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SUMMARY 

 

Carbon emissions, climate change and the finite resource of fossil fuels are driving an 

increasing need for renewable energy, and in particular, an interest in photovoltaic (PV) 

cells. Most PV cells operate in temperatures above 25 oC, and the performance of PV 

cells reduces with increased operation temperature. This research aims to resolve some 

engineering issues by integrating PV cells with a thermoelectric generator (TEG). 

Integrating TEG with PV cells helps to transfer heat from the PV through the TEG to an 

actively or passively cooled heat sink. The temperature difference established across the 

TEG can generates additional electrical power by the Seebeck effect. 

 The main objective of this research is to investigate the feasibility of developing 

a PV/TEG hybrid system that can offer better performance than that can be obtained from 

each individual system. The key parameters, which are crucial to the development of 

efficient hybrid system, were investigated. These include the temperature coefficient of 

PV cells, geometry of TEGs and thermal coupling between the PV and TEG. It was found 

that the dye sensitised solar cells (DSC) has a preferred temperature coefficient that are 

the most suitable for use in a PV/TEG system. In this work, a theoretical model was also 

developed for determination of the optimal geometry of the TEG for PV/TEG hybrid 

systems.  

 A special type of DSCs was designed and fabricated which employ titanium as 

the counter electrode (other than conventional FTO-glass) to improve the thermal 

coupling between the PV and TEG.  A unique DSC/TEG hybrid system was constructed 

using this special type of DSC and its generating performance was studied in comparison 

with a similar system that uses conventional FTO-glass counter electrode. The 

experimental results show that the power output and efficiency of the hybrid PV/TEG 

system with Ti counter electrode is significantly higher than the similar system with a 

conventional FTO-glass electrode due to an improved thermal coupling between the DSC 

and TEG. It is concluded that a hybrid PV/TEG system can provide improved 

performance beyond that of each individual system. However, the improvement can only 

be achieved with appropriate type of PV cells, optimised TEGs and advanced structures 

for integration, such as Ti counter electrode.   
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CHAPTER 1 – INTRODUCTION 

1.1   Historical Development of Photovoltaic/Thermoelectric Systems 

A major challenge in the 21st century is to provide a sustainable supply of energy that is 

environmentally friendly and cost effective. Solar energy, as the most abundant energy 

source on earth, has been converted into electricity using solar cells and into heat using 

solar heating panels. Solar energy conversion is a very promising renewable technology, 

but its wide-scale applications rely on further increases in efficiency and reductions in 

cost. The interest in renewable energy has increased significantly in recent years because 

of the problems associated with fossil fuels (e.g., limited resources, increasing prices and 

serious environmental impact).  

Photovoltaic (PV) cells, although still expensive, are attracting more and more attention 

due to their ability to convert freely-available light into electricity. A solar cell is a solid 

state device made from two types (n and p) of semiconductors, which is capable of 

converting solar energy directly into electrical energy. However, a large proportion of 

solar energy is converted to waste heat in a PV cell, due to thermalisation of the excited, 

high energy electrons and absorption of low energy photons. This results in an increase 

in the temperature of the PV cell and leads to a loss of power output because the power 

output of PV cells decreases with increasing the operating temperature. Therefore, there 

has been considerable interest in cooling PV cells using a number of passive or active 

cooling techniques[1][2], including the use of thermoelectric (TE) coolers [3][4]. Thus, 

the operating temperature of solar cells can be maintained at an acceptable level to ensure 

sufficient power output.  

An alternative approach is to use the TE device as a generator to convert waste heat to 

electricity. The principles of utilising the PV cell and thermoelectric generator (TEG) in 

a hybrid system have been discussed since 1986 [5] when a solar–TEG hybrid system 
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was installed at Northern Forestry as a power source. Later a hybrid solar PV/TEG system 

was proposed by Vorobiev et al [6]. The system comprised a concentrator system, a PV 

cell and a TEG. A hybrid PV/TEG system was introduced as a renewable energy source 

to operate hybrid electrical vehicles [7]. The incorporation of different types of PV cells 

(such as DSC) with TEG has been studied in the literature [8][9][10][11][12][13]. A 

hybrid tandem cell including DSC and TEG has been reported [9], as shown in Figure 

1.1. The hybrid system was characterised based on connecting the two devices in series, 

in parallel or separately. The experimental results demonstrated that matching the load 

between the DSC and TEG is important to achieve the best results in the case of 

connecting them in series also, the hybrid system recorded a 10 % improvement in 

contrast with the single cell. 

 

 

Figure 1. 1 A schematic diagram for the hybrid tandem cell [9] 
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1.2   Background to the Present Research  

Integrating TEG  with  solar  cells can  help  the  solar  cells  to  transfer  excess  heat and 

reduce their operating temperature. In addition, a temperature difference across 

thermoelectric devices between the hot side (solar cells) and the cold side (heat sink) will 

lead to extra electrical power generation from the TEG by the Seebeck effect. 

Conventionally, TEG was integrated directly with different types of PV cells without 

investigating the best type, i.e. the technology that wastes the least amount of power due 

to the thermal resistance and increases in the operating temperature of the PV cell. 

Optimisation of the number of thermoelement is crucial for the efficiency of both the 

TEG and the PV cell.  

In this work, an experimental study was conducted to investigate the candidate solar cells 

for a hybrid PV/TEG system. Six different types of PV cells were tested under fixed light 

intensity and different temperatures, and the drop in open-circuit voltage, short-circuit 

current, fill factor, maximum power output (Pmax) and conversion efficiency (ηPV) of the 

PV cells were analysed. To date, very few studies have focussed on the geometric 

optimisation of the TEG to improve the performance of a hybrid PV/TEG system. In this 

work, an analytical model for a PV/ TEG hybrid system is derived in order to study the 

effect of increasing the number of thermoelements on the power generation of the PV cell 

and the TEG in a closed circuit condition. Integration of TEG with PV cells, in particular 

DSC, has been reported in the literature [8][9][10][11][12][13]. However, the addition of 

a TEG directly to the FTO-glass counter electrode of a DSC makes the thermal coupling 

between them less effective. Therefore, the heat transfer between the TEG and DSC is 

improved by fabricating a unique hybrid tandem cell (HTC), comprising a metallic DSC, 

TEG and an active heat sink. 

 



CHAPTER 1  INTRODUCTION 

 

4 

 

1.3   Aim and Objectives  

The main objective of the work in this thesis is to investigate fundamental science and 

technological aspects that are crucial to the realisation of the PV/TEG hybrid system. The 

key tasks include: 

1) To identify suitable types of solar cells for this proposed application through in-

depth characterisation of power generating performance and, in particular, the 

dependence of performance on temperature. 

2) To characterise different types of solar energy conversion devices, e.g. silicon 

solar cell, cadmium telluride, copper indium selenium, DSC and TEG. 

3) To establish theoretical model and carry out simulation for investigating system 

optimisation in order to determine appropriate geometries for a PV cell, TEG and 

heat exchanger in a hybrid system. 

4) To design and construct a prototype of the proposed hybrid system, including the 

selection and fabrication of key components, such as the development of high 

thermal performance DSC with metallic electrode.  

5) To investigate experimentally the performances of the prototype system and 

evaluate the potential of PV/TE hybrid system as a promising future renewable 

energy technology. 

 

1.4   Thesis Outline  

 

Chapter one  

https://www.google.co.uk/search?rlz=1C1CAFA_enGB643GB643&espv=2&biw=1366&bih=667&q=cadmium+cadmium+telluride&spell=1&sa=X&ved=0CBoQvwUoAGoVChMIloWJr6GAxwIVRpoeCh0SUgDz
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This introductory chapter provides background information about PV/TEG hybrid 

systems. It gives a brief description of historical developments of thermal management 

of PV cells by passive and active cooling. Typical PV/TEG designs are introduced and 

the methods of integration are described. Also, this chapter includes a background to the 

present research, describes the aim and objectives and outline of the thesis. 

 

Chapter two  

The second chapter gives an overview of solar energy technology and a review of the 

methods available for harvesting solar energy. It focuses on the state-of-the-art research 

in the fields of PV cells, TE devices and combined systems. A detailed review of research 

in the field of combined PV/thermal collectors is presented, which shows that most effort 

to date has focused on flat plate collectors using water or air as the working fluid. A 

review of concentrator PV applications is undertaken, which shows that most applications 

use Fresnel lenses, aluminium foil and reflective mirrors. The technology to incorporate 

PV cells with TE devices is then evaluated. This chapter also examines the current 

research efforts in developing effective PV cooling systems using nanofluids.  

 

Chapter three 

The chapter explains the equipment and experimental procedure that was used to collect 

the experimental results. This is followed by a description of an experimental 

investigation on the temperature coefficients of the six different types of solar cells under 

fixed light intensity. This work represents the most systematic research to date, which 

covers all 6 types of the state-of-the-art solar cells. The results from this study provide 
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useful information and convincing evidence in the selection of appropriate candidate solar 

cells for integrating with TEG in a hybrid system. 

 

Chapter four 

This chapter describes the modelling of a PV/TEG hybrid system. The construction of the 

model based on energy balance equation of the PV/TEG hybrid system is explained, 

followed by calculating the parameters for both the PV cell and the TEG. To validate the 

theoretical results predicted from the model, a test rig of compound PV and TEG is 

designed and constructed. The details of the test rig design are illustrated. The 

experimental measuring technique for the apparatus and its temperature measuring 

techniques are discussed, including the equipment and procedures. The results obtained 

from the experiments are then compared with the theoretical calculations. A unique aspect 

of this model is that the simulation of the power output of TEG is performed under closed 

circuit, which significantly improves the accuracy of the simulation and consequently the 

optimal geometry for maximum power output of TEGs.  

 

Chapter five  

This chapter investigates the factors that influence the performance of the PV/TEG hybrid 

system. These include: (1) The effect of light intensity increasing on the PV/TEG hybrid 

system by fabricating a solar dish parabolic concentrator; (2) The effect of changing the 

mass flow rate of the water in the cooling system on the of the PV/TEG hybrid system. 
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Chapter six 

This chapter briefly describes the procedure of DSC fabrication in the laboratory, 

including the challenges, the obstacles, and the experiences gained. Two types of counter 

electrodes for DSC were also investigated: the conventional FTO-glass and a metallic 

counter electrode. Also included is an investigation of different metallic materials for the 

metallic counter electrode. The DSC with metallic counter electrode was specifically 

developed to improve the thermal coupling between PV and TEG in a PV/TEG hybrid 

system. The performance of the hybrid system employing DSC with metallic counter 

electrode was investigated and compared with that using an FTO-glass counter electrode. 

In addition, the optimum TEG geometry for an integrated DSC/TEG hybrid system was 

also investigated using three TEG modules of different dimensions.  

 

Chapter seven  

This chapter summarises the major achievements of this work and recommendations of 

future development
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CHAPTER TWO - LITERATURE REVIEW 

2.1   Introduction 

This chapter gives an overview of solar energy and technologies of harvesting energy 

from the sun. This includes single systems such as PV, TEG and also combined systems 

such as photovoltaic/thermal (PV/T) and photovoltaic/thermoelectric (PV/TE). Several 

experimental and theoretical studies have focused on optimisation of PV/T system design. 

Some theoretical investigations have examined the cooling of the PV by using 

thermoelectric cooler (TEC). Only few papers have discussed the integration of 

thermoelectric generator (TEG) with PV cells and the optimisation of the hybrid system 

and these are discussed in this chapter. The effectiveness of nanofluid as a coolant in 

PV/T system is also reviewed. 

2.2   Overview of Solar Energy 

There is current demand for the use of solar energy due to it being a silent, no moving 

part and low maintains costs [14] and environmentally friend source of energy [15]. The 

most exploited sources of energy at present are fossil fuels, even though the earth receives 

a higher amount of solar energy from the Sun than is generated by fossil fuels. The various 

types of fossil fuel (such as coal, gas, and oil) emit high amounts of carbon dioxide, which 

exacerbates environmental issues such as the threat of global warming [16]. It is therefore 

thought that solar energy will begin to dominate over the next three decades (as shown in 

Figure 2.1 [17]) as fossil fuels diminish and the global energy demand increases.  
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Figure 2. 1 Predicted global energy production. Solar will be the largest source of energy beyond 

2050 [17] 

  

2.3   Methods of harvesting solar energy 

There are several different methods for harvesting solar energy. Some methods are 

indirect, such as wind energy, hydroelectric energy and so on. Others are direct, such as 

PV cells, solar thermal, combined systems, thermoelectric devices and recently integrated 

hybrid systems of PV cells and TEG and so on. This research will review the direct 

methods of harvesting solar energy only.    

2.3.1   Photovoltaic (PV) cell 

A PV cell is a device which converts solar energy (photons) into electrical energy (volts) 

by photovoltaic effect. Solar conversion efficiency is an important parameter to evaluate 
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the performance of PV cells. It is highly affected by the semiconductor material and the 

operating temperature of the PV cell. Today, there are many types of PV cells in the 

market and they are classified according to their semiconductor material. Examples 

include silicon solar cells, gallium arsenide (GaAs), indium phosphide (InP), and DSC 

[18]. The DSC solar cell has attracted many scientists and engineers aiming to develop 

and increase its efficiency because of its potential low-cost of production [19][20][21]. 

The structure of DSC contains five components: the working electrode, a thin layer of 

semiconductor, a dye sensitiser, electrolyte, and a counter electrode [18]. A schematic 

diagram for the structure is presented in Figure 2.2 [22].  

 

Figure 2. 2 The structure of a DSC [22] 

DSC also offers the potential to fabricate the cell in a flexible design [23][24] by using a 

plastic counter electrode, as shown in Figure 2.3 [25].  

 

Generally, PV cells are characterised by measuring their current–voltage (I-V) curves. 
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Figure 2. 3 A photograph of 5 x 10 cm2 flexible PV cell [25] 

 

Using the I-V curves, the maximum power can be determined by the product of the 

current at the maximum power point (IMP) and the voltage at the maximum power point 

(VMP). Figure 2.4 is a typical I-V and P-V curves for PV cells [15]. 

 

Figure 2. 4 Typical I-V and P-V curves for a PV module [15] 

Consequently, the conversion efficiency of a PV cell (𝜂𝑝𝑣) can be calculated by: 
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 𝜂𝑝𝑣 =
𝐼𝑀𝑃𝑉𝑀𝑃

𝐺𝐴𝑝𝑣
 ,                                                                                                     2.1 

where, G (W.m-2) is the solar radiation intensity and 𝐴𝑃𝑉 (m2) is the PV cell area. Another 

useful parameter to evaluate the quality of a solar cell is the fill factor, which is defined 

as:  

FF= 
𝐼𝑀𝑃𝑉𝑀𝑃

𝐼𝑆𝐶𝑉𝑂𝐶
 ,                                                                                                      2.2 

where, ISC is the short circuit current and VOC is the open circuit voltage ( see Figure 2.4). 

The effect of temperature on PV cells has been investigated [26], [27]. It was found that 

the maximum power output (Pmax) of PV cells decreases with increasing temperature [28], 

[29]. Figure 2.5 shows the power output of crystalline solar cells as a function of the 

output voltage for different operating temperatures at 28 ⁰C, 40 ⁰C, 60 ⁰C, and 80 ⁰C, 

respectively [30]. It has been established that the conversion efficiency of silicon PV cells 

(ɳPV) decreases linearly with increasing temperature [31], as shown in Figure 2.6 [32]. 

However, DSC showed an interesting increase in ɳPV with increasing temperature 

between (20 ⁰C – 35 ⁰C), in contrast with silicon and other PV technologies [33].  

 

Figure 2. 5 The output power as a function of temperature for a crystalline solar cell [30] 
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Figure 2. 6 The relation between PV cell efficiency and temperature [32] 

 

2.3.2   Thermoelectric (TE) device 

2.3.2.1 Thermoelectric effects 

Thermoelectric power generation is a solid state energy source which converts heat into 

electricity [34], [35], utilising electrons as a working fluid. It is environmentally friendly 

[36], with no moving parts and produces no noise [37]. It is essentially consists of three 

effects: the Seebeck effect, the Peltier effect and the Thomson Effect [38], which is 

described below. 

The Seebeck Effect  

The Seebeck effect is the phenomenon of producing voltage due to a temperature 

difference by connecting two dissimilar materials in series electrically and in parallel 

thermally [39], as shown in Figure 2.7. 
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Figure 2. 7 The Seebeck effect: a voltage generated by the temperature difference across two 

dissimilar materials 

The voltage generated can be calculated by: 

 V= αab ∆T,                                                                                                               2.3 

where, V is the voltage generated from the TE device, αab is the difference in Seebeck 

coefficient of the two materials, and ∆T is the temperature difference between the hot 

junction (TH) and the cold junction (TC). 

The Peltier Effect 

The Peltier effect is the phenomenon of generating temperature difference across the 

junctions of two dissimilar semiconductors as shown in Figure 2.8. The heat is absorbed 

at one junction and rejected at another junction by applying an external current [40]. The 

rate of heat removed (𝑄̇) from one side to another side can be calculated as: 

𝑄̇ = 𝜋𝑎𝑏𝐼,                                                                                                           2.4 

where, 𝜋𝑎𝑏 is the Peltier coefficient and  𝐼 is the electrical current. 
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Figure 2. 8 Heat absorption at junctions because of the current applied [40] 

 

Thomson Effect 

The Thomson effect appears in all TE devices and is the phenomenon of heat absorption 

or dissipation due to current flow and temperature differences [41]. Figure 2.9 shows a 

single material subjected to ΔT and current [40]. 

 

Figure 2. 9 Thomson Effect [40] 

 

The total rate of heat absorption (𝑄𝑇
̇ )  is given as: 

𝑄𝑇̇ = 𝛽𝐼∆𝑇,                                                                                                         2.5 

where, 𝛽 is the Thomson coefficient.  
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The three coefficients are connected by the Kelvin relationships as described in the 

following equations [42]: 

𝜋𝑎𝑏 = 𝛼𝑎𝑏𝑇,                                                                                                         2.6 

𝑑𝛼𝑎𝑏

𝑑𝑇
=

𝛽𝑎−𝛽𝑏

𝑇
                                                                                                       2.7 

2.3.2.2 Solar thermoelectric system 

Solar thermoelectric is another method of converting solar energy into electric 

energy[43]. Gao [44] developed a theory to calculate the electric power output from TEG 

based on a known temperature difference. In the new formula, if the solar thermal energy 

is applied to the surface of a known collector then power output can be calculated directly 

from the solar radiation. A solar concentrator system utilising TEG was experimentally 

tested in [45]. The system was constructed with 6 TEGs (4 cm x 4 cm x 0.5 cm) in a 

hybrid system. The source of the heat was solar radiation while the cold side was provided 

by a water circulation system. The hot side temperature of the TE device reached 200 °C 

at midday, while the cold side almost 50 °C. The total power generated from the system 

was 220 W, which includes the electrical and thermal power. This system could be 

competitive with the PV/Thermal system (PV/T), see Figure 2.10. 

 

Figure 2. 10 Concentrator, hybrid thermoelectric-solar system [45] 
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A design using evacuated tubular solar collector (ETSC) was reported in [46]. It consisted 

of a parabolic trough concentrator and TEG modules to generate both hot water and 

electric power. The hot side of the TEG device was integrated with a solar selective 

absorber (SSA), while the cold side was integrated with a heat sink. The whole system 

was operating under vacuum conditions as can be seen in Figure 2.11.  

  

 

Figure 2. 11 Schematic diagram of the solar thermoelectric generator with a magnified view of the 

evacuated tubular [46] 

 

A solar thermoelectric power generation plant was design using the TRANSYS software 

tool [47]. The input parameters for the software were the characterisation of the TEG 

device, the temperature for the hot side of TEG and the power output required. The 

simulation was experimentally validated by two small scale units where the source of heat 

was either an electrical heater or a compound parabolic collector utilising solar energy. 

Various design for the slope and angle of the compound parabolic collector were 

discussed. The measurement results agreed with the model and the TRANSYS software 

was therefore considered a useful tool for such a hybrid system. 

A study into the modelling and optimisation of hybrid solar thermoelectric (HSTE) 

systems was also reported [48]. The main components of the system were a solar selective 
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material coated on TEG, a thermosyphon and a parabolic trough mirror concentrator, as 

shown in Figure 2.12. The concentrator was used to increase the light intensity in order 

to heat the hot side of TEG and the thermosyphon was used to enhance the heat transfer 

from thermoelectric to the condenser. The study investigated the effect of different 

thermoelectric materials and working fluids. The optimisation showed that a system 

efficiency (heat + power) up to 52.6 % is possible under 100 suns. 

 

Figure 2. 12 Schematic diagram of the hybrid solar thermoelectric system [48] 

An innovative solar thermoelectric generator (STEG) design is shown in Figure 2.13[49].  

 

Figure 2. 13 Schematic diagram of the hybrid Solar thermoelectric [49] 
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The electric conversion efficiency was 4.6 % under 1 kW.m-2 which was 7- 8 times higher 

the other STEG systems which were reported elsewhere. The nanostructured 

thermoelectric material inmproved the performance of the system [49]. 

 

2.4   Combined Systems 

Combined systems utilise the heat associated with electrical power production in PV cells 

in a hybrid design. The heat generated as a by-product could be used for domestic uses 

such as central heating [50], hot water [51] or to generate electricity in a supplementary 

stage by TEG [52] (using the Seebeck effect). Combined systems prevent the drop in 

electrical efficiency of the PV cell due to transfer the excessive heat in PV cell [53][54]. 

Adding the thermal power recovered from the system to the electrical power will also 

increase the total system power output [55]. Combining two systems uses a wide range 

of the solar spectrum, whereas the individual systems can only use part of it [52]. The 

heat extraction approach determines the type of combined system. For example cooling 

can be achieved by air [56], water [57], heat pipe [58], phase change material (PCM) [59] 

and thermoelectric cooler (TEC) [4] .   

2.4.1   Photovoltaic/Thermal (PV/T) Hybrid System  

Photovoltaic thermal technology (PV/T) is an integrated system that produces both heat 

and electricity. A solar cell produces electricity by converting solar radiation, while the 

thermal collector absorbs the heat from the solar cells and transfers it to warm a fluid. 

Meanwhile, the temperature of the PV cell will be reduced and stabilised, maintaining 

constant power production. PV/T is classified, according to the working fluid, into two 

main categories: air based PV/T and water based PV/T. 
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Air-based PV/T collectors. 

Air cooled PV/T collectors are fabricated by integrating air heat channels, usually at the 

rear of the PV cell. The air circulates inside the channel either by force [60]or by the 

natural convection of heat transfer [61]. The PV/T system using forced convection has 

better performance than that with passsive cooling [62]. However, power is consumed 

when using the pump to circulate the fluid, and hence the net electrical power generation 

reduces [62]. Various designs of the PV/T system using air cooling were discussed in the 

literature [63][64]. 

The enhancement in both thermal and electrical power generation associated with a PV/T 

air collector was studied by Bambrook and Sproul [65]. An open-loop single pass duct 

with a fan was used for cooling to extract the heat from PV cells. The electrical efficiency 

achieved was 10.6 and 12.2 % while the thermal efficiency was 28 and 55 % [65].  

A hybrid PV/T system using air collector for different operating parameters was designed, 

and a steady-state thermal model of the system was developed based on the energy 

balance equations [66]. The thermal and electrical efficiencies of the system were 

determined to be 42 and 8.4 %, respectively. Figure 2.14 shows a photograph of the 

system. 

 

Figure 2. 14 Photograph of PV/T solar heater [66] 
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An analytical model was developed by Dubey et al. [67]. The model studied four different 

configurations. The glass-to-glass PV module with duct showed a higher performance 

and higher outlet air temperature. The system presented 10.41 % average annual 

efficiency for glass-to-glass type PV modules with duct and 9.75 % for the module 

without duct.  

Jin et al. [68] developed a PV/T system using single-pass air collector with a rectangular 

tunnel absorber as shown in Figure 2.15. The rectangular tunnel was located on the rear 

of the PV panel. The PV/T system was tested under a solar simulator. The electrical, 

thermal and total efficiencies of the PV/T were obtained for the illumination intensity 

level of 817.4 W/m2, mass flow rate of 0.0287 kg/s and ambient temperature of 25 °C. It 

was concluded that the hybrid PV/T with a rectangular heat absorber tunnel showed the 

best performance in contrast with the conventional PV/T system [68]. 

 

Figure 2. 15 Ducting connected to blower and photovoltaic thermal collector [68] 

 

Light concentrator systems are used to achieve two important effects: firstly an increase 

in the electric power output, and secondly a reduction in cost by replacing the expensive 

semiconductor material with cheapest material such as mirrors, lenses and Fresnel lances 

[69]. Silicon and GaAs solar cells have been used widely for making concentrated PV 

(CPV) cells[70][71]. However, each solar cell working under a concentrator system needs 

cooling technology because the temperature of the solar cell will increase during 
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operation. A cooling system extracts the heat from solar cells and transfers it to the heat 

sink, heat pipe, thermal system or to a TE device. The PV module temperature should be 

kept as low as possible in order to maintain an acceptable level of conversion efficiency, 

as electricity production from PV/T hybrid system decreases with increasing temperature 

of the air flow [72]. Therefore, a compromise must be made between the electricity 

production and the useful hot air. Figure 2.16 shows a concentrator system cooled by air. 

 

 

Figure 2. 16 A schematic model of a double-pass photovoltaic thermal solar collector with CPC and 

fins [72] 

 

Different reflector materials were analysed for fill factor improvements in a low–

concentrating PV system, see Figure 2.17 [73]. These included anodized aluminium, 

rolled aluminium foil, and mirror reflectors. The compound parabolic collector element 

was also examined with different reflector materials. The economic value of concentrator-

PV systems has been studied, and it has been shown that the cost of each unit of energy 

produced by the concentrator PV system decreases with increasing concentration ratio if 

both electrical and thermal outputs are collected for useful purposes [74]. The PV/T air 

collector represents a simple technique to reduce the temperature of the PV cell. However, 

the physical properties of air limited the performance, making other methods of cooling 

preferable [75].   
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Figure 2. 17 The truncated compound parabolic concentrator showing removable reflectors and a 

10-cell module string [73] 

Water based PV/T collectors 

The concept of a water cooled PV/T hybrid system was first discussed by Kern and 

Russell [76], and it was considered as one of the most efficient methods to harvest solar 

energy [77]. A hybrid of PV/T systems was simulated by the TRANSYS tool, which 

produces hot water for domestic applications in addition to generate electrical power [78]. 

A silicon PV module was integrated with a water heat extraction unit, as it can be seen in 

Figure 2.18. The study was carried out at three locations: Nicosia, Athens and Madison. 

The proposed system had the ability to produce a remarkable amount of thermal and 

electrical energy [78].  

 

 

Figure 2. 18 Schematic diagram for the PV/T hybrid system [78]  
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Different kinds of PV panel materials such as c-Si, a-Si and CuInSe2 have also been 

examined  [79]. The study also evaluated the influence of thermal contact between the 

PV panel and the collector. It was found that the commercial PV panels were unable to 

provide a good thermal contact with the heat collector due to the poor thermal 

conductivity of the panel substrate material. Different materials and constructions utilised 

to improve the thermal contact between the PV panel and the collector. It was noted that 

the power output of the PV panel increased 10 % with the optimised design. 

Three types of crystal silicon PV cell arrays and the GaAs cell array have been tested, as 

shown in Figure 2.19 [80]. The experimental results indicated that the electrical 

performance of the system with the GaAs cell array was better than that of the crystal 

silicon PV cell arrays. Furthermore, the system with crystal silicon PV cell arrays showed 

a better performance in terms of the thermal output power. 

 

Figure 2. 19 The trough concentrated solar PV/T system [80] 
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PV/Heat-pipe 

Another method to cool the PV cell, which utilised a heat pipe, was patented by Russell 

[81]. A hybrid system of PV/heat-pipe comprised three main parts, namely: the 

evaporator, the adiabatic section, and the condenser section [75]. A heat pipe was used to 

cool a concentrated PV unit which usually worked at high temperature. A row of PV cells 

were integrated on the surface of the heat pipe. The heat exchanger in the heat system can 

reomove the heat away for the PV effectively with circulating fluid inside heat pipe [81]. 

 

2.4.2   Photovoltaic/Thermoelectric (PV/TE) Hybrid System 

The incorporation of TEG with PV cells has been investigated in the last ten years as it 

can recover the waste heat from the PV and generate electricity in a supplementary stage 

[82][83] [84][85]. A silicon thin film solar cell (STC) was integrated with TEG and a heat 

collector in a hybrid generation system (HGS) as shown in Figure 2.20. The heat collector 

worked by collecting the unwanted heat from the solar cells and transferring it to the hot 

side of the TEG [84]. 

 

 

Figure 2. 20 A hybrid generation system; (a) Schematic diagram, and (b) photograph [84] 

 

The distribution of heat across the TEG was analysed in this study by finite element 

method (FEM). The total power generated from the hybrid system was 393 mW which 
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was more than the individual system. A hybrid CPV/TEG was utilised to store the heat 

and use it as the heat source for the hot side of TEG, as in Figure 2.21 [85]. 

 

Figure 2. 21 A Schematic diagram for a hybrid generation system [85] 

The solar spectrum splitter divided the solar spectrum into two regions: the short 

wavelength and the long wavelength. The short wavelength light was focused on the PV 

cell, while the long wavelength was used to heat the fluid in the heat storage media and 

used it later, as a heat source to operate the TEG [85]. 

An experimental study used a hot mirror to separate the near infrared light and focus it 

on the TEG by Mizoshiri, et al [86], as shown in Figure 2.22. 

 

Figure 2. 22 A photograph of the hybrid system [86] 
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The experimental results indicated that there was a top up voltage from the TEG and that 

the total VOC of the system was increased by 1.3 %. 

Yang and Yin [87] designed a hybrid system containing PV cells, a TEG, and hot water 

(HW). Theoretically, they showed that the hybrid system produces higher electrical 

output power. However, they did not observe these advantages in the experiment, and the 

reason for this was related to the material of the TEG device. Therefore, the study 

recommended the use of nanotechnology to improve the material properties of TEG, 

thereby increasing the total efficiency of the hybrid system, as shown in Figure 2.23. 

 

Figure 2. 23 A Schematic diagram of the novel hybrid solar panel [87] 

 

More recently, a study which modelled a hybrid system, including PV cells and TEG, has 

analysed the effect of increasing the number of elements. The effect on the power output 

from PV and TEG was analysed [88]. The number of TE modules to generate the 

maximum power was discussed and the power output from the TEG was calculated. 

The first polymer solar cell integrated with TEG in a hybrid system was reported in [89]. 

The overall power generation of the hybrid PV/TEG system was investigated 

experimentally. A schematic diagram of the system is presented in Figure 2.24. The 
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results indicate that the hybrid system is more efficient in generating electricity than using 

a singular system [89].  

 

Figure 2. 24 A schematic diagram of the polymer solar cell and TEG [89] 

 

The power losses due to the incorporation of TEG with PV in hybrid PV/TEG system 

were considered in [90]. The study suggested the use of low internal resistance for both 

devices and a large number of legs for TEG to increase the output voltage.  

Since, the DSC is introduced in 1991, as a solar cell [19], the conversion efficiency 

increased gradually by time [91]. A DSC is able to use part of solar spectrum (short 

wavelength) and convert it to electricity, while the other part of solar spectrum (long 

wavelength) converted to heat as a waste heat inside the DSC [9]. As a results, the 

temperature of DSC increased and the conversion efficiency decreased. Thermoelectric 

generator can use this heat as a source of power and convert it to electricity by making 

temperature difference across it [92]. There have been some attempt to integrate TEG 

with DSC [8][9][10][11][12][13]. None of them has investigated the using of metallic 

counter electrode of DSC to integrate with TEG. 

A thin film of CuO was coated on a TEG to improve the heat transfer by conduction in 

the hybrid system. The coating resulted in an increase in the conversion efficiency of TEG 
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by 10 % and in the total power output by 2.35 %. A nanofluid has also been used for 

cooling in this hybrid system to enhance the heat absorption [10]. The experimental 

results indicated that the power output from TEG was increased [12].  

The TE device was also used as a cooler (via the Peltier effect) for PV in a hybrid PV/TE 

system [3]. The hybrid system included PV, TEC, aluminium sheet and a heat sink, as it 

can be seen in Figure 2.25. 

 

Figure 2. 25 A Schematic diagram of the hybrid PV/TE system [3] 

The power supply for the TEC was generated by the PV device. It was found that 

additional power could be generated due to cooling of PV cell. Also, the study reveal that 

the figure of merit of the TE module strongly affected the performance of the system. 

However, the practical validation and economical study were not considered.  The TEC 

was utilised in a building integrating PV system (BIPV) [4]. A dynamic model of BIPV 

was introduced to improve the performance of PV panels when TEC attached to the rear 

of a PV panel in a building. The results indicated that the temperature of the PV panel 

reduced by 10 °C without loss of power, and maintained the operating temperature of the 

PV panel at low level, increasing its life time.  
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2.4.3   Using Nanofluid in PV/T Hybrid Systems 

Hybrid PV/T systems have been widely studied in the literature either theoretically or 

experimentally utilising water or air as coolant. Recently, some works have been done to 

investigate the use of nanofluid as a working fluid in PV/T hybrid system [93]. Figure 

2.26 shows a schematic diagram for a PV/T hybrid system using nanofluid as the cooling 

media [94].    

 

Figure 2. 26 A Schematic diagram for the hybrid PV/TE system [94] 

 

Nanofluid optical filter utilised in solar energy application, which is fabricated from thin 

film or solid material [95]. Nanofluid optical filter is used to filter the wavelength of solar 

spectrum and permit only the useful solar energy for PV cell to go through it, while take 

in the unwanted energy in the solar spectrum [96]. 

A nanofluid was dispersed in the optical filter in order to use it, as the heat transfer and 

thermal storage medium [95]. The nanofluid was used to absorb the heat and transfer it 

away from the PV cells. Figure 2.27 shows a schematic diagram of the PV/T system 

integrated with the nanofluid optical filter. 
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Figure 2. 27 Schematic diagram of the PV/T and optical filter [95] 

Innovative ideas have been proposed involving magnetocaloric technologies. The main 

components of the proposed system include CPV cells, microchannel heat exchanger, and 

a magnetocalaric fluid as shown in Figure 2.28. In this system the CPV was cooled 

without consuming power for the pump. The advantages and disadvantages of the system 

were highlighted in [97]. 

 

Figure 2. 28 Schematic diagram of the proposed system [97] 
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In summary, the methods of harvesting solar energy were reviewed and analysed here.  

Many studies have attempted to overcome the challenge of energy demand and to reduce 

their carbon footprint. Several researchers have studied the PV/T hybrid system 

experimentally and theoretically with different designs. In addition, the advantages, 

disadvantages and design requirements have been noted. Some studies focused on 

utilising TEC to maintain the operating temperature of PV at a certain value in order to 

avoid the reduction in Pmax and ηPV, but the cost and economic studies are missing. 

The technology of integrating a PV cell with TEG is a promising technique to utilise a 

wide range of the solar spectrum and to remove the heat from PV cells. However, 

researchers have not studied the best technology for incorporation. In addition, the 

optimisation study of the PV/TEG hybrid system was in an open circuit condition, without 

experimental validation. Finally, some attempts have been made to integrate DSC with 

TEG in a hybrid system, but improving the thermal coupling between the counter 

electrode of the DSC and the TEG by using a metallic DSC has not been reported yet.   
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CHAPTER THREE – TESTING THE CANDIDATE PV CELL FOR 

INTEGRATING WITH TEG MODULES 

 

3.1   Introduction  

The objective of this chapter is to identify the types of PV cells that are suitable for 

developing PV/TEG hybrid systems. The ideal PV cell for such systems should have an 

efficiency that would not decrease with increasing temperature. This chapter describes 

the instruments and experimental setups established for studying the influence of 

temperature on the performance of six types of PV cells. A Peltier device was used to 

accurately control and stabilise the PV cell temperature. The level of light was kept 

constant at 1000 W/m2 for charaterisation of each PV cell. The voltage (V) and current 

(I) were measured using an Auto Lab System. The temperature dependence of Pmax and 

ηPV for six types of PV cells was investigated.  

 

3.2   Sensors and Instruments  

 
This section describes the key components and equipment employed for the study of 

temperature dependence of PV cells. 

 

3.2.1   Solar simulator 

A solar simulator type ABB (Oriel LCS-100 94011A) was used as the light source to 

provide the light in the experiments. The solar simulator was located inside a Faraday 

cage. A photograph for the solar simulator presented in Figure 3.1 
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Figure 3. 1 A photograph of the solar simulator 

 

3.2.2 Pyranometer  

A calibrated Kipp and Zonen pyranometer (CM11-SN-048544) was used to measure the 

light intensity, which was provided by the solar simulator. The distance between the 

pyranometer sensor and the solar simulator was calibrated to get 1000 W/m2, before the 

PV cell placed for characterisation. A photograph for the pyranometer is shown in Figure 

3.2. 

 

Figure 3. 2 Kipp and Zonen pyranometer 
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3.2.3   Peltier module 

A Peltier module was used to control the temperature, for which characteristics are given 

in Table 3.1 and a photograph is shown in Figure 3.3. 

Table 3. 1 Specifications of Peltier Device 

Total area 40 mm X 40 mm 

Number of elements 256 

Cross section area of the element 1.4mmX 1.4mm 

The length of the elements 1.2 mm 

 

This device can function either as a cooler to keep the temperature of the PV cells at 25 

⁰C or as a heater to increase the temperature of the PV cells up to 65 ⁰C by reversing the 

polarity of Peltier device. A schematic diagram of the Peltier device circuit is shown in 

Figure 3.4. 

 

Figure 3. 3 Peltier device 

 

The Peltier device was connected to a DC Power supply (EP-925). By changing the 

voltage of the power supply, the temperature of the PV cells that is mounted on the top 

surface of the Peltier module can be controlled. 
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Figure 3. 4 Peltier device circuit 

 

In order to dissipate the heat from the bottom side of the Peltier module effectively, the 

module is mounted on the top of heat exchanger. 

3.2.4   Thermocouples 

K-type thermocouples procured from RS Components, UK (RS 3630250) were used to 

measure the temperatures of the hot and cold sides of the PV/TE hybrid system. Also, the 

inlet and outlet fluid temperature in chapter five. The specifications of the thermocouple 

are shown in Table 3.2.  

Table 3. 2 Specifications of K type thermocouples  

Characteristic Type K 

Maximum Temperature 350 °C 

Minimum Temperature -60 °C 

Termination Type Miniature Plug 

Cable Length 1m 
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The thermocouples were connected to an eight channel data logger (Pico technology 

limited, T-08 RS Components, UK 205-7572). Each channel was compatible with K-type 

thermocouples. The software package comes with the data logger, and the interface 

recorded the data to the computer. Figure 3.5 shows a photograph of the thermocouple 

sensors and data logger. 

 

Figure 3. 5 Tools for temperature measurement; Thermocouple sensor (a), and data logger (b)  

 

3.2.5   Heat Exchanger 

A water-cooled aluminium heat exchanger (8 cm x 8 cm x 3 cm), as shown in Figure 3.6. 

It was used to take the heat away from the Peltier device by connecting it to tap water. A 

thin uniform layer of heat sink compound with a thermal conductivity of 2.9 W/m.K (RS-

217-3835) used between the heat exchanger and the Peltier device.  

 

Figure 3. 6 Aluminium heat exchanger, (a) side view and (b) top view 
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3.2.6   AUTO LAB system 

The AUTO LAB system was used to record the voltage and current of the I-V and P-V 

curves. The software provided with the AUTO LAB system facilitates easy setup of 

measurement requirements and record the data in Microsoft Excel. A photograph for the 

AUTO LAB and Faraday cage presented in Figure 3.7. An example of measurement 

commands is illustrated by a screenshot presented in Appendix.1, together with a 

measured I-V curve in Appendix.2.  

 

 

Figure 3. 7 A Photograph of solar simulator housed the Faraday cage and AUTO LAB system 

 

3.2.7   PV cells 

The PV cells investigated in this study include 4 types of commercial products: 

monocrystalline silicon (m-Si, Cheng Nuo Lamp Company), polycrystalline silicon (p-

Si, GuangZhou Keaiwen Electronic Technology Company), amorphous silicon (a-Si, 

Trony-SC4040S-3NA) and copper indium selenium (CIS, MOPS-Electric, 
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271020888710). In addition, the cadmium telluride cells (CdTe), an early-stage 

prototype, was supplied by the Centre for Solar Energy Research in Glyndŵr University, 

Wales, UK.  The dye-sensitised solar cells (DSCs) were prepared in-house at the Cardiff 

Thermoelectric Laboratory. Figure 3.8 shows an example of the active area (Aact) and 

total area (At) and a photograph of all 6 types of PV cells is presented in Appendix.3.   

 

Figure 3. 8 A Photographs of (a) DSC; (b) m-Si showed the active area and total area 
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Table 3. 3 Specifications of the PV cells measured at standard test conditions 

Table 3.3 shows their specifications including the module area, active area, VOC, ISC, FF 

and ηPV. 

 

 

3.3   Experimental setup 

A schematic diagram of the experimental setup is shown in Figure 3.9 and a photograph 

in Figure 3.10. The PV cell absorbs the light from the solar simulator. Part of light is 

converted into heat in the PV cell, which can result in an increase in the operating 

temperature of the PV cell. In order to maintain the temperature of the PV unchanged, a 

temperature control system is employed which consists of a Peltier module and water heat 

exchanger.  Two K-type thermocouples were used to measure the temperature of the PV 

cell. The top thermocouple was attached to the surface of the solar cell, or placed inside 

the glass electrode by drilling a hole from the side when possible. Another thermocouple 

was fixed inside a copper plate, which acted as a thermal conductor and homogeniser. 

 

PV 

technology 

APV 

(cm2) 

Active  

area (cm2) 

VOC 

(V) 

ISC 

(mA) 

FF        

(%) 

ηPV  

(%) 

m-Si 9 6.25 0.6 180 67.1 11.6 

p-Si 20 12.95 1.8 130 77.4 14 

a-Si 16 16 2.6 53.9 59.4 5.2 

CIS 36 31.36 4.8 69 47.3 5 

CdTe 30 25 4.1 64 46.7 4.9 

DSC 3 0.25 0.78 3.1 41.4 4 
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Figure 3. 9 Schematic diagram for experimental set up of the solar cell assembled with the Peltier 

cooling device 

 

A thin uniform layer of heat sink compound was applied between the copper sheet and 

the rear of the PV cell to provide a good thermal contact. The operating temperature of 

the cell was considered to be the average of the two thermocouple measurements. A 

Peltier device was placed between the copper plate and the heat sink using the same heat 

sink compound. The I-V and P-V curves were obtained at stable PV cell temperatures of 

25 °C, 35 °C, 45 °C, 55 °C and 65 °C. 
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Figure 3. 10 A Photograph of the experimental set up of the solar cell assembled with the Peltier 

cooling device 

 

3.4   Results and Discussion 

The I-V curves for the 6 different types of PV cells are shown in Figure 3.11. It can be 

observed that increasing the operational temperature from 25 oC to 65 oC leads to a 

significant decrease in VOC for all types and a slight increase in short circuit current (ISC) 

except for DSC where, the ISC was almost constant when the operational temperature 

increased from 25 oC to 45 oC than started to drop after the temperature passed 45 oC. 

 The decrease in VOC results in a net reduction in Pmax for all of the devices tested except 

for DSC, as shown in Figure 3.12. 

In DSC, Pmax increases with increasing temperature initially from 25 oC to 35 oC and then 

start to decreases with further increasing temperature. 
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Figure 3. 11 I-V curves for (a) m-Si (b) p-Si (c) a-Si (d) CIS (e) CdTe and (f) DSC 

 

This trend is unique and differs significantly from the other 5 types. It is thought that this 

is because the recombination losses stay constant for this period, and after that the change 

is started when the temperature became over 45 oC. 
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Figure 3. 12 P-V curves for (a) m-Si (b) p-Si (c) a-Si (d) CIS (e) CdTe and (f) DSC 

 

The temperature dependence of the Pmax in a solar cell is usually measured so-called the 

temperature coefficient, which is defined by [30]: 

1

𝑃𝑚𝑎𝑥

∆𝑃𝑚𝑎𝑥

∆𝑇
                                                                                                                  3.1 
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It was found that the values determined from our experiment for m-Si (0.45 % / K) and 

p-Si (0.51 % / K) were in good agreement with the published data of the crystalline solar 

cells (0.65 %/K) [30].  

 

The temperature dependence of ISC and VOC for different cells can be better illustrated by 

plotting them as a function of temperature as shown in Figure 3.13. It can be seen that an 

increase in the temperature caused a decrease in the VOC for all PV cells. However, there 

was a slight increase in ISC for all the PV cells except for DSC where it stayed constant 

from 25 oC to 45 oC and then decreased.  

 

The Pmax as a function of temperature for each PV cell was measured three times and the 

three measurements are presented in Figure 3.14. The standard deviation of the Pmax 

output was calculated using the following equation [98]: 

𝜎 = √
1

M
∑ (xi − x̅)2                    M

i=1                                                                                     3.2 

where, σ is the standard deviation, M is the number of measurements, x𝑖 is the element 

and 𝑥̅ is the mean of the measurements. Table A.4 in Appendix.3 presents the standard 

deviation associated with the measurement of the Pmax for each type of PV cells over the 

temperature range: 25 oC, 35 oC, 45 oC, 55 oC and 65 oC. The results show that the data 

presented exhibits good repeatability. 
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Figure 3. 13 Isc & Voc curves for (a) m-Si (b) p-Si (c) a-Si (d) CIS (e) CdTe and (f) DSC 
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Figure 3. 14 The maximum power output as a function of temperature for (a) m-Si (b) p-Si (c) a-Si 

(d) CIS c) CdTe and (f) DSC, with each type of cells were measured three times. 

 

It can be seen that the maximum power output of all types of PV cells except for DSC 

decreases with decreasing temperature almost linearly. The average rate of decrease in 

Pmax was calculated over three ranges of temperatures as presented in Table 3.4. The first 
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range was (25 oC- 45 oC), where p-Si presented the quickest drop in Pmax. This indicates 

that p-Si is the worst type of solar cells for use in a PV/TEG hybrid system because of 

significant power loss at higher temperatures required by efficient operation by TEG. 

 

The DSC samples showed an interesting increase in Pmax by 9.8 % when the temperature 

was close to 45 oC. This increase in the Pmax of DSC makes it a suitable candidate for 

integration with TEG, which indicates that the hybrid system would gain the power from 

both the PV cell and the TEG over this range. The second range is 45 oC- 65 oC and DSC 

showed significant drop in Pmax of -16.3 % after the Pmax reached the maximum at 45 °C. 

The slope of the DSC was found to be close to the slop in reference [99]. The overall 

reductions in the investigated temperature range (25 oC- 65 oC) were also calculated. It 

can be seen that the Pmax of the m-Si cells dropped significantly by 18 %. The p-Si device 

exhibited a higher drop in Pmax of 21.2 %. The a-Si sample demonstrated the least 

temperature sensitivity of the samples tested (84.5– 9.70 mW, 5.7 %). For CIS cells Pmax 

dropped by 13.3 % and the CdTe sample reduced by 16.7 %. Finally, the overall drop of 

Pmax in DSCs over 25 oC- 65 oC is 8.1% due to a significant decrease (-16.3%) over the 

temperature range 45 oC- 65 oC, despite it increased by 9.8% over the temperature range 

25oC-45oC  

 Table 3. 4 The drop in Pmax for the six solar cells in three regions 

 

Temperature 

 range [°C] m-Si p-Si a-S CIS CdTe DSC 

25-45 -10.2% -11.0% -2.1% -6.7% -10.5% +9.8% 

45-65 -8.7% -11.5% -3.6% -7.1% -6.3% -16.3% 

25-65 -18.0% -21.2% -5.7% -13.3% -16.7% -8.1% 
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The mean values of Pmax were used to calculate the normalised Pmax (or the power density) 

in Figure 3.15, the FF in Figure 3.16 and the ηPV in Figure 3.17. The normalised Pmax was 

calculated by dividing the mean value of Pmax (mW) of the cells by the active area of the 

PV cell (cm2). Due to the size difference in the PV cells employed for this study, the 

normalised Pmax provides a fair comparison among all types of the PV cells investigated. 

It can be seen from Figure 3.15 that all types of PV cells exhibited a linear decreases in 

the normalised Pmax except for DSC, which reaches a maximum around temperatures of 

40 oC.  

 

Figure 3. 15 Normalised maximum power as a function of temperature for 6 different types of PV 

cells 

 

Similarly, the variation in FF and ηPV as a function of temperature are almost linear except 

for DSC, as shown in Figures 3.16 and 3.17, respectively.  
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Figure 3. 16 Fill Factor as a function of temperature for m-Si, p-Si, a-Si, CIS, CdTe and DSC 

 

Figure 3. 17 Efficiency as a function of temperature for m-Si, p-Si, a-Si, CIS, CdTe and DSC 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

18 28 38 48 58 68

F
il

l 
F

ac
to

r

Temperature [°C]

m-Si

p-Si

a-Si

CIS

CdTe

DSSC

3.5

5.5

7.5

9.5

11.5

13.5

18 28 38 48 58 68

E
ff

ic
ie

n
cy

  
o

f 
P

V
 [

%
]

Temperature [°C]

m-Si

p-Si

a-Si

CIS

CdTe

DSC



CHAPTER 3                                                            TESTING THE CANDIDATE PV CELL      

 

 

51 

 

The FF of DSC increases with increasing temperature until reaching a maximum value at 

around 40 oC, and then decreases with further temperature increase. Based on this result, 

together with the data presented in Figure 3.13, it can be concluded that the unique 

temperature coefficient of DSC observed can be attributed to its temperature dependence 

on FF.   

For each type of the PV cells, the ηPV decreases with increasing temperature (except for 

DSC). In general, this observation can be explained in terms of the kinetics of carrier 

recombination which increases under illumination at higher temperatures, resulting in a 

reduction in ηPV [33].   

 

This different trend of DSC makes it a good candidate for integration with TEG because 

this type of solar cell will not lose too much power when the operating temperature 

increases due to the thermal resistance created by adding the TEG [100]. Although a-Si 

cells exhibit a decrease in the power output and the efficiency with increasing 

temperature, the rate of decrease is much lower than these of crystalline silicon solar cells. 

Therefore, they might be employed for integration with TEGs to develop PV/TEG hybrid 

system.  

 

On the othe hand, P-Si exhibits the highest drop in efficiency with an increase in 

temperature, making this type of solar cell the worst for integration with TEG. This is 

because, the PV cells would lose more power than that which could be generated from 

TEG. The decrease in the slope ( 
∆𝜂𝑃𝑉

∆𝑇
) for crystalline solar cells was 0.06 (%/K) and it 

was found to be in reasonably good agreement with the value reported in [30], which was 

0.08 (%/K).   
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3.5   Conclusions 

In this study, experimental investigation on the temperature dependence of Pmax and ηPV 

were carried out in order to identify suitable PV cells for the development of PV/TEG 

hybrid system.  A total of 6 types of PV cells were investigated. The results show that the 

power output and efficiency of DSCs increases with increasing operating temperature 

over the range 25 oC-45 oC. This unique behaviour makes DSCs a promising candidate 

for the proposed PV/TEG hybrid system. Crystalline silicon cells exhibit the most 

significant reduction in Pmax and ηPV, making them unsuitable for PV/TEG system. 

Similarly, the power output and efficiency of a-Si solar cells decrease with increasing 

temperature. However, the rate of decrease in a-Si cells is much slower than that of 

crystalline silicon solar cells. Consequently, a-Si cells may also be employed in a PV/TEG 

system to produce a net improvement. In conclusion, the experimental results obtained 

from this work indicate that it is feasible to integrate either DSC or a-Si with TEG in a 

hybrid PV/TEG system. This will enable thermoelectric power generation using the waste 

heat from PV cells and the heat associated with light energy in the infrared region of the 

solar spectrum without causing a power reduction in the PV cells due to operating at an 

elevated temperature. The next chapters will discuss the integration of a-Si and DSC solar 

cells with TEG in details. 
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CHAPTER FOUR – GEOMETRY OPTIMISATION OF TEG IN HYBRID 

PV/TEG SYSTEM 

 

4.1   Introduction 

The geometry of TEG in a PV/TEG system plays an important role in controlling the 

operating temperature of the PV cell and the temperature difference across the TEG, 

which has significant influence on the performance of both PV cell and TEG. In this 

chapter, a model is developed for optimising the geometry of TEG in a PV/TEG system. 

The model can be used to determine the optimal thermoelement length and cross-sectional 

area, at which the maximum power output (Pmax) would be achieved. The effect of the 

thermoelement length and cross-sectional area on the Pmax of TEG, the PV cells, and the 

total power was studied, and the influence of thermoelement length and cross-sectional 

area on the conversion efficiency of TEG, PV cell and overall efficiency was analysed. 

This chapter also includes an experimental study that was conducted to validate the 

model. A PV/TEG system with 6 different TEG geometries was constructed. The 

performance of this hybrid system was investigated and compared with the theoretical 

simulation. 

 

4.2   Model Outline 

A hybrid PV/TEG system is shown schematically in Figure 4.1. It consists of a PV cell 

connected to a TEG via a copper plate that serves as a thermal concentrator. The interfaces 

were filled with thermally conductive paste to ensure good heat transfer across these 

interfaces. The copper plate forms the hot side of the TEG, with the cold side of the TEG 

is attached to a heat exchanger with water circulating through it. The advantages of such 
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a hybrid system are that the operating temperature of the PV cell will be reduced due to 

the transfer of heat into the TEG, and the TEG will generate additional power due to the 

temperature difference (T) established across it.  

 

Figure 4.1 A schematic diagram of the hybrid PV and TEG system 

 

In this hybrid system, the thermal energy generation and flow is considered as follows: 

The rate of solar energy available to the PV cell is equal to the heat losses from the PV 

and electrical power generation, thus: 

 

𝜏𝑔[𝛼𝑐𝛽𝑐𝐺 + 𝛼𝑇(1 − 𝛽𝑐)𝐺)]𝐴𝑃𝑉 = 𝑄𝑐+𝑄𝑟 + 𝑄𝑘 +  𝑃𝑃𝑉,                                     (4.1) 

 

where, τg is the transmissivity of the glass, βc is the packing factor, αc is the absorptivity 

of the PV cell, αT is the absorptivity of the tedlar (tedlar is a thin layer of polyvinyl fluoride 

is used for insulation and protection of the PV cell [101]), G is the solar radiation intensity 

and APV is the device area of the PV cell. On the right side of Equation 4.1, Qc denotes 

the convective heat loss from the surface of the cell, Qr is the radiative heat loss, Qk is the 

heat conducted from the PV cell to the TEG, and PPV is the electrical power generated by 

the PV cell [64][102]. The heat loss from the PV cell to the ambient air due to convection 

and conduction is given by: 

 

               Qc=UtAPV(Tcell-Tamb),                                                                          (4.2) 
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where Tcell and Tamb represent the solar cell and ambient temperatures respectively. Ut is 

the heat transfer coefficient from the PV to the ambient air by convection and conduction 

[88]: 

                     𝑈𝑡 = (
𝐿𝑔

𝐾𝑔
+

1

ℎ𝑐𝑜𝑣
)

−1

,                                                                                          (4.3) 

where, Lg and kg are the length and thermal conductivity of the glass respectively. hcov is 

the convective heat transfer coefficient [103]. Radiative heat loss from the PV cell is 

described by: 

 𝑄𝑟 = 𝜀𝜎𝐴𝑃𝑉(𝑇𝑐𝑒𝑙𝑙
4 − 𝑇𝑎𝑚𝑏

4 ),                                                                           (4.4) 

where, ε is the surface emissivity of the cell and σ is the Stefan-Boltzmann constant. Heat 

conducted from the PV cell into the TEG is given by 

 𝑄𝑘 =
𝑘𝐴𝑇𝐸𝑁(𝑇𝑐𝑒𝑙𝑙−𝑇𝐶)

𝐿𝑇𝐸
,                                                                                (4.5) 

where, k is the thermal conductivity of the thermoelectric material, ATE is the cross-

sectional area of thermoelements, N is the number of thermoelements and LTE is the length 

of thermoelements. ΔT is the temperature difference across the TEG. It is assumed for 

simplicity that the effect of the solder and copper contacts has a negligible effect and 

consequently, ΔT can be approximated by (Tcell –TC) if the TEG operates in open-circuit 

(where, TC is the temperature at the cold side of the TEG).  

 

An important distinction is required here, as ΔT makes no reference to whether or not the 

TE device is in the open-circuit condition or the closed-circuit condition. In all previous 

studies, the power output of the TEG was calculated using a ΔT that corresponds to open-

circuit condition. This can introduce significant error because the ΔT across a TEG at 
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closed-circuit differs significantly from that at open-circuit. Figure 4.2 shows the drop in 

the ΔT and voltage due to the closed circuit which is shown in Figure 4.3. 

 

Figure 4.2 Schematic transient processes in thermoelectric materials with open circuit and short 

circuit: (a) Temperature difference; (b) Voltage across the specimen [104]  

 

 

Figure 4.3 An equivalent electrical circuit for the thermoelectric generator 

 

In a real system, TEG has to operate in the closed-circuit condition in order to deliver the 

power to external load.  
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Under such circumstances, the heat flow through the TEG consists of both heat 

conduction and the Peltier heat. As a result, the ΔT in Eq. (4.5) should be replaced by 

[44][104]  

          ∆𝑇 = (1 + 𝑍𝑇𝑀)(𝑇𝑐𝑒𝑙𝑙 − 𝑇𝐶)                                                                         (4.6) 

where, Z (= 𝛼2/𝜌. 𝑘) is the thermoelectric figure of merit, α is the Seebeck coefficient, ρ 

is the electrical resistivity,  TM is given as 

                  𝑇𝑀 =
(1+2𝑠)𝑇ℎ+𝑇𝐶

2(1+𝑠)2
,                                                                                     (4.7) 

where, s is the ratio of the load resistance to the internal resistance of the TEG module. 

 

Using Equation (4.6) to replace (Tcell –TC) in Equation (4.5), with s=1 (i.e., operating 

under the matched-load condition) and assuming the hot side temperature of the TEG 

module is equal to the PV cell temperature, Tcell, Equation (4.5) can be written as: 

  𝑄𝑘 =
𝑘∙𝐴𝑇𝐸∙𝑁∙[1+ 

𝑍(3𝑇𝑐𝑒𝑙𝑙+𝑇𝑐)

8
]∙(𝑇𝑐𝑒𝑙𝑙−𝑇𝑐)

𝐿𝑇𝐸
,                                                (4.8) 

The power output of the TEG, with taking into account the electrical and thermal contact 

resistances, can be expressed as [105] 

 

              𝑃𝑇𝐸 =
𝛼2.𝐴𝑇𝐸.𝑁.(𝛥𝑇𝑐)2

2.𝜌.(𝑛+𝐿𝑇𝐸).(1+
2.𝑟.𝐿𝐶
𝐿𝑇𝐸

)
2  ,                                                                 (4.9) 

Where, LC is the thickness of the ceramic plates on the TEG. The variables n and r are the 

electrical and thermal contact parameters, which correspond to the ratio of the bulk 

material electrical resistance and thermal conductivity to that of the contacts, respectively 

[105]. 

 Figure 4.4 shows visually the N, LTE and LC parameters of a TEG module. 
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Figure 4.4 Schematic diagram showing two thermoelements 

 

From Equation (4.8) and Equation (4.9), the conversion efficiency of the TEG, ηTE,can 

be calculated by 

 𝜂𝑇𝐸 =
𝑃𝑇𝐸

𝑄𝑘
.                                                       (4.10) 

The power output, PPV, of the PV cell can be given as: 

 

                  𝑃𝑃𝑉 = 𝜂𝑃𝑉τg𝐴𝑃𝑉𝐺 ,                                         (4.11) 

Where, ηPV denotes the efficiency of the PV cell. It varies with temperature and can be 

expressed as [106]  

 

                            𝜂𝑃𝑉 = 𝜂0[1 − β0(𝑇𝑐𝑒𝑙𝑙 − 298)]                      (4.12) 

 

where, 𝜂0 is the efficiency of PV module at 25 °C, and 𝛽0 is the temperature coefficient 

for silicon solar cells. As a result, the total power output, Ptot, from the PV/TEG hybrid 

system is calculated as;   

                               𝑃𝑡𝑜𝑡 = 𝑃𝑃𝑉 + 𝑃𝑇𝐸  ,                                                               (4.13) 

Consequently, the overall efficiency of the hybrid system, ηtot, can be obtained as: 
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 𝜂𝑡𝑜𝑡 =
𝑃𝑃𝑉

𝜂𝑃𝑉τg𝐴𝑃𝑉𝐺 ,
+ 𝜂𝑇𝐸

1

1+(
𝑄𝑐+𝑄𝑟+𝑃𝑃𝑉

𝑄𝑘
)
                                                        (4.14) 

Employing appropriate operating parameters for the hybrid PV/TEG system shown in 

Figure 4.1, the temperature of the PV cell and the temperature difference across the TEG 

can be calculated using an iterative method based on Eqs. (4.1) – (4.8). The power output 

and conversion efficiency of the system can be determined using Eqs. (4.9) – (4.14). 

Consequently, the optimal geometry of the TEG can be achieved by investigating the 

dependence of the efficiency on the geometrical factors 

4.3   Simulation procedure and input parameters 

Simulation was performed to demonstrate the capability of the model for optimal design 

of hybrid PV/TEG system. A total of 8 types of TEG modules were chosen to study the 

dependence of the maximum power output on the geometry of TEG modules. Each type 

of the module has the same number of N and ATE, but the length of the thermoelements 

was varied to obtain the maximum power output (Pmax). The number of thermoelements 

(N) and the cross sectional areas (ATE) employed in these modules are shown in table 4.1.   

 

The simulation used a Matlab® programme (Appendix.5) to determine Tcell by solving 

equations (1) – (8) iteratively. Once Tcell is determined, the PTE and ηTE in closed-circuit 

condition can be calculated using equations (4.9) and (4.10), respectively. The power 

output PPV and ηPV of the solar cell are calculated using equations (4.11) and (4.12), 

respectively. Finally, the total power output Ptot and conversion efficiency ηtot of the 

hybrid system can be determined using equations (4.13) and (4.14), respectively. The 

parameters employed for the calculation were given in Table 4.2. The assumptions used 

are as follows:  

1) The cold side of the TEG is maintained constant at room temperature (298K);  
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2) The intensity of solar radiation is maintained at 1000 W.m-2, equivalent to 1 sun of 

radiation flux;  

Table 4.1 Geometric parameters of the modules investigated 

Module Type N AC [mm2] 

   

I 62 0.64 

II 62 1.44 

III 62 1.96 

IV 62 2.56 

V 100 2.56 

VI 150 2.56 

VII 200 2.56 

VIII 250 2.56 

 

3) Heat transfer occurs in one dimension only, i.e., there is no heat transfer in lateral 

direction;   

4) The ηPV of PV cell is 10 % at 25 oC and changes with temperature following equation 

(4.12) with the temperature coefficient listed in Table 4.2. 

 

The simulations were carried out in two different atmospheres: the ambient and the 

vacuum. The calculation was carried out using type I module listed in Table 1 for an ideal 

operating condition where all heat losses are neglected. The results are identical for both 

procedures, indicating the validity of essential part of the model [44].  
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Table 4.2 Parameters used for simulation 

Parameter Value Unit Reference 

τg 0.95 -- [88]  

ac 1 --  

βc 1 --  

β0 0.0011 K-1 [107] 

aT 0.5       -- [88]  

APV 40x40  mm2  

hcov 5  Wm-2K-1 [103]  

Tamb 298.15  K  

ε 0.88 -- [88]  

k 1.5  W.m-1K-1 [108] 

kg 1  W.m-1K-1 [64] 

α 185  µVK-1 [108] 

ρ 1 x 10-5  Ω.m [108] 

n 0.0001  m [34] 

r 0.2 -- [34] 

lc 0.00009  m  

Lg 0.003  m [64] 
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4.4   Results and discussion 

Figure 4.5 shows the PTE as a function of LTE for modules with different sizes as described 

in Table 4.1. The results were obtained for operation in atmosphere (i.e., non-vacuum).  

 

Figure 4.5 Power output vs thermoelement length for system operating within an ambient 

atmosphere 

 

It can be seen that the PTE for a given type of module increases initially with an increase 

in LTE until reaching the Pmax at an optimal length and then the PTE starts to decrease with 

a further increase in LTE. The results show clearly that it is necessary to design a TE 

module with the optimal length in order to obtain the Pmax. It can also be seen that the 

Pmax is higher for the modules that have larger N and ATE. However, the optimal length 

required for the modules with larger N and ATE is longer. This indicates that an increase 

in the power output is obtained at an expense of material consumption. For example, the 

optimal length for type VIII is 50 mm, compared with 3.4 mm for type I (i.e., a factor of 
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14), while the Pmax is only increased from 5.2 mW to 7 mW. Clearly, the drawback of 

using longer length will overwhelm the benefit. An appropriate selection of 

thermoelectric module for a PV/TEG system requires a compromise between the power 

output and material consumption. In general, the modules with small area are more 

appropriate. 

It is to be noted that type VIII modules exhibit an  increase in the Pmax due to two reasons: 

1) the semiconductor area has increased (i.e., ATE in eq.4.9) and 2) the area of TEG 

becomes close to the size of PV cell and this covers all back side area of PV cell. 

Consequently, the heat losses by convection and radiation from the bottom side of PV 

cell were eliminated. This analysis indicates that the operation of PV/TEG unit in vacuum 

can minimise the heat losses due to convection and consequently the power output is 

anticipated to be higher. Figure 4.6 shows the PTE as a function of LTE, when operating in 

vacuum and a sample of the calculations results for vacuum and non-vacuum is presented 

in (Appendix.6). 

 

The operation in vacuum is beneficial due to elimination of the convective losses from 

both sides of the PV cell. It can be seen that the Pmax of type I is almost doubled in vacuum 

compared with that in ambient.  An increase in the power output of the smallest module 

(module I) when operating in vacuum is slightly significant than that of largest module 

(type VIII). This can be attributed to the fact that the increase in temperature difference 

across the module is more significant for type I than for type VIII. 
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Figure 4.6 Power output vs thermoelement length for system operating in a vacuum 

 

It can be seen that the data in Figures 4.5 and 4.6 are plotted as a function of LTE, providing 

direct information on length optimisation. However, it is to be noted that the information 

about optimisation of other geometrical parameters such as the cross-sectional area (AC), 

thermocouple number (N) and the volume of thermoelectric materials is also embedded 

in these figures.  

 

The Pmax for each type of module as a function of volume is shown in Figure 4.7 for 

operation in vacuum and at ambient pressure.  
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Figure 4.7 Maximum power output vs thermoelectric generator volume for vacuum and non-

vacuum systems 

 

It can be seen that the Pmax of the TEG when operates in vacuum is higher than that in 

ambient. Increasing the volume of thermoelectric materials can improve the power output 

of the TEG, but the increase is relatively small (compared with the increase in the 

volume). For example, the PTE for type I is 5.2 mW and it increases to 7.0 mW for type 

VIII (i.e., an increase by 35 %), compared with large increase in volume by more than 

800%. 

 

Figure 4.8 shows the temperature difference as a function of LTE for type I (smallest 

module) and type VIII (largest module) in vacuum and at ambient atmosphere, 

respectively.  It can be seen that the temperature difference across a module of type I is 

increased by 54.8 % when operating in vacuum due to elimination of the convection 
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losses from both side of PV cell. However, the increase for type VIII is marginal if the 

length of thermoelements is shorter than 20 mm. It is interesting to be noted that the 

increase in the LTE caused further increasing in the ∆T for the large module (M-VIII), but 

the ∆T for the small module (M-A) was almost constant after 0.06 m. This is mainly 

because most of the heat will be wasted by convection and radiation losses. 

 

Figure 4.8 Temperature difference for Module I and Module VIII under vacuum and atmospheric 

conditions 

 

Figure 4.9 shows the power output per unit area as a function of LTE for type I and type 

VIII in vacuum and at ambient atmosphere, respectively. It is apparent that the small 

module (type I) exhibits a significantly higher power output per unit area than that of the 

large module (type VIII). It is to be noted that the optimal length for achieving high power 

output per unit area when operated in vacuum is longer than that when operated at ambient 

atmosphere. Figure 4.10 shows the PTE, PPV and Ptot of type I when operating in ambient 

atmosphere.  
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Figure 4.9 Power output per unit area vs thermoelement length in a vacuum and at ambient 

atmosphere, respectively 

 

Figure 4.10 The power output of TEG, PV and PV/TEG type I vs thermoelement length in ambient 

atmosphere for amorphous silicon solar cells 
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It can be seen that the power output of the solar cell will decrease when integrated with a 

TEG because the operating temperature of the solar cell is increased duo to a large thermal 

resistance across the TEG. However, the power reduction in the solar cell (2mW) will be 

compensated by the power generation by TEG (5.2mW). As a result, the Ptot of the hybrid 

system is increased to 162mW. 

 

Similarly, Figure 4.11 shows the efficiencies ηTE, ηPV and ηtot of type I for operation in 

ambient atmosphere.   

 

For a PV cell with a cross-sectional area of 40 mm2, the ηtot will increase from 10% to 

10.2 % for a TEG with the optimal length LTE of 2 mm. A further increase in ηtot is 

possible if the system is operated in vacuum or using TE module with high Seebeck 

coefficient. 

 

Figure 4.11 The conversion efficiency of TEG, PV and PV/TEG type I vs thermoelement length in 

ambient atmosphere for amorphous silicon solar cells 
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Figure 4.12 shows that total power output as a function of LTE for the hybrid systems 

described above. In view of economic viability, a practical hybrid system should select 

small-size TEG. Considering the LTE for majority of commercial available modules is 

around 1.5 mm, it appears that module “M-I” provides a suitable geometry for a practical 

PV/TEG hybrid system because it produces more total power output than other modules 

as shown in the Figure. However, if the TEG module with longer LTE is available, the 

other modules might provide larger power output. 

 

Figure 4.12 The Power output of a hybrid TEG/PV system vs thermoelement length 

 

Figure 4.13 shows the overall system efficiency ηtot of the PV/TEG systems as a function 

of LTE for the eight different module geometries. Similarly, higher overall efficiency is 

obtained using module type “M-I” if the available LTE is less than 1.5 mm.   

The selection of the type of PV cells for integration with TEG is another crucial step in 

the optimisation of a PV/TEG hybrid system, which must be considered carefully. In this 
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study, two cases were presented to demonstrate the importance of this aspect by using p-

Si and a-Si cells, respectively, which have significantly different temperature coefficient, 

β0, as shown in Table 4.3. 

 

Figure 4.13 The efficiency of eight PV/TEG hybrid systems as a function of the thermoelement length 

for eight TEG modules 

 

Table 4. 3 The values of β0 for two silicon PV technologies 

PV- technology Temperature coefficient, β0, 

[K-1] 

Reference  

p-Si 0.004 [107] 

a-Si 0.0011 [107] 

The power outputs and conversion efficiencies of an a-Si based system (M-I) were 

calculated using β0 = 0.0011 K-1 (see Table 4.2) and presented in Figures 4.10 and 4.11. 
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Figure 4.14 The power output of TE, PV and TEG/PV vs thermoelement length for p-Si integrated 

with M-I 

 

Figure 4.15 The efficiency of TE, PV and TEG/PV vs thermoelement length for p-Si integrated with 

M-I 
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Similarly, the calculations were carried out using a p-Si integrated with a M-I type TEG. 

The power outputs, PTE, PPV and Ptot as a function of thermoelement length are shown in 

Figure 4.14 while the ηTEG, ηPV and ηtot are shown in Figure 4.15. It can be seen that there 

is no increase in the overall power output of a p-Si based PV/TEG system. This is because 

the reduction in the power output of the p-Si cell with increasing Tcell is larger than the 

power gain from the TEG. As a result, adding TEG made no contribution to improve the 

Ptot and ηtot. On the contrary, it is likely to reduce the power output and efficiency and is 

clearly not suitable for integration with TEG. 

 

It is to be noted that these two types of the PV cells used here are assumed to have the 

same ηPV of 10 %, but with different values for β0. In reality, the efficiency of the a-Si 

cells is usually smaller than that of crystalline Si cells. However, this fact does not affect 

the conclusion obtained above regarding the criteria for determining the suitability of the 

PV cells for integration with TEG. The a-Si PV/TEG system displayed an increase in the 

power output and efficiency over the single PV system because the reduction in its power 

output is much smaller than that observed in as the p-Si system, making a-Si cell a good 

candidate for integrating with TEG. 

 

In summary, the geometry of the TEG is crucial in the design of a PV/TEG hybrid system, 

since it presents a trade-off between expensive material and power generation. This is 

because the geometry of TEG affects directly the Ptot and ηtot
 of the PV/TEG hybrid 

system. In general, a TEG module that has a smaller ATE than that of the PV cell, can 

generate more electrical power than those having a larger ATE. Furthermore, a significant 

increase in the power output can be obtained if the system operates in vacuum. In an ideal 

case, where the convective heat losses are completely eliminated, the power output can 

be almost doubled. The PV cells suitable for constructing PV/TEG hybrid systems should 
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be the type of cells, such a-Si cells, which have a smaller temperature coefficient. This is 

because the power gain obtained from TEG (5.2 mW) can over-compensate the power 

loss in the PV cell (2 mW), leading to a net improvement. The section below will discuss 

the integration of TEG with a-Si experimentally, and compare the theoretical and 

experimental results. 

 

4.5   Validation 

Six commercially available TEG modules were used for validation of the theoretical 

results as shown in Figure 4.16.  The specifications of the models used for this experiment 

are listed in Table 4.4. They were integrated with a-Si solar cells, which are one of the 

suitable types of the PV cells for integration with TEG. In this section, six PV/TEG hybrid 

systems were built and the performances were investigated in an attempt to validate the 

theoretical model presented in the previous sections and to determine experimentally the 

optimum geometry of the TEG.  

 

Two methods are generally used to characterise TEG under operating conditions. The 

first is called ‘constant heat flux’, when the heat input to the module is constant. The 

second method is known as ‘constant T’, where the T across the TEG module is kept 

constant by the continuous addition of heat to the system. In this research, the first method 

is used because the system operates approximately in a “constant heat flux” condition.  

The TEG modules were characterised by varying the resistance of the load connected to 

them and measuring their output voltage. The PV cells are characterised by using the 

same procedure that was mentioned earlier in Chapter 3. It is to be noted that the PV cell 

and TEG were characterised separately, without series or parallel connections.  
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4.5.1   Experimental Setup 

The six TEG modules employed for this investigation are shown in Figure 4.16. The 

PV/TEG hybrid systems were constructed based on Figure 4.1 using an a-Si solar cell to 

integrate with one of the six TEG modules, respectively. The temperature of the hot side 

of TEG was determined by two factors: the temperature at the cold side of TEG and the 

thermal resistance between the PV cell and the heat exchanger of each module.  

 

Figure 4.16 Photograph of the six thermoelectric generator modules, M-A, M-B, M-C, M-D, M-E 

and M-F 

The cold side of TEG was maintained at 25 ⁰C with an error of ± 1.5 ⁰C.  A key parameter 

that determines the thermal resistance of the TEG is ACN/ LTE, the values of which are 

listed in Table 4.4. The dimensions of the TEGs in Table 4.4 were measured by using the 

microscope in Appendix.7.a. An example of the measurements is appeared in 

Appendix.7.b. Six different temperatures were therefore generated on the hot side of TEG 

by changing the geometry of the TEG. It is to be noted that the temperature of the hot side 

of TEG was measured by inserting the sensor inside copper plate (1mm thickness) 

between the TEG and PV cells. A heat sink compound used to fill the gap between PV 
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cells and TEG. This measured temperature assumed to be the same as the operating 

temperature of the PV cells. 

 

The TEG modules were characterised by measuring the voltage across an external load 

with variable resistance, which was connected to the TEG during the test as shown in 

circuit in Figure 4.3. The light intensity (1000 W/m2) of solar irradiation was maintained 

constant throughout the experiment. 

Table 4.4 Characteristics of the thermoelectric modules 

 

The Pmax was extracted when the external load matched the internal resistance of the TEG 

module. A multi-meter (Agilent U1241A) was used for measuring the voltage, current 

and resistance in the circuit presented in Figure 4.3. 

4.5.2   Results and Discussions 

Figure 4.17 show the measured voltage as a function of load resistance for the hybrid 

systems which were constructed using modules M-A, M-B, M-C, M-D, M-E and M-F, 

respectively.  

Modules Total area 

 (mm2) 

N AC  

(mm2) 

LTE 

(mm) 

ACN/ LTE 

(mm) 

A 10 x 10 14 0.8 x 0.8 3 3 

B 15 x 15 62 0.8 x 0.8 2 20 

C 20 x 20 98 0.5 x 0.5 1 25 

D 20 x 20 142 0.7 x 0.7 2 35 

E 30 x 30 62 2.1 x 2.1 2.5 109 

F 40 x 40 256 0.9 x 0.9 1.7 122 
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Figure 4.17 The voltage vs load resistance for six TEG modules, respectively 

 

The TEG produced voltage because of the temperature difference (T) established across 

it. It is clear that each TEG module generated different values of voltage because the N 

and T for each module are different. It is interesting to note that the T across TEG is 

depended on ACN/ LTE (see Table 4.5). 

 

      

          

           

 

 



CHAPTER 4                                                                   GEOMETRY OPTIMISATION                                      

 

 

77 

 

The value of electric current flowing through the TEG module can be calculated by 

dividing the measured voltage by the applied load. The I-V curves for the six TEG 

modules presented in Figure 4.18.  It can be seen that an increase in T across the TEG 

module led to an increase in the ISC. For instance, M-A shows a highest electric current 

because T established across it is the largest. However, this module produced the lowest 

VOC because the N is very small (only 14 elements).  

Table 4.5 The hot side temperature and the T across each of the TEGs 

 

The T in M-B and M-C is also reasonably high, together with reasonably large N, leads 

to highest value of VOC in these two modules. In M-D, a very large N (142 elements) is 

mainly responsible for the large VOC. The worst module for integration with PV cell is 

M-F, because the ISC and VOC were the minimum values, because this module contains 

the largest N (256 elements) which resulted in the lowest T established across the 

module. It is to be noted that the size of M-F is exactly the same size as the PV cells (4cm 

x 4cm).  

Modules TH [⁰C] T=  TH- TC  [⁰C] ACN/ LTE (mm) 

M-A 51.0 26 3 

M-B 39.0 14 20 

M-C 38.0 13 25 

M-D 33.0 8 35 

M-E 27.0 2 109 

M-F 26.0 1 122 
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Figure 4.18 The I-V curves of six TEG modules; M-A, M-B, M-C, M-D, M-E and M-F 

The experimental results demonstrated that M-B and M-C are preferable to the larger 

sizes because it generates more power and uses less material. The power output as a 

function of the voltage for all 6 modules investigated are presented in Figure 4.19.  
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Figure 4.19 The P-V curves of six TEG modules M-A, M-B, M-C, M-D, M-E and M-F   

 

M-B showed the highest performance among the six TEG modules, which is associated 

with a high thermal resistance. In this study, the TH of the TEG modules is proportional 

to the thermal resistance of the module as the cold side of TEG was kept constant at 25 

⁰C.  



CHAPTER 4                                                                   GEOMETRY OPTIMISATION                                      

 

 

80 

 

It can be seen that modules A and B showed the highest TH, 51 ⁰C and 39 ⁰C respectively. 

Figure 4.20 shows experimental data of the TH of the six TEG modules as a function of 

LTE, compared with those obtained from theoretical calculation (the parameters of the 

modules are presented in Appendix.8.   

 

Figure 4.20 The hot side temperature of the thermoelectric vs Thermoelement length for six 

modules; M-A, M-B, M-C, M-D, M-E and M-F 

 

Some modules, such as M-C, M-D, M-E and M-F, show very good agreement between 

the theoretical and experimental results. However, the smaller modules such as M-A and 

M-B show slightly higher deviation with the errors of 8% and 7%, respectively. In 

general, an increase in the LTE causes an increased in the TH of TEG because the thermal 

resistance increased for a given total cross-sectional area. 

 

Figure 4.21 shows the calculated Pmax as a function of LTE using the parameters of the six 

modules investigated except for the length of the modules being varied. In Figure 4.21 

M-A

M-DM-C

M-B

M-E
M-F

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4

H
o

t 
si

d
e 

te
m

p
er

at
u
re

 [
 º

C
]

Thermoelemets length, LTE, [mm]

 Theoretical

Experimental



CHAPTER 4                                                                   GEOMETRY OPTIMISATION                                      

 

 

81 

 

the values of Pmax measured from experiments on the six modules (which have fixed LTE) 

are also presented for comparison. It is clear that, except for M-B and M-C, all 

commercial modules employed in this study are not optimised for such application. In 

order to obtain those maximum attainable values, a shorter length is needed for M-A while 

longer lengths are needed for M-D, M-E and M-F.   

 

Figure 4.22 shows the efficiency of TEG modules as a function of LTE for six modules. It 

was calculated by dividing the Pmax of TEG by the total input power on the PV device of 

the PV/TEG hybrid system, which functioned as a heat collector for the TEG.  

 

 

Figure 4.21 The maximum power output of thermoelectric against Thermoelement length for 

modules: M-A, M-B, M-C, M-D, M-E and M-F 
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It interesting to mention here, this efficiency represent the efficiency of TEG in the system 

not at the hot junction of TEG. Among the six TEG modules, M-B showed the highest 

efficiency (0.32 %), while M-F showed the worst (0.1 %). 

The operating temperature of the PV in the hybrid system is affected by the TEG 

employed in the system. Figure 4.23 shows the calculated power output of the PV cell as 

a function of LTE for the six TEG modules, respectively, compared with the Pmax obtained 

from experiments. Figure 4.24 shows the corresponding ηPV of the PV cell operating on 

the top of the six TEG modules, respectively. 

 

Figure 4.22 The efficiency of thermoelectric generators in the system vs Thermoelement length for 

six modules: M-A, M-B, M-C, M-D,, M-E and M-F 

 

It can be seen that PPV and ηPV decreased by increasing the LTE of TEG modules, because 

increasing the LTE increases the thermal resistance between the PV cells and the cold side 

of the TEG.  
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Figure 4.23 The maximum power output of the photovoltaics vs Thermoelement length for the six 

modules: M-A, M-B, M-C, M-D, M-E and M-F 

 

It is clear that integrating PV with TEG to form a hybrid PV/TEG system results in a 

decrease in PPV and ηPV because of increasing Tcell. However, the decrease of PPV and ηPV 

in the PV cell may be compensated by the increase of PTE and ηTE in the TEG, leading to 

an overall increase of the hybrid system.  

 

Figures 4.25 and 4.26 show Ptot and the ηtot respectively. It can be seen that, among the 

six TEG modules that were integrated with PV cell, M-B presented the highest Ptot and 

highest ηtot.  
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Figure 4.24 The efficiency of photovoltaic cells vs Thermoelement length for six modules: M-A, M-

B, M-C, M-D,, M-E and M-F 

 

Figure 4.25 The power output of (PV/TEG) vs Thermoelements length for six modules; M-A, M-B, 

M-C, M-D, M-E and M-F 
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This is partly due to that fact the M-B provide “geometry match” with the PV cell 

employed, which has an area of (40mm x 40mm) and a smaller temperature coefficient.  

 

Figure 4.26 The efficiency of (PV/TEG) vs Thermoelement length for the six modules: M-A, M-B, 

M-C, M-D, M-E and M-F 
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Because the integration of TEG created a thermal resistance between PV cells and the 

heat sink, it will contribute to an increase in the operating temperature of PV cell. Using 

the wrong geometry will result in losing power from the PV cell and possibly wasting 

thermoelectric materials. The results demonstrate that a small-size module is preferred, 

rather than a larger size (i.e. in a similar size to PV cell), due to facilitating a higher power 

density with the added benefit of lower material consumption. 

 

4.6   Conclusions  

The optimal geometry for obtaining maximum power output and conversion efficiency 

of a TEG in a hybrid PV/TEG system was investigated using a model developed in this 

study. Together with the knowledge of temperature dependence of PV cells, the overall 

power output Ptot and conversion efficiency ηtot of a hybrid PV/TEG system can be 

estimated. The results of simulation using this model shows that an increase in both the 

overall power output and conversion efficiency may be achieved by incorporating TEG 

to harvest waste heat from PV cell. In addition, the results demonstrate that in practice an 

optimised geometry has to be a “trade-off” between achieving a large power output and 

using minimal thermoelectric material. In general, a thermoelectric module that has a 

smaller cross-sectional area than that of the PV cell can generate more electrical power 

than these of having a larger area.  Furthermore, a significant increase in the power output 

can be obtained if the system operates in vacuum. In an ideal case where the convective 

heat losses are completely eliminated, the power output can be almost doubled. The 

validation of the theoretical work by experimental study showed good agreement between 

the theoretical and experimental results with an average error of about 9 %.  
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CHAPTER FIVE - STRATEGIES FOR ENHANCING THE 

OPTIMISED PV/TEG HYBRID SYSTEM 

 

5.1   Introduction  

Two strategies are applied in this chapter in order to build an efficient PV/TEG hybrid 

system. The first strategy was achieved by increasing the light intensity on the PV/TEG, 

which increases the ∆T across the TEG. Two techniques were utilised to increase the light 

intensity. The first technique involved a solar parabolic dish with the inside surface coated 

with mirrors. This system has the ability to increase the light intensity to up to 5 suns 

using indoor light. The second concentrator technique was to reduce the distance between 

the solar simulator and the PV/TEG hybrid system, from (18cm) to (10.5cm), causing an 

increase in light intensity of up to two suns.  

 

The second strategy was to reduce the cold side temperature of the system. The effect of 

the mass flowrate on the electrical power output was investigated. 

 

5.2   The first strategy 

This section explains the strategy of increasing the light intensity by employing solar 

concentrators. The solar concentrator receives the light from the sun and concentrates it 

on to the PV/TEG system in order to increase the intensity of light.  

5.2.1   Parabolic concentrator system  

5.2.1.1   Experimental set up 

The experimental setup is shown photographically in Figure 5.1 and schematically in 

Figure 5.2.  
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Figure 5.1 Photograph of the experimental setup of concentrated PV/TEG hybrid system 

 

 

Figure 5.2 Schematic diagram of the concentrated PV/TEG hybrid system 
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The following equipment was used in the setup: the solar parabolic dish, solar simulator, 

receiver (PV/TEG system), water circulating system, rheostat and multimeter. The solar 

parabolic dish was built in the laboratory by coating a recycled satellite dish with 

commercial mirrors. Two sizes of mirrors were used to cover the entire inside area of the 

dish. They were 2cm x 2cm and 1cm x 1cm, with the latter used to cover only the centre 

of the dish where it was difficult to fit the larger mirrors due to the higher curvature. A 

photograph of the solar parabolic dish is shown in Figure 5.3. 

 

Figure 5.3 A photograph for the constructed solar parabolic dish 

The solar simulator used in this experiment was a commercial Xenon strip light. The 

Xenon light was used, as it is white and to mimic the sunlight. The receiver included the 

PV/TEG hybrid system. Two K-type thermocouples were employed for temperature 

measurement and one Agilent (U1241A) multi-meters used for measuring the voltage, 

current and electrical resistance. A heat sink compound was used to fill in any gaps 

between the PV cells and TEG or TEG and the heat sink, and a copper plate was used 
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with a groove machined into it to accommodate the thermocouple in order to avoid 

possible damage to the solar cells. The cold side of TEG was kept constant at 20 ⁰C. A 

rheostat was used as the external load to the PV cells and to the TEG, as explained in 

Chapter 3 and Chapter 4 respectively. 

 

5.2.1.2   Results and Discussions 

An experimental study was conducted to find the optimum geometry of a TEG to integrate 

with PV cells. Four commercially available TEG modules were integrated with PV cells 

of type m-Si. The specifications of the PV cells are given in Table 5.1 and the 

characterisations of the four TEGs appear in Table 5.2. 

Table 5. 1 The PV cell specifications under one sun 

 

Table 5. 2 The specifications of the TEG modules 

 

 

 

 

 

 

As mentioned previously, the integration of TEG leads power generation from the TEG 

in a supplementary stage. However, the PV cells will lose power due to an increase in the 

operating temperature of the PV cells. Therefore, the process of integration is a 

Technology Total area 

(mm2) 

Active area 

(mm2) 

ISC 

(mA) 

VOC 

(mV) 

FF 

(%) 

ηPV 

(%) 

m-Si 40x40 35 x 35 220 576 65.6 6.8 

Module External area  (mm2) N LTE (mm) 

M-A 40x40 256 1.1 

M-B 30x30 62 1.5 

M-C 20x20 144 1.1 

M-D 15x15 62 1.3 
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compromise between the power generation from the TEG and the loss in power from the 

PV cells. 

An experimental work has been already done by integrated the PV cell in Table 5.1 with 

the four TEG modules in Table 5.2 to identify the best PV/TEG hybrid system that could 

be used under increasing the light intensity. The solar simulator in Figure 5.1 was used as 

a solar simulator and the distance between the solar simulator and the sensor of the 

pyronometer was calibrated to measure one sun (1000 W/m2) from the output light. The 

I–V characteristics of the PV cell and TEG are determined by measuring the voltage drops 

on a variable load resistor which is connected to the device under the test. The temperature 

of the TH and TC measured by using two K-type thermocouples. 

 

Table 5.3 presented the power output of PV, TEG and PV/TEG, as it can be seen that the 

highest total power generation from the combined PV/TEG system was obtained from the 

integration with M-A, because the loss in power output from the PV cell was lower than 

the other modules.  

Table 5. 3 The power output of PV, TEG and PV/TEG (PPV/20 and PPV/Th represent 

the power output of the PV at 20 oC and TH, respectively) 

 

Module TH 

(oC) 

ΔT 

(oC) 

PPV/20 

(mW) 

PPV/Th 

(mW) 

PTE 

(mW) 

Ptot 

(mW) 

M- A 24 4 83.2 81.8 3.2 85 

M- B 32.5 12.5 83.2 75 9 84 

M- C 30 10 83.2 79.1 4.5 83.6 

M- D 38 18 83.2 75.5 8.2 83.7 
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In this experiment, the same PV cell was used for integration with the TEGs, the purpose 

of which is mainly to remove the heat generated in the PV cell and transport it to the cold 

side of the TEG, rather than keeping it in the PV cells. The results in this section confirm 

the findings of Chapter 3, which showed that mono-crystalline silicon PV cells (Type m-

Si) are not suitable for integration with TEG in a hybrid system. 

However, the integration of TEG can ensure the operating temperature of the PV cells 

close to room temperature, which increases the lifetime of the PV cells and maintain the 

efficiency at certain level. It is to be noted that the size of TEG selected to integrate with 

PV cells was the same size as the PV cells because the smaller sized TEGs led to a 

decrease in the total power output Ptot of the PV/TEG system. 

 

It is clear that the increase in power output due to integrating TEG (M-A) with the PV 

cell (m-Si) was not significant because the ΔT was low under one sun illumination. The 

following work investigated further the same hybrid PV/TEG system under 5 suns 

illumination to study the effect of higher light intensity on the PV cell and the ΔT across 

the TEG. Figure 5.4 shows the I-V curves of the PV cell in the PV/TEG system when one 

sun and five suns were applied respectively. Detailed measurement results are presented 

in Appendix.9.   

 

The light intensity under both one sun and five suns were measured using the pyranometer 

described in section 3.2 by placing the pyranometer on the position of the receiver, 

exposing to the reflected light from the concentrating solar parabolic dish. It is clear from 

Figure 5.4 that increasing the light intensity caused an increase in the ISC of the PV cell.  
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Figure 5. 4 The I-V curves of PV in a PV/TEG hybrid system under 1 sun and 5 suns 

 

 

Figure 5. 5 The P-V curves of a PV cell in a PV/TEG hybrid system under 1 sun and 5 suns 
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The ISC increased linearly with light intensity from 200 mA to 975 mA (i.e. almost a factor 

five), while the VOC increased slightly. As a result, the PPV increased from 84 mW to 

285.7 mW, as can be seen in Figure 5.5. A more detailed of the measured results are 

presented in Appendix.10. 

The I-V curves of a TEG in a PV/TEG system are presented in Figure 5.6.  

 

Figure 5. 6 The I-V curves of a TEG in a PV/TEG hybrid system under 1 sun and 5 suns 

 

It can be seen that the VOC and ISC of the TEG were also increased since they both depend 

on T, and the increased light intensity of five suns increased the T from 4 ⁰C to 13 ⁰C, 

as shown in Table 5.4. As a result, the Pmax of the TEG in the PV/TEG system increased 

from 3.2 mW to 28 mW as shown in Figure 5.7 because the power output of the TEG is 

a function of T. Consequently, the ηTE increased from 0.2% to 0.35%, as can be seen in 

Table 5.4. The overall power output Ptot and efficiency ηtot of the PV/TEG hybrid system 

are also shown in Table 5.4. 
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 Table 5. 4 The characterisation of the PV/TEG hybrid system 

 

 

Figure 5. 7 The P-V curves of a TEG in a PV/TE hybrid system under 1 sun and 5 suns 

 

5.2.2 Obtaining higher intensity using solar simulator 

5.2.2.1 Experimental Set up  

Figure 5.8 shows a photograph of the experimental setup established for this study and a 

schematic diagram of the system is shown in Figure 5.9. The experimental setup in section 

4.5.1 was adopted and improved by including: a flow meter, a DC Pump, a heat 
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Figure 5. 8 A photograph of the experimental setup 

 

- Flow meter 

The water flow meter was purchased from RS (UK-RS/198-3029. http://uk.rs-

online.com/web/p/flow-sensors-switches-indicators) and was used to measure the mass 

flow rate of the cooling fluid. This would allow the heat removed from the cold side of 

the TEG to be calculated. The specifications and details of the flowmeter are given in 

Appendix.11.  

 

-DC Pump 

A DC pump (model DC30A-1230) was used to circulate the cooling fluid to the heat 

exchanger. The voltage applied was constant at 3 V, and a photograph of the DC pump is 

shown in Figure 5.10. 

 

http://uk.rs-online.com/web/p/flow-sensors-switches-indicators
http://uk.rs-online.com/web/p/flow-sensors-switches-indicators
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Figure 5. 9 A schematic diagram of the experimental setup 

 

 

Figure 5. 10 Photograph of the DC pump 
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- Heat exchanger 

A heat exchanger (9 cm X 9 cm X 2.2 cm) was used to transfer the heat effectively from 

the cold side of the TEG. It consists of a copper plate (9 cm x 9 cm x 0.2 cm) with seven 

fins (0.7 cm x 0.6 cm x 6 cm), which can remove the heat efficiently from the cold side 

of the TEG. Figure 5.11 shows a photograph of the heat exchanger. 

 

Figure 5. 11 Photograph of the heat exchanger 

- DC power supply  

A DC power supply (Type UK-FARNEKK) was used to supply the voltage to the DC 

pump in order to circulate the fluid and take the heat away from the cold side of the TEG.  

- Type K thermocouples 

Four type K thermocouples were used to measure the temperature in four places. They 

were positioned to measure: TH, TC, the inlet fluid temperature (Tin) and the outlet fluid 

temperature (Tout).  

 

5.2.2.2 Results and Discussions 

By changing the distance between the solar lamp and the PV surface, the maximum light 

intensity of 2 suns can be obtained in this system. An increase of light intensity from one 

sun to two suns was achieved by reducing the distance between the PV and the solar 

simulator from 18 cm to 10.5 cm. The optimised PV/TEG hybrid system in Chapter four 
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was selected to apply 2 suns and investigate the Ptot and the thermal power (Pther). The PV 

cell was characterised initially without the TEG by attaching it directly to the cold side of 

the cooling system. One sun and two suns of light illumination were applied respectively.  

 

Figure 5.12 shows the I-V curves of the PV cell under one sun and two suns. It can be 

seen that an increase in the light intensity from one sun to two suns resulted in an increase 

in the ISC from 50 mA to 103 mA (i.e., more than doubled), while the VOC remained 

almost constant. It can also be seen that the temperature of the PV cell only increased 

from 25 ⁰C to 26.5 ⁰C when the light intensity was increased from one sun to two suns 

because all the heat was transferred quickly from the PV cell to the heat exchanger.  

 

Subsequently, the TEG was inserted between the PV cell and the cold side of the heat 

exchanger, which introduce an additional thermal resistance between the PV cells and the 

cold side of the heat exchanger, depending on the geometry of the TEG. Figure 5.12 also 

shows the I-V curves of a photovoltaic cell on top of a thermoelectric generator in the 

hybrid system under 1 sun and 2 suns.  

Figures 5.13 shows the P-V curves of the PV cell under one sun and two suns while 

attached directly to the cold side of the heat exchanger, without the TEG. It can be seen 

that the Pmax was also improved by increasing the light intensity. 

 

Figure 5.14 shows the P-V curves for the PV cell on top of a TEG in a hybrid PV/TEG 

system. An increase in the temperature of the PV cell was observed due to an increase in 

the thermal resistance between the PV cells and the cold side of the heat exchanger. The 

temperature of the PV under one sun was 42 ⁰C in this case and increased to 51 ⁰C under 

two suns.  
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Figure 5. 12 The I-V curves of photovoltaic cell alone under 1 sun and 2 suns, and a photovoltaic 

cell on top of a thermoelectric generator in the hybrid system under 1 sun and 2 suns 

 

Figure 5. 13 The P-V curves of the photovoltaic cell alone under 1 sun and 2 suns 
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Figure 5. 14 The P-V curves of a photovoltaic cell on top of a thermoelectric generator in the hybrid 

system under 1 sun and 2 suns 

The increase in the temperature of the PV cell caused a drop in Pmax from 74 (mW) to 

71.4 (mW) under the one sun illumination. This represents a decrease of the power output 

by 3.5 %.  A decrease by 4.5 % was observed for the case of two suns illumination. 

The power output of the TEG in the PV/TEG hybrid system was measured under the same 

test conditions. The I-V and P-V curves for the TEG are presented in Figures 5.15 and 

5.16 respectively. Unlike in the PV cell, both ISC and VOC of the TEG were increased with 

increasing ΔT as shown in Figure 5.15. The increase in the VOC of the TEG was 

significant, from 0.21 V to 0.38 V, representing an increase by 81 %.  

There was a power gain from TEG when moving from one sun and two suns as shown in 

Figure 5.16. The power generated from the TEG in the hybrid PV/TEG system was 5.6 

mW under one sun, and 18 mW under two suns because the T across the TEG was 

increased from 17 ⁰C under one sun to 26 ⁰C for two suns. 
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Figure 5. 15 The I-V curves of a thermoelectric generator in the hybrid system under 1 sun and 2 

suns 

 

Figure 5. 16 The P-V curves of a thermoelectric generator in the hybrid system under 1 sun and 2 

suns 
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As a result, an increase in the overall power output of the hybrid system (Ptot) due to 

integrating the TEG is achieved, which is of about 4 % under one sun and 8.9 % under 

two suns, respectively as shown in Table 5.5.  

The ηPV, ηTE and ηtot are presented in Table 5.5. It can be seen that there is an increase of 

6.5 % under one sun and 8.9 % under two suns due to the top-up power from the TEG. It 

is interesting to mention here, the ηTE was calculated using the total power input to the 

system. 

 

Table 5. 5 The maximum power output and conversion efficiency of TEG, PV and PV/TEG under 

one sun and two suns 

 

Clearly, integrating TEG with PV can improve the power output from the system and has 

little effect on removing heat from the PV cell to the heat exchanger, which will help to 

increase the lifetime of PV, in particular if the operating temperature of the PV is close 

to room temperature. 

 

No 

 

 

 

PPV 

(mW) 

single 

ηPV 

 (%) 

Single 

 

PTE-max 

(mW) 

in  

PV/TEG 

PPV-max 

(mW) 

in  

PV/TE

G 

ηTE  

(%) 

in 

PV/TEG 

ηPV 

 (%) 

in  

PV/TEG 

Ptot 

(mW) 

ηtot 

(%) 

1 74 4.6 5.6 71.4 0.4 4.5 77 4.9 

2 140 4.4 18.8 133.9 0.6 4.2 152.7 4.8 
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5.3   The second strategy 

The second strategy involved study the effect of changing mass flow rate on the 

performance of PV/TEG hybrid system by using the same experimental setup in Figures 

5.8 and 5.9. 

 

5.3.1 Results and discussion 

The value of the mass flowrate (m) was changed five times; m1, m2, m3, m4 and m5) 

between 0.00008 kg/s and 0.0015 kg/s to see the effect on the power output of TEG and 

PV cell. 

Figure 5.17 and 5.18 show the I-V and P-V curves of PV cells respectively in hybrid 

PV/TEG for different mass flow.  

 

Figure 5. 17 The I-V curves of photovoltaic cells at different mass flow rates 
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It can be seen that the increase in the mass flowrate increased both the VOC and Pmax of 

PV cells because an increase in the mass flow rate increases the cooling rate. The change 

in the VOC was very small because the PV cells were a-Si which are not highly affected 

by temperature.  As a result, the TC and TH decreased, meaning that the operating 

temperature of the PV cells was decreased.  

Furthermore, increasing the mass flow rate caused an increase in the VOC and ISC of TEG 

in the PV/TEG hybrid system as shown in Figure 5.19. This is because an increase in the 

mass flowrate caused an increase in the T cross the TEG (see Appendix.12). The Pmax 

of TEG also increased as a result of increasing the VOC and ISC, as shown in Figure 5.20. 

 

 

Figure 5. 18 The P-V curves of photovoltaic cells at different mass flow rates 
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Figure 5. 19 The I-V curves of the thermoelectric generator, at different mass flowrates 

 

 

Figure 5. 20 The P-V curves of a thermoelectric generator at different mass flow rates 
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Figure 5. 21 The maximum power output power vs mass flowrate for PV, TEG and PV/TEG 

 

Figure 5.21 shows the Pmax of PV cell, TEG and Ptot as a function of mass flowrate. It can 

be seen that the Pmax was increased by increasing the mass flowrate because increasing 

the mass flowrate resulted in an decrease in the temerapture of the PV cell, Tcell,  and  an 

increase in the temperature difference across the TEG, T. 

Consquently,  the ηTE, ηPV and ηtot were increased with increasing mass flowrate, as 

shown in Figure 5.22.  

 

The rate of thermal energy (𝑄̇ther), or the heat removed from the cold side of TEG, can be 

calculated using the following equation: 

𝑄̇ther = 𝑚̇𝑐𝑝∆𝑇𝑓                                                                                                         5.1 
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where 𝑚̇ is the mass flowrate, 𝑐𝑝 is the specific heat, and ∆𝑇𝑓 is the temperature difference 

between the inlet and outlet fluid.  

The 𝑄̇ther was calculated at 𝑚̇ = 0.00041 kg/s ( measured using the flow meter in Figure 

5.8), cp = 4200 J/kg.K  (for water) and ∆Tf = 1.1 ⁰C, which represent the difference 

between the temperatures of outlet and inlet fluid that are measured using K-type 

thermocouples (see Appendix.13). It was found to be equal to 1.89 W. 

 

Figure 5. 22 The electric efficiency of PV, TEG and PV/TEG vs mass flowrate 
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where, the 𝑄𝑖𝑛 is the total power input to the system and it was calculated as: 

          𝑄𝑖𝑛 = 𝐺 ∗ 𝐴𝑃𝑉        5.3 

The 𝞰ther was calculated at G= 2000 W/m2 and APV = 4cm x 4cm, and it was found to be 

equal to 59.1 %. 

 

In summary, the increase of light intensity increased the ISC and Pmax for PV cells. For 

TEG, the light intensity contributed to an increase in the VOC, ISC and Pmax due to an 

increase in T. Similarly, the increase in the mass flow rate can also improve PTE, 

PPV,Ptot,ηTE, ηPV and ηtot. 

Adding nanoparticles to a base fluid such as pure water can change the physical properties 

of the base fluid [109][110]. Nonofluid was prepered and used as a coolant in the cooling 

system of the PV/TEG hybrid system. The results were compared with the pure water 

which was the reference fluid (see Appendix.14). 

 

 

5.4   Conclusions 

Integrating TEG with PV cells caused an increase in the operating temperature of the PV 

cells due to an additional thermal resistance introduced by the TEG. The temperature 

difference across TEG was higher under the solar concentrating system, which generate 

more power from TEG. 

 

On the other hand, an increase in the light intensity reaching the PV cells caused a 

significant increase in the ISC and the Pmax for PV. However, the ISC and the VOC of the 

TEG were increased with increased light intensity, and as a result the Pmax of TEG was 

increased from 5.6 mW to 18 mW. This is an increase of more than 200 %. 
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An increase in the mass flowrate of the fluid in the heat exchanger can increase the Pmax 

from both the PV cells and the TEG by 6.8 % and 38.28 % respectively, and the ɳtot also 

increases with increasing mass flowrate.  

 

Since a-Si showed a lower drop in Pmax with increasing temperature, the DSC presents an 

interesting increase in Pmax with increasing temperature, which makes DSC a better 

candidate for integrating with TEG. Also, a-Si is fabricated on conductive glass, which is 

not a good conductor of heat to the TEG. The next chapter will discuss the fabrication of 

metallic DSC and the integration with TEG modules.     
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CHAPTER SIX - FABRICATION, CHARACTERISATION AND 

OPTIMISATION OF DSC FOR HYBRID SYSTEM 

  

6.1   Introduction 

In this chapter, the fabrication of DSC with fluorine-doped tin oxide (FTO) glass and 

metallic counter electrode is presented. The difficulties, obstacles and challenges 

associated with the procedure of fabrication are addressed, with an emphasis on 

developing efficient DSC using metallic counter electrode. The objective is to enhance 

the heat transfer between the PV cell and the TEG by optimising the thermal coupling 

between the DSC and the TEG. The procedure of fabrication is explained and two types 

of DSCs are fabricated. The first contains an FTO-glass counter electrode (G-SC) and the 

second uses titanium as the counter electrode (Ti-SC). The thermal coupling of these two 

types of DSCs was investigated by integrating with TEG to fabricate a hybrid tandem cell 

(HTC). TEGs with three different numbers of elements (N), cross sectional areas (AC) 

and thermoelements length (LTE) values were employed and optimisation study was 

conducted to find the optimum geometry of TEG for HTC.  

 

6.2   Fabrication of Dye Sensitised Solar Cells 

The flowchart in Figure 6.1 explains the procedure of DSC fabrication which includes the 

manufacture of the working electrode, dye, electrolyte and counter electrode, and DSC 

assembly. 
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Figure 6.1 Flowchart of the DSC fabrication procedure 

 

To date, most of DSCs are prepared using a common material, FTO – glass, for the 

working electrode and counter electrode. Few researchers have used different materials 

for both electrodes, such as flexible stainless steel [23]. This research concentrates on 

using FTO-glass for the working electrode, while using FTO-glass or metals for the 

counter electrode for comparative study of their thermal coupling with TEG.  
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6.2.1   Preparation of the working electrode 

6.2.1.1   Cutting the FTO glass (15Ω/□).  

The FTO-glass sheet (NSG, 3 mm thickness, 15Ω/□) was divided by ruler into small 

rectangular pieces (2 cm x 1.5 cm), and a glass cutter was used to make groove around 

the rectangular pieces as shown in Figure 6.2a. Breaking pliers were then used to snap off 

the FTO-glass segments as shown in Figure 6.2b. 

 

Figure 6.2 The cutting of FTO-glass: (a) process of cutting FTO-glass; (b) a photograph for the 

breaking pliers 
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6.2.1.2   Cleaning the FTO-glass. 

The FTO-glass pieces were cleaned with detergent using a sonicator bath for 15 minutes, 

and then with ethanol for an additional 15 minutes sonication in order to remove all the 

organic substances that may be present on the surface. 

6.2.1.3   Deposition of nanocrystalline titanium dioxide (TiO2) layers. 

Scotch tape was gently placed on the FTO-glass to form a square template with an area 

of 6 mm x 6 mm. The TiO2 transparent layer, which was a paste of crystalline 

nanoparticles (18NR-T / Dyesol) was placed near the template and spread gently using a 

glass rode by the Doctor Blade method [23][111] in one direction, as shown in Figure 

6.3.  

 

Figure 6. 3  Doctor Blade method for printing TiO2 

 

The procedure was repeated twice to obtain the optimum thickness of TiO2. A hot plate 

was used to heat the sample to 150 oC for 10 minutes between the two procedures to dry 

the TiO2 paste at room atmosphere. Figure 6.4 shows two samples placed on the hot plate. 
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Figure 6. 4 A photograph for the hot plate 

6.2.1.4   Sintering in the furnace. 

The TiO2 thin layer prepared on the FTO-glass was sintered at 470 oC for 30 minutes in 

a furnace shown in Figure 6.5. A programme was fixed to increase the temperature of the 

furnace gradually (3 degree/minute) in order to avoid the cracking that might be occurred 

in the TiO2 layer during the sintering and the overall process is required about 6 hours to 

complete. The samples were left in the furnace overnight to cool down to room 

temperature. By this time the TiO2 layer had converted to transparent nanocrystalline 

TiO2. Figure 6.6 shows the scanning electronic microscopy (SEM) image of the sintered 

TiO2. 

 

6.2.1.5   Sensitising of TiO2 in dye 

N-719 dye from Dyesol was dissolved in ethanol and the TiO2 film was immersed in a jar 

of this solution for 24 hours in order to sensitise the TiO2. Figure 6.7 shows the process 

of sensitisation.  
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Figure 6. 5 Furnace used for the working electrode 

 

 

Figure 6. 6 SEM image of the TiO2 nanoparticle 

 

 

Figure 6. 7 The samples inside the dye solution 
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6.2.2   Preparation of the counter electrode  

In this research, two types of counter electrode were investigated. The first was FTO-

glass, while the second was metallic plate. For the metallic counter electrode, different 

metals were investigated, including copper, aluminium, nickel, silver, stainless-steel and 

titanium. Copper, aluminium, nickel, silver, and stainless-steel showed poor performance 

and the ηPV was lower than 1 %. Some reasons behind the low performance include the 

platinum layer deposited on the surface of these metal not being very well attached and 

therefore being very easy to remove by hand. All the metals used in the experiment 

presented the problem of corrosion between the electrolyte and the metal, which was 

observed by a changing in the colour of the metal a few hours after the electrolyte being 

deposit onto the surface. 

However, there was no corrosion observed in titanium over the course of three months. 

In addition, titanium has a low electrical resistance [112], below 1 ohm. The DSC made 

with a titanium counter electrode (Ti-SC) showed the best performance among all other 

metals investigated in this study, even better the G-SC.   

 

6.2.2.1   Cutting the FTO-glass 

The same procedure mentioned in section 6.2.1.1 is used here to prepare  the FTO-glass 

(8Ω/□) counter electrode. It is to be noted that the FTO-glass was cut into the same size 

of the working electrode. 

 

6.2.2.2   Cutting the titanium sheet 

A titanium (Ti) sheet (1 mm thickness) with (99.99 % purity, from GoodFellow) was cut 

into small pieces of the same size as the working electrode. A cutter machine was used to 
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cut the titanium sheet. A photograph of the titanium sheet is presented in Figure 6.8a and 

the Ti pieces are shown in in Figure 6.8b. 

 

Figure 6. 8 Titanium (a) sheet and (b) pieces 

After cutting, edges of the surface were rough. These rough edges were removed by sand 

paper to avoid them causing a short circuit that would damage the DSC cell at an early 

stage. 

 

6.2.2.3 Preparation of the opening for electrolyte injection 

A hole of 1 mm in diameter is required for injecting the electrolyte into the assembled 

cell. In principle, this can be achieved easily by any drilling device. However, a special 

care is needed to drill the FTO-glass to avoid possible damage, crack and dust. Figure 6.9 

shows a photograph of the drilling setup. A diamond drill bit purchased from UK-Eternal-

tools was used to make the hole. During drilling, the counter electrode (particularly FTO-

glass) was placed on a sample holder which was immersed in water. It was drilled from 

the conductive side of the FTO-glass because the drill bit can damage the conductive layer 

during exit if the drilling process started from the nonconductive side. Meanwhile, a 

different drill bit was used for the Ti pieces. This was a high speed steel drill bit purchased 

from UK-Machine Mart. 



CHAPTER 6                    FABRICATION, CHARACTERISATION AND OPTIMISATION                        

 

 

119 

 

 

Figure 6. 9 A photograph of the drilling process 

 

6.2.2.4   Deposition of platinum 

Platinum nanoparticles were attached to the surface of the FTO-glass and to the Ti plate 

by spreading a few drops of a platinum solution (CELS Counter-Electrode Solution, from 

Dyesol). A glass rod was used to spread the solution by the doctor blade method. 

 

6.2.2.5   Sintering in the furnace 

A photograph of the furnace used in this work is shown in Figure 6.10. The FTO-glass 

and titanium pieces were sintered in air in this furnace. The temperature was maintained 

at 400 ⁰C for 15 minutes. It is important to note that the furnace used was a different one 

to that used for the working electrode, in order to avoid possible cross contamination 

problems that might occur. The samples of both the FTO-glass and Ti were left in the 

furnace overnight to cool down. Figure 6.11 shows the counter electrode before and after 

the deposition of the platinum and sintering in the furnace. 
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Figure 6. 10 Furnace used for the counter electrode 

 

 

 

Figure 6. 11 A photograph for the counter electrode: (a) titanium before platinum coating, (b) 

titanium after platinum coating, (c) FTO-glass before platinum coating, and (d) FTO-glass after 

platinum coating 

Both FTO glass and Ti samples were inspected by SEM (see Figures 6.12 and 6.13). It is 

clear that the platinum nanoparticles were attached to the substrate from the solution. The 

average size of the particles was 250 nm.  
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Figure 6. 12 SEM image of an FTO-glass counter electrode after sintering in the furnace at 400 oC 

for 15 minutes 

 

 

Figure 6. 13 SEM image of a Ti counter electrode after sintering in the furnace at 400 oC for 15 

minutes 

 

 

6.2.3   The cell assembly 

The two electrodes of the DSC cell were assembled together using Surlyn sealant (50 µm 

– Dyesol). For the sealing process a heat press was set up by integrating an AC heater, an 

aluminium block and a cold press. The temperature applied by the heater was measured 
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by a thermocouple (type-K) inserted into a 1 mm slot in the copper plate to estimate the 

temperature of the cell. The heat press was calibrated and it was found that the 

temperature required to melt Surlyn film and assemble a glass counter electrode solar cell 

(G-SC) was 120 ⁰C. The temperature required to assemble a Ti counter electrode solar 

cell (Ti-SC) was 110 ⁰C due to the heat was transferred and absorbed by titanium faster 

than by the glass, which causes the Surlyn to melt quickly. Figure 6.14 show photographs 

of a home-made heat press for this study and a cell was being assembled. To determine 

appropriate pressure for cell assembly is important because high pressure can break FTO-

glass and damage the cell while applying a lower pressure can result in poor sealing which 

allows the electrolyte to escape and lower the performance of the DSC. 

 

 

Figure 6. 14 Photographs of the heat press 

 

6.2.4   Electrolyte injection 

The cell was placed inside a sealed desiccator connected to a vacuum pump which was 

used to remove the air from the chamber. A drop of electrolyte was placed on the hole 

that was already made in the counter electrode. The cell was then exposed to the ambient 
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atmosphere by gradually opening a valve so that the electrolyte began to be injected inside 

the cell. The ionic-liquid electrolyte used in all the cells was composed of: 

0.05 M iodine 

0.5 M lithium iodide 

0.1 M gaunidinium thiocyanate 

0.5 M 4 tert butylpyridine and 7 ml of 3 Methoxypropionitrile as solvent.  

 

Figure 6.15 shows a photograph of the equipment for electrolyte injection using a 

desiccator and vacuum pump. 

 

Figure 6. 15 A photograph of the desiccator and vacuum pump 

 

 

6.2.5   Cell sealing 

The hole in the counter electrode of the DSC was sealed after the electrolyte was injected 

into the cell in order to avoid the evaporation of the electrolyte. In this study, a small piece 

of aluminium sticky tape was used to seal the hole, which provide reasonable lifetime of 

investigation of DSC.   
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6.2.6   Electrical contacts 

A silver conductive paint purchased from RS components was used to paint the edge of 

the conductive side of the working electrode and counter electrode as shown in Figure 

6.16. This process must be done very carefully, because any mistake could cause a short 

circuit between the cathode and anode, killing the cell. The cell after it was coated with 

the silver paint was left in air to dry for several hours. After the painting process was 

completed, the cell was ready for characterisation.  

 

Figure 6. 16 A cell painted with silver conductive paint 

 

Two types of DSCs, G-SC and Ti-SC, were prepared and tested in the laboratory. Both 

devices were prepared in a similar way and some of the samples are shown in Figure 6.17. 

 

Figure 6. 17 Photographs of the dye sensitised solar cells: (a) cells with an FTO-glass counter 

electrode and (b) cells with a Ti counter electrode 
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6.3   Experimental Setup 

A schematic diagram of the experimental setup is shown in Figure 6.18 and a photograph 

in Figure 6.19.  

 

Figure 6. 18 Schematic diagram for the experimental setup of a DSC-TEG hybrid tandem cell 

 

 

Figure 6. 19 Photograph of the experimental setup (a) and DSC-TE hybrid tandem cell (b) 

 

The heat is extracted from the cold side of TEG and transferred to a heat exchanger which 

is maintained at 20 ⁰C by manipulating the mass flowrate. Two thermocouples (type K) 

were positioned at TH and TC to measure the temperatures of hot side and cold side of the 

TEG, respectively. The thermocouple in the hot side was attached directly to the counter 

electrode of the DSC, whether the FTO-glass or Ti, with small amount of heat sink 

compound to provide good thermal contact. 
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The other thermocouple was inserted inside small hole in a copper plate of 1 mm 

thickness, which was placed on the heat exchanger with a heat sink compound in between. 

The DSC/TEG system was placed inside a Faraday cage as shown in Figure 3.7, and the 

same solar simulator as shown in Figure 3.1 is used as a source of light. The level of the 

light intensity was fixed at 1000 W/m2 and it was measured via pyranometer as appeared 

in Figure 3.2. The temperature were recorded by a data logger which recorded the 

measurements every second and displayed them on the computer as shown in Figure 3.5. 

In this experiment 36 samples of DSCs were fabricated using the same procedure. The 

samples included 18 DSC of Ti- SC and others 18 samples were G-SC. The best two cells 

were characterised using standard test condition (STC), and the results are presented in 

Table 6.1 (see Appendix.15 for the I-V curves).  

Table 6. 1 Experimental data from two best cells: Ti-SC and G-SC. 

 

These cells were integrated with three commercial TEG modules (M-A, M-B and M-C) 

with different LTE, N and AC as shown in Table 6.2. As a result, six HTC fabricated: three 

of them with Ti-SC and the other three with G-S as shown in Table 6.3. It is to be noted 

that the M-C in Table 6.2 was used twice in this experiment. Firstly, it was used as a 

heater and/or cooler (the Peltier effect) to study the influence of temperature on the DSC. 

Secondly, it was used as a generator (the Seebeck effect) to generate electricity due to the 

∆T established across it. 

 

DSC - 

Modules 

APV ( 

(mm2) 

Active Area 

(mm2) 

VOC 

(mV) 

ISC 

(mA) 

Fill Factor 

(%) 

Pmax 

(mW) 

ηPV 

(%) 

Ti - SC 20x15 6.25x6.25 750 5.4 51.8 2.1 5.3 

G - SC 20x15 5x5 720 3.2 43.4 1 4 
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Table 6. 2 Device parameters of the three thermoelectric generators 

 

 

 

      

 

 

Table 6. 3 The six hybrid tandem cells (HTC) 

Modules M-A M-B M-C 

Ti-SC Ti-SC/M-A Ti-SC/M-B Ti-SC/M-C 

G-SC G-SC/M-A G-SC/M-B G-SC/M-C 

 

 

6.4   Results and Discussion 

This section focuses on three tasks: 1) studying the effect of temperature on the Ti – SC 

performance; 2) evaluating the performance of HTC with G–SC and Ti–SC and 3) 

identifying the optimum geometry (ACN/LTE) of the TEG for the HTC. 

  

6.4.1 The Effect of Temperature on a Titanium Dye Sensitised Solar Cell (Ti – SC) 

It is interesting to note that previous methods of measuring the operating temperature of 

a DSC involved attaching a temperature sensor to the FTO-glass. However, in this 

research the procedure was developed and the sensor was attached directly to the metallic 

counter electrode. This means that the measured temperature is close to reality because 

the metal transfers heat better than glass. Figures 6.20 and 6.21 show the Current density 

– Voltage (J-V) and the Power density – Voltage curves of Ti-SC, respectively. It is clear 

that the increase in temperature causes a significant decrease in VOC.  

Modules Total area   

(mm2) 

N ATE   

(mm2) 

LTE 

(mm) 

ACN/LTE    

(mm) 

M-A 4x4 14 0.6x0.6 0.8 6.3 

M-B 15x15 34 0.9x0.9 1.2 23 

M-C 15x15 62 0.8x0.8 2.2 18 
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Figure 6. 20 J-V curves of a Ti-CE dye sensitised solar cell at different temperatures 

 

Figure 6. 21 P-V curves of Ti-CE dye sensitised solar cells at different temperatures 
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However, the Pmax shows an increase with increasing temperature until it reaches an 

optimum value at 35 oC. It is to be noted that the G-SC tested in chapter three showed an 

optimum temperature between 35 oC and 45 oC, as the Pmax started to increase after 25 oC 

until it reached a maximum value at 45 oC.   

Figure 6.22 shows the ηPV and Pmax of the Ti-SC as a function of temperature. It can be 

seen that both variables show a similar trend with increasing temperature.  

 

Figure 6. 22 The maximum power and efficiency of Ti-CE dye sensitised solar cells vs temperature 

 

The Fill Factor and ISC also increased with increasing the temperature, displaying similar 

trend of the Pmax and ηPV for Ti-SC. This trend is an interesting phenomenon which was 

not observed in the other types of solar cell. Meanwhile, the VOC presented a normal 

decrease with increasing temperature, as can be seen in Figure 6.23.  
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Figure 6. 23 The Voc, Isc and fill factor of Ti-CE dye sensitised solar cells vs temperature 

 

 

Figure 6. 24 The maximum power output vs temperature for four different Ti-CE dye sensitised 

solar cells 
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A further 4 samples of Ti-SC were fabricated and characterised to examine the 

reproducibility of the Ti-SC cells. Figure 6.24 shows the Pmax of four Ti-SC cells 

fabricated using the same procedure described in section 6.2 and using the same 

compounds. They were tested using the same materials and the same equipment, and they 

exhibit similar trend with temperature.  

 

Figure 6.25 shows the ηPV of four Ti-SCs, and the trend was the same as that of the Pmax. 

These experimental results indicated that the DSC is the best type of solar cells to 

integrate with TEG because it is the only type that showed an increase in the power output 

with increasing temperature until reaching around 40 oC.  

 

Figure 6. 25 Efficiency vs temperature for different Ti-CE dye sensitised solar cells 
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6.4.2 Integrating Dye Sensitised Solar Cells with TEG Modules 

The work above demonstrated that DSCs can be fabricated by replacing the FTO-glass 

counter electrode with a Ti counter electrode, which have slightly better performance. 

Since the thermal conductivity of Ti is higher than the FTO-glass, this can improve the 

heat transfer from the DSC to the hot side of the TEG. Experiments were performed to 

investigate the performance of HTCs prepared using Ti-SC with M-A, M-B and M-C, 

respectively.  

The J-V curves for Ti-SC were firstly measured by placing directly on the cold side of a 

heat exchanger without TEG for the operating temperature of the DSCs maintained at 20 

⁰C. After that, the J-V curves for Ti-SC were measured when the DSC was integrated 

with three TEGs: M-A, M-B and M-C, as shown in Figure 6.26. It is clear that the 

integration of a TEG improved the performance of the Ti-SC cells because the operating 

temperature was increased.  

 

Figure 6. 26 The J-V curves of Ti-CE dye sensitised solar cells integrated with three TEGs 
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Figure 6.27 shows the corresponding power density vs voltage. It can be seen that the 

VOC dropped slightly due to an increase in the operating temperature of the Ti-SC. 

However the Pmax increased gradually by integrating different TEGs, reaching its highest 

value with the small TEG module (M-A) as the (ACN/LTE ) was low for this module (see 

Table 6.2). Table 6.4 shows the characterization of TEG, DSC and HTC. 

 

Figure 6. 27 Power density vs voltage for Ti-SC integrated with 3 TEGs 

 

It is clear that the module with a smaller value of (ACN/LTE) makes the operating 

temperature of Ti-SC higher and vice versa. 

Figure 6.28 shows the J-V curves for G-SC only (i.e., without a TEG) and the J-V curves 

when G-SC is mounted on the top of three TEGs, respectively. It can be seen that the J-

V of the G-SC shows similar trends to those of Ti-SC. 
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Table 6. 4 The TH and ΔT, and the characterization of TEG, DSC and HTC 

 

 

Figure 6. 28 The J-V curves of G-CE dye sensitised solar cells integrated with three TEGs 

  

Figure 6.29 shows the power density vs voltage for G-SC. It is clear that the most 

significant increase in the Pmax was observed for the smallest module (M-A) when 
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value of (ACN/LTE) that led to a low operating temperature of the G-SC and consequently 

a lower PPV. Since ∆Ts across TEG were also low, PTE is also small. As a result, the Ptot 

and ηtot of the HTCs based on G-SC were low as seen in Table 6.5. 

 

Figure 6. 29 Power density vs Voltage for G-SC integrated with 3 TEGs, respectively 

  

Table 6. 5 The TH and ΔT, and the characterization of TEG, DSC and HTC 
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The Ti-SC and G-SC exhibited Pmax at an operating temperature between 35 oC and 45 

oC. Integrating these cells with the TEG modules with high values of ACN/LTE makes the 

cells matched the best temperature for the two cells. This unique temperature dependence 

of DSCs can be exploited for obtaining further improvements using TEG devices to 

harvest waste heat from the DSC. 

The I-V curves and P-V curves of the TEG modules were measured in the same tests 

performed for determining the I-V curves of DSCs. Figure 6.30 shows the I-V curves of 

M-A when it was integrated with Ti-SC and G-SC. It is clear that the performance of M-

A is improved when it is integrated with Ti-SC compared with the integration of the same 

module with G-SC. This is because the metallic counter electrode of the Ti-SC increased 

the heat transfer from the DSC to the TEG.  

 

Figure 6. 30 The I-V curves of M-A integrated with Ti-SC (red line) and with G-SC (black line) 

 

0

10

20

30

40

50

60

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

C
u
rr

en
t 

[m
A

]

Voltage [V]

M-A/Ti-SC

M-A/G-SC



CHAPTER 6                    FABRICATION, CHARACTERISATION AND OPTIMISATION                        

 

 

137 

 

As a result, the TH increased from 35 oC  (Table 6.5) to 40 oC (Table 6.4). The increase 

in the ΔT established across TEG increased the ISC of M-A from 34.3 mA to 58.3 mA, 

and the VOC from 0.024 V to 0.044 V (i.e., almost doubled). 

The P-V curves of M-A integrated with T-SC and G-SC are presented in Figure 6.31. The 

power output generated by M-A was significant in a HTC that is integrated with the Ti-

SC rather than the G-SC and it was increased from 0.21 mW to 0.65 mW (three times). It 

is to be noted that the Pmax of M-A was higher because the ΔT across M-A was higher as 

indicated by Equation 4.9 (in Chapter 4). 

 

Figure 6. 31 The P-V curves of M-A integrated with Ti-SC (red line) and with G-SC (black line)  

 

The I-V curves of M-B integrated with Ti-SC and G-SC are presented in Figure 6.32. It 
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Figure 6.33. Compared with Figure 6.31, the Pmax of M-B with Ti-SC was lower than that 

of M-A with the same cell because of the lower T for this module. 

 

Figure 6. 32 The I-V curves of M-B integrated with Ti-SC (red line) and with G-SC (black line) 

 

Figure 6. 33 The P-V curves of M-B integrated with Ti-SC (red line) and with G-SC (black line) 
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Figures 6.34 and 6.35 show the I-V curves and P-V curves of M-C integrated with Ti-SC 

and G-SC respectively.  

 

Figure 6. 34 The I-V curves of M-C integrated with Ti-SC (red line) and with G-SC (black line) 
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metal (Ti) rather than the glass. Furthermore, the Pmax for M-C was the highest among the 

three modules because this module had the largest N (62 elements) and ΔT is higher than 

M-B, as the Pmax increases by increasing N and ΔT (see Equation 4.9).   
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Figure 6. 35 The P-V curves of M-C integrated with Ti-SC (red line) and with G-SC (black line) 

 

For example the k for titanium is 15.6 (W/m.ºC) while for glass this value is 0.8  

(W/m.ºC), and the cp for titanium is 5400 J/kg.K while for glass it is 670 J/kg.K. The 

increase in the Pmax of the three TEGs in Ti-SC was due to improved thermal coupling 

between the Ti-SC and TEGs compared with G-SC. This result demonstrate for the first 

time that the thermal coupling is an important factor in improving the overall power 

output and efficiency of a DSC/TEG hybrid system. 

 

In order to confirm the repeatability, the I-V and P-V curves for three TEGs characterised 

by constant temperature difference method and the results are presented in Appendix.16. 
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6.4.3 Optimisation of Hybrid Tandem Cells  

The parameters obtained from the I-V and P-V curves in the previous section were 

analysed for the six HTCs and presented in Tables 6.4 and 6.5 to find the optimum 

geometry amongst all the modules used. It is clear that the integration of the TEGs with 

different geometries (i.e., different values of ACN/LTE) changed the operating temperature 

of the DSC, as shown in Tables 6.4 and 6.5. The experimental results show that the TEG 

with the smallest size (M-A) established the largest T when it integrated with Ti-SC due 

to the smallest  value of ACN/LTE. In contrast, the Ts for the other two modules (M-B 

and M-C) were 7 ⁰C and 8.5 ⁰C, respectively because of  higher values of ACN/LTE.   

 

Although the highest Pmax of TEG was obtained from the module with the largest N (M-

C) when it was integrated with Ti-SC, the overall maximum power output was obtained 

from the system using M-A. This is because the module M-A enables the Ti-SC operate 

at its optimal operating temperature to generate highest PPV and, at the same time, 

provides a reasonably higher power output from the TEG due to the highest T. In 

general, the hybrid systems using Ti counter electrode (Ti-SC) generate more overall 

power output than those using FTO-glass counter electrode (G-SC). This is because the 

waste heat in the DSC has been efficiently used by TEG in a Ti-SC, while most of the 

heat in a G-SC was lost through the glass by convection and conduction. The results 

indicate that the thermal coupling between the DSC and the TEG is crucial to achieving 

effective heat recovery from the DSC, and the best DSC for the tandem configuration 

should therefore have a metal counter electrode to ensure an optimal thermal coupling.  

 

It is to be noted that the improvement was achieved using TEG materials and devices that 

are commercially available. It is anticipated that further improvement is possible if high 
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performance thermoelectric materials and module is employed. Also, development of 

DSCs with metallic counter electrode that has a higher operating temperature (e.g., up to  

80 ⁰C) would bring further improvement.  

6.5   Conclusions  

DSCs with conventional FTO-glass counter electrode (G-SC) and new type of Ti counter 

electrode (Ti-SC) were successfully fabricated for the first time in Cardiff Thermoelectric 

Laboratory.  Both type of cells exhibit efficiencies of about 5% that are comparable to the 

data published internationally for this type of solar cells. It is interesting to note that 

although both types of DSCs were fabricated using identical processes except for using 

different counter electrodes, the efficiency of the DSCs with Ti counter electrode is 

slightly higher than that with conventional FTO-glass electrode.    

 

The main purpose of developing Ti counter electrode DSCs  is to improve the thermal 

coupling between the DSC and TEG in a PV/TEG hybrid system. Experimental 

investigation of this study demonstrate that the overall power output and efficiency of a 

DSC/TEG hybrid system that uses a Ti counter electrode is significantly higher than that 

with conventional FTO-glass counter electrode. This result confirms the rationale of 

developing DSCs with the Ti counter electrode, which improves thermal coupling 

between the DSC and TEG, so that the heat generated inside the DSC can be efficiently 

removed and transferred through the TEG. In addition, Ti counter electrode also improves 

light reflection and heat absorption over the FTO-glass, leading to further enhancement 

of both electrical and thermal efficiency. 

 

Optimisation of the geometry of TEG plays important role in achieving maximum 

performance for a DSC/TEG hybrid systems because the TEG geometry determines the 
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operating temperature of DSC and the temperature difference across TEG. Both have 

significant influence on the overall power output and efficiency of the system. The results 

of this study demonstrates that a small-size TEG is preferable for integrating with Ti-SC 

because it creates a large ΔT across it and the power output was increased from 0.21 mW 

to 0.65 mW, (>200 %). On the other hand, the G-SC appears to require a TEG which has 

the same area as the DSC. This is probably because the large size reduces the heat loss 

by convection and radiation from the bottom side of the cell. The hybrid systems with Ti-

SC also reduce the consumption of thermoelectric materials because they require small 

size TEGs.  

 

Experimental results from this study demonstrate that a DSC/TEG hybrid system 

generates more power and has higher conversion efficiency than that can be obtained 

from an individual system. Further improvement may be achieved by developing more 

efficient TEG (rather than commercial type) and by making the DSCs having higher 

operating temperatures with metallic counter electrode.  
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CHAPTER SEVEN - CONCLUSIONS AND FURTHER WORK 

 

7.1   CONCLUSION 

The main objective of the work embodied in the thesis was to design, construct and 

investigate the feasibility and performance of a PV/TEG hybrid system. This objective 

has been achieved through systematic experimental investigation on the temperature 

coefficients of all available solar cells, development of theoretical model (and 

experimental validation) for design and optimisation of TEG geometry, and creation of 

an unique DSC/TEG hybrid system based on Ti counter electrode, which showed a 

significant improvement in the power output and efficiency due to enhanced thermal 

coupling between DSC and TEG. The major achievements are summarised as follows:  

  

1) A systematic experimental work was conducted to investigate the suitability 

of solar cells for integration with TEG to develop PV/TEG hybrid system 

based on their temperature dependence. Six types of PV cells were examined 

under standard test conditions in the laboratory, which include 

monocrystalline silicon (m-Si), polycrystalline silicon (p-Si), amorphous 

silicon (a-Si), copper indium sulphide (CIS), cadmium telluride (CdTe) and 

dye sensitized solar cell (DSC). The experimental results show that a-Si and 

DSC are preferable for integration with TEG. The a-Si showed the lowest drop 

in Pmax and ηPV with increasing temperature. The DSC exhibits an even more 

interesting feature that Pmax and ηPV increases with increasing temperature 

over 25 oC to 45 oC. This makes the DSC an ideal solar cell for integration 

with TEG because it can lead to an increase in power outputs and efficiencies 

from both DSC and TEG over this temperature range. The experiment results 
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from this work also demonstrate that the p-Si and m-Si cells exhibit significant 

drop in Pmax and ηPV when the temperature was increased from 25 oC to 65 oC, 

indicating that they are not suitable for integration with TEG because the 

power gain from the TEG would be offset by reduction in these PV cells.  

2) The geometry of TEG has an important influence on the performance of a 

PV/TEG hybrid system. A theoretical model was developed in this research 

to provide an effective method to determine the optimal geometry for the 

hybrid systems and to guide experimental study. The simulation results using 

the model show that the value of ACN/LTE is crucial to building an efficient 

PV/TEG hybrid system. In this work, the optimum TEG geometry to obtain 

the Pmax from the TEG and the maximum Ptot and ηtot from the hybrid PV/TEG 

system was investigated and the results show a small-size TEG is preferable 

because a larger ΔT can be established across the TEG. Consequently, the Pmax 

is higher. Using a TEG that has the same size as the PV cell will result in much 

smaller T across the TEG. In addition, it also consumes more materials. 

Furthermore, simulation results show that the power output of the TEG in the 

hybrid system can be improved by operating in a vacuum.  

3) Theoretical calculations showed that not all types of PV cells are suitable for 

integration with TEG. A theoretical work was carried out to verify this result 

using two types of PV cells with different temperature coefficient, β0. When 

integrated with a TEG using a p-Si that has large value of β0, the PV cell loses 

significant amounts of power because of increased operating temperature. 

Although the TEG generated some power, the gain from the TEG is less than 

the loss in the PV, resulting an overall reduction in power output. However, 

when a-Si PV cell that has a small value of β0 was integrated with a TEG, the 
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power gained from the TEG overcompensate the loss from the PV and 

consequently overall increases in the Ptot and ηtot are obtained. 

4) A hybrid PV/TEG system was constructed using an amorphous silicon PV cell 

(a-Si) integrated with a TEG that can be replaced by one of the other 5 TEGs 

with different sizes (i.e., with different values of AcN/LTE). This system 

facilitated in-depth experimental study of geometrical influence of the TEG 

on the performance of the hybrid system and provided experimental 

verification of the developed theoretical model. The results from this study 

show a good agreement between experiments and simulations with an average 

deviation of 9 %. In addition, a suitable TEG that has an optimal geometry for 

this experimental hybrid system was identified among these 6 commercial 

TEGs investigated in this study, which was then used in the following studies 

for developing improved PV/TEG hybrid systems.   

5) The effect of light intensity on the performance of the hybrid PV/TEG system 

was investigated using a home-made concentrator. The experimental results 

from this study show that the PTE and ηTE, PPV and ηPV, and Ptot and ηtot were 

all further improved when the hybrid system was tested under 2 suns and 5 

suns concentration, respectively. This work indicates that it is more beneficial 

to operate a hybrid PV/TEG system under concentrated solar illumination. 

The effect of mass flowrate of the heat exchanger was also studied and it was 

found that the Ptot and ηtot were increased with increasing the mass flowrate. 

This is because an increase mass flowrate resulted in a decrease in the cold 

side temperature of the TEG. As a result, the T cross the TEG increased 

while Tcell of the PV cell decreased, leading to an increase in both the PTE and 

PPV.  
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6) Dye sensitized solar cells (DSC) were successfully fabricated and 

characterised for the first time at Cardiff Thermoelectric Laboratory. This 

involved developing fabrication procedures and facilities using the available 

equipment at Cardiff. Two types of DSCs were fabricated in this research: the 

first was a conventional type of DSC (G-SC), which uses FTO-glass as the 

counter electrode; and the second was an improved design (Ti-SC), which uses 

Ti as the counter electrode. The G-SC was chosen as a benchmark for a 

comparative study. The Ti-SC was specifically designed to improve the 

thermal coupling between DSC and TEG. The experimental results of this 

study demonstrated that while the efficiency of both G-SC and Ti-SC are 

similar, the thermal coupling between the DSC and TEG in Ti-SC was 

substantially improved compared with in G-SC. The successful fabrication of 

this special Ti-SC provided a crucial component for the following 

development of more efficient hybrid PV/TEG systems. 

7) A unique DSC/TEG hybrid system was designed and constructed by 

integrating the specifically developed Ti-SC with an optimised TEG.  Due to 

the use of Ti counter electrode, which also serves as the thermal interface 

between DSC and TEG, the thermal coupling between DSC and TEG were 

significantly improved. As a result, the waste heat produced in the solar cell 

can be removed and transferred effectively through the TEG for energy 

harvesting. The experimental results show that the power output from TEG in 

a Ti-SC based hybrid system increased by more than 200 % compared with 

the system based on G-SC. Consequently, the overall power output and 

conversion efficiency of the hybrid DSC/TEG system exhibit significant 

improvement when the Ti counter electrode is employed.  
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7.2   FUTURE WORK 

The following potential improvements and recommendation have been identified in terms 

of the simulation, experiments and design: 

1) The solar cells used in the experiment to study the influence of temperature had 

a low ηPV. This is mainly due to the fact that most of these solar cells (except 

CdTe and DSC) were commercial products. In order to evaluate their future 

prospects, the investigation should be performed using the solar cells with the 

highest efficiency. In this work, due to limited time and resources, only few 

samples from each type were investigated. If the time and resource are available, 

it is important to test more samples of the same type and also from different 

manufacturers to obtain more accurate evaluation of the parameter β0. The study 

should be expanded to include a wide range of other new solar cells such as 

perovskite and polymer solar cells. 

2) The current simulation assumed that the temperature of the cold side of 

thermoelectric generator is constant. The simulation will form a more 

comprehensive study if the hot side temperature of TEG is controlled by the inlet 

temperature and the mass flowrate of the cooling fluid. In order to do this the 

thermal resistance between the cold side and the mean temperature of the inlet 

and outlet fluid has to be considered. The effect of using different coolants (such 

as Al2O3 nanofluid, TiO2 nanofluid) instead of water should be theoretically 

studied in terms of the thermal power that could be generated by recycling the 

waste heat from the PV/TEG hybrid system. Furthermore, the use of thermal 

power to generate electricity from the TEG during the night time should be 

investigated, perhaps by storing thermal energy. 
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3) It has been predicted theoretically that the vacuum system improved the Pmax and 

ηTE of the TEG. This investigation could be extended to involve PV cell and the 

PV/TEG hybrid system. Also, expanding the validation study to verify the 

theoretical results of the vacuum system should be considered. A specifically 

designed TEG with optimised geometry should be fabricated and used for the 

validation, rather than the commercially available modules, to obtain more 

accurate data.  

4) The maximum light intensity produced by the solar parabolic dish concentrator 

of this study was five suns. It is interesting to carry out further investigation on 

the hybrid PV/TEG systems under much higher solar illumination using high 

concentration systems. Another interesting route is to split the solar spectrum into 

two parts using hot mirrors and focus the visible light only on the PV cells and 

the infrared on the TEG. In addition, the energy storage system should be 

considered to store excess heat either for generating the electricity using the TEG 

during the night time or for domestic use as a hot water.    

5) Improving the heat exchanger by using nanofluid as a coolant can be further 

investigated to evaluate its potential benefit by conducting experimental study.  

6) The dye sensitised solar cells fabricated in this research had an efficiency of about 

5 %. It is possible to increase the efficiency by conducting more work, which was 

not possible during this research because of time and equipment constraints. 

Some of potential approaches include: 

a) Adding the second layer of TiO2 to improve light scattering and absorption. 

b) Treating the FTO-glass with HCL to enhance the bond of the TiO2 with the 

wall. 

c) Optimising the thickness of the TiO2 layers printed on the FTO-glass.  
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d) Using anti-reflective film to reduce reflection to the incident light. 

e) Employing perovskite hole transport materials to replace conventional 

electrolyte.  

7) The experimental results demonstrated that the optimum operating temperature 

for the dye sensitised solar cells is between 35 ºC and 45 ºC. It is recommended 

to increase the operating temperature of DSCs up to 80 ºC by investigating 

different electrolytes. A higher operating temperature enables a large ΔT across 

the TEG and consequently increases the power output of the TEG without causing 

power loss from the PV cells.  

8) The current hybrid system was fabricated by attaching the TEG to the backside 

of the DSC. Heat sink compound was used to fill gaps between the DSC and the 

TEG, which introduces potential reliability problems and additional thermal 

interfaces. Fabrication of the TEG directly on to the backside of the PV using 

integrated technology will eliminate many thermal interfaces and consequently 

minimise thermal resistance and improve the reliability.  

9) Potential benefit of improving the performance of a hybrid PV/TEG system by 

using vacuum to minimise convective heat loss would be investigated. The 

performance of the hybrid system under higher solar illumination (> 5x) should 

also be evaluated by using high intensity concentrators such as parabolic mirrors 

and Fresnel lenses. 
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APPENDIXES 

Appendix.1   An example of measurement commands is illustrated by a screenshot. 

 

Appendix.2   Sample of a measured I-V curve of DSC. 
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Appendix.3   A photograph of all 6 types of PV cells. 

 

Appendix.4   Standard deviation  

The standard deviation of six PV cells 

 

 

 

T 

  °C 

m-Si p-Si a-Si  CIS CdTe DSC 

Pmax  

mW 

σ 

mW 

Pmax 

  mW 

σ 

mW 

Pmax  

mW 

σ 

mW 

Pmax  

mW 

σ 

mW 

Pmax  

mW 

σ 

mW 

Pmax  

mW 

σ 

 mW 

25 73 1 181.5 0.5 84.4 0.3 150.5 0.5 121.5 0.5 1 0.01 

35 69.5 0.5 170.1 0.4 84.1 0.1 147 1.1 113.7 0.3 1.1 0.02 

45 65.5 0.4 161.5 1.1 82.6 0.6 140.6 0.5 108.1 0.1 1.1 0.01 

55 62.2 0.2 153.4 0.7 82 0.2 137 1.1 103.2 0.4 1.1 0.01 

65 59.8 0.3 143 1 79.6 0.4 131 1 101.3 0.3 0.9 0.01 
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Appendix.5   The Matlab Code. 

System at atmosphere 

clear;  

clc;  

Apv=(0.04)^2;% PV device area  

G=1000; 

effpv=0.1;% PV cell efficiency 

Lg=0.003;% thickness of the glass of PV cell 

Kg=1;% thermal conductivity of the glass 

hcov=5;% convective heat transfer 

Ut=((Lg/Kg)+(1/hcov))^-1;  

Tamb=298.15; 

Tc=298;% cold side temperature 

Tg=0.95;% the transmissivity of the glass 

ems=0.88;% the surface emissivity of the cell 

S=5.67*10^-8; the Stefan-Boltzmann constant 

k=1.5;% thermal conductivity of TEG 

N=62;% number of thermoelements 

ATE=(.8*10^-3)^2; TEG area 

A=ATE*N;% area of TEG 

alf=185*10^-6;% the Seebeck coefficient 

row=1*10^-5;% the electrical resistivity 

Z=alf^2/(row*k);% the thermoelectric figure of merit 
n=0.0001;% electrical contact parameters 

r=0.2;% thermal contact parameters 

Lc=0.00009;% the thickness of the ceramic plates 

Bref=0.0011;% the temperature coefficient for silicon solar 

cells,%/K 
  

Tref=298;%reference temperature 

syms tempsym  

count=0;  

f=@(Ts,L) (-G*Tg*Apv+(ems*5.67)*10^(-8)*(2*Apv-A)*(Ts^4-

Tamb^4)+Ut*(2*Apv-A)*(Ts-

Tamb)+(k*(1+Z*((3*Ts+Tc)/8))*ATE*N)*(Ts-

Tc)/(L)+((G*Tg*Apv*(effpv*(1-Bref*(Ts-Tref))))));  

  

for L=0.00005:0.0005:0.008 

count=count+1;  

roots=solve(f(tempsym,L));  

posroot(count)=subs(roots(1),1); 

delT(count)=posroot(count)-Tc;  

B(count)=delT(count);  

Pmax(count)=1000*(alf^2*ATE*N*(delT(count))^2/(4*row*(n+L)*(1+2*

r*Lc/L)^2)); 

Pmax1(count)=Pmax(count)/A; 

L_plot(count)=L; 

PA(count)=Pmax(count)*10^-6/(A); 

  

QTE(count)=1000*(G*Tg*Apv-hcov*(2*Apv-A)*(posroot(count)-Tamb)-

(ems*5.67)*10^(-8)*(2*Apv-A)^2*((posroot(count))^4-Tamb^4)-

((G*Apv*Tg*(effpv*(1-Bref*(posroot(count)-Tref)))))); 

 

effTEG1(count)=100*Pmax(count)/QTE(count); 
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effTEG2(count)=Pmax(count)*.1/(1000*Apv) 

  

  

  

effpv1(count)=((G*Apv*(effpv*(1-Bref*(posroot(count)-

Tref))))/(G*Apv));% efficiency of PV as a function of 

temperature 

effpv2(count)=100*effpv1(count);% (%) 

   

Ppvmax(count)= 1000*effpv1(count)*G*Apv;% (mW) 

PmaxT(count)=Ppvmax(count)+Pmax(count);% Ptot 

effT(count)=(effpv2(count)+effTEG2(count)) 

end 

  

  

figure; 

plot(L_plot, Pmax); 

xlabel('Thermoelectric length,(m)') 

ylabel('Power output TEG, (mW)') 

grid 

  

figure; 

plot(L_plot, Ppvmax); 

xlabel('Thermoelectric length,(m)') 

ylabel('Power output PV, (mW)') 

grid 

  

figure; 

plot(L_plot, PmaxT); 

xlabel('Thermoelectric length,(m)') 

ylabel('Total Power output, PV+TEG, (mW)') 

grid 

  

  

figure; 

plot(L_plot,delT); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Temperature difference,(°C)') 

figure; 

plot(L_plot,PA); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Power per unit area, (mW/mm2)') 

  

figure; 

plot(L_plot, effpv2); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Efficiency PV, (%)') 

  

figure; 

plot(L_plot,effTEG1); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Efficiency TEG, (%)') 
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figure; 

plot(L_plot,effT); 

xlabel('Thermoelectric length,(m)') 

ylabel('Efficiency PV+TEG, (%)') 

grid 

  

  

System at Vacuum 

clear;  

clc;  

Apv=(0.04)^2;% PV device area  

G=1000; 

effpv=0.1;% PV cell efficiency 

Lg=0.003;% thickness of the glass of PV cell 

Kg=1;% thermal conductivity of the glass 

hcov=5;% convective heat transfer 

Ut=((Lg/Kg)+(1/hcov))^-1;  

Tamb=298.15; 

Tc=298;% cold side temperature 

Tg=0.95;% the transmissivity of the glass 

ems=0.88;% the surface emissivity of the cell 

S=5.67*10^-8; the Stefan-Boltzmann constant 

k=1.5;% thermal conductivity of TEG 

N=62;% number of thermoelements 

ATE=(.8*10^-3)^2; TEG area 

A=ATE*N;% area of TEG 

alf=185*10^-6;% the Seebeck coefficient 

row=1*10^-5;% the electrical resistivity 

Z=alf^2/(row*k);% the thermoelectric figure of merit 
n=0.0001;% electrical contact parameters 

r=0.2;% thermal contact parameters 

Lc=0.00009;% the thickness of the ceramic plates 

Bref=0.0011;% the temperature coefficient for silicon solar 
cells,%/K 
  

Tref=298;%reference temperature 

syms tempsym  

count=0;  

f=@(Ts,L) (-G*Tg*Apv+(ems*5.67)*10^(-8)*(2*Apv-A)*(Ts^4-

Tamb^4)+(k*(1+Z*((3*Ts+Tc)/8))*ATE*N)*(Ts-

Tc)/(L)+((G*Tg*Apv*(effpv*(1-Bref*(Ts-Tref))))));  

  

for L=0.00005:0.0005:0.008 

count=count+1;  

roots=solve(f(tempsym,L));  

posroot(count)=subs(roots(1),1); 

delT(count)=posroot(count)-Tc;  

B(count)=delT(count);  

Pmax(count)=1000*(alf^2*ATE*N*(delT(count))^2/(4*row*(n+L)*(1+2*

r*Lc/L)^2)); 

Pmax1(count)=Pmax(count)/A; 

L_plot(count)=L; 

PA(count)=Pmax(count)*10^-6/(A); 
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QTE(count)=1000*(G*Tg*Apv-hcov*(2*Apv-A)*(posroot(count)-Tamb)-

(ems*5.67)*10^(-8)*(2*Apv-A)^2*((posroot(count))^4-Tamb^4)-

((G*Apv*Tg*(effpv*(1-Bref*(posroot(count)-Tref)))))); 

 

effTEG1(count)=100*Pmax(count)/QTE(count); 

effTEG2(count)=Pmax(count)*.1/(1000*Apv) 

  

  

  

effpv1(count)=((G*Apv*(effpv*(1-Bref*(posroot(count)-

Tref))))/(G*Apv));% efficiency of PV as a function of 

temperature 

effpv2(count)=100*effpv1(count);% (%) 

   

Ppvmax(count)= 1000*effpv1(count)*G*Apv;% (mW) 

PmaxT(count)=Ppvmax(count)+Pmax(count);% Ptot 

effT(count)=(effpv2(count)+effTEG2(count)) 

end 

  

  

figure; 

plot(L_plot, Pmax); 

xlabel('Thermoelectric length,(m)') 

ylabel('Power output TEG, (mW)') 

grid 

  

figure; 

plot(L_plot, Ppvmax); 

xlabel('Thermoelectric length,(m)') 

ylabel('Power output PV, (mW)') 

grid 

  

figure; 

plot(L_plot, PmaxT); 

xlabel('Thermoelectric length,(m)') 

ylabel('Total Power output, PV+TEG, (mW)') 

grid 

figure; 

plot(L_plot,delT); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Temperature difference,(°C)') 

  

figure; 

plot(L_plot,PA); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Power per unit area, (mW/mm2)') 

  

figure; 

plot(L_plot, effpv2); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Efficiency PV, (%)') 

  

figure; 
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plot(L_plot,effTEG1); 

grid 

xlabel('Thermoelectric length,(m)') 

ylabel('Efficiency TEG, (%)') 

  

  

figure; 

plot(L_plot,effT); 

xlabel('Thermoelectric length,(m)') 

ylabel('Efficiency PV+TEG, (%)') 

grid 

  

 

Appendix.6   Sample of calculation results for M-I in Vacuum and non-vacuum. 

The maximum power output Vs thermoelements length in vacuum and non-

vacuum 

Vacuum Non Vacuum 

L (m) Pmax (mW) L (m) Pmax (mW) 

0.0005 0.441453 0.0005 0.398966 

0.0055 5.489172 0.001 1.117635 

0.0105 5.687715 0.0015 1.719409 

0.0155 5.145873 0.002 2.166411 

0.0205 4.567183 0.0025 2.485517 

0.0255 4.065174 0.003 2.707594 

0.0305 3.646595 0.0035 2.857724 

0.0355 3.298748 0.004 2.95479 

0.0405 3.007651 0.0045 3.0127 

0.0455 2.761618 0.005 3.041665 

0.0505 2.551517 0.0055 3.049203 

0.0555 2.370324 0.006 3.040879 

0.0605 2.212638 0.0065 3.020839 
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0.0655 2.074271 0.007 2.992192 

0.0705 1.951948 0.0075 2.95728 

0.0755 1.843074 0.008 2.917881 

0.0805 1.745577 0.0085 2.875344 

0.0855 1.657783 0.009 2.830701 

0.0905 1.578326 0.0095 2.784742 

0.0955 1.506083 0.01 2.738069 

0.1005 1.440122 0.0105 2.691145 

0.1055 1.379663 0.011 2.644322 

0.1105 1.32405 0.0115 2.597867 

0.1155 1.272725 0.012 2.551983 

0.1205 1.225214 0.0125 2.506818 

0.1255 1.181108 0.013 2.462484 

0.1305 1.140055 0.0135 2.419059 

0.1355 1.101751 0.014 2.376598 

0.1405 1.06593 0.0145 2.335135 

0.1455 1.032357 0.015 2.294689 

0.1505 1.000829 0.0155 2.255271 

0.1555 0.971165 0.016 2.216877 

0.1605 0.943205 0.0165 2.179501 

0.1655 0.916806 0.017 2.143129 

0.1705 0.891841 0.0175 2.107743 

0.1755 0.868198 0.018 2.073324 
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Appendix.7  Measuring the geometry of thermoelectric generator using Microscope; a) 

actual picture for the microscope, computer and modules. b) Module with the 

measurements. 

(a) 

 

(b) 
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Appendix.8:   The parameters of the six TEG (M-A, M-B, M-C, M-D, M-E and M-F)  

                         used for validation. 

 

 

  Module A Module B 

Parameter Value Unit Parameter Value Unit 

APV (0.04)2  m2 APV 40x40  m2 

ATE (0.8x10-3)2 m2 ATE (0.8x10-3)2 m2 

N 14 -- N 62 -- 

G 1000 W/m2 G 1000 W/m2 

ηPV 4.9 % ηPV 4.9 % 

 τg 0.95 --  τg 0.95 -- 

βc 1 -- βc 1 -- 

β0 0.0011 K-1 β0 0.0011 K-1 

hcov 5  W.m-2K-1 hcov 5  Wm-2K-1 

Tamb 296 K Tamb 298  K 

ε 0.9 -- ε 0.9 -- 

k 1.5  W.m-1K-1 k 1.5  W.m-1K-1 

kg 1  W.m-1K-1 kg 1  W.m-1K-1 

α 182  µVK-1 α 170  µVK-1 

ρ 1 x 10-5  Ω.m ρ 1 x 10-5  Ω.m 

n 0.0001  m n 0.0001  m 

r 0.03 -- r 0.01 -- 

lc 0.002  m lc 0.002  m 

Tref 298 K Tref 298 K 
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  Module C Module D 

Parameter Value Unit Parameter Value Unit 

APV (0.04)2  m2 APV 40x40  m2 

ATE (0.5x10-3)2 m2 ATE (0.7x10-3)2 m2 

N 98 -- N 142 -- 

G 1000 W/m2 G 1000 W/m2 

ηPV 4.9 % ηPV 4.9 % 

 τg 0.95 --  τg 0.95 -- 

βc 1 -- βc 1 -- 

β0 0.0011 K-1 β0 0.0011 K-1 

hcov 5  W.m-2K-1 hcov 5  Wm-2K-1 

Tamb 298 K Tamb 296 K 

ε 0.9 -- ε 0.9 -- 

k 1.5  W.m-1K-1 k 1.5  W.m-1K-1 

kg 1  W.m-1K-1 kg 1  W.m-1K-1 

α 162  µVK-1 α 157  µVK-1 

ρ 1 x 10-5  Ω.m ρ 1 x 10-5  Ω.m 

n 0.0001  m n 0.0001  m 

r 0.02 -- r 0.01 -- 

lc 0.0009  m lc 0.002  m 

Tref 298 K Tref 298 K 



APPENDIXES 

162 

 

 

 

 

 

 

  Module E Module B 

Parameter Value Unit Parameter Value Unit 

APV (0.04)2  m2 APV 40x40  m2 

ATE (2.1x10-3)2 m2 ATE (0.9x10-3)2 m2 

N 62 -- N 256 -- 

G 1000 W/m2 G 1000 W/m2 

ηPV 4.9 % ηPV 4.9 % 

 τg 0.95 --  τg 0.95 -- 

βc 1 -- βc 1 -- 

β0 0.0011 K-1 β0 0.0011 K-1 

hcov 5  W.m-2K-1 hcov 5  Wm-2K-1 

Tamb 298 K Tamb 298  K 

ε 0.9 -- ε 0.9 -- 

k 1.5  W.m-1K-1 k 1.5  W.m-1K-1 

kg 1  W.m-1K-1 kg 1  W.m-1K-1 

α 165  µVK-1 α 155  µVK-1 

ρ 1 x 10-5  Ω.m ρ 1 x 10-5  Ω.m 

n 0.0001  m n 0.0001  m 

r 0.04 -- r 0.04 -- 

lc 0.002  m lc 0.002  m 

Tref 298 K Tref 298 K 
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Appendix.9  Sample of measurement results for PV cell under one sun and five suns. 

Characterisation of PV cell under one sun 

R (ohm) V (mW) I (mA) P (mW) 

0.1 0.0 220.0 2.5 

0.3 60.0 217.0 13.0 

0.7 140.0 216.0 30.2 

1.1 230.0 215.0 49.5 

1.5 325.0 214.0 69.6 

2.1 446.0 210.0 93.7 

3.1 507.7 163.8 83.1 

4.1 526.1 128.3 67.5 

5.1 537.0 105.3 56.5 

6.1 544.9 89.3 48.7 

7.1 550.0 77.5 42.6 

8.1 553.0 68.3 37.8 

9.1 556.1 61.1 34.0 

10.1 558.0 55.2 30.8 

100.0 575.0 5.8 3.3 

0.0 576.0 0.0 0.0 

 

Characterisation of PV cell under five suns 

R V (mW) I (m Am) P (mW) 

0.1 0.0 975.0 0.0 

0.2 195.0 975.0 190.1 

0.3 281.0 936.7 263.2 

0.4 338.0 845.0 285.6 

0.5 378.0 756.0 285.8 

0.6 407.4 679.0 276.6 

0.7 426.2 608.9 259.5 

0.8 441.7 552.1 243.9 

0.9 454.7 505.2 229.7 
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Appendix.10   Characterisation of PV cell under one sun and five suns 

 

 

 

 

 

 

Appendix.11  The specifications and details of the flowmeter. 

1 465.0 465.0 216.2 

2.1 526.0 250.5 131.8 

3.1 548.0 176.8 96.9 

4.1 559.9 136.6 76.5 

5.1 567.0 111.2 63.0 

6.1 572.0 93.8 53.6 

7.1 575.0 81.0 46.6 

8.1 578.0 71.4 41.2 

9.1 580.0 63.7 37.0 

10.1 581.0 57.5 33.4 

100 596.0 6.0 3.6 

0 598.0 0.0 0.0 

No. TH 

(oC) 

ΔT 

(oC) 

VOC 

(mV) 

ISC 

(mA) 

FF 

(%) 

ηPV 

(%) 

1 sun 24 4 576 220 65.6 6.8 

5 suns 33 13 598 975 49 4.7 

NPT Female Connection Type                        1/8 

Device Type Flow Indicator 

Material Brass 

Maximum Flow Rate 100 cm/m 

Maximum Media Temperature + 65°C 
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Appendix.12  The effect of mass flowrate on temperature difference across TEG. 

Mass flowrate (kg/s) TC [ºC] TH [ºC] ΔT= [ºC] 

m1= 0.0015 20.2 42 21.9 

m2= 0.00125 23.1 46.8 23.6 

m3= 0.00066 24.4 51.4 26.3 

m4= 0.00041 26.6 54.14 27.5 

m5= 0.00016 33 60 26.6 

 

Appendix.13  The mass flowrate and the temperature difference between the inlet and 

outlet fluid. 

Mass flowrate (kg/s) Tin [ºC] Tout[ºC] ΔTf= [ºC] 

0.00041 22.1 23.2 1.1 

 

 

 

 

 

 

Maximum Operating Temperature + 65°C 

Maximum Pressure 6.89 bar 

Media Monitored Liquid 

Minimum Flow Rate 10 ccm 

Pipe Diameter Range 1/8 in 

Accuracy  ± 5 % full scale 
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Appendix.14   Improving Cooling Using Nanofluid  

This section discusses the laboratory testing of a nanofluid for improving cooling 

performance in a concentrated PV/TEG system. The section is divided into two processes: 

1) the procedure of preparing the nanofluid in the laboratory, and 2) using it as a cooling 

media. The result was compared with a base fluid (the pure water in this study).   

Preparing nanofluid 

There are two main methods to prepare nanofluid; the first method is called the Single 

Step Method and the second one is called the Two Step Method. In the Single Step 

method, the nanoparticle is made and dispersed simultaneously in one step whereas in the 

Two Step method the nanoparticles are fabricated first and then dispersed into the base 

fluid(s). 

In this work copper oxide (CuO) purchased from Schema Aldrich was used to prepare the 

CuO nanofluid. The diameter of nanoparticles was 50 nm. Figure A.14.1 showed a SEM 

image of CuO under different magnifications. 

 

Figure A.14.1 SEM image of CuO nanoparticles; (a) 10000x and (b.)150000x magnification 
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A scale was used to weigh CuO nanoparticles and then the weighted amount was 

dispersed in pure water. A sonicator bath was used to disperse the CuO nanoparticles in 

the base fluid for 30 minutes. Figure A.14.2 shows a photograph of the pure water, the 

sonicator bath and the prepared nanofluid.   

 

Figure A.14.2 A photograph of pure water and nanofluid 

 

Experimental rig to test nanofluid: 

Figures A.14.3 and A.14.4 show a schematic diagram and actual construction of the 

experimental setup, respectively. The same PV/TEG hybrid system presented in section 

5.2.1.2 is used here, which includes crystalline solar cells of type (m-Si) with the TEG 

(M-A).  

The TEG was mounted on an aluminium heat sink (12cm X 10 cm X 3.6 cm) with heat 

sink compound. The heat sink was then immersed in water inside an insulator box. The 

insulator box placed on magnetic stirrer to circulate the fluid inside the box. The same 

solar simulator used in Chapter 3 was used as the light source and the intensity of 

illumination was measured using the pyranometer. The experiment was conducted under 

a light intensity of two suns.  
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Figure A.14.3 A schematic diagram of the experimental setup 

 

 

Figure A.14.4 A photograph of the experimental setup 

 

A multi-channel data logger (explained in Chapter 3) was used for recording the 

temperature measurement. The I–V characteristics of the PV cells are determined by the 

same procedure mentioned in Chapter 3 and the TEG was characterised by using the 

procedure discussed in Chapter 4.  

Results and Discussion 

In the absence of facilities to measure the physical properties (e.g. density and specific 

heat) directly, they can be calculated based on the amount of nanoparticles dispersed in 
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the base fluid. These properties can then be used in the calculation of the total heat that 

can be removed from the cold side of TEG by the fluid.  

The following equation is used to calculate the density of a nanofluid solution [110]: 

𝜌𝑛,𝑓 =  (1 − ∅)𝜌𝑏,𝑓 +  ∅𝜌𝑛,𝑝          A.1 

where 𝜌𝑛,𝑓 is the density of nanofluid,  𝜌𝑏,𝑓 is the density of base fluid, 𝜌𝑛,𝑝 is the density 

of the nanoparticles and ∅ is the volume fraction. The volume fraction can be calculated 

as [109]: 

           ∅ =
𝑉𝑛

𝑉𝑛+𝑉𝑏,𝑓
                                                               A.2 

where 𝑉𝑛 is the volume of nanoparticles and 𝑉𝑏,𝑓 is the volume of base fluid. Equation 

A.2 can also be expressed as: 

      ∅ =
(

𝑚

𝜌
)𝑛

(
𝑚

𝜌
)𝑛+(

𝑚

𝜌
)𝑏,𝑓

                                                                                                         A.3 

where (
𝑚

𝜌
)𝑛 is the mass of nanoparticles divided by their density, and  (

𝑚

𝜌
)𝑏,𝑓 is the mass 

of base fluid divided by its density. Consequently, the specific heat of a nanofluid can be 

calculated by using equations A.4 [109]: 

𝑐𝑝𝑛,𝑓 =
 (1−∅)𝜌𝑏,𝑓𝑐𝑝𝑏,𝑓+ ∅𝜌𝑛,𝑝𝑐𝑝𝑛,𝑝

𝜌𝑛,𝑓
                                                                       A.4 

The weight of the CuO nanoparticles required for preparation of 400 ml of CuO nanofluid 

was calculated by using equation A.3. Table A.14.1 shows the physical properties of the 

nanoparticles and base fluid that were used to calculate the physical properties of CuO- 

nanofluid in Table A.14.1.  

The benefit of using the nanofluid was examined by measuring the temperatures at three 

places: TH, TC and the fluid temperature (Tf) inside the mass storage. Figure A.14.5 shows 

the temperature results at TH for the TEG when pure water was used as a cooling fluid, 

and when nanofluid was used.  
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Table A.14.1 Physical properties of pure water, CuO nanoparticles and CuO nanofluid 

 

It can be seen that the nanofluid contributed to reduce the TH of the TEG, which is 

beneficial for the PV cells as it assumed that the PV cells have the same temperature as 

the TH of the TEG.  

 

Figure A.14.5 The temperatures of the hot side of the TEG vs time for pure water and for nanofluid 

 

Figure A.14.6 The I-V curves of a PV cell when pure water and nanufluid are used as cooling fluids 
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As a result, the I-V curves are modified as shown in Figure A.14.6. Furthermore, the PPV 

was improved as seen in Figure A.14.7 and the Pmax of the PV increased from 127.9 mW 

to 130.1 mW. However, the ΔT established across the TEG device was affected because 

the TH of the TEG with nanofluid was lower. This is because the heat was transferred to 

the fluid quickly when nanofluid was used. 

 

 

Figure A.14.7 The P-V curves of a PV cell when pure water and nanufluid are used as cooling fluids 

 

Figure A.14.8 The temperatures profile vs time when pure water and CuO nanofluid are used as 

cooling fluids 

Consequently, Figure A.14.8 shows the TC of the TEG with pure water and nanofluid. It 

is clear that the TC with nanofluid presents a higher temperature because the Tf in the 

isolator box was higher as can be seen in Figure A.14.9.  

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6

P
o

w
er

 o
u

tp
u

t 
[m

W
]

Voltage [V]

Nanofluid

Water



APPENDIXES 

172 

 

As a result, the ΔT established across the TEG decreased and hence reduced the ISC, and 

VOC as can be seen in Figure A.14.10. Also, the Pmax from the TEG dropped from 2 mW 

to 0.94 mW as shown in Figure A.14.11. 

The rate of thermal energy (𝑄̇ther) removed from the cold side of the heat sink is calculated 

by using the following equation: 

 𝑄̇ther = 𝑚𝑐𝑝
∆𝑇𝑓

𝑡
                                                                                         A.5 

where, m is the mass of the fluid inside the box, t is the time and ∆𝑇𝑓 is the increase in 

the temperature during the time of measurement. The 𝑄̇ther calculated for time of 1000 

second (s), and presented in Table A.14.2. 

Table A.14.2 The time, mass, ∆Tf and Qther 

 

 

 

 

 

Figure A.14.9 The temperature of fluid inside the mass storage vs time when pure water and 

nanofluid are used as cooling fluids 

Finally, the experimental results indicated that using nanofluid in the cooling system is 

recommended in order to reduce the operating temperature of PV cells. 

 Time 

(s) 

Mass of water 

(kg) 

∆Tf 

(⁰C) 
𝑄̇ther  

(W) 

     

Water 1000 0.1 2.33 0.98 

Nanofluid 1000 0.1 
2.6 

0.45 
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Figure A.14.10 The I-V curves of the TEG when pure water and nanufluid are used as cooling 

fluids 

 

 

Figure A.14.11 The P-V curves of the TEG when pure water and nanufluid are used as cooling 

fluids 

 

0

10

20

30

40

50

60

70

80

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
u
rr

en
t 

[m
A

]

Voltage [V]

Nanofluid

Water

0

0.5

1

1.5

2

2.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

P
o

w
er

 o
u

tp
u

t 
[m

W
]

Voltage [V]

Nanofluid

Water



APPENDIXES 

174 

 

Appendix.15  The I-V curves of Ti-SC and G-SC. 
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Appendix.16   The I-V and P-V curves for three TEGs method, a) M-A, b) M-B and c) M-

C in HTC with titanium solar cells (Ti-SC) and glass solar cells (G-SC). 

(a) 

 
(b) 

 
(a) 
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