current-Cost Net Stock of Consumer Durable Goods, billions of dollars,

seasonally adjusted at annual rate, extracted: 30 January, 2015.

Industry Data, GDP-by-Industry and Output-Input

1. Full-Time and Part-Time Employees by Industry.1

1The values for 1949 -1997 were downloaded from www.bea.gov/industry/gdpbyind_data.htm while
the rest of the series (1998 - 2011) were obtained from the usual interactive section of the BEA�s GDP-
by-Industry. To construct the values for 2012-2013, we calculate the growth rate of the series between
1998 and 2011 using the expression g = exp[ 114 � ln(

obs1998
obs2011

)]�1 and this is then used to project the values
for 2012 and 2013. All tables are extracted on 31 January, 2015 except the BEA�s GDP-by-Industry
series, which was downloaded in January, 2013. Currently, employment data are no longer available at
the BEA�s GDP-by-Industry section.
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2. GDP by Industry, Value Added, millions of current dollars, extracted: 13 May, 2015.

Bureau of Labour Statistics (www.bls.gov), 1949-2013

1. Series ID: LNU00000000, Civilian Non-institutional Population between 16 and 64

Years Old, extracted: 27 January, 2015.2

2. Series ID: CUUR0000SA0, Consumer Price Index for All Urban Consumers: All

Items, Index 1982-84=100, seasonally adjusted, extracted: 29 January, 2015.3

Federal Reserve Bank of St. Louis (www.stlouisfed.org), 1949-2013

1. Series ID: PRS85006063, Nonfarm Business Sector: Compensation, Index 2009=100,

seasonally adjusted, extracted: 30 January, 2015.

2. Series ID: TFAABSHNO, Households and Non-pro�t Organizations; Total Financial

Assets, Level, Billions of Dollars, extracted: 13 May, 2015.

3. Series ID: TLBSHNO, Households and Non-pro�t Organizations; Total Liabilities,

Level, Billions of Dollars, extracted: 13 May, 2015.

Board of Governors of the Federal Reserve System (www.federalreserve.gov),

1949-2013

1. Series ID: G17/CAPUTL/CAPUTL.B00004.A, Manufacturing (SIC), n.s.a, per cent

of capacity in G17: Industrial Production and Capacity Utilization, G.17 Release,

extracted: 30 January, 2015.

2. Series ID: G17/CAPUTL/CAPUTL.G3361T3.A, Motor Vehicles and Parts (NAICS),

n.s.a, per cent of capacity in G17: Industrial Production and Capacity Utilization,

G.17 Release, extracted: 30 January, 2015.

3. Series ID: H15/H15/RIFSPFF_N.A, Federal Funds E¤ective Rate, 1955-2013, H15

Release, extracted: 30 January, 2015.

2We transformed the population data above into an index with 2009 value set to 100 following the
approach of Smets and Wouters (2007).

3Before use, the base year for the CPI index is transformed to 2009=100 from 1982-84=100.
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Energy Information Administration (www.eia.gov), 1949-2013

1. Table 2.1: Energy Consumption by Sector, January, 2015 Monthly Energy Review,

extracted: 30 January, 2015.

2. Table 9.1: Crude Oil Price Summary, December 2014 Monthly Energy Review,

extracted: 30 January, 2015.

Smets and Wouters (2007)

1. 3-month treasury bill rates, 1949-1954.4

A.2 Chapter 3

As in Chapter 2 plus the following additional sources

United Nations

1. Total (world) population, both sexes combined, as of 1 July (thousands), 1950-2010.

World Bank

1. World population, World Development Indicators, World Bank Data, 1960-2013.5

International Monetary Fund

1. World Trade, Value in Millions of U.S. Dollars, International Financial Statistics,

1949-2013.

2. Prices of Major World Trade Commodities in U.S. Dollars, International Financial

Statistics, 1949-2013.

4I convert their quarterly data into annual data by averaging.
5The population data for 1950-1959 are taken from the United Nations; we calculated the growth rate

for these 10 years and use it to obtain the data for 1949, while we use the population data from World
Development Indicators for 1960-2013. The series used to normalise the RoW variables is the above less
the U.S. population.
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3. Interest rates for Canada, France, Germany, Italy, Japan, and the U.K., Interna-

tional Financial Statistics, 1949-2013.
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Appendix B

Supplementary Notes: Chapter 3

B.1 Data Construction

Output

Model variables: Y , Ye, Yn.

Data: Aggregate output, Y , is measured as the sum of the two sectoral outputs, Ye+Yn.

That is, the sum of gross outputs of the energy and non-energy intensive sectors. However,

due to a lack of data on gross output by industry dating back to 1949, which is the general

starting year of the variables, I instead construct the two sectoral gross domestic products

from the value added by industry data (Taken from GDP by Industry). More speci�cally,

aggregate output is de�ned as the total value added of all industries. Consequently,

energy intensive sector output, Yn, is de�ned as the sum of value added from agriculture

(including forestry, �shing, and hunting), mining, utilities, construction, manufacturing,

and transportation (and warehousing due to lack of further disaggregation) - sum of

excel worksheet lines 5, 8, 12, 13, 14, and 38; the non-energy intensive sector output,

Yn, is de�ned as the sum of value added from wholesale and retail trade, information,

�nance (including insurance, real estate, rental, and leasing), professional and business

services, educational services (including health care, and social assistance), arts (including
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entertainment accommodation, and food services), and other services except government

- sum of excel worksheet lines 36, 37, 47, 52, 61, 70, 76, and 83. Lastly, due to lack of

su¢ cient disaggregation of government output, I split the output of the public sector into

two and added half each to Ye and Yn.

Consumption

Model variable: C.

Data: This is de�ned as personal consumption expenditures less durable goods (Taken

from Table 1.1.5. Gross Domestic Product).

Investment

Model variables: It, Ie, In.

Data: The measure of gross investment is taken to be the sum of personal consumption

expenditure on durable goods, and private nonresidential (structures and equipment) and

residential �xed investments. This was applied to the de�nition the two types of invest-

ment variables noting that aggregate investment is given as I = Ie + In. For investment

series, I combine Table 2.7: Investment in Private Fixed Assets, Equipment, Structures,

and Intellectual Property Products by Type and the series for consumer durables from

Table 2.4.5: Personal Consumption Expenditures by Type of Product, lines 3-24. Be-

ginning with the consumption of durable goods in Table 2.4.5, the following are assigned

investments that are non-energy intensive denoted by Idgn : furnishings and durable house-

hold equipment, recreational goods and vehicles, and other durable goods (sum of lines 8,

13, and 19) such that investment in the energy intensive type consumption durable goods

is given by Idge =Durable goods�Idgn (that is, line 3 minus the sum of lines 8, 13, and 19).

Further, assignment of Table 2.7 into investment by type is as follows. Investment in the

energy intensive goods are deemed to be given by the sum of equipment and structures

less residential equipment and improvements (sum of lines 2 and 35 minus the sum of

lines 34 and 74). Thus, investment in the non-energy intensive type goods is the sum of

residential equipment, improvements, and intellectual property products (sum of lines 34,

74, and 76).
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Capital

Model variables: Ke, Kn.

Data: Following the constructions of energy and non-energy intensive investments

above, I build the series for capital using Table 8.1. Current-Cost Net Stock of Con-

sumer Durable Goods and Table 2.1. Current-Cost Net Stock of Private Fixed Assets,

Equipment, Structures, and Intellectual Property Products by Type. I have not mod-

elled aggregate capital in Chapter 3, and therefore have no need to construct an empirical

counterpart for it. I construct capital stock of the energy intensive goods as the sum of

nonresidential equipment and structures (that is, sum of lines 2 and 35 minus 34) and

capital stock of the non-energy intensive goods is calculated as the sum of residential

equipment and structures, and intellectual property products (that is, line 34). As in the

investment series above, non-energy intensive type capital stocks is taken as the sum of

furnishings and durable household equipment, recreational goods and vehicles, and other

durable goods (sum of lines 6, 11, and 17) such that capital stock in the energy intensive

type consumption durable goods is given by motor vehicles and parts (that is, line 2).

Labour hours

Model variables: H, He, Hn.

Data: Aggregate labour hours, H, is de�ned as hours of all persons engaged in pro-

duction and hours worked per sector, He and Hn, are calculated by following the proce-

dure of Herrendorf et al. (2013). Their procedure involves combining BEA�s GDP-by-

Industry data reported using NAICS classi�cation with BEA�s Income-and-Employment-

by-Industry data reported with three di¤erent classi�cations over the sample period (SIC72

for pre-1987, SIC87 between 1987-2000, and NAICS since 2001). This is necessary because

while the former data source follows the classi�cation I would prefer, they indicate that

the latter provides us with the kind of detailed industry level information I require for

assignment into the two sectors. Hence, for assignment into the two sectors, I follow in

similar veins as closely as feasibly permitted by the level of data disaggregation the de�ni-

tions of other sectoral variables as shown already above. Speci�cally, for each of the series,
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employment and hours in agriculture, mining, utilities, construction, manufacturing and

transportation are classed as related to the energy intensive sector, while employment

and hours in wholesale, retail trade, information, �nance, professional services, education,

arts, and other services are non-energy intensive. Formally, the sectoral labour hours are

obtained using hj = NAICS hours of full-time equivalent employees + NAICS hours of

full-time equivalent employees � NAICS full-time employees � NAICS self-employed,

where NAICS self-employed = SIC self-employed � NAICS full-time and part-time em-

ployees � SIC full- and part-time employees, NAICS full-time equivalent employees =

SIC full-time equivalent employees � NAICS full-time and part-time employees � SIC

full-time and part-time employees, and NAICS hours of full-time equivalent employees

= SIC hours of full-time equivalent employees � NAICS full-time equivalent employees

� SIC full-time equivalent employees.

Capital utilisation rate

Model variables: Ue, Un.

Data: Following the assignment of industries into the two sectors, I deem it �t to

have two de�nitions of capital utilisation rate. Thus, capacity utilisation rate for total

manufacturing industry and capacity utilisation rate for motor vehicles and parts are

used as proxies for the measures of capital utilisation rates in the energy and non-energy

intensive sectors, respectively.

Energy use

Model variables: E, Ee, En.

Data: For total energy consumption in the economy, E, I take this to be the ag-

gregate consumption of primary energy or the consumption of fossil fuels comprising of

petroleum, coal, and natural gas measured in trillion British thermal units (BTUs) of the

private sector excluding the electric power sector.1 Energy consumption are provided for

1I do not include the consumption of renewables (geothermal, solar/ PV, and biomass) and electricity
for both theory and data reasons. On the data, if one chooses to use, for instance, total primary energy
consumption data, there is no data for biomass consumption until 1981. Also, I excluded the electric
power generating sector, which would have been classed as highly energy intensive sector given that close
to 70% of all primary energy is used, or lost, as this sector provides electricity to the �nal consumers. I
have however not included it for one I have not modelled an energy producing sector, which would be the
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four end-use sectors namely industrial, transportation, residential and commercial sectors.

Given a lack of further disaggregation, I use the primary energy consumption in both the

industrial and transportation sectors to proxy energy use in the energy intensive sector,

and primary energy consumption in both the residential and commercial sectors to proxy

energy use in the non-energy intensive sector. Hence, aggregate energy consumption in

this economy is formally given by E = Ee+En = dollar value of total primary energy use

= qt
(Et�1 trillion={�1 million)

1 billion
, where { = 5:78 is the conversion factor assumed for relating

BTUs to barrels of oil, which is similar to the �gure employed by the industry.

Domestic absorption

Model variable: D.

Data: By theoretical construction, D = Y , so that I use the same data for aggregate

output for domestic absorption.

Domestic demand of energy intensive goods

Model variable: De.

Data: This is constructed as De = private consumption of energy intensive goods

(Taken from Table 2.4.5: Personal Consumption Expenditures by Type of Product) +

private investment in energy intensive goods (Taken from Table 2.4.5: Personal Consump-

tion Expenditures by Type of Product and Table 2.7: Investment in Private Fixed Assets,

Equipment, Structures, and Intellectual Property Products by Type) + government con-

sumption of energy intensive goods (Taken from Table 3.9.5: Government Consumption

Expenditures and Gross Investment) + government investment in energy intensive goods

(Taken from Tables 7.5A-7.5B: Investment in Government Fixed Assets). Note that given

a lack of disaggregated data on government consumption expenditure, I therefore assume

that the share of government consumption in energy intensive goods is the same as for

government investment in energy intensive goods, and apply this share to the consumption

data.

case if I incorporate electricity into our total for energy consumption.
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Aggregate import

Model variable: IM .

Data: This is taken to be the aggregate import (Taken from Table 1.1.5. Gross

Domestic Product).

Import of energy intensive goods

Model variable: IMe.

Data: This is taken to be the import of goods (Taken from Table 1.1.5. Gross Domestic

Product).

Aggregate export

Model variable: EX.

Data: This is taken to be the aggregate export (Taken from Table 1.1.5. Gross Do-

mestic Product).

Export of energy intensive goods

Model variable: EXe.

Data: This is taken to be the export of goods (Taken from Table 1.1.5. Gross Domestic

Product).

Wage rate

Model variable: W .

Data: This is a real index of hourly compensation (Series ID: PRS85006063, Nonfarm

Business Sector: Compensation).

Interest rate

Model variable: R.
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Data: This is the three-month Treasury bill rate for 1949-1954 (Taken from Smets and

Wouters, 2007) where I have converted their quarterly data into annual data by averaging;

I use the federal funds rate for 1955-2013.

Real exchange rate

Model variable: P .

Data: General price level in the domestic country, which is taken to be the consumer

price index (CPI) for all urban consumers, relative to world CPI.

Price of energy intensive goods

Model variable: Pe.

Data: Calculated as the weighted average of the chain-type price indexes for value

added from agriculture, mining, utilities, construction, manufacturing, and transportation

(Taken from GDP by Industry).

Price of non-energy intensive goods

Model variable: Pn.

Data: Calculated as the weighted average of the chain-type price indexes for value

added from wholesale and retail trade, information, �nance, professional and business

services, educational services, arts, and other services (Taken from GDP by Industry).
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In summary, the �nal transformed observable variables are put in a vector as

26666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

bYbYebYnbCbIbIebInbKebKnbHbHebHnbUebUnbEbEebEnbDbDedIMdIM edEXdEXecWbRbPbPebPn

37777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

=

26666666666666666666666666666666666666666666666666666666666666666666666666666666666666664

HP-FILTER[ln (((Ye + Yn) =CPI) =POP )]

HP-FILTER[ln ((Ye=CPI) =POP )]

HP-FILTER[ln ((Yn=CPI) =POP )]

HP-FILTER[ln ((C=CPI) =POP )]

HP-FILTER[ln (((Ie + In) =CPI) =POP )]

HP-FILTER[ln ((Ie=CPI) =POP )]

HP-FILTER[ln ((In=CPI) =POP )]

HP-FILTER[ln ((Ke=CPI) =POP )]

HP-FILTER[ln ((Kn=CPI) =POP )]

HP-FILTER[ln (He +Hn=POP )]

HP-FILTER[ln (He=POP )]

HP-FILTER[ln (Hn=POP )]

HP-FILTER[lnUe]

HP-FILTER[lnUn]

HP-FILTER[ln (((Ee + En) =CPI) =POP )]

HP-FILTER[ln ((Ee=CPI) =POP )]

HP-FILTER[ln ((En=CPI) =POP )]bY
HP-FILTER[ln ((De=CPI) =POP )]

HP-FILTER[ln ((IM=CPI) =POP )]

HP-FILTER[ln ((IMe=CPI) =POP )]

HP-FILTER[ln ((EX=CPI) =POP )]

HP-FILTER[ln ((EXe=CPI) =POP )]

HP-FILTER[ln (W )]

HP-FILTER[R]

HP-FILTER[ln (P )]

HP-FILTER[ln (Pe)]

HP-FILTER[ln (Pn)]

37777777777777777777777777777777777777777777777777777777777777777777777777777777777777775

(B.1)
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where the Hodrick-Prescott smoothing parameter has been set to 400, CPI is consumer

price index, and POP is population index.

B.2 Technical Appendix

This section of the note provides details of the model set up and derivations of the

equilibrium conditions that appear in the main text. This is a two-sector two-region

open economy real business cycle (RBC) model where the sectors are the energy and

non-energy intensive sectors, and the regions are the domestic country and the rest of

the world (RoW). An essential feature of the model is that I recognise that all aspects

of the economy must be �powered�. I, however, only included energy in the production

sides. I assume that the consumer price index (CPI) in the RoW, Pim, is the numeraire

and I de�ned all domestic prices relative to this. Hence, domestic country�s CPI, P , is a

measure of the real exchange rate. Other important prices are the consumer real wage,

W , producer real wage in the energy intensive sector, W/Pe, and producer real wage in

the non-energy intensive sector, W/Pn, where Pe and Pn correspond, respectively, to the

relative prices of energy and non-energy intensive goods.

I use the following notations for convenience: UPPER-CASE letters X 0 � Xt+1,

X � Xt, and X�1 � Xt�1 for dynamic variables for next, current, and lagged periods,

respectively; lower-case letters, say x, to denote non-stochastic steady state variables; hat-

ted letters, �^�, to denote variables in their log-linear form; and �, � t, and sans serif letters

denote the exogenous state variables. I characterise the model in terms of the domestic

country.

Households Their dynamic problem can be formalised as that of

max
fC;H;I;Ie;In;B0;Ue;Un;Ke;Kng1t=0

" 1X
0

��

 
(C � �C�1)

1��

1� �
� �

H1+!

1 + !

!#
| {z }

U

(B.2)

where the period utility, U, is assumed to obey the following standard regularity conditions:
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U
0
> 0, U

00
< 0, U1 > 0, U2 < 0, U11, U22 < 0, and U11U22�U212 > 0 (see Greenwood et al.,

1988); � and � are the exogenous stochastic intertemporal preference and labour supply

shocks, respectively, and are both assumed to be following AR(1) processes in logarithm,

which I write as

ln � = �� ln ��1 + "� (S29)

ln � = �� ln ��1 + "� (S30)

where for s1 = (� t; �t), the autoregressive parameters are conditioned by �s1 2 [0; 1) and

"s1 are i.i.d. normal distributions with zero means and innovation standard deviations,

�s1. I have included habit formation, �, to aid the model in replicating the data properties,

especially that of autocorrelation of consumption.

Denoting by �C the marginal utility of consumption and by �H the marginal disutility

of labour hours, I have that

�C = � (C � �C�1)
�� (B.3)

�H = ��H! (B.4)

Further, households can accumulate two types of physical capital goods, which are as-

sumed to follow the laws of motion

Ke =

�
1� �e0 �

�e1 (Ue)
�e

�e

�
Ke;�1 + ZeIe � 0:5 e

�
Ke

Ke;�1
� 1
�2

Ke;�1 (B.5)

Kn =

�
1� �n0 �

�n1 (Un)
�n

�n

�
Kn;�1 + ZnIn � 0:5 n

�
Kn

Kn;�1
� 1
�2

Kn;�1 (B.6)

where for type t = e; n, I have allowed for both capital utilisation rates and adjustment

costs. In particular, capital utilisation rates are assumed to satisfy some standard regu-

larity conditions: 0 � �Ut � 1 and �Ut, ��Ut > 0 [see Greenwood et al. (1988), Baxter

and Farr (2002)]. Also, capital adjustment costs are assumed to satisfy some standard
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regularity conditions:  t (�) = � t (�) = 0 and �� t (�) > 0 [see Baxter and Crucini

(1995)]. The inclusion of capital utilisation rates and adjustment costs aid the model to

create some real rigidities. Variables Ze and Zn are the exogenous stochastic investment-

speci�c technology shocks for the two types of physical capital, and are both assumed to

be following AR(1) processes in logarithm, which I write as

lnZe = �ze lnZe;�1 + "ze (S31)

lnZn = �zn lnZn;�1 + "zn (S32)

where for s2 = (Ze;Zn), the autoregressive parameters are conditioned by �s2 2 [0; 1) and

"s2 are i.i.d. normal distributions with zero means and innovation standard deviations,

�s2.

Equipped with the knowledge that households consume and invest, are assumed to get

income from renting their labour hours and capital services to the �rms at the market

rates W , Re, and Rn, make pro�ts, �, from ownership of the �rms, and noting that they

pay (receive) taxes (transfers), T , to (from) the government, I write the sequential budget

constraint being faced by a representative agent as

ER0B0 + C + T +
Ke

Ze
+
Kn

Zn
+ 0:5 e

�
Ke

Ke;�1
� 1
�2

Ke;�1

Ze
(B.7)

+0:5 n

�
Kn

Kn;�1
� 1
�2

Kn;�1

Zn
= B +

 
ReUe +

1� �e0 � �e1(Ue)
�e

�e

Ze

!
Ke;�1

+WH +

 
RnUn +

1� �n0 � �n1(Un)
�n

�n

Zn

!
Kn;�1 + �

where E is the expectations operator, ER0 = 1
R
is the stochastic discount factor, in which

case ER0B0 represents the current period�s price of a future period�s random payment of

B0.

In addition, I impose a borrowing constraint on the household to preclude them from
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engaging in Ponzi-type schemes

lim
!1

ER0B0 � 0 (B.8)

Households decision variables must satisfy (B.5), (B.6), aggregate investment

I = Ie + In (B.9)

and the following �rst-order necessary conditions

�H = �CW (B.10)

�C = � (1 + r)E�C0 (B.11)

ReUeZe = �e1U
�e
e (B.12)

RnUnZn = �n1U
�n
n (B.13)

�
1 +  e

�
Ke

Ke;�1
� 1
��

= �E
Ze
Z0e

�C0

�C

(
R0eU

0
eZ
0
e � 0:5 e

�
K 0
e

Ke

� 1
�2

(B.14)

+1� �e0 �
�e1U

0�e
e

�e
+  e

�
K 0
e

Ke

� 1
�
K 0
e

Ke

�

�
1 +  n

�
Kn

Kn;�1
� 1
��

= �E
Zn
Z0n

�C0

�C

(
R0nU

0
nZ

0
n � 0:5 n

�
K 0
n

Kn

� 1
�2

(B.15)

+1� �n0 �
�n1U

0�n
n

�n
+  n

�
K 0
n

Kn

� 1
�
K 0
n

Kn

�

where these conditions have their usual interpretations as already discussed in the main

text.

Firms Production is assumed to require three factors of production, viz: labour hours,
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capital services, and primary energy. I assume that primary energy is an imported input

into the production process. Also, producers are assumed to be price-takers both in the

input and output markets. Hence, the joint static maximisation problem of representative

�rms from the two sectors can be written down as

max
fHe;Hn;UeKe;�1;UnKn;�1;Ee;Eng

� = PeYe + PnYn| {z }
Value of output

(B.16)

�[WHe +WHn +ReUeKe;�1 +RnUnKn;�1 + QEe + QEn]| {z }
Cost of production

subject to the sectoral production functions

Ye = Ae (He)
1��e ��e (UeKe;�1)

��e + (1� �e) (OeEe)
��e���e

�e (B.17)

Yn = An (Hn)
1��n ��n (UnKn;�1)

��n + (1� �n) (OnEn)
��n���n

�n (B.18)

where variables Ae, An, Oe, On, and Q are, respectively, the exogenous stochastic energy

intensive sector neutral technology, non-energy intensive sector neutral technology, energy

intensive sector energy e¢ ciency, non-energy intensive sector energy e¢ ciency, and the

energy price shocks. I assume that they all follow AR(1) processes in logarithm, which I

write as

lnAe = �ae lnAe;�1 + "ae (S33)

lnAn = �an lnAn;�1 + "an (S34)

lnOe = �oe lnOe;�1 + "oe (S35)

lnOn = �on lnOn;�1 + "on (S36)

lnQ = �q lnQ�1 + "q (S37)

where for s3 = (Ae;An;Oe;On;Q), the autoregressive parameters are conditioned by �s3 2

[0; 1) and "s3 are i.i.d. normal distributions with zero means and innovation standard
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deviations, �s3.

The �rst-order necessary conditions are

(1� �e)Ye
He

=
W

Pe
(B.19)

(1� �n)Yn
Hn

=
W

Pn
(B.20)

�e�eYe (UeKe;�1)
��e�1�

�e (UeKe;�1)
��e + (1� �e) (OeEe)

��e� = Re

Pe
(B.21)

�n�nYn (UnKn;�1)
��n�1�

�n (UnKn;�1)
��n + (1� �n) (OnEn)

��n� = Rn

Pn
(B.22)

�e (1� �e)Ye (OeEe)
��e�1Oe�

�e (UeKe;�1)
��e + (1� �e) (OeEe)

��e� = Q

Pe
(B.23)

�n (1� �n)Yn (OnEn)
��n�1On�

�n (UnKn;�1)
��n + (1� �n) (OnEn)

��n� = Q

Pn
(B.24)

where the equations de�ne the respective sector�s demand for labour hours, capital ser-

vices, and primary energy.

Government Spending I assume that the government is fully Ricardian and faces

the following budget constraint

G+B = T + ER0B0 (B.25)

where G is treated as an exogenous stochastic process assumed to follow an AR(1) process

in logarithm that takes the form

lnG = �g lnG�1 + "g (S38)

where the autoregressive parameter is conditioned by �g 2 [0; 1) and "g is i.i.d. normal

distribution with zero mean and innovation standard deviation, �g.

Trade in Goods with the RoW In the present model economy, I am assuming that
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agents in the domestic country trade both types of produced goods with the RoW. I now

focus on the transactions that determine the current account position of the domestic

country. An implication of international trade in goods is that I end up with a four-

goods world: domestically produced energy and non-energy intensive goods, and foreign-

produced energy and non-energy intensive goods.2 Again, and without loss of generality,

the discussion follows from the perspective of domestic agents. I later, however, make

use of some RoW agents� decisions to infer some decisions for the domestic residents.

Speci�cally, I use the RoW�s supposed import functions to infer the export functions of

the domestic country.

Aggregate domestic demand or absorption, D, is de�ned by

D = C + I + G (B.26)

where D is a composite of all the four types of goods, which domestic agents use for

three purposes: consumption, investment, and to pay government bills. In addition, I

assume that domestic agents in both the domestic country and in the RoW only begin

to trade once they realize the aggregate output, Y . This indeed forms a constraint on

them as they need to choose the share of expenditure to allocate to domestically produced

goods vis-a-vis their expenditure on the goods produced in the RoW, and vice versa. To

appropriately weigh these choices between types (energy and non-energy intensive goods)

and production locations (domestic and foreign goods) of output, I follow a two-cascade

Armington (1969) type aggregator function.3

More formally, the problem of the domestic agents consists of choosing fDe, IM ,

2Remember that I am assuming that all four types of goods are being demanded per period both in
the domestic country and in the RoW.

3Note that my application here of the Armington aggregator function is an extension of the way
Backus et al. (1995) employed it. Their model contains one home-produced and one foreign-produced
goods in a two-good, two-country environment whereas I have four goods being traded between the two
regions in this model.
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IMeg. Their unconstrained maximisation problem can be written as

max

8>><>>:P
�
�
1
& (De)

&�1
& + (1� �)

1
& (Dn)

&�1
&

� &
&�1| {z }

D aggregate by type of goods

� PeDe � PnDn (B.27)

+P

�
�
1
�
�
Dd
���1

� + (1� �)
1
� (IM)

��1
�

� �
��1

| {z }
D aggregate by location of production

� P dDd � IM

+
�
�
1
� (IMe)

��1
� + (1� �)

1
� (IMn)

��1
�

� �
��1| {z }

Split of import bundle, IM , by type of goods

� Pime IMe � Pimn IMn

9>>=>>;
The �rst-order necessary conditions are

De = �

�
Pe
P

��&
D (B.28)

IM = (1� �)

�
1

P

���
D (B.29)

IMe = �
�
Pime
���

IM (B.30)

where (B.28)-(B.30) correspond to domestic absorption of energy intensive goods, the

demand for composite imported goods, and the demand for imported energy intensive

goods by domestic residents. Also, the real exchange rate is de�ned as a function of the

two sectoral relative prices as4

P =
�
� (Pe)

1�& + (1� �) (Pn)
1�&� 1

1�& (B.31)

and Pime is the price of imported energy intensive goods being treated as an exogenous

stochastic process assumed to follow AR(1) process in logarithm:

lnPime = �pime lnP
im
e;�1 + "p

im
e (S39)

4See Obstfeld and Rogo¤ (1996, p. 227) for details.
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where for s4 = (Pime ), the autoregressive parameter is conditioned by �s4 2 [0; 1) and "s4

is i.i.d. normal distribution with zero mean and innovation standard deviation, �s4.

I obtain the export functions for the domestic country as a deduction from the import

function of the RoW. Focusing on this, one can conjecture the following problem for the

agents residing in the RoW

max

8>>><>>>:
�
�

1
�w
w

�
Df
��w�1

�w + (1� �w)
1
�w (EX)

�w�1
�w

� �w
�w�1

| {z }
Dw aggregate by location of production

� P fDf � PEX (B.32)

+P

�
�

1
�w
w (EXe)

�w�1
�w + (1� �w)

1
�w (EXn)

�w�1
�w

� �w
�w�1

| {z }
Split of export bundle, EX, by type of goods

� PeEXe � PnEXn

9>>>=>>>;
The �rst-order necessary conditions are

EX = (1� �w) (P )
��w Dw (B.33)

EXe = �w

�
Pe
P

���w
EX (B.34)

where (B.33) and (B.34) correspond to the composite export and export of energy intensive

goods by the domestic country to the RoW. Finally, I assume that world demand, Dw, is

an exogenous stochastic process assumed to follow an AR(1) process in logarithm

lnDw = �dw lnD
w
�1 + "d

w

(S40)

and for s5 = (Dw), the autoregressive parameter is conditioned by �s5 2 [0; 1) and "s5 is

i.i.d. normal distributions with zero mean and innovation standard deviation, �s5.

Markets and Equilibrium Together with (B.9), the other aggregate variables and

market clearing conditions are

Y = Ye + Yn (B.35)
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H = He +Hn (B.36)

E = Ee + En (B.37)

Ye = De + EXe � IMn (B.38)

PEX = QE + IM (B.39)

Y = D (B.40)

where (B.35)-(B.40) correspond to aggregate output, aggregate labour hours, aggregate

primary energy, clearing of sectoral goods market, the current account and the economy-

wide resource constraint.

So, given the initial conditions fC�1; Ke
�1; K

n
�1; B0g and the exogenous stochastic

processes fAe, An, Dw, G, �, Oe, On, Pime , Q, � , Ze, Zng, a competitive equilibrium5 is

a sequence of

1. sectoral goods prices fPe; Png;

2. wage rate fWg;

3. interest rates fR;Re; Rng;

4. real exchange rate fPg;

5. consumption fCg;

6. investments fI; Ie; Ing;

7. labour hours fH;He; Hng;

8. capital fKe; Kng;

9. capital utilisation rates fUe; Ung;

10. primary energy use fE;Ee; Eng;

11. output fY; Ye; Yng;

12. domestic absorption fD;Deg;

13. imports fIM; IMeg;

14. exports fEX;EXeg;

5I have included four more variables here than I did in the main text in the de�nition of a competitive
equilibrium just for convenience. In the next sub-section, these equations get subbed out and I end up
with 28 equations in 28 unknown endogenous variables and 12 undetermined exogenous variables for
which I have assumed AR(1) processes just as in the text.
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15. marginal utility of consumption f�Cg;

16. marginal disutility of labour hours f�Hg;

such that markets clear for:

1. labour hours;

2. capital;

3. primary energy use;

4. sectoral output; and

5. total output.

Log-linearising Equilibrium Conditions The last footnote suggests that I should

have 40 linearized equations in this sub-section solving for 28 endogenous and 12 exogenous

stochastic processes. I labelled these equations as S1, S2, ..., S28 for the endogenous

variables (S29-S40 for the exogenous variables are already de�ned in the preceding sub-

sections) implying that they are used in simulation and to distinguish them from other

model equations that �explain�them.

On the side of the households, combining (B.3), (B.4), and (B.10) yields the supply of

labour hours as

�H! =
W

(C � �C�1)
� (B.41)

which when log-linearized becomes

bH =
1

!

�cW � b� � �

1� �

� bC � � bC�1�� (S1)

Consumption Euler equation is

�

(C � �C�1)
� = �RE

� t+1
(Ct+1 � �Ct)

� (B.42)
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which is obtained by combining (B.3) and (B.11). Log-linearising yields

bC = 1

1 + �
bC 0 + �

1 + �
bC�1 + 1� �

� (1 + �)

�b� � b� 0 � bR� (S2)

I obtain the investment Euler equations for the two types of investment goods by com-

bining (B.3), (B.12), and (B.14) to get

�
1 +  e

�
Ke

Ke;�1
� 1
��

= �E
� 0

�

Ze
Z0e

(C 0 � �C)��

(C � �C�1)
��

�
1� �e1U

0�e
e

�e
(1� �e) (B.43)

��e0 � 0:5 e
�
K 0
e

Ke

� 1
�2
+  e

�
K 0
e

Ke

� 1
�
K 0
e

Ke

)

and by combining (B.3), (B.13), and (B.15) to get

�
1 +  n

�
Kn

Kn;�1
� 1
��

= �E
� 0

�

Zn
Z0n

(C 0 � �C)��

(C � �C�1)
��

�
1� �n1U

0�n
n

�n
(1� �n) (B.44)

��n0 � 0:5 n
�
K 0
n

Kn

� 1
�2
+  n

�
K 0
n

Kn

� 1
�
K 0
n

Kn

)

Log-linearising (B.43) and (B.44) yields the following two expressions

b� � bZe � �

1� �

� bC � � bC�1�+  e

� bKe � bKe;�1

�
(S3)

= � 0 � Z0e �
�

1� �

� bC 0 � � bC�+ ��e1u
�e (�e � 1) bU 0e + � e

� bK 0
e � bKe

�

b� � bZn � �

1� �

� bC � � bC�1�+  n

� bKn � bKn;�1

�
(S4)

= � 0 � Z0n �
�

1� �

� bC 0 � � bC�+ ��n1u
�n (�n � 1) bU 0n + � n

� bK 0
n � bKn

�

Also, log-linearising the laws of motion for capital accumulation, (B.5) and (B.6), leads to

bKe = (1� �ue) bKe;�1 � �e1u
�e bUe + ie

ke

�bZe + bIe� (S5)

bKn = (1� �un) bKn;�1 � �n1u
�n bUn + in

kn

�bZn + bIn� (S6)
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Moving on to the production side, log-linearized versions of the production technologies

(B.17) and (B.18) are

bYe = bAe+(1� �e) bHe+
�e

1 + 1��e
�e

�
ee
ke

���e �bUe + bKe;�1

�
+

�e

1 + �e
1��e

�
ee
ke

��e �bOe + bEe� (S7)

bYn = bAn+(1� �n) bHn+
�n

1 + 1��n
�n

�
en
kn

���n �bUn + bKn;�1

�
+

�n

1 + �n
1��n

�
en
kn

��n �bOn + bEn�
(S8)

Further, log-linearising �rst-order conditions (B.19)-(B.24) gives (noting that I have merged

(B.12) with (B.21) and (B.13) with (B.22))

bHe = bPe + bYe �cW (S9)

bHn = bPn + bYn �cW (S10)

bUe = bPe + bYe + bZe + � �e

1+ 1��e
�e
( eeke )

��e � �e � 1
� bKe;�1 +

�e
1+ �e

1��e (
ee
ke
)
�e

�bOe + bEe�
�e + �e � �e

1+ 1��e
�e
( eeke )

��e

(S11)

bUn = bPn + bYn + bZn + � �n

1+ 1��n
�n
( enkn )

��n � �n � 1
� bKn;�1 +

�n
1+ �n

1��n (
en
kn
)
�n

�bOn + bEn�
�n + �n � �n

1+ 1��n
�n
( enkn )

��n

(S12)

bEe = bPe + bYe � bQ+ �e

1+ 1��e
�e
( eeke )

��e

�bUe + bKe;�1
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�
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1+ �e
1��e (
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1��e (
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)
�e

(S13)

bEn = bPn + bYn � bQ+ �n

1+ 1��n
�n
( enkn )

��n

�bUn + bKn;�1

�
+

�
�n

1+ �n
1��n (

en
kn
)
�n � �n

� bOn
�n + 1� �n

1+ �n
1��n (

en
kn
)
�n

(S14)

The following linearized forms are written for the �rst-order conditions relating to inter-

national trade, (B.28)-(B.30) and (B.33)-(B.34)
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bDe = &
� bP � bPe�+ bD (S15)

dIM = � bP + bD (S16)

dIM e = ��bPime +dIM (S17)

dEX = ��w bP + bDw (S18)

dEXe = �w

� bP � bPe�+dEX (S19)

Log-linearized real exchange rate (B.31) is

bP = �

�
pe
p

�1�& bPe + (1� �)

�
pn
p

�1�& bPn (S20)

De�nitions of aggregate variables (B.9, B.35, B.36, B.37) and sectoral (B.38), current

account (B.39), and economy-wide (B.40) constraints give the remaining eight conditions

I need for model simulation as

bI = ie
i
bIe + in

i
bIn (S21)

bY = ye
y
bYe + yn

y
bYn (S22)

bH =
he
h
bHe +

hn
h
bHn (S23)

bE = ee
e
bEe + en

e
bEn (S24)

bYe = de
ye
bDe +

exe
ye
dEXe �

ime

ye
dIM e (S25)

pex

e

� bP +dEX�� im

e
dIM = bQ+ bE (S26)

bY = c

y
bC + i

y
bI + g

y
bG (S27)

bY = bD (S28)

172



Steady State The log-linear form above reveals that I can only solve the model when

I have given values to the vector of parameters, p, and the vector of variables in steady

state, v, summarised by

p =

266666666666666666666666666666666666666666666666666666666666666666664
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, v =

266666666666666666666666666666666666666666666666666666666666666666664
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(B.45)

The main text provides su¢ cient writing on the calibration and estimation of the vector

of parameters. Here, I focus mostly on the computation of the deterministic steady state

of the model. That is, the elements of v. To compute the steady state, I normalise the
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errors to unity and I employ the normalization that Ue = Un = 1. As is standard in the

literature, I target labour hours worked using microeconomic data on the U.S. time use

survey from the Bureau of Labour Statistics (BLS). This gives H = 0:279, He = 0:115,

and Hn = 0:164, where the aggregate labour hours is in the ballpark of �gures found in

the literature [see, for example, McGrattan et al. (1997) who used 0:27, and Dhawan and

Jeske (2008) who used 0:3]. Then, the steady state representations of the model variables

can be obtained recursively.

The steady state of the relative price of bonds, R, comes from the Euler equation for

consumption, (B.42)

R =
1

�
(B.46)

By combining the Euler equations for the two capital stocks, (B.14) and (B.15), with

the respective equations that determine equality between the marginal user costs and

marginal user bene�ts of capital, (B.12) and (B.13), and evaluating them in the steady

state I obtain:

Re =
1

�
� 1 + �ue (B.47)

Rn =
1

�
� 1 + �un (B.48)

Combining (B.21) and (B.23) in the steady state and using (B.47) yields an expression

for the energy-capital ratio in the energy intensive sector as

ee
ke
=

�
1� �e
�e

1� � (1� �ue)

�Q

� 1
1+�e

| {z }
E0

(B.49)

) ee = E0ke

Combining (B.22) and (B.24) in the steady state and using (B.48) yields an expression
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for the energy-capital ratio in the non-energy intensive sector as

en
kn
=

�
1� �n
�n

1� � (1� �un)

�Q

� 1
1+�n

| {z }
N0

(B.50)

) en = N0kn

Using (B.21), I can write an expression for steady state capital in the energy intensive

sector as

ke =

0B@ ��e�epe
1� � (1� �ue)

(he)
1��e ��e + (1� �e)E

��e
0

�| {z }
E1

��e+�e
�e

1CA
1

1��e

(B.51)

= he

�
��e�epe

1� � (1� �ue)
E
��e+�e

�e
1

� 1
1��e

| {z }
E2

= E2he

Applying the same procedure to (B.22) yields the expression for steady state capital in

the non-energy intensive sector as

kn = N2hn (B.52)

From the laws of motion for the accumulation of the two capital stocks, (B.5) and (B.6),

in the steady state and the steady state solutions for the capital stocks, (B.51) and (B.52),

steady state values for the two investments are given by

ie = �ueke = �ueE2he (B.53)

in = �unkn = �unN2hn (B.54)

Substituting (B.49) and (B.51) into the energy intensive sector production function,
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(B.17), in the steady state gives

ye = (he)
1��e (ke)|{z}

E2he

�e
��
�e + (1� �e)E

��e
0

��| {z }
E1

��e
�e (B.55)

= heE
��e
�e

1 E�e2| {z }
E3

= E3he

Likewise, substituting (B.50) and (B.52) into the non-energy intensive sector production

function, (B.18), in the steady state gives

yn = N3hn (B.56)

Then, the above sector related variables sums to give the aggregate steady state values

e = ee + en (B.57)

i = ie + in

y = ye + yn

Further, using (B.29), the real exchange rate in the steady state, noting that y = d, is

p =

�
1

1� �

im

y

� 1
�

(B.58)

where im
y
is taken from the data. Then, from (B.28) the price of energy intensive goods

in the steady state is

pe =

�
1

�

de
y

�� 1
&

p (B.59)

where de
y
is taken from the data. I obtain the steady state price of non-energy intensive
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goods as

pn =

 
p1�& � � (pe)

1�&

1� �

! 1
1�&

(B.60)

Using (B.26) and (B.40), consumption-output ratio is derived as

c

y
= 1� i

y
� g
y

(B.61)

where i
y
is obtained from (B.57) and g

y
is taken from the data. Combining (B.29) and

(B.30), the steady state of imported energy intensive goods can be written as

ime = � (1� �) p�y (B.62)

Finally, combining (B.33) and (B.34) gives the export of energy intensive goods in the

steady state as

exe = �w (1� �w) (pe)
��w p�w��w (B.63)

It is easy to see from the above derivations that some parameters only work to pin down

the steady state of variables and are not used in the dynamic model simulation. Hence,

steady state representation is not worked out (by hand) for every single variable.
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Appendix C

Supplementary Notes: Chapter 4

C.1 Data Construction

All series are de�ned as in Chapter 2 except domestic absorption, Dt. Also, I have six

extra variables relating to the rest of the world to be de�ned.

Domestic absorption

Model variable: Dt.

Data: dt = Ct + It +Gt (Taken from Table 1.1.5. Gross Domestic Product).

Government spending

Model variable: Gt.

Data: This is government consumption expenditures and gross investment (Taken

from Table 1.1.5. Gross Domestic Product).

Real price of energy

Model variable: Qt.

Data: Qt is the nominal dollar price per barrel of crude oil proxied by the crude oil
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domestic �rst purchase price (Taken from Table 9.1: Crude Oil Price Summary) divided

by the consumer price index (CPI).

Foreign bonds

Model variable: Ft.

Data: This is taken to be the ratio of nominal net foreign assets (NNFA) to nominal

GDP (NGDP), Ft = NNFA
NGDP

, where NNFA = Total Assets� Total Liabilities.

Foreign interest rate

Model variable: rft .

Data: Calculated as the weighted average of the interest rate for the G7 countries

taken from the International Financial Statistics (IFS).

World demand

Model variable: Dwt .

Data: This is measured as world trade less the U.S. imports taken from the Interna-

tional Financial Statistics (IFS).

Price of imported energy intensive goods

Model: Pime;t .

Data: This is the price of the U.S. imported manufactures from the rest of the world

taken from the International Financial Statistics (IFS).

C.2 Technical Appendix

In this section, I summarise the derivations of the equilibrium conditions in Chapter 3.

The model is the same as in the previous chapter, but with the addition of capital account.

Essentially, this introduces an additional �rst-order condition on the household�s side:
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the uncovered interest parity (UIP) condition and both the balance of payment (BOP)

account and the economy-wide resource constraint are extended to include the capital

account. Further, note that more shocks are added as already explained in the main text,

and for this reason the �rst-order conditions on the �rm and trader�s side are altered.

This way, the sequential budget constraint becomes

Bt +
Ft
Pt
+ Ct + Tt +

Ke
t

Zet
+
Kn
t

Znt
+ 0:5 e

�
Ke
t

Ke
t�1

� 1
�2 Ke

t�1
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(C.1)
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e
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0@Rn
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1AKn
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Hence, on the household side, the �rst-order conditions are

Ct: �t =
� t

(Ct � �Ct�1)
� (C.2)

Ht: �tWt = � t�tH
!
t (C.3)

Bt: �t = � (1 + rt)�t+1 (C.4)

Ft:
�t
Pt

�
1 +  f (Ft � f)

�
= �

�
1 + rft

� �t+1
Pt+1

(C.5)

U e
t : R

e
tU

e
t Z

e
t = �e1 (U

e
t )
�e (C.6)

Un
t : R

n
t U

n
t Z

n
t = �n1 (U

n
t )

�n (C.7)
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The problem of the �rms is to
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Relevant F.O.Cs are
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IM e
t : IM

e
t = �'�t

�
Pime;t
���

IMt (C.22)

where givenDt aggregate by type of goods, the domestic CPI/ real exchange rate is de�ned
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as a function of the two sectoral relative prices as1
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&t (P
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1�& (C.23)

The problem of the foreign trader as conceived2 by the domestic trader is to

max
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The government budget constraint is

Gt = Tt +Bt � (1 + rt�1)Bt�1 (C.27)

The remaining aggregate variables and market clearing conditions are

Yt = Y e
t + Y n

t (C.28)

Ht = He
t +Hn

t (C.29)

Et = Ee
t + En

t (C.30)

1See Obstfeld and Rogo¤ (1996, p. 227) for details of the derivations.
2We assume that the problem is symmetric.
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It = Iet + Int (C.31)

Y e
t = De

t + EXe
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t (C.32)

Ft =
�
1 + rft�1

�
Ft�1 + PtEXt � IMt � QtEt (C.33)

Yt = Ct + It + Gt + EXt � IMt � QtEt (C.34)

The log-linearized equations that solve for the endogenous variables I am interested in are

reproduced below where each has been normalised for a variable. Thus, given a sequence

of 22 exogenous stochastic processes faet , ant , dwt , 't, 'wt , 
t, gt, �t, oet , ont , pime;t , qt, r
f
t , � t,
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pnt g1t=0 satisfying the following equations3
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3Note that �t, Ret , and R
n
t have all been substituted out.
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