
Comparative Analysis of Pyrosequencing and a
Phylogenetic Microarray for Exploring Microbial
Community Structures in the Human Distal Intestine
Marcus J. Claesson1,2*, Orla O’Sullivan3, Qiong Wang4, Janne Nikkilä5, Julian R. Marchesi1,2¤, Hauke
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Abstract

Background: Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-
throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than
was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate
classifications based on two variable 16S rRNA gene regions.

Methods and Findings: Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA
genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual
samples, was 1,400–1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads
from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but
differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the
microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human
Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts
from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance
and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due
to ambiguous taxonomic groupings.

Conclusions: The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genus-
level with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but
microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower
sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based
compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible
grouping schemes make exact comparison difficult.
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Introduction

The intestinal microbiota has an important role in maintaining

health throughout mammalian lives [1]. Although many studies

have focused on how microbial communities are structured during

the early and middle stages of life, relatively little is known about

gut microbiota of the elderly. For instance, there have been reports

on decreased microbial diversity in general [2,3], and depletion of

beneficial bacteria such as bifidobacteria in particular [4],

although these trends have not been universally reported [5,6].

These studies have previously been supported by quantitative

analysis of the ubiquitous microbial 16S ribosomal RNA gene

using traditional molecular methods like denaturing gradient gel

electrophoresis (DGGE), fluorescent in situ hybridization (FISH),

quantitative PCR (qPCR), or capillary sequencing using the

Sanger method [7]. However, for a complex and microbe-dense

ecosystem like the human gut, these methods provide an

incomplete view of the microbial composition, revealing only the

most abundant taxa. In a meta-analysis by Rajilic’-Stojanovic’ and

colleagues [8], almost 1,200 phylotypes were identified based on
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98% sequence similarity cut-off of full-length SSU rRNA

sequences, with an estimated total richness of over 3,000

phylotypes. In recent years, the rapid development of next-

generation sequencing technologies has allowed vast numbers of

partial 16S rRNA genes from uncultured bacteria to be

sequenced, at a much lower cost than Sanger dideoxy sequencing.

In addition to bypassing previously needed cloning and/or

cultivation procedures, with their associated biases, community

structures can now be investigated at much higher resolution by

revealing taxa that are much less abundant. However, this may be

at the expense of lower taxonomic certainty due to the shorter read

lengths of sometimes poorer quality.

Recent high-throughput microbial compositional studies have

used the pyrosequencing technology introduced by 454 Life

Science [9], whereby amplicons of partial 16S rRNA gene

sequences are attached and sequenced on microscopic beads

placed separately in picoliter-sized wells. For the Genome

Sequencer 454 FLX system, this generally produces around

400,000 reads with average lengths of 250 bp and an average

quality score of greater than 99.5% accuracy rate [10]. These read

sizes are sufficient to cover most of the variable regions in the 16S

rRNA gene. A large number of samples can be pooled onto one

plate by including short barcode sequences, or multiplex identifiers

(MIDs), upstream of the PCR primers specific for the variable

region to be sequenced. Pyrosequencing has been applied to a

wide range of microbial communities and variable regions of the

16S rRNA gene, such as V6 in deep-sea vents microbial

communities [11,12]; V1, V2, V6 and V3 in human [13–16]

and in macaque [17] gastrointestinal tract (GIT); as well as V9 in

soil-derived microbial DNA [18].

High-throughput community analyses do not have to depend on

sequencing. A number of phylogenetic arrays have been

constructed that permit hybridization of nucleic acids extracted

from environmental samples against arrays probes corresponding

to single-stranded full or partial 16S rRNA genes [19–22]. As it is

technically very difficult to include the more than 800,000 SSU

sequences present in the databases (see http://www.arb-silva.de),

microarrays with subsets of sequences specific to the ecological

environment of interest are required. Recently the HITChip, an

oligonucleotide microarray for phylogenetic profiling of human

intestinal tract communities, was developed [23]. The 4,800

probes on this 16S rRNA gene tiling array consist of sets of three

18–30 nt long overlapping oligonucleotides targeting the V1 and

V6 region sequences from 1,140 phylotypes, respectively. Based on

98% sequence similarity, phylotypes were defined from more than

16,000 16S rRNA gene sequences identified in the human GIT.

Using the HITChip for comparing phylogenetic profiles of fecal

microbiota from five young and five elderly adults collected at

three time points, Rajilic’-Stojanovic’ and colleagues confirmed

previous findings that the adult fecal microbiota is highly

individual-specific and relatively stable over time [24–26]. With

the aid of this technology it was also shown that a multispecies

probiotic cocktail alleviated symptoms of irritable bowel syndrome

[27], and that starch-fermenting bacteria could be identified by

using RNA stable isotope probing in a human colon model with

great reproducibility [28]. However, when compared to high-

throughput sequencing, phylogenetic arrays can only detect taxa

that are covered by the reference sequences. In addition, the

dynamic range of detection is smaller, and cross-hybridization

between probes may occur. There are also fewer options for

downstream analysis compared to ribosomal sequences. On the

other hand, arrays are more straight-forward to use for

comparative community profiling, and are generally both faster

and cheaper than high-coverage amplicon sequencing. A com-

parison of microarray hybridization and sequencing of 16S rRNA

gene clone libraries was conducted by Palmer and colleagues, and

showed strong concordance between the two methods [20].

However, a later study highlighted the poor resolution of clone

library sequencing in relation to microarray profiling [29]. This

raised the question of how phylogenetic array analysis compares

with deep pyrosequencing, which was one of the main objectives

of this study.

A crucial part of community analysis is the classification of

sequences into a taxonomic framework. A diverse range of

methods has been used, with dramatic differences in classification

results depending on both underlying algorithms and parameters.

Due to the requirement for large datasets, classification methods

based on parsimony and likelihood trees typically applied on

Sanger-sequenced full-length 16S rRNA genes are not feasible.

Liu and colleagues [30] assessed some of the most commonly used

methodologies for a number of different variable regions within

the 16S rRNA gene. These methods included i) selecting the most

common classification from the best BLAST [31] hits against

reference sequences from the RDP database; ii) the online RDP-

classifier with bootstrap values$50% (see further below); iii) the

online Greengenes classifier [32] based on NAST alignments [33];

iv) selecting the nearest ancestral node in a phylogenetic neighbor-

joining tree [34] (similar to the parsimony insertion procedure in

ARB, which however is not designed for large numbers of short

sequences) built from either v) NAST alignments; or vi) a distance

matrix containing counts of multimers found between sequences.

The Greengenes and RDP-classifier produced the most accurate

and stable results, especially for gut communities and gave

sufficient evidence to support taxonomic classifications [30].

Furthermore, the RDP-classifier is more than 30 times faster than

the Greengenes classifier and is also available as a downloadable

version [30]. SSU rRNA gene fragments of at least 250 bp

covering the V2, V3 and V4 regions were deemed to be the most

suitable. In contrast, the hyper-variable V6 was shown to be the

least optimal region for taxonomy assignments, while it was more

appropriate for measuring microbial diversity due to its high

variability. In addition, three other comparative studies favored

V1, V2 and V4 based on BLAT (original software ref. [35])

searches against the RDP database [36], and V2 and V4 based on

the RDP-classifier [37], as well as V2 and V3 based on ClustalW

(original software ref. [38]) alignments and Neighbor-joining trees

[39]. The assignment tool GAST was recently reported [40],

which uses the best BLAST hits against a reference database of V3

and V6 regions where the taxonomy is known from RDP-

classification results. Instead of selecting the most common

classification of these hits (like in method i above), the sequence

was assigned to the hit that had the smallest global distance in a

distance matrix based on MUSCLE [41] alignments of the best

hits. Using GAST, more than 99% of V3 and V6 sequences could

be assigned to taxa at the genus level.

This study is a comparison of two high-throughput molecular

methods [36,37] for GIT community analysis using subjects

exclusively from the elderly population. To achieve the desired

high coverage necessary for this study, we had to limit the number

of regions targeted for pyrosequencing. Thus, the two variable

regions that were targeted for pyrosequencing in the present study

were V4, for documented classification robustness (see references

above); and V6, for hyper-variability and number of published

studies. Moreover, for assigning taxonomies we chose the RDP-

classifier due to its documented accuracy and stability, straight-

forward usage, independence of sequence alignments, high speed,

and suitability for very large datasets generated by next-generation

sequencing technologies. The classifier is also integrated with the
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Pyrosequencing Pipeline [42] which contains tools for quality

trimming, in-depth comparison of two communities, phylotype

clustering, as well as statistical and ecological metrics like

rarefaction curves, diversity index and richness estimations. In

contrast to nearest-neighbor methods, the RDP-classifier bases its

assignments on the probability of observing a set of eight-character

subsequences from an unknown query sequence within each

genus. The RDP-classifier is trained with more than 7,000

bacterial full-length SSU rRNA sequences, composed mostly of

sequences from type strains. Confidence estimations are also

generated for each assignment, representing the number of times

the assigned taxa was selected out of 100 bootstrap trials [37].

In this study, we sequenced regions of the 16S rRNA gene at

very high depth for a small number of samples (four), resulting in a

majority of the estimated GIT microbial diversity being captured.

We also noticed considerable differences between the two variable

regions V4 and V6, both in terms of classification efficiency and

captured diversity. The robustness of the HITChip and RDP-

classifications of pyrosequencing reads were supported by their

strong correlations at several taxonomic levels. In addition to

providing useful comparisons of high-throughput technologies,

variable regions and analysis protocols, this analysis acts as a pilot

study for validating methodologies for a large-scale national

metagenomics initiative (see http://eldermet.ucc.ie), by defining

how much sequencing is necessary to sufficiently capture the

community diversity at an affordable depth of sampling.

Results and Discussion

Quantitative compositional sequence analysis
We sequenced a total of 1,668,550 variable regions of the 16S

rRNA gene, amplified from microbial DNA extracted from fecal

samples from elderly individuals coded A, B, C and D. Because

different levels of pyrosequencing coverage were applied, we

indicate this by a suffix referring to the proportion of the picoliter

plate that was dedicated to each sample. Of the total number of

reads, 807,953 were of the V6 region from samples A and B

(designated A-V6-1.0 and B-V6-1.0), and 860,597 were half-plate

runs of the V4 region from samples A, B, C and D (A/B/C/D-V4-

0.5). In addition, V4 amplicons from the C and D samples were

sequenced at a lower depth on another plate (42,315 and 40,741

reads, respectively) as part of the larger group of subjects being

analyzed by the full-scale Eldermet project, and are thus referred

to as C-V4-0.1 and D-V4-0.1. Quality filtering removed 14% of

V4 and 35% of V6 sequences (see Table 1 for details of numbers).

The pyrosequencing artifact of technical read duplications

highlighted by Turnbaugh and co-workers [15] was not an issue

here; at most 0.05% of all reads among the four pyrosequencing

plates, (pooled sample C and D) had more than one copy with the

exact same length, content and quality scores. Biological

duplications, however, were as expected much more common;

18% of the A-V6-1.0 reads represented unique sequences, while

26.8% for A-V4-0.5. The quality-trimmed V4 and V6 reads had

an average length of 224 bp and 79 bp, respectively.

The RDP-classifier assigns taxonomies down to genus level

accompanied with bootstrap-like confidence values [37]. As the

choice of threshold for these bootstrap values has a significant

influence on the outcomes of subsequent analysis, we compared

two previously implemented confidence value thresholds of 50%

[30] and 80% [40] using the reference set of 7,208 near full-length

16S rRNA genes from human fecal microbiota sequenced by

Dethlefsen and colleagues [14]. They compared pyrosequencing

reads of the V3 and V6 regions to full-length 16S rRNA sequences

from clone libraries from the same samples. We assigned genus to
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6,054 sequences using the RDP-classifier with the stricter 80% cut-

off and the latest RDP training set 4 from December 2008. With

these full-length assignments as references the V3, V4 and V6

regions were extracted and re-classified. Table 2 shows the

fractions of variable regions that were classified in accordance with

their full-length references, using bootstrap thresholds of 0%, 50%

and 80%. The V4 region displayed the highest number (5,091) of

correctly classified sequences (according to$80% classification of

full-length sequences) followed by V3 and V6 when using a

bootstrap threshold of 80%. The drop in accuracy, when

decreasing the threshold to 50%, was also the smallest for V4,

by which an additional 550 sequences could be classified (97% of

all genus-assigned full-length sequences). We therefore decided to

use 50% as bootstrap cut-off since the accuracy is closest to the one

with 80% cut-off, and the total number of sequences that could be

assigned to genus level was closest to that obtained without any

cut-off threshold imposed. In terms of absolute numbers of

correctly classified reads, V4 is better than V3, which in turn is

better than V6. Moreover, the 50% bootstrap value was the

chosen threshold for another comparison study promoting the use

of the RDP-classifier [30].

The number of reads that could be classified with a bootstrap

value of 50% to a certain taxonomic rank fell as the order of the

rank progressed towards genus-level (Figure 1). Interestingly, the

classification efficiency for the shorter V6 reads fell dramatically at

phylum level relative to the V4 reads, and decreased further to

below 50% at genus level. Possible reasons for this are: i) the much

shorter V6 lengths; ii) that its hyper-variable and poorly conserved

sequence impedes high-confidence classifications; and/or iii) that

it is flanked on both sides with highly conserved sequences which

add little classification information. Although the corresponding

numbers for the V4 reads were much higher, there were

significant differences at the genus level between samples A and

B (65–70%), and samples C and D (,89%). Following closer

inspection, we found that a majority (,60%) of the differences in

these ratios were due to the higher numbers of unclassified genera

within the Lachnospiraceae family in samples A and B, pointing

towards the need for a more rigorous taxonomic classification

within phyla largely dominated by yet uncultured phylotypes, such

as is the case for the Lachnospiraceae [8]. Another explanation may

be that fewer reads have been confidently classified as phylum

Bacteroidetes in samples A and B; the average genus bootstrap values

for the two most numerous phyla were found to be 93% for

Bacteroidetes and 71% for Firmicutes. The lower Bacteroidetes counts in

samples A and B may be due to differential cell lysis of bacteria

belonging to this phylum imposed by premature freezing and

further processing of these fecal samples. This unexpected lack of

Bacteroidetes has also been recorded in other studies, where fecal

Table 2. Fractions of variable regions that were correctly classified by the RDP-classifier.

Variable region V3 V6 V4

Bootstrap cutoff ($) 0% 50% 80% 0% 50% 80% 0% 50% 80%

Fraction of sequences classified to genus 100% 92.4% 82.3% 100% 73.5% 40.4% 100% 97.0% 87.9%

Fraction of sequences correctly classified to genus 92.0% 95.0% 98.1% 79.0% 96.5% 98.7% 92.8% 94.5% 95.7%

Of 7,208 full-length 16S reference sequences from the human gut 6,054 were classified at genus-level with 80% bootstrap support. The RDP-classifier was trained with
the latest training set No. 4 from December 2008. For each of the three extracted variable regions fragments were classified again, at three different bootstrap
thresholds, and compared with the full-length classifications (last row).
doi:10.1371/journal.pone.0006669.t002

Figure 1. Classification efficiencies at six taxonomic ranks for eight sets of sequences from four samples. The blue and purple colored
dashed lines represent V6 amplicon reads, which have very poor classification efficiencies compared to all V4 amplicon reads, especially at the genus
level. The yellow and orange colored dashed lines, representing V4-0.1 amplicon reads, show nearly identical classification efficiencies as the
corresponding V4-0.5 amplicon reads.
doi:10.1371/journal.pone.0006669.g001
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samples have been frozen immediately upon collection [13,17,43].

Moreover, it has been shown that DNA extraction protocols affect

the isolation of Bacteroidetes is the subject of a separate systematic

study (Salonen, de Vos et al., in preparation). Overall, these

examples illustrate the significant impact that the overall

community structure can have on the ability to classify large

fractions of its members, even if the type of environment is the

same.

The classification efficiencies of the C/D-V4-0.1 samples were

practically identical to the corresponding samples sequenced 4–5

times deeper. This was also supported by the 99.99% Pearson

correlation between the genus classifications of C-V4-0.5 and D-

V4-0.5, and C-V4-0.1 and D-V4-0.1 (Figure 2). In contrast,

correlations between genus classifications for the V4 and V6

amplicon sequences were very poor (A: 69% and B: 37%), which

can be attributed to the inferior ability to classify V6 reads at genus

level, in particular those belonging to the Lachnospiraceae Incertae

Sedis.

Determining community composition based upon a highly

variable SSU region would indicate greater apparent community

complexity (reflected in phylotype number) than would a less

variable region [23]. To measure how phylotype richness in the

four fecal communities varied with sample size and choice of

variable region, we calculated rarefaction curves at both 97% and

98% similarity levels (Figure 3). Richness levels measured by the

V6 region vastly exceeded those using the V4 region, with 4–5

times more identified phylotypes at the 98% level and 7–9 times

more phylotypes at the 97% level (Table 1). To verify that this

huge difference was due to higher variability within the V6 region,

and not relative oversampling, the rarefaction curves were re-

created using half of the A-V6-1.0 reads (randomly selected), as

well as three constituent tracts of the C-V4-0.5 region reads

(Figure 3 inset). Although the last 80 bp of the V4 region displays

slightly higher variability than the downstream parts, it is clear

that, even at lower number of sequenced reads, the V6 region is

far less conserved than V4.

As this is the deepest sequencing analysis imposed to date, upon

individual-derived GIT communities, we discovered, as expected,

the highest number of phylotypes in a single sample using both

variable regions (Table 1; for easier comparison with other studies

we only discuss phylotypes defined by 97% similarity below). More

than 12,500 V6 phylotypes were identified in sample B, and

almost 1,800 V4 phylotypes in D. According to Chao1 richness

estimations that were supported by rarefaction curve extrapola-

tions, these communities contain 500–1,000 additional phylotypes

using V4, and 6,500 more using V6, with final richness roughly

around 2,500 and 19,000, respectively. Hence, even at this high

level of sequencing it is evident that additional sampling increases

the number of phylotypes detected. When all V4 sequences

(740,704 trimmed reads) from the four samples were pooled

together, more than 5,200 phylotypes were observed at the 97%

similarity level, which is higher than any previously reported

richness at that level (notably using different variable regions and

datasets). Interestingly, at the same similarity level, McKenna and

co-authors also detected about 5,000 phylotypes condensed from

about 141,000 pyrosequencing reads of concatenated V1 and V2

regions from 100 GIT samples collected from 12 macaques [17].

Moreover, Ley and colleagues identified close to 4,700 unique

phylotypes (at$96% similarity) from over 20,000 full-length 16S

rRNA genes sequenced from 60 mammalian species [44]. If this is

an indication that we have successfully detected the majority of the

total number of phylotypes within mammalian fecal communities,

Chao1 richness estimation and extrapolation of the ALL-V4

rarefaction curve suggests a total richness level of around 8,000

phylotypes. Future large-scale studies including many more

subjects will show if this is correct. The fact that the under-

sampling of the C-V4-0.1 and D-V4-0.1 communities revealed

fewer phylotypes than their full-sample-size correspondents at the

same sampling level (,40,000 reads) highlights the imperfect and

overestimating effect of sub-sampling within rarefaction. More-

over, Chao richness estimations of the C/D-V4-0.1 communities

are 62% lower than for C/D-V4-0.5. This indicates an

underestimating effect for less sampled communities, which has

also been observed [14,45] and discussed [46,47] by others.

Good’s coverage is an estimator of sampling completeness and

calculates the probability that a randomly selected amplicon

Figure 2. Pearson correlations between genus-classifications for V4 and V6 amplicon sequence datasets, as well as C-V4-0.5 and D-
V4-0.5, and C-V4-0.1 and D-V4-0.1 samples.
doi:10.1371/journal.pone.0006669.g002
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Figure 3. Rarefaction curves at 97% (dotted lines) and 98% levels (solid lines, except for ALL-V4 which has single dots) for all eight
datasets including a combination of all V4-0.5/0.1 datasets sequences. The inset also shows curves for half the A-V6-1.0 reads and the three
constituent parts of the C-V4-0.5 reads.
doi:10.1371/journal.pone.0006669.g003
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sequence from a sample has already been sequenced. At the 97%

similarity level, all four V4-0.5 samplings had more than 99.6%

coverage, which means that over 250 (1/(120.996)) extra reads

would need to be sequenced before detecting a new phylotype. For

the hyper-variable V6 region, over 45 additional reads are needed

for each new phylotype (.97.8% coverage). The coverage of the

C/D-V4-0.1 samplings is still quite high, with over 150 extra reads

per new phylotype discovery (.99.3% coverage), which again

suggests that the substantial majority of the diversity can be

captured by smaller samplings of this size (,40,000 reads).

Diversity and evenness are more informative for describing

community composition than simple phylotype richness levels.

Community diversity, as reflected by the Shannon index, was

highest in sample A and lowest in sample D, and is per definition

generally correlated positively with the number of unique

phylotypes and/or with greater community evenness. The high

diversity values for V6 reads could be a consequence of higher

sequence variability of the region. Thus, while the V6 amplicon

sequences performed poorly for assigning taxonomies when

compared with other regions, it was a better marker for capturing

phylotype diversity and could therefore still be suitable for

classification-independent and OTU-based (Operational Taxo-

nomic Units) analysis.

High evenness (0#E#1) indicates less variation in the relative

abundance of phylotypes, i.e. the number of reads per phylotypes

in this case. As such, sample B contained the most even

community whereas D contained the least. When ‘scaling down’

samplings for C and D the diversity index dropped somewhat,

which can be expected, while there was a slight decrease in

evenness for C but increase for D. This indicates that the sub-

sampling was not completely uniform for all phylotypes.

Qualitative compositional sequence analysis
While the number of subjects is too small to draw any well-

founded biological conclusions, it is important to emphasize that

the major aim of this study was to investigate the impact of

different methods and variable regions upon the outcomes of the

qualitative compositional analysis. However, there are three

reasons why we still display groups of detected taxa here: Firstly,

if we noticed a completely different composition for one or several

of the samples, e.g. no Firmicutes or a vast majority of non-Firmicutes

and non-Bacteroidetes, we would in the light of previous studies

strongly suspect a contamination or primer problem - a quality-

check in other words. Secondly, we believe that the premature

freezing of sample A and B could be one reason for the small

Bacteroidetes counts, and must therefore show these results. Lastly,

by studying the different phylum and genus profiles in Figure 4 it is

possible to see the similarities (or lack of) between the V6 and V4-

0.5/0.1 data-sets, which is one of the aims with this study.

Figure 4a shows the relative phylum abundance and Figure 4b the

relative genus abundance of the most abundant genera (see Table

S1 for all genera detected at bootstrap level 50%). The

distributions of the major phyla (Bacteroidetes, Firmicutes, Proteobacteria

and Actinobacteria) are approximately in concordance with previous

human adult gut studies [15,48,49]. Evidently, the differently sized

samplings of C and D are nearly identical by composition at both

phylum and genus level. Together with the strong correlations

presented in Figure 2, this suggests that equal proportions of the

major taxonomic groups can be captured in smaller samplings, as

for only 20% of the maximum number of reads in this case. Only a

few genera were detected only by the large samplings: At most, 11

Parabacteroides and 4 Akkermansia reads were found in C-V4-0.5, but

none in C-V4-0.1; while 12 Leuconostoc and 4 Acinetobacter and

Oxalobacter reads were found in D-V4-0.5, but none in D-V4-0.1.

There was, in contrast, much less agreement between the

community structures as revealed by classifications of the V4

and V6 amplicon sequence data. Since the majority of V6 reads

could not be classified down to genus level, this significantly

hampers meaningful comparisons using that region.

As can be seen from the differences between the numbers of

reads that could be classified down to genus level (153 in these

samples, see Table S1), and the number of detected phylotypes/

species (,1640 at 97% V4 similarity level), most of the microbial

diversity in the human gut occurs at species or strain level. This is

consistent with observations of other groups [14,50,51] and

highlights an inherent problem for obtaining high-resolution

taxonomic assignments based upon variable regions of 16S rRNA

gene sequences on a large scale. When investigated in another

study at a much smaller scale [39], combining the three regions

V2, V3 and V6 allowed assignment of all tested 110 bacterial

species down to genus-level, but only a subset of these to species-

level. In fact, even full-length 16S rRNA gene sequences do not

always have sufficient resolving power to confidently assign species

[52]. For instance, some full-length sequences obtained from

different genera are more similar than 97%, while other sequences

from the same species (and sometimes even within the same

genome) are less similar than that [53]. However, to get an

indication of how many reads can be assigned to species level (if we

over-simplistically accepted a 100% match of V4/V6) we searched

all confidently genus-assigned reads against the RDP database

(release 10.10), from which sequences without clear species

assignments had been removed, using BLAST. This resulted in

23% of all A-V4-0.5 and B-V4-0.5 reads with identical (100%)

matches to known species and ,50% of all C-V4-0.5 and D-V4-

0.5 reads, but surprisingly none of the A-V6-1 and B-V6-1 reads.

Hence, significant proportions of partial 16S rRNA gene

sequences may not be confidently assigned to known species, for

which only annotations like ‘closest relative’ and genus assign-

ments will be possible.

Hierarchical tree structures
To investigate an alternative to the RDP-classifier and to better

visualize the compositional differences between the four commu-

nities we employed the MEGAN software [54]. MEGAN is not

only another well-recognized tool for phylogenetic classification; it

also bases its results on BLAST data, which is a very common

method for finding nearest relatives. V4 reads from the four

samples were BLAST searched against the SSU rRNA database

compiled by Urich and colleagues [55], and assignment to the

NCBI taxonomy was performed using the lowest common

ancestor (LCA) algorithm. MEGAN uses the BLAST bit-score to

assign taxonomy, as opposed to using percentage identity. As

describe above, and in other OTU-based approaches, percent

identities between sequences have been used as an approximate

criteria for taxonomic ranks of higher-order [50,56,57]. Unfortu-

nately, there is no clear correspondence between these metrics and

the bit-scores that MEGAN uses; many reads with.97% identity

with known taxa have lower bit-scores than hits with lower percent

identities, and vice versa. Indeed, bit-scores are ultimately derived

from gap scores and substitution matrices, while sequence identity

simply measures proportions of identical nucleotides. We investi-

gated three different BLAST bit-score cut-off thresholds: two

previously implemented thresholds of 35 [31] and 86 [55]; and a

novel threshold of 250. It was found that, at the 35 bit-score

threshold, some reads (,1%) were assigned with very poor E-

values and therefore could not be trusted as being valid

assignments. At a bit-score cut-off of 86, more than 30% of the

reads were less than 97% similar. We therefore chose a bit-score
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Figure 4. Relative phylum abundance classified with at least 50% bootstrap support (A). Relative abundance of the 16 most abundant
genera classified with at least 50% bootstrap support (B). Genera are labeled according to phylum_class_family_GENUS.
doi:10.1371/journal.pone.0006669.g004
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cut-off of 250, which, although still retaining reads with less than

97% identity, was determined as the best threshold by virtue of

retaining the majority of true positive hits, while maintaining a

minimum number of true negatives. Below we only present the

results of the 250 bit-score threshold analysis.

Of the total quality-trimmed V4 reads, MEGAN assigned

taxonomy to 94.9% of A-V4-0.5 reads, 99.4% of B-V4-0.5 reads,

99.1% of C-V4-0.5 reads and 93.7% of D-V4-0.5 reads at the

phylum level. Reads which were not assigned taxonomy had either

no hit in the database, or there was a hit but it fell below the 250

bit-score criteria for assigning taxonomy.

Analysis revealed a core gut microbiota across the four

individuals; at the phylum level, this core group consisted of

species from Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria,

while at the genus level it consisted of, Alistipes, Anaerostipes,

AnaerotruncusAnaerostipes, Anaerotruncus, Bacteroides, Bifidobacterium,

Blautia, Clostridium, Coprococcus, Dorea, Eubacterium, Faecalibacterium,

Holdemania, Leuconostoc, Oscillospira, Peptostreptococcus, Roseburia, Ru-

minococcus and Streptococcus. The largest groupings at phylum level

were, as expected, Firmicutes (30–86% of total reads) and

Bacteroidetes (10–68% of total reads). In addition, MEGAN assigned

17–37% of the reads as ‘‘unculturable organisms’’.

To compare the four communities with each other in a

hierarchical way, we performed an all-against-all comparison

using the MEGAN compare tool resulting in a comparison tree

(Figure 5). One of the major differences observed is the low level of

the genus Bacteroides in A-V4-0.5 and B-V4-0.5 compared with D-

V4-0.5. Conversely, D-V4-0.5 has a reduced level of Firmicutes

when compared with the others. Moreover, the C-V4-0.5

community has much higher levels of Actinobacteria compared with

the other three datasets. Similar observations were also made from

RDP-classifications, although only MEGAN assigned any of the

A-V4-0.5 and B-V4-0.5 reads to phyla Streptophyta and Spirochaetes.

See Table S2 for all MEGAN assignments.

Direct comparisons of the RDP-classifier and MEGAN

assignments show near-perfect correlations across all datasets at

phylum, order and class levels with Pearson correlation coefficients

of over 0.99 in each case (Figure 6 and Table S2). However, the

lower correlation of B-V4-0.5 (r = 0.33) and C-V4-0.5 (r = 0.37) at

the family level is due to the RDP-classifier assigning approx-

imately ten times more reads to the Rikenellaceae, Lachnospiraceae and

Erysipelotrichaceae families than MEGAN, whereas MEGAN

assigned approximately ten times more reads to the Clostridiaceae

than the RDP-classifier does. At the genus level, the low

correlation for A-V4-0.5 (r = 0.48), B-V4-0.5 (r = 0.31) and C-

V4-0.5 (r = 0.47) is due to the RDP-classifier assigning approxi-

mately ten times more reads to the Alistipes, Shigella and

Erysipelotrichaceae genera than MEGAN, and MEGAN assigning

ten times more reads to the Clostridium genus than the RDP-

classifier. Thus, depending on organisms of interest, investigators

may need to apply due caution when using either of these methods

on the taxa mentioned above.

Since MEGAN assigns taxonomy based on BLAST output, it is

dependent on both the BLAST algorithm and the query database,

which is why it is important to use an extensive high-quality 16S

rRNA gene database to optimize accuracy of the assignments.

Even for strong BLAST hits, such assignments should be made

with caution and are ultimately dependent on the quality of the

query and subject sequences. In addition to cut-off thresholds

discussed above, some factors that are likely to account for the

discrepancies between RDP-classifier and MEGAN assignments

are: i) differences between the BLAST and Bayesian algorithms; ii)

structural differences between the Bergey and NCBI taxonomies,

the latter having deeper lineages and lower rank nodes; and iii)

incompatible training datasets and query databases. An important

advantage with the MEGAN software is that it is also applicable to

shotgun metagenomic sequence data, and is not limited to rRNA

genes. However, the RDP-classifier is advantageous in its higher

speed, as MEGAN assignments also have to include relatively slow

BLAST searches against nucleotide databases. The generally high

correlations between the two approaches suggest that both

methods can be confidently used provided that: i) that the BLAST

query database is sufficiently extensive and of sufficient quality; ii)

that the bit-score threshold is adjusted to fit the required taxonomy

depth, e.g. allows lower scores if genus/species assignments are the

target; and iii) that the assignments should not be taken as

absolutely definite and questionable assignments should be

examined in closer detail, and confirmed or rejected using

alternative assignment methods.

Comparison of HITChip and pyrosequencing
We compared the classification results from the pyrosequencing

approach with those obtained from using the hybridization-based

method employed by the HITChip. Profiling using heat maps and

hierarchical clustering is a standard output of HITChip analysis

[23] (Figure 7, left). For the purpose of comparison with

pyrosequencing data, we clustered genus-classified reads in a

similar manner (Figure 7, right). Even though they represent very

different technologies and classification methods, the two phylo-

genetic profiles show the exact same clustering pattern, where

sample A and B are the most related, followed by C and then D.

This is in line with the RDP-generated data for relative genus

abundance (Figure 4b), as well as the higher diversity and evenness

similarity of A-V4-0.5 and B-V4-0.5. However, when varying the

distance calculations, e.g. not calculating Euclidean distances and/

or not using logarithmic probe intensity values, the clustering

results of the two technologies were not as concordant (data not

shown).

Despite the fundamental technological differences in these

approaches, it was also possible to correlate number of reads in the

pyrosequencing data with probe intensity levels all the way down

to family level, after the 131 HITChip taxonomic level-2 groups

had been converted into RDP taxonomy. Since not all of the 131

level-2 groups were consistently at genus level, and due to one-to-

many and many-to-one relationships between the two grouping

schemes, it was not possible to accurately compare genus-level

assignments. Figure 8 shows plots of sequence-based RDP

assignments versus HITChip intensity ratios of all common

taxonomic groups for the four ranks, along with Pearson

correlation scores for the six different combinations of samples

and variable regions. Correlations between HITChip and

pyrosequencing ratios were generally good at phylum (average

r = 0.94), class (0.93) and order (0.94) levels, but dropped at family

level (0.77). There are two possible reasons for this: the

overwhelmingly largest orders Clostridiales and Bacteroidales break

down into many different families, which separately have much

lower read numbers and intensities than their combinations of

ranks above. As a result, these lower values drive down the

correlation coefficients. Secondly, and as previously mentioned

above, there are ambiguities between HITChip level-2 categories

and RDP taxonomy in that a HITChip level-2 category can be

either species, genus, family or more diffuse. This ‘noise’ has larger

impact on family level than on lower-order ranks. The reason why

most correlations using V6 sequences are lower than with V4 is

that fewer V6 reads were classified with more than 50% bootstrap

support.

Looking at sample-specific deviations, sample A had, for some

unknown reason, much higher Bacteroides hybridization intensity
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Figure 5. V4 amplicon sequences from the four samples assigned with BLAST and MEGAN. Pie charts display the relative abundance for
each genus. ‘Not assigned’ indicates reads with BLAST hits below the cutoff value.
doi:10.1371/journal.pone.0006669.g005
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compared to number of pyrosequencing reads. It is therefore

important to employ accurate, proofreading, thermo-stable DNA

polymerases, as well as temperature gradients for the PCR

reactions, in order to maximize the amplification specificity [58].

Furthermore, the high number of pyrosequencing reads classified

as Shigella genus corresponds to the Serratia genus using the

HITChip platform. Even though they belong to the same

Enterobacteriaceae family, this clearly highlights the issue of

ambiguous classifications between the systems for some taxa,

which warrants closer inspection. BLAST searches of the same V4

sequences mainly hit E. coli species, whereby we identified V4 as

well as concatenated V1+V6 sequences from a few known E. coli,

Serratia and Shigella species (data not shown). An all-against-all

BLAST search of full-length 16S rRNA genes, as well as V1+V6

and V4 fragments of sequences from these eight species revealed

that some Serratia species had Shigella and E. coli strains as their

strongest BLAST hits in terms of higher score and percent identity,

as opposed of other Serratia species. In addition, some E. coli strains

had stronger hits against Serratia and Shigella than against other E.

coli strains. Indeed, it was recently observed that the RDP-classifier

cannot distinguish between Escherichia and Shigella, and by default

chose Shigella. This will be changed to default Escherichia

classifications in a future version of the RDP-classifier. Again, this

underlines the importance of not blindly accepting all classifica-

tions of full-length or fragmented SSU rRNA sequences without

closer inspections of dubious cases, irrespective of approach. Since

high-throughput sequencing of partial 16S rRNA genes is

becoming both more common and larger in scale, an approach

targeted at classifying as many sequences as possible to species-

level would be useful. Such a classifier could be based on a

carefully collated database, or training-set, comprising species

where sequence variation within and between close genera is

known. Nevertheless, we recommend always carrying out closer

inspections or complementary analysis as reported here, when

uncertain, or when there is particularly high sequence similarity

between taxa.

To conclude, the overall strong correlations between these two

culture-independent methods indicate their robustness relative to

each other, as well as their capacity for in-depth profiling of

diverse microbial communities. The RDP-classifier provides fast

and accurate taxonomic assignments of most pyrosequencing

reads. However, for species/strain-level resolution, either longer

ribosomal sequences or additional experiments are required [52],

unless there are distinct and identifiable differences between the

variable regions of the particular organisms of interest. We found

that the V6 region was much less suitable for taxonomic

classification than the V4 region, but due to its hyper-variability

was a good diversity marker in being able to differentiate between

more phylotypes. For single intestinal samples, diversity levels are

still increasing at unprecedentedly deep sequencing levels.

Nevertheless, it was possible to capture a majority of the taxa

when sequencing the same samples at five times shallower

coverage, in proportions equal to those resulting from the deeper

half-plate samplings. This is encouraging for large-scale compo-

sitional studies where the sequencing efforts are directed towards

larger number of samples, as opposed to obtaining higher

resolution from fewer subjects.

Materials and Methods

Sample processing and sequencing
Fecal samples were collected from four elderly subjects aged 60–

87 years. The Clinical Research Ethics Committee of the Cork

Teaching Hospitals (CREC) granted full approval to the

ELDERMET project on the 19th February 2008 (Ref: ECM 3

(a) 01/04/08). Formal written consent was obtained, on the basis

Figure 6. Comparisons of assignments from the RDP-classifier and MEGAN as ratios of total number of reads for each sample and
taxonomic rank. Blue represents phylum, red class, yellow order, green family, and black genus. Diamonds represent sample A-V4-0.5, squares B-
V4-0.5, triangles C-V4-0.5, and circles D-V4-0.5.
doi:10.1371/journal.pone.0006669.g006
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Figure 7. Cluster profiling of HITChip hybridization intensities (left) and number of pyrosequencing reads classified to genus-level
with bootstrap support of at least 50% (right).
doi:10.1371/journal.pone.0006669.g007
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of an Information Sheet/Safety Statement, following an ethics

protocol that was approved by CREC, in compliance with

pertaining local, national and European ethics legislation and

guidelines to best practice. Subject A was male and the rest were

females. Subject C had been diagnosed with ulcerative colitis, and

subject D was taking an unknown antibiotic at the time of

sampling. Samples from A and B were frozen at 280uC upon

collection, whereas samples C and D were processed fresh from

the same day as collection. DNA was extracted according to

standard protocol (Qiagen, West Sussex, UK). The following

universal 16S rRNA primers were used for the PCR reaction:

520F (59-AYTGGGYDTAAAGNG-39) and 802R (59-

TACNVGGGTATCTAATCC-39) for the V4 region (RDP’s

Pyrosequencing Pipeline: http://pyro.cme.msu.edu/pyro/help.

jsp); and 986F (59-CNACGCGAAGAACCTTANC-39) and

1027R (59-CGACRRCCATGCANCACCT-39) for the V6 region

[11]. Barcode sequences for the V4 samples of either AGCA-

GAGC or AGCAGATG were attached between the 454 adaptor

sequence and the forward primers. Standard PCR reaction

conditions were employed for reactions with Taq polymerase –

2 mM MgCl2, 200 nM each primer, 200 mM dNTPs. The PCR

conditions were 94uC for 50 seconds (initialization and denaturing)

followed by 40uC for 30 seconds (annealing), 72uC for 60 seconds

in 35 cycles (extension), and a final elongation step at 72uC for 5

minutes. Two negative control reactions containing all compo-

nents, but water instead of template, were performed alongside all

test reactions, and were routinely free of PCR product,

demonstrating lack of contamination with post-PCR product.

The optimal annealing temperature for the primers, which

included 454 adapters and barcode sequences, was empirically

determined by gradient PCR using control reactions with initially

purified bacterial genomic DNA, and validated on fecal microbial

community DNA (data not shown).

The 16S rRNA V4 and V6 amplicons were subsequently

sequenced on a 454 Genome Sequencer FLX platform (Roche

Diagnostics Ltd, West Sussex, UK) according to 454 protocols,

one plate each for the V6 region amplicons of samples A and B,

and half a plate each for the V4 region amplicons of all four

samples. In addition, V4 amplicons from samples C and D were

also sequenced separately on another plate as part of a pooled total

of ten samples from the full-scale Eldermet project (http://

eldermet.ucc.ie).

Sequence analysis and phylogenetic classification
Raw sequencing reads were quality trimmed according to

published recommendations [59] using a locally installed version

of the RDP Pyrosequencing Pipeline [42] applying the following

criteria: i) exact matches to primer sequences and barcode tags; ii)

no ambiguous bases (Ns); iii) read-lengths not shorter than the

main distribution (.150 bp for V4 and.60 bp for V6). For large-

Figure 8. Comparisons of ratios of HITChip spot intensities and number of pyrosequencing reads for four taxonomic ranks. Pearson
correlations are shown for each rank and sample.
doi:10.1371/journal.pone.0006669.g008
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scale assignments into the new Bergey bacterial taxonomy [60] we

used the Naı̈ve Bayesian Classifier (RDP-classifier), which provides

rapid taxonomic classifications from domain to genus of both

partial and full-length rRNA gene sequences along with bootstrap-

like confidence estimates [37]. Trimmed sequences with their

classifications were imported into a MySQL database for efficient

storage and advanced querying. Pyrosequencing reads were

aligned using Infernal [61] and associated covariance models

obtained from the Ribosomal Database Project Group. These

were based on secondary structural information from full-length

16S rRNA genes sequences of 508 fully sequenced genomes and

were further trimmed to encompass only either the V4 or V6

regions in order to increase alignment speeds. By applying the

furthest neighbor approach using the Complete Linkage Cluster-

ing application of the RDP pyrosequencing pipeline, trimmed

pyrosequencing sequences could be assigned to phylotype clusters

of either 97% or 98% V4/V6 identity. Based on these clusters,

Rarefaction curves [46], Shannon diversities [62] and Chao1

richness estimations [63] were calculated using RDP software.

Good’s coverage was calculated as G = 12n/N, where n is the

number of singleton phylotypes and N is the total number of

sequences in the sample.

MEGAN was used for hierarchical tree constructions of the

microbiota and tested as an alternative to the RDP-classifier for

taxonomic assignments [64]. Based on BLAST [65] results (using

default parameters with the exception –v 1 –b 1) it assigned

sequences to NCBI taxonomies by employing the Lowest Common

Ancestor algorithm. Bit scores were used from within MEGAN for

filtering the results prior to tree construction and summarization.

Following an all-against-all within MEGAN, V4 reads from all four

samples were compared with each other and relative abundances

displayed as pie charts in a hierarchical tree structure.

HITChip analysis
The HITChip oligonucleotide array was designed at Wagenin-

gen University, the Netherlands [23]. Briefly, over 16,000 human

intestinal full-length and partial SSU rRNA gene sequences were

grouped into 1,140 unique phylotypes based on 98% or higher

sequence identity. These so-called level-3 groups were also grouped

into 131 genus-like level-2 groups and 27 order-like level-1 groups.

Sequences from the V1 and V6 regions from each phylotype were

subsequently extracted and reverse complemented, before being

divided into six tiling probes that were printed on an Agilent

oligonucleotide array (Agilent Technologies, Palo Alto, CA). DNA

was extracted from all four fecal samples, the full-length 16S rRNA

gene was amplified and further pre-processed as described by

Rajilic-Stojanovic and colleagues [23], before being hybridized in

duplicates onto HITChip arrays. In short, outlier probes were

removed before duplicates were quantile normalized and averaged

to give final intensity values for each HITChip probe, which were

averaged into the 131 level-2 groups. For reproducibility, the

duplicates were required to have a Pearson correlation of at least

98% (if not, they were re-hybridized). Since the grouping scheme

differed significantly from the one produced by the RDP-classifier,

conversion of assignments was necessary: By RDP-based classifica-

tion of the initial 1,140 phylotypes with an 50% bootstrap cut-off

and by using their known level-2 assignments, the 131 groups could

be assigned to Bergey’s taxonomy at all phylum/class/order/family

levels. Spot intensities were then summarized for all taxa at every

phylum/class/order/family level for each sample, but not at genus

level due to lack of genus-assignments of many of the 131 groups.

Ratios of total sample intensity were then compared with

corresponding ratios of numbers of RDP-classified sequence reads

for the same sample and taxa. Pearson coefficients were calculated

as a measurement of linear correlation between sequence and

intensity ratios. A heat map of median normalized HITChip

intensities and associated hierarchical clustering for all four samples

was also produced using logarithmic Euclidean distances followed

by complete-linkage clustering. This was in turn compared with a

heat map generated by Genesis [66] from pyrosequencing data,

which was based on complete-linkage clustering of Euclidian

distances from the numbers of genera RDP-classified with at least

50% bootstrap support.

Supporting Information

Table S1 All 153 genera detected using the RDP-classifier with

at least 50% bootstrap support.

Found at: doi:10.1371/journal.pone.0006669.s001 (0.04 MB

XLS)

Table S2 All MEGAN assignments of sequences from the four

samples sequenced with half a pyrosequencing plate.

Found at: doi:10.1371/journal.pone.0006669.s002 (0.10 MB

XLS)
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