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Abstract 

The mixing of the hydrocarbon surfactant cetyltrimethyl ammonium bromide (CTAB) 

and the fluorocarbon surfactant, Zonyl-FSN-100 with the average chemical structure of 

C8F17C2H4 (OC2H4)9OH, is quantified. The critical micelle concentration (CMC), the size 

and shape of the micelles and their composition have been investigated by surface 

tension, fluorescence, small-angle neutron scattering (SANS), electron paramagnetic 

resonance (EPR), pulsed-gradient spin-eco NMR spectroscopy (PGSE-NMR), 1H-NMR 

and 19F-NMR. The pure surfactant aqueous solutions and the mixtures have also been 

studied in the presence of hydrocarbon oil (hexane) and fluorocarbon oil 

(perfluorohexane, PFH) in order to investigate the swollen micelle shape and structure. 

The surfactants mix nonideally except for a degree of ideality at some CTAB mole 

fraction (0.5 > αCTAB > 0.7). The pure surfactant FSN-100 forms disc-like micelles with a 

small aggregation number (𝑁!"".) (~50) and the CTAB forms globular, charged micelles 

with a larger aggregation number (135). However, the aggregation number in the mixed 

micelles is greater than that in the pure surfactant case. The microviscosity of the head 

group region is sensitive to the number and bulkiness of the headgroups and the 

degree of hydration, but there is no obvious dependence on the 𝑁!"".  

In the presence of the fluorocarbon oil (PFH), CTAB and FSN-100 mixed micelles have 

been used as templates to synthesize nanoporous materials. Different amounts of the 

oil have been added to the surfactant template in order to investigate the role of oil 

volume in the synthesis of templated materials. These synthesized materials have 

been characterized using porosimetry, scanning electron microscopy (SEM), 

transmission electron microscopy (TEM) and X-ray diffraction (XRD). Some of the 

materials, at either end of the oil range studied, possess high specific surface areas 

with bimodal pore size distributions. These materials were explored as potential 

catalysts and were grafted with sulfonic acid moieties and characterized by TGA and 

XPS. The catalytic performance in the reaction of palmitic acid conversion, 

characterized by gas chromatography (GC), approached the level shown in the 

literature by related materials. Collectively this work has shown some potential in the 

preparation of novel catalysts, but further refinement is necessary.      
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1.1. Hierarchical nanoporous materials  

Hierarchical pore structures are attractive materials for traditional ion-exchange, 

adsorption, and separation applications in terms of having large surface areas, highly 

ordered nanochannels and uniform pore sizes. The material presents pores on different 

length scales from 2 nm to 50 nm. Basically, porous materials are classified based on 

the presence of three types of pores, micropores (<2 nm), mesopores (2-50 nm), and 

macropores (>50 nm) according to the IUPAC (the International Union of Pure and 

Applied Chemistry) [1]. Moreover, particular properties such as specific pore structures 

and reduced materials have a great potential in catalysis, sorption and biomedicine. 

Current approaches use combined physical templates such as polystyrene spheres to 

induce porous materials, but there are some difficulties of using the polystyrene 

templating approach. Polystyrene templating affects the integrity of the produced 

porous silica, the method is costly and it is a complicated process [2]. Surfactant 

templating is a good strategy in the synthesis of mesoporous silica as different cationic, 

anionic and non-ionic surfactants can represent suitable templates to induce bimodal 

pores. Surfactants also are efficient for templating porous materials since they can be 

recovered after the templating process. In surfactant templating, the main concept is 

how to utilize the organic surfactant molecules and the surfactant self-assembly 

approach to make a framework with other inorganic species in the synthesis of 

nanoporous solid structures. Figure 1.1 shows the IUPAC classification of nanoporous 

material based on the pore diameter. 

          

           Figure 1.1 The IUPAC classifications of nanoporous material [3].  

In terms of the applications, nanoporous materials are widely used not only because of 

their porosity advantages, but also because of their morphology. They also have many 
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types of possible morphologies such as the thin film, powder and honeycomb [4]. The 

fabrication of these materials with hierarchical porous structures is the main 

development of this field. It is possible to combine many benefits from a system with 

different pore size. For example, high specific surface area can be provided by meso 

and macroporous structures, whereas increased mass transport and easier 

accessibility to the active sites through the material can be offered by additional 

macropores. Hierarchical structures, which have macro and mesopores, have more 

properties such as superior mass transfer and lower restriction of the diffusion of 

reactants in the mesopores, compared with single- sized pore structures [4, 5] . 

In particular, the morphology of nanoporous silicas is controlled by several factors 

including hydrolysis and condensation of silica precursor around the surfactants, 

surfactant micelle shapes, and the interaction between micelles, as well as, the other 

additives such as organic swelling agents and cosolvents. Adjusting these factors 

provides various morphologies, which are important for a range of applications. For 

example, films for catalysis and separation, monoliths for optics, and uniform pore 

sized spheres are suitable for chromatography studies [6].  

There are many proposed methods of using surfactants in the synthesis of nanoporous 

silicas. The most popular and cost effective ways are core-shell templating, self-

assembly and microemulsion methods. In the next section, the surfactant self-

assembly approach and its suggested pathways will be considered.  

1.1.1.  Templating with cationic and nonionic surfactants 

Cationic surfactants have an excellent solubility and can be used in acidic and basic 

media. In addition, the cationic quaternary ammonium surfactants CnH2n+1N(CH3)3 Br (n 

= 8-22), including CTAB were used as structure directing agents in the first reports of 

mesoporous silicate synthesis [5, 7]. Moreover, the non-ionic surfactants self-assemble 

to produce mesophases with different geometry and arrangements and they become 

more popular in the synthesis of mesoporous materials. The fluorinated surfactants 

form intermediate mesophases easier than hydrocarbon surfactants when assemble 

into aggregates [8].  

1.1.2.  Synthesis mechanisms 

Many studies have been carried out for the formation of mesostructures, based on the 

surfactant self-assembly approach. However, two main effective mechanisms are 

possible in the synthesis of ordered nanoporous materials including cooperative self-

assembly and liquid-crystal templating process [7, 9].  



Chapter One                                                         Introduction and Literature Review 

 4 

1.1.2.1. Cooperative self-assembly of surfactants 

This mechanism is based on the interactions between the surfactants and silicates to 

form organic-inorganic mesostructured composites. The formation of hexagonal 

mesostructure depends on a layered intermediate. Figure 1.2 shows the cooperative 

surfactant self-assembly pathway [9].    

              

              Figure 1.2 The cooperative self-assembly pathway [9].   

1.1.2.2. Liquid crystal templating 

In this mechanism, surfactants self-assemble into cylindrical micelles, and form the 

framework by encapsulating micelles by inorganic materials that balance the micellar 

surface charge. The liquid-crystal mesophases formed in this surfactant templating 

assembly process used to form ordered mesoporous materials. The organic template 

can then be removed by calcination or solvent extraction, etc. to leave a hexagonal 

arrangement of mesopores. Figure 1.3 shows a schematic representation of liquid 

crystal template pathway [9].   

 

                            Figure 1.3 The liquid crystal pathway [9].  
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1.1.3.  Material characterizations 

To characterize nanoporous materials, adsorption methods are widely employed. N2 or 

Ar adsorption isotherms measured at low temperatures are used to characterize the 

material porosity to study the surface area and the pore size distribution. In this project 

N2 adsorption isotherms have been used to study the porosity systems and determine 

these key parameters. However, some limitations for these measurements are 

considered in terms of the expensive automatic equipment, the large amount of sample 

needed and long-time experiments.  

1.1.3.1. N2 adsorption isotherm method 

N2 isotherm method is one example of gas adsorption technique used to investigate 

the porous material morphology. The method of N2 adsorption-desorption is the starting 

point for the characterization of porous materials particularly mesoporous structures. 

Nitrogen adsorption-desorption can be applied over a wide range of relative pressure to 

analyse pore structures, and the multilayer adsorption of nitrogen can occur at liquid 

nitrogen temperature of 77 K. In the method, the amount adsorbed of nitrogen is 

evaluated by measuring the change of gas pressure. The operational procedure to 

determine the adsorption isotherm is by a discontinuous, point-by point procedure or a 

continuous approach. The discontinuous method is based on introducing different 

amounts of the adsorptive (N2) and at each stage reaching the equilibrium is required. 

The other approach is more recent and depends on providing a continuous equilibrium 

isotherm through a slow introducing of the adsorptive. The filling of micropores takes 

place at lower relative pressures (>10-4), whereas mesopores filling occur at higher 

relative pressure [10].   
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                 Figure 1.4 Isotherm types based on IUPAC classifications [10].  

Basically, the gas adsorption starts to form a monolayer on the surface followed by 

multilayer adsorption and then capillary condensation occurs. Since the temperature is 

below the critical point of the gas (at or above this point vapour does not liquefied), the 

gas adsorbed amount increases with increasing the relative pressure. Six main 

adsorption isotherms are observed based on the plot of adsorbed amount vs the 

relative pressure. Figure 1.4 shows the IUPAC classification of isotherms [10]. Both 

types of IV and V have a hysteresis loop, which is related to the mesopore filling by 

capillary condensation, and emptying by evaporation.   
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 Hysteresis and capillary condensation 

Capillary condensation is the process of filing pores, which have the size range 

between 2 and 50 nm (mesopores), and it comes after multilayer adsorption on the 

pore wall. The mesopore spaces become filled with condensed liquid from the gas 

vapour phase. This phenomenon is the responsible for the hysteresis between the 

adsorption and desorption branches of the isotherm. The hysteresis loop is dependent 

of the parameters of the material examined, the temperature and the adsorbate. Thus, 

at determined parameters the shape of adsorption and desorption branches is strongly 

associated with the pore size distribution. The hysteresis loop is also classified into four 

types based on IUPAC classification. Figure 1.5 represents all these types of the 

hysteresis loop [10].  

                

                        Figure 1.5 the types of hysteresis loop [10].  

The hysteresis loop shapes are strongly linked to the pore shape. H1 type of hysteresis 

loop is associated with a narrow and uniform pore size distribution as the pores in 

MCM-41 (mesoporous silica with cylindrical pores). There is a broad loop with gradual 

uptake on adsorption and very steep desorption branch in the type H2. This hysteresis 

is associated with the porous materials, which have interconnected pores of 

progressive sizes and shapes. H3 and H4 types are continued at high relative pressure 
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and difficult to define the termination of desorption boundary curve. H3 loop is linked to 

the solids, which have a coexistence of two types of particles, whereas the H4 is 

observed in the materials having narrow slit-shaped pores such as activated carbons 

[10].   

 Pore surface areas and pore size distributions  

The surface area and pore size distributions are the most essential parameters 

estimated from the adsorption isotherms to characterize the porous materials. The 

Brunauer, Emmett and Teller model (BET) model [11] determines the specific surface 

area and the Barrett, Joyner and Halenda (BJH) [12, 13] method  is used to obtain the 

pore size distribution.  

 The Brunauer, Emmett and Teller model (BET) 

The model was adopted to determine the specific surface area of porous materials and 

established as a standard model for surface area characterization. The model is an 

extension of the Langmuir model (monolayer condensation) but it takes the formation 

of multilayers into account [11]. BET equation (1.1) was developed to study the Type II 

isotherms and reversible part of Type IV isotherms.  

                         
𝑃/𝑃° 𝑉(1−(𝑃/𝑃°)) = 1𝑉𝑚𝐶 + (𝐶−1) ( 𝑃𝑃°)𝑉𝑚𝐶                                         (1.1)  

where, 𝑉 is the volume of the adsorbed gas, 𝑉𝑚 is the volume of the monolayer of 

adsorbed gas, 𝑃 is the equilibrium gas pressure, 𝑃° is the saturation pressure of the 

adsorbate and 𝐶 is the BET constant.  

The plot of the 
𝑃/𝑃° 𝑉(1−(𝑃/𝑃°)) vs relative pressure gives a straight line at low relative 

pressure range of 0.05 < 
𝑃𝑃° < 0.25 depending on the sample. The slope = (𝐶 − 1)/𝑉𝑚𝐶 

and the intercept is 
1𝑉𝑚𝐶 are used to estimate the specific surface area of the porous 

material. The linear region of the plot depends on both the adsorbent and adsorptive 

and the operational temperature. The specific surface area is calculated from the BET 

monolayer capacity and depends on the average area occupied by each molecule in 

the completed monolayer.   

 Pore size distribution  

The pore size of mesoporous materials mainly depends on the type and length of the 

hydrophobic part of surfactants. Larger pore sizes can be formed using cationic 
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quaternary surfactants with longer alkane chains. For example, the BJH pore diameter 

of MCM-41 increases from 1.6 to 4.2 nm when increasing the chain length from C8 to 

C12 [14] [15]. 

Using a nitrogen adsorption isotherm for pore size determination is based on the BJH 

method as a way to estimate the pore size distribution from an appropriate nitrogen 

isotherm. The analysis of pore size using BJH method is dependent of the application 

of the Kelvin equation.  

 The Kelvin equation 

The Kelvin equation (1.2) is used to determine the pore radius in porous material using 

an adsorption porosimetry method. The equation describes the change in the vapour 

pressure related to the radius of the pore, as the equilibrium vapour pressure is highly 

dependent on the pore radius [12, 15].  

                                         ln 𝑝°𝑝 = 2𝛾𝑉𝑚𝑟𝑅𝑇                                                      (1.2) 

where, 𝑃 is the condensation partial pressure of the gas adsorptive, 𝑝° is the saturated 

partial pressure for a flat surface, 𝛾 is the surface tension of liquid nitrogen, 𝑉𝑚 is the 

liquid molar volume of nitrogen, 𝑟 is the pore radius, and 𝑅 is the gas constant and 𝑇 is 

the absolute temperature.  

1.2. Surfactant phase behaviour  

Surfactant phase behaviour has been studied in this project for both pure surfactant 

solutions and mixtures in order to understand the role of the surfactant template in the 

synthesis of porous materials. To study the surfactant phase behaviour, the critical 

micelle concentrations (CMC), have been determined using surface tension and 

fluorescence approaches and from the surface tension study, the surface area per 

molecule of surfactant has also been investigated. In addition, surfactant micellization 

has been considered in terms of micelle shape and size, the micelle dynamics and the 

interaction between surfactant micelles and mixed micelles.  

1.2.1. Surfactants  

Surfactants are organic molecules that have the ability to adsorb at interfaces when 

dissolved in a solvent, and that changes the interface physical properties. Both 

surfactant chemical structure (amphiphilic molecules) and the nature of solvent affect 

the adsorption behaviour. The structure of head and tail groups classifies many 
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possible types of surfactants. The head groups include charged, natural and polymeric 

chain with various sizes from small to compact head groups. The tail could be single or 

double, hydrocarbon, fluorocarbon, and straight or branched. Four main types of 

surfactants are determined based on the type of head groups (hydrophilic parts) since 

the head group solubility in water is determined by either hydrogen bonding or ionic 

interactions. They are anionic, cationic, non-ionic and zwitterionic surfactants. 

Surfactants used in the project are chosen to be one hydrocarbon surfactant 

cetyltrimethylammonium bromide (CTAB) as an efficient surfactant for the synthesis of 

ordered mesoporous materials [16, 17], and the other is fluorocarbon surfactant Zonyl 

FSN-100 (FSN-100). The hydrocarbon/ fluorocarbon mixed micelle templates are 

previously considered to provide nanoporous materials with controlled pore size 

arrangements.  

1.2.2. Surfactants and air-water interfaces 

Water molecules have unequal attraction forces at the air-water surface, and the strong 

interaction through van der Waals forces and hydrogen bonding pull the molecules to 

the bulk phase to minimize the contact area with the gas phase in a spontaneous 

process. Thus, the presence of dissolved surfactant molecules in the bulk phase 

reduces the surface tension and minimizes the free energy per unit area due to the 

dual chemical structure of surfactants. At surfactant concentrations below the CMC, 

there is a dynamic equilibrium between the surfactant molecules arriving at the surface 

and those leaving the surface to the bulk. At the CMC, the surface is at maximum 

coverage of surfactant molecules in order to minimize the free energy, and surfactant 

aggregations start to form in the bulk phase. Above the CMC, surfactant 

monomolecular layer is adsorbed and the bulk includes free monomers and micellised 

surfactants.    

1.2.3. Gibbs adsorption equation  

At the air-water interface, surfactants adsorbed reduce the solution surface tension 

until reaching a constant value at concentrations above the surfactant CMC creating a 

break point in the plot of surface tension vs log concentration. In this case, the Gibbs 

adsorption equation for surface excess (equation 1.3) can be used to determine the 

Gibbs surface excess of the surfactant relative to water at any concentration up to the 

CMC, since the reduction of the surface tension has changing slope until reaching a 

maximum value at the CMC and then becomes zero above the CMC. The reduction of 

surface tension region in the plot represents the surfactant saturation of the interface 

and that can be used to estimate the area per molecule of the surfactant [18, 19].   
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                                                Г =  −(𝜕𝛾/𝜕𝑙𝑛𝐶)/𝑛𝑅𝑇                                               (1.3)                        

Where Г is the surface excess of the surfactant, 𝑛 is the number of species formed by 

surfactant dissociation (e.g. for non- ionic surfactants 𝑛 = 1), (𝜕𝛾/𝜕𝑙𝑛𝐶) is the slope of 

line B (figure 1.6), 𝑅 is the gas constant and 𝑇 is the temperature.  

The surface area per molecule at the air/water interface has traditionally been 

calculated through applying the Gibbs equation. As the interface is saturated in the 

Gibbs region, the Gibbs approach predicted a continued linear decline. Thus, the 

surface area per molecule can be calculated from equation 1.4, [20, 21].  

                                        𝐴𝑚𝑖𝑛= 1020 /N. Г                                                               (1.4) 

Where N is Avogadro’s number and 𝐴𝑚𝑖𝑛 is expressed in Å2/ molecule  

Figure 1.6 shows a typical decay of surface tension of water and an increase of surface 

excess of surfactant vs the surfactant concentrations. In this figure Gibbs equation is 

used to quantify the adsorption at the surface. A reduction in the surface tension is 

observed with small changes in the concentration of the surfactant in the bulk phase. 

The gradual decrease in the surface tension with an increase in surface excess of 

surfactant is observed in region A. In addition, at higher surfactant concentration near 

to the CMC, a limited value of adsorption is reached and the surface tension curve 

becomes more linear, whereas in most cases the region of the concentrations below 

the CMC is curved.   

                

Figure 1.6 A typical plot of surface tension vs ln concentration of a surfactant 

[20].   
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1.2.4. Mixed surfactant systems  

Typically, industrial surfactant systems are mixtures of different species, such as ionic, 

nonionic, and electrolytes. The mixed species provides the ability to control the ionic 

strength, pH and viscosity as well as other physiochemical properties of the system 

[22, 23]. Thus adjusting the composition of these systems can provide desirable 

surface properties for many applications. However, to select a suitable surfactant 

system, the interaction between molecules adsorbed at the interface and the 

adsorption phenomena of this surfactant must be known [24].  

There have been many studies considered the adsorption and micelles in binary 

surfactant mixtures [25-31]. In particular, many fluorocarbon surfactants have growing 

interest in medical and environmental applications [32, 33]. The main discussion in 

mixed surfactant micelles is the degree of the ideality. It is well known that the 

interactions between fluorocarbon surfactants and hydrocarbon surfactants in the 

mixtures are nonideal [34, 35]. The nonideal mixing between these types of surfactants 

indicates the significant difference in the hydrophobicity.  

1.2.4.1.  Mixed micelle and micelle separation  

The formation of micelles in surfactant aqueous solutions affects the physical 

properties of the solution such as surface tension and light scattering, and the CMC 

can be measured when these changes occur. In mixed surfactant solutions, micelles 

contain two or more surfactant components in equilibrium with monomers. In this case 

the pseudo-phase separation models can be applied to study the mixed micellization in 

binary surfactant mixtures [36-38]. The assumption of these models is that surfactants 

mix ideally and the CMC of the mixture can be estimated as a function of the overall 

composition of the surfactant mixture and the CMCs of the pure surfactants [39]. The 

pseudo-phase separation approach has been used to predict the behaviour of binary 

nonionic surfactant mixtures as well as binary ionic surfactant mixtures particularly in 

the case when the hydrophilic groups are the same in both surfactants. In the case of 

ionic-nonionic surfactant mixtures, a deviation from ideality are often observed and that 

has led to develop the phase separation model to include the nonideal mixing in 

surfactants by treating micelles using regular solution approximations [39].  

 Clint phase separation model 

The micellization of mixed surfactants has been studied by this theory in a simple 

phase separation model. It assumes that the micellar composition and the 

concentration of monomer of each component can be calculated as a function of total 
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concentration by using the CMC of the pure surfactant and the mole fraction in the 

mixture. Thus, the CMC of the mixture in this case is calculated by means of the ideal 

mixing theory and assuming the simple phase separation model (equation 1.5) [40]. In 

the surface tension studies, at the air-water interfaces the surface tension is calculated 

by assuming that the mixed monolayer to be in equilibrium with the monomers in the 

solution. The curve of the surface tension vs the concentration (log C) in such a system 

is predicted to have a minimum [38] .  

                                          
1  CM = αCM1 + 1−αCM2                                                        (1.5)  

Where, CM is the CMC of the mixture, CM1 andCM2  is the CMC of the surfactants 1 and 

2 respectively, α is the mole fraction of the surfactant in the mixture. The activity 

coefficient of free monomers in the equation is assumed equal to unity.   

1.3. Literature review  

The literature review is split into three main sections in terms of studying the synthesis 

of porous materials, their properties as catalyst support materials, and the phase 

behaviour of surfactant solutions.    

1.3.1. Nanoporous materials  

The formation of hollow spherical materials has been described in many papers with 

many of them focussed upon silica materials. Most of the reported systems in this field 

were generally based on sol-gel/emulsion techniques and self-assembly processes. 

However, a variety of inorganic materials such as iron oxide, titanium, and zeolites 

have been used to fabricate many hollow particles with pore diameter ranging from 2 to 

100 nm [1, 5, 41]. A large number of surfactants have been used to template 

nanoporous materials and bimodal pores can be produced by choosing suitable 

surfactant mixtures [42-44]. However, mixing two different templates does not 

necessarily provide favourable bimodal fabricated materials. In this section we review 

nanoporous material formation using hydrocarbon surfactants, fluorocarbon surfactants 

and mixed surfactant templating, for which many different surfactants have been used 

in many different experimental approaches.  

1.3.1.1. Hydrocarbon surfactant templates  

Well-ordered hexagonal mesoporous silica (SBA-15) with uniform pore sizes (up to 300 

Å) has been synthesized by Zhao et al. Poly (alkylene oxide) triblock copolymers have 

been used as organic structure-directing agents in a self-assembly process. The 
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synthesis has been presented in acidic media to induce highly ordered materials with 

two-dimensional hexagonal mesophases [45]. 

Based on emulsion chemistry applications, stable hollow silica microspheres have 

been synthesised by Li et al. A sol-gel method of tetraethyl orthosilicate (TEOS) in non-

ionic W/O emulsion has been used. In this work, the synthesized microspheres are 

thermally stable, have high specific surface area, and do not collapse even after 

calcination at 700 oC for 8 h [46].  

However, in a single step synthesis, hollow silica spheres with high uniformity in size 

and multilamellar structure have been produced by Sun et al. They used PEO-PPO-

PEO) ABA block copolymer based emulsion and combined with sodium silicate [47].  

In terms of the applications of such materials, the synthesis of functional hollow pores 

has attracted much attention. For example, Titanium-silica (Ti-silica) hollow spheres 

with a mesoporous shell have synthesized by Li et al. They used an inverse multiple 

oil/water/oil emulsion to template the material with controlled shell thickness by 

changing the concentration of the silica source [48].  

By using CTAB surfactant, Grun et al. have introduced two novel synthesis pathways 

for the preparation of mesoporous materials MCM-41. Both methods include tetra-n-

alkoxysilanes TEOS or tetra-n-propoxysilane (TPS) as silica sources, represent short 

reaction times, easy preparation and excellent reproducibility [17].   

In a different procedure, Dhainaut et al. have studied dual-templating routes to 

synthesize hierarchical macroporous-mesoporous SBA-15 silicas. They employed 

liquid crystalline surfactants and polystyrene beads. The templated materials present 

high surface areas, well-defined macro and mesopore network and narrow size 

distributions around 300 nm [49].   

1.3.1.2. Fluorocarbon surfactant templates  

Many of cationic and nonionic fluorocarbon surfactants have been used as templates 

for porous materials [8]. The ability of a fluorinated surfactant to form ordered 

mesoporous materials has been investigated by Blin and Stebe. Their report 

represents the first example of mesoporous silica formed with only fluorinated 

surfactants. They also studied the phase behavior of the template in the synthesis in 

order to investigate the properties of the molecular sieves. Moreover, to enlarge the 

pore size they either used perfluorodecalin (PFD) as swelling agent or increased the 

surfactant weight percent in water. So, this study provides a better understand of the 

swelling mechanism of mesoporous materials [50].  



Chapter One                                                         Introduction and Literature Review 

 15 

Fluorinated surfactants also have the ability to form novel intermediate mesophases 

more easily than hydrocarbon surfactants when assembled into aggregates. Tan et al. 

have reported a comprehensive investigation of using cationic fluorinated surfactants to 

template nanoporous materials. In this study, perfluoroalkylpyridinum chloride 

surfactants with different tail lengths have been used in aqueous solutions to prepare 

different pore structures. The same series of materials have been prepared again in 

aqueous-ethanol mixtures to avoid the initial immiscibility of the silica source. In both 

cases the pore size increase with increasing the tail length of the surfactant and that 

agrees with using the hydrocarbon surfactants. However, in the fluorinated surfactant 

case the pore architecture includes both a mesh phase and a bilayer structure as the 

chain length increase. So in this study, a significant work on the cationic fluorinated 

surfactants has been shown not only as templates to control the pore size but also to 

develop ceramic materials with novel pore network [8].  

In terms of studying the effect of fluorocarbon addition on the structure of mesoporous 

materials prepared with fluorinated surfactants, Blin and Stebe have incorporated 

perfluoroheptane and perfluorodecalin oils as expanders into the fluorocarbon micellar 

solution. Material pore diameters and pore arrangements have been changed due to 

this addition. The pore size increased from 4.0 to 6.8 nm on adding perfluoroheptane 

whereas adding perfluorooctane had no effect on the structure or the pore sizes [51].  

The concentration of surfactants also greatly influences the porosity of fabricated 

materials. Large and small-nanoporous silica has been synthesized using a cationic 

partially fluorinated surfactant with a short tail. Tan et al. have reported this study and 

they employed 1-(3, 3, 4, 4, 4-pentafluorobutyl) pyridinium chloride surfactant as a 

directing agent in the synthesis. Unusually large porous silica with uniform foam was 

produced at low surfactant concentration whereas at higher concentration more typical 

wormhole like pores were structured [52].  

The synthesis conditions including pH also affected the material porosity. In a similar 

study, Esqena et al. have reported the aqueous phase behavior and the synthesis of 

mesoporous silica in nonionic fluorinated surfactant solutions. A self-assembly 

precipitation method has been carried out to prepare the material. In addition, at higher 

HCl concentrations, hexagonal ordered mesopores were formed, while lower 

concentrations of HCl directed the synthesis to form disordered worm-like mesopores. 

Further, at very small surfactant concentrations, the materials possess high specific 

surface areas (~1000m2/g) [53].  



Chapter One                                                         Introduction and Literature Review 

 16 

1.3.1.3. Mixed micelle templates  

The synthesis of hierarchical porous materials using a mixed micelle template 

approach has been considered by Gao Hu et al. They estimated that the phase 

separation of mixed micelles was the key point in the synthesis process. They also 

combined the pseudophase separation theory for the critical micelle concentration with 

the Flory-Huggins theory for the chain molecular mixture in order to consider the 

properties of mixed surfactant solutions and how that effects pore size arrangements in 

the materials [41].  

Various block copolymers such as the Pluronic of F127, P123 and SE (PS-co-PEO) 

have been combined with the surfactant of CTAB by Sel et al. They considered using 

surfactant mixtures and nanocasting procedure to form hierarchical bimodal 

mesoporous materials [54].  

Relatively small particles with high surface areas have been synthesized using water-

in-oil mixed surfactant microemulsion systems. Bumajdad et al. have synthesized metal 

oxide nanoparticles from the template of aqueous-in-heptane microemulsions which 

were stabilized by mixed surfactant solutions contain the didodecyldimethylammonium 

bromide (DDAB) and the nonionic surfactant Brij®35 (C12E23). The system was used to 

synthesize iron oxide (𝛼-Fe2O3) and cerium oxide (CeO2) nanoparticles using the 

precipitant of ammonia, the range of the nanoparticle size was 30-60 Å [55].  

Hydrocarbon/fluorocarbon cationic surfactant templating of mesoporous silica has been 

studied by Xing et al. The study considered the coassembly behaviour of mixed 

cetyltrimethylammoniumchloride (CTAC) and 1H, 1H, 2H, 2H- perfluorodecylpyridinium 

chloride (HFDePC) with silica. The structure and pore size distributions are controlled 

by changing some parameters such as the molar ratio of CTAC to HFDePC [56].  

Mixed micellar phases have also been studied by Groenewolt et al. Fluorinated 

nonionic surfactants Fluowet OTNTM and Fluowet OTLTM have been used with two 

hydrocarbon block copolymer surfactants to prepare highly organized mesoporous 

silica. From this study two different situations in the solution can be identified, demixed 

or mixed micelles. This identification provides a good way to know the resulting porous 

system from hydrocarbon/fluorocarbon mixtures with controlled pore size distribution 

[57]. 

By using mixed micellar template aspects, Yang et al. have also developed 

mesoporous silica vesicles with hierarchical structures. They used triblock copolymer 

Pluronic P103 and SDS as a co-surfactant in the presence of NaF. The anionic-
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nonionic surfactant molar ratio (SDS/Pluronic P103) can be adjusted to vary the 

particle size and vesicle cavity diameter. The resulted materials have great potential as 

practical catalyst, drug delivery systems and bimolecular applications [58].  

Hierarchically bimodal porous structures have also been obtained by templating silica 

microparticles with surfactant micelle/ microemulsion mixture solutions. Carroll et al. 

have reported this synthesis process using the aqueous solution of CTAB and the oil 

phase of polyether-polysiloxane/dimethicone copolyol surfactant (ABIL EM 90) in 

hexadecane. They confirmed that tuning the phase state and adjusting the surfactant 

composition and concentration can control the structure of resultant material [59].  

Multimodal porous networks using mixed micellar solutions have been reviewed by 

Yang et al. Different methods have been used including supramolecular assemble of 

amphiphilic polymers or surfactants with other surfactant systems or macrotemplates 

such as liquid drops and solid particles. They also discuss other physical or chemical 

methods, phase separation aspects and template replication, which are combined with 

using surfactants in the synthesis of multiporous materials [60].  

1.3.2. Catalytic applications  

Porous material properties including high surface area, controllable pore size and 

narrow pore size distribution, and thermal stability are interesting in a wide variety of 

potential applications where molecular recognition is required [61, 62]. Palmitic acid 

esterification reaction is one example as an application to show the importance of 

developing these materials in several branches of the chemical industry [61].  

The next few examples of the catalytic approaches represent the importance of such 

materials and their characterization in order to determine their ability and efficiency for 

catalysis applications.  

1.3.2.1. General catalysis reactions 

Self-assembled systems have been used in catalysis applications. For example, many 

researchers have used dispersion colloids to precipitate nanoparticles such as 

nanoceria (CeO2) [63-67]. In particular, different types of cationic quaternary 

ammonium surfactants (e.g. CTAB) were used for this purpose, also to control the 

particle size and the surface area of the nanoparticles [68-70].  

Mesoporous silicas have been extensively studied as catalysts and catalyst supports. 

For example, functionalized SBA-15 mesoporous silica has been investigated by 

Cheng et al. as a catalyst. Good crystallographic order, high surface area and large 



Chapter One                                                         Introduction and Literature Review 

 18 

uniform pore size have been obtained. The synthesized material also has a high 

catalytic efficiency [71].  

Zhang et al. have used the hydrolysis of aluminum tri-sec-butoxide in O/W 

microemulsion solution in the presence of CTAB to synthesis large mesporous 

aluminas. They have obtained a disordered mesostructure with large mesopores and it 

exhibited high performance as catalyst support. Generally, due to the higher hydrolytic 

stability, mesoporous aluminas are superior to silica in the catalyst support 

approaches. However, most researchers focused mainly on using mesoporous silica in 

such applications [72].  

Rigby et al. have studied the characterization of mesoporous materials as catalyst 

supports. Gas sorption and mercury porosimetry techniques have been used to assess 

the homogeneity of templated materials and their pore size distribution [73].  

1.3.2.2. Sulfonic acid functionalization reactions 

Sulfonic acid functionalization as post-synthesis reactions of porous materials has been 

considered in many studies. For example, Morales et al. have worked on mesoporous 

silica materials to correlate the difference in hydrophobic/hydrophilic character of the 

surface of propyl- and arene- sulfonic acid mesoporous supports, with the catalytic 

properties of modified silica for aqueous sensitive reaction sites. The higher catalytic 

activity of these materials was affected by the increased hydrophobicity near the 

sulfonic acid moieties [74].  

In addition, sulfonic acid functionalized honeycomb silica has been synthesized by 

Satoh et al. They succeeded in attaching sulfonic acid groups to silica microhoneycomb 

structures with an average of macropore size about 27 micrometer and observed high 

stability in catalytic activity for 24 h in a flow reactor [75].  

In terms of studying the quantitative oxidation of thiol groups in sulfonic acid-

functionalized silica, Cano-Serrano et al. have developed a simple procedure for the 

synthesis. They have prepared amorphous mesoporous silica with attached thiol 

groups to make strong acid sites in the esterification reaction of acetic acid by 

methanol [76].  

1.3.2.3. Palmitic acid esterification reaction 

The hierarchical macro- mesoporous SBA15 silica synthesized by Dhainaut et al. was 

also subsequently functionalized with propylsulfonic acid to yield a macro-mesoporous 

solid acid catalyst. This bi-modal solid acid architecture gives significant rates of the 
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transesterfication of bulky glyceryl trioctanoate and long chain palmitic acid 

esterification reaction [49].  

The esterification reaction of palmitic acid has also been studied by Carmo et al. They 

have used mesoporous aluminosilicate Al-MCM-41 in the presence of methanol, 

ethanol and isopropanol. Different ratios of Si/Al have been used to prepare the 

catalyst at room temperature and then characterized in terms of its structural, 

morphological and thermal aspects. The concentration of acidic sites on the produced 

catalyst and the amount of incorporated metal influenced the reaction in a fixed 

atmosphere [61].  

1.3.3. Surfactant phase behaviour   

Recently, surfactant solution systems have been a subject of many investigations [26, 

27, 29, 31, 77]. These materials self-assemble in aqueous solutions to make a wide 

variety of aggregated structures. To study the composition of these aggregates, many 

techniques have been used and most of them based on determining the structure, 

shape-size, critical micelle concentration and the interaction between micelles in the 

solution. In this part of the literature review, many features of surfactant solutions will 

be highlighted by the various techniques used to study surfactant phase behaviour.  

1.3.3.1. Critical micelle Concentration (CMC) determination  

Critical micelle concentrations (CMC) have been studied for many surfactants in the 

pure surfactant solutions as well as the mixtures. The properties of micelles have been 

extensively studied using various experimental methods. Some of these measurements 

are, static and dynamic light scattering [78-80], small angle X-ray scattering (SAXS) 

[81, 82], neutron scattering (SANS) [83, 84], electron paramagnetic resonance (EPR) 

[83, 85], nuclear magnetic resonance (NMR) [86, 87], and different method of dynamics 

of micellization [88, 89] 

 Hydrocarbon surfactants 

A considerable effort has been made to determine CMC values of surfactants. Among 

various methods, fluorescence, surface tension measurements and electron spin 

resonance (ESR) techniques have been widely used. Bahri et al. have studied the 

hydrocarbon surfactants CTAB, DTAB and SDS systems in order to relate the obtained 

CMC values and measured microviscosity for each surfactant [77, 90].  

The CMC of different hydrocarbon surfactants including nonionic, anionic and cationic 

surfactants have been determined using the pyrene 1:3 ratio approach. In this study, 
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Aguiar et al. have determined the CMC of the surfactants SDS, DTAB, TTAB, CTAB, 

TX-100, C12E8 and C12E4 [90]. For example the CMC of CTAB obtained by the 

conductance method was 0.98 mM.   

The micellar behavior of the cationic hydrocarbon surfactants CTAB and TTAB has 

been studied in water organic solvent mixed media [91]. The techniques used in this 

study are the surface tension and conductivity at 303 K. The CMC value, the minimum 

area per molecule and the maximum surface excess concentration have been 

compared over a range of different organic solvents used in the water mixed media.  

The CMC of mixed surfactant solutions have also been determined [92-94]. For 

example, the CMC values of binary mixtures of ionic hydrocarbon surfactants have 

been determined in many studies [29-31], and they generally fall in the range between 

the individual pure components. A linear relationship between the CMC and the 

surfactant molar ratio indicates that the chain moieties in such mixtures exhibit ideal 

mixing behavior [25].   

In addition, determining the CMC of mixed surfactant systems is essential since using 

mixing thermodynamic models requires the knowledge of the CMC over a range of 

compositions. Anton et al. have studied the determination of the CMC for mixed 

surfactant systems [95].    

A very large number of surfactant mixture reports were for systems of micelles 

composed of normal hydrocarbon surfactants and they have been largely studied and 

well characterized. However, limited studies are available on the mixed fluorinated and 

partially fluorocarbon/hydrocarbon surfactant micelles. Interestingly, some unique 

features of fluorinated surfactants have been reported in terms of studying their surface 

activity, hydrophobicity and miscibility with hydrocarbon surfactants [96]. 

 Fluorinated surfactants 

The micellization of fluorinated surfactants differs from the hydrocarbon surfactants 

since they have different surface activity and hydrophobicity. Lower CMC values are 

strongly related to the fluorinated surfactants and even one single chain amphiphiles 

can form bilayer aggregates [97]. 

 One of the most studied techniques to investigate fluorinated surfactant solution 

behavior is fluorescence analysis. Generally, fluorescence probe methods including 

pyrene as a probe are used to characterize micelles from fluorocarbon surfactant 

solutions. For example, Kalyanasundaram has used pyrene fluorescence to probe 

fluorocarbon surfactant micelles and the micelles in the mixtures with hydrocarbon 
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surfactants [98]. The study has shown that the solubility of pyrene in perfluorocarbon 

micelles is very limited but the analysis can still determine the CMC values on the 

possible compositions of mixed surfactant micelles.  

To consider surfactant phase behavior in the monolayer at the water-air interface and 

in the bulk phase, Szymczyk has studied Zonyl FSN-100 and Zonyl FSO-100 as 

examples of fluorocarbon surfactants. Such systems exhibit different behaviors in 

aqueous solution as two apparent CMC values can be recorded. The two CMC values 

have been determined as a result of either the coexistence of different micelle sizes or 

pre-association and micellization processes [99].   

In order to determine the critical micelle concentration of the nonionic fluorocarbon 

surfactant Zonyl FSN-100 in aqueous solutions, Skvarla et al. have confirmed the two 

break points in the surface tension curve. These two-CMC values of FSN-100 aqueous 

solution may indicate the presence of the surfactant with different chain length in 

solution, which causes a gradual transition from unimers to micelles [100].  

 Fluorocarbon-hydrocarbon surfactant mixtures 

In terms of fluorocarbon surfactant applications, one fluorinated surfactant does not 

possess all the expected properties due to its oleophobic features. However, to achieve 

the required properties, mixed hydrocarbon- fluorocarbon systems can be used. 

Barthelemy et al have studied fluorocarbon-hydrocarbon nonionic surfactant mixtures 

and their phase behavior has been examined by 19F-NMR spectroscopy and UV-visible 

spectroscopy. The system also showed two CMC values as a function of surfactant 

concentration. Above the second CMC two kinds of micelles have shown to coexist due 

to the incompatibility between the two different surfactants [101]. 

Mixed cationic surfactants have also been studied by Dubey to investigate the 

aggregation behavior and properties of such mixtures using different techniques. 

Tetradecyltrimethylammonium bromide (TTAB), CTAB, and hexadecyltriphe-

nylphosphonium bromide (HTPB) and their mixtures in aqueous solutions have been 

investigated in this study using NMR, fluorescence and conductance techniques [102] 

The ideality of binary mixtures is the main interest in these systems and it is well known 

that mixed hydrocarbon/fluorocarbon surfactants are nonideal [103]. The fluorinated 

materials also exhibit limited miscibility with hydrocarbon amphiphiles [35, 104]. 

However, in the first report studied by Mukerjee and Yang [35], on the hydrocarbon 

surfactant SDS and the fluorocarbon surfactant sodium perfluorooctante, they 

investigate that both surfactants cannot form mixed micelles. They suggest that the two 
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surfactants may form their own micelles or partially mixed micelles in water. The study 

also examined the magnitude of nonideality based on calculating the CMC values of 

the mixed systems assuming the extreme case of complete demixing of micelles. 

The micellar microenvironment fluorocarbon/ hydrocarbon surfactant mixtures have 

also been studied by Asakawa et al. The study reported that using a fluorescence 

probe and 1H NMR and 13C NMR chemical shifts the second CMC values could be 

determined. These values confirm the coexistence of two kinds of mixed micelles [102, 

105].  

To investigate the nonideality and immiscibility of hydrocarbon (CH) /fluorocarbon (CF) 

surfactant mixtures. Long et al. have reviewed a number of CH/CF systems. 

Completely different phase behavior and self-assembly aggregation processes can be 

observed from such mixtures which confirms the repulsion between the two 

hydrophobic chains [106].  

The nonideality behavior of the fluorocarbon-hydrocarbon surfactant mixture has been 

studied by Mukerjee and Handa [107]. The fluorocarbon and hydrocarbon nonideality in 

air-water, perfluorohexane-water and hexane-water interfaces effects the free energy 

of adsorption based on the difference in the affinity of the surfactant for the interface 

and the maximum possible adsorption before forming micelles.   

1.3.3.2. Micelle structure determination   

Many techniques have been used to estimate the micelle structure such as light 

scattering, fluorescence, electron paramagnetic resonance spectra (EPR), PGSE-NMR 

and small-angle neutron scattering (SANS) [108-117]. Moreover, to characterize the 

micellar structures, many literatures rely on individual methods [118-120]. However, 

most details obtained through combination of different methods. For example, the Soft 

Matter Group in Cardiff university combine the EPR, PGSE-NMR, and SANS methods 

in much of their research [83] [110].   

Generally, surfactant aggregates can be formed in various shapes depending on many 

parameters including head group size, surfactant charge, length of tails, and 

concentration and temperature. These shapes include spherical and wormlike micelles, 

vesicles and lipid bilayers [109].    

 Small-Angle neutron scattering (SANS) 

To explain the effect of the architecture of the surfactant molecule in the structure 

(shape-size) of the micelle, different surfactants have been studied. For example, 
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Goyal and Aswal have applied SANS experiments on the micellar solutions, and 

investigated the relationship between the molecular architecture and the shape and 

size of micelles such as CTAB as a single tail/ single head group molecule, and Gemini 

surfactants which include two tails and two head groups attached to a spacer [113].    

The correlation between the surfactant structure and the aggregation behavior in 

aqueous solutions have been also studied using SANS technique. For example, the 

ionic surfactant CTAB has been studied in terms of the micelle shape and size in 

aqueous solution. The aggregation number of CTAB micelles has been estimated in 

different CTAB concentrations [121].  

Micelle aggregation process has also been evaluated using SANS by Griffiths et al. A 

series of aqueous solutions including the nonionic surfactant SDS, the cationic 

surfactantdodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammoinum 

chloride (DTAC) have been studied in the presence of sodium bromide and sodium 

chloride [83].  

SANS has also been used to characterize the mixed surfactant micelles in terms of the 

comparison of the micelle shape and size between the pure surfactant and the mixed 

micelles. For example, the ionic surfactant SDS and the nonionic sugar-based 

surfactant dodecylmalono-bis-methylglucamide (DBNMG) mixed micelle system has 

been investigated by Bales, et.al. A classical model of a hydrocarbon core surrounded 

by a polar shell has been considered to fit the SANS [122]  

SANS analysis has also been used by Das et al to determine shape and size of highly 

concentrated micelles in CTAB/NaSal solutions. They studied the effect of temperature 

on micellar shape and found that large micelles are formed at low temperatures and 

with increasing temperature micelles start to break up to form smaller micelles [112].   

In order to determine shape and size of the nonionic fluorocarbon surfactant Zonyl 

FSN-100 in aqueous solutions, Skvarla et al. have used NMR spectroscopy and light 

and small angle X-ray scattering. Small angle X-ray scattering analysis was used to 

confirm the assumption of forming spherical core-shell micelles from FSN-100. The 

compact core formed by the fluorocarbon chains and the swollen shell formed by the 

hydrated part of the surfactant [100].  

 Electron paramagnetic resonance NMR spectra (EPR) 

Bales et al. have studied micelle shape and size using EPR analysis to investigate the 

sodiumdodecylsulfate (SDS) micelles. From the estimated hyperfine-coupling constant 

of the indicator, the polarity of SDS micelles decreases linearly with micelle size, 



Chapter One                                                         Introduction and Literature Review 

 24 

whereas the microviscosity which is estimated from the rotational correlation time of the 

used indicator, increases with the size [115].  

In order to measure the polarity of surfactant head-group region in a mixture, EPR has 

been used by Griffiths et al. The ionic surfactant sodiumdodecylsulfate (SDS) has been 

mixed with the sugar-based nonionic surfactant (tetradecylmalono) bis (N-

methylglucamide) (C14BNMG). At low SDS mole fraction, the majority of the head 

group region has been occupied by the sugar head- group and from the rotational 

correlation time of the spin-probe, the microviscosity increases with decreasing SDS 

mole fraction [114].  

Investigating surfactant micelles using EPR technique has also been reported by 

Griffiths et al. They have aimed to compare the aggregation process in three different 

systems, SDS, DTAB and DTAC in the presence of sodium bromide and sodium 

chloride. Different hydration degrees of the micelle surface have been calculated from 

the hyperfine coupling constant values [83].  

 Pulsed gradient spin-eco NMR spectroscopy (PGSE-NMR)  

In terms of studying the structure of CTAB micelles, Giustini et al. have used pulsed-

gradient spin-echo NMR technique to investigate the microemulsion solution of 

CTAB/water/n-pentanol/n-hexane. From the analysis of n-pentanol self-diffusion 

coefficient, they determine the composition of the continuous organic phase and of the 

interfacial phase. From the CTAB self-diffusion coefficient, the size of reverse micellar 

has been estimated [111].  

CTAB micelles have been also studied by Mills et al to investigate the size, shape and 

composition of reverse micelles in the mixture of CTAB/pentanol/water microemulsion. 

They used pulsed gradient stimulated echo nuclear magnetic resonance technique. 

The study indicates that both CTAB and pentanol molecules are in different 

environments within the microemulsion. The distribution of CTAB and pentanol 

between reverse micelles interphase and continuous phase has been determined by 

measuring the diffusion coefficient for the mixture at short and long times [109].  

Palazzo et al. in a different study have considered the system of water-in-oil CTAB/n-

pentanol/n-hexane/water microemulsion. This time, they evaluated the average head 

group area of CTAB, the alcohol fraction in the micelles and the amount of water in the 

organic bulk using different techniques such as PGSE-NMR spectroscopy, conductivity 

and near infrared absorption spectroscopy [108].  



Chapter One                                                         Introduction and Literature Review 

 25 

PGSE-NMR, is a powerful method to probe the compositions of mixed micelles. For 

example, the interaction between the nonionic surfactant (dodecylmalonobis(N-

methylglucamide)) (DBNMG) and the anionic surfactant (sodium dodecyl sulfate) 

(SDS) has been studied by Griffiths et.al. In the study, over a range of compositions 

both surfactants showed an ideal mixing behaviour [123].  

1.4. Project Aims 

The purpose of this project is to explore the use of mixed surfactant systems to 

template and design hierarchical porous structures. Chapter One can be concluded in 

the context of studying the fluorocarbon surfactant FSN-100 and the hydrocarbon 

surfactant CTAB. Thus, FSN-100 and CTAB form the templated framework in a self-

assembly process by incorporation of their micelles. In the project, mixtures of CTAB 

and FSN-100 in the presence of an oil phase (perfluorohexane) as an expander has 

been used to template the nanoporous silica. The key point is varying the amount of oil 

in the template to investigate how that affects the morphology of the resulted materials 

in terms of the material surface area, the type of porosity and the pore size distribution.  

In addition, there have been summarized that one technique is not enough to study 

fluorocarbon/hydrocarbon surfactant mixtures and multiple techniques are strongly 

needed to obtain the whole picture of mixed micelle systems. From the literature 

review, the hydrocarbon surfactant CTAB has been extensively studied but there are 

few papers were about the fluorocarbon surfactant FSN-100. Many studies have 

considered CTAB mixtures with other hydrocarbon and fluorocarbon surfactants. 

However, FSN-100 mixtures either with CTAB or other surfactants have less attention 

over the past few years. In terms of using surfactants as templates for the synthesis of 

nanoparticles, the cationic quaternary ammonium surfactants CnH2n+1N(CH3)3 Br (n = 8-

22), particularly CTAB are the most surfactant forms were used in the very beginning 

reports of templating mesoporous silicate (MCM-41) as well as the recent studies of 

these materials.  

The combination of CTAB and FSN-100 therefore represents a new area of research in 

the context of silica based material templating.  
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To conclude, the main aims of the project are to: 

 study the structure of fluorocarbon (FSN-100)/hydrocarbon (CTAB) mixed 

surfactant micelles.  

 study the phase behaviour of these mixed micelles in the presence of 

hydrocarbon oil (hexane) and fluorocarbon oil (perfluorohexane).  

 explore the use of swollen mixed micelles as templates to synthesize 

nanoporous materials.  

 characterize the porosity in these materials as potential precursor catalyst.   

 functionalize through alkyl sulfonic acid surface grafting.   

 quantify the ability to convert palmitic acid into palmitate.  
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2.1. Introduction  

This chapter will include the theory of the experimental techniques used in the project, 

a description of the materials used in this work and sample preparations as well as the 

synthetic element of the nanoporous material synthesis.  

2.2. Experimental techniques and theory 

The section includes techniques used for characterization in the project including those 

used in phase behaviour study, porous material synthesis and applications.  

2.2.1. Surface tension  

Molecules at the liquid solution surface have a different behaviour from those in the 

bulk. Equal forces of attraction in all directions affect molecules located in the bulk, 

whereas molecules at the surface of the liquid solution have only one-direction forces 

due to the unbalanced attractive forces [1].  

Basically, surface tension values strongly relate to the nature of the substances, which 

are used to form the surface. Water as a polar liquid has high surface tension (~72.0 

mNm-1) due to the strong intermolecular interactions. Thus, decreasing the strength of 

the molecular interactions leads lowering of surface tensions.  

2.2.1.1. Surface tension & surfactant critical micelle concentration (CMC)  

Surface tension measurements have been used to determine the critical micelle 

concentration (CMC) of surfactants as well as their surface area per molecule.  

Due to the ability of surfactants to decrease the surface tension even at low surfactant 

concentrations, surface tension is used in surfactant solution studies. Typically, 

increasing the surfactant concentration shows a rapid decrease in the surface tension, 

until a concentration at which the surface tension curve levels off. This concentration is 

the critical micelle concentration of the surfactant, and micelles start to be formed 

above this point. After this concentration, the surface tension curve becomes largely 

independent of the concentration due to the thermodynamic basis in the preferential 

formation of micelles [2, 3]. 
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2.2.1.2. Drop volume method   

In this project, the drop volume method has been used to investigate all studied 

samples. 

Drop volume method is based on measuring the volume of a drop, which is formed 

from a metal capillary. By increasing the volume of the drop, its weight is increased 

until it reaches a critical value when it cannot be balanced by the surface tension. The 

volume of a drop at the end of the glass syringe is related to the surface tension using 

equation (2.1) [4].   

                                         𝜎 =
!  !"!!

!!!!"#

                                                                   (2.1)  

where 𝜎= surface tension, 𝑉= drop volume, 𝑔= acceleration gravity constant, Δ𝑝= 

difference of the densities of both aqueous solution and air, 𝐹= correction factor which 

corrects the directly measured volume, and 𝑟!"#= the radius of the capillary tip.  

2.2.1.3. Surface tension instrument  

Surface tension measurements were carried out at room temperature using a LAUDA 

Drop Volume Tensiometer (TVT1).  

2.2.2. Fluorescence measurements 

Fluorescence phenomenon is strongly related to the absorption by molecules to the 

energy in the form of photons of visible or ultraviolet light.  

The energies of photons from visible and ultraviolet light are enough to move an 

electron in a molecule from the ground state to an excited state. Thus, a molecule can 

absorb photons when the energy provided by the photon 𝐸!!!"!# equals the energy 

needed to transfer an electron from the ground state orbital to a higher energy orbital 

(∆𝐸!"#$%&!&'$ ). Since the molecule in both ground and excited states has different 

vibrational and rotational energy levels, the photon absorption can promote the 

molecule to any of the vibrational or rotational substates of the excited level [5].  

The energy change in each possible transition is different which indicates that each 

one corresponds to a different wavelength𝜆, and thus peak in the spectra based on 

equation 2.2.  

                                          𝜆 = ℎ𝑐/∆𝐸!"#$%&!&'$                                                       (2.2) 

where, h is the Planck’s constant and c is the speed of light.  
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The molecule then loses any excess of vibrational energy when the absorbed energy 

reaches one of the higher vibrational levels of the excited state. The loss of energy is 

because of collision and the electron falls to the lowest vibrational level of the excited 

state. This process is continual until the lowest vibrational level of the first excited state 

is reached. At this level, the molecule can emit energy in a form of fluorescence, when 

return to one of the ground state vibrational levels [5].     

2.2.2.1. Fluorescent probes  

Some fluorescent probes such as pyrene and naphthalene mainly consist of 

conjugated molecules. The conjugated carbon-carbon double bond in the molecule 

absorbs the radiation and an electron excited from a 𝝅 orbital to a 𝝅∗  antibonding 

orbital. This transition requires less energy, as the molecular orbitals are closer than 

that in un-conjugated molecules. In this case the carbon-carbon double bond performs 

as a chromophore, which is a term to describe chemical groups that have specific 

optical absorptions and colour [6].    

Figure 2.1 shows the chemical structure of pyrene (C16H10) as one of the polycyclic 

aromatic hydrocarbon compounds, which has five predominant vibronic peaks from 1 

to 5 based on the shorter to longer wavelength. The micropolarity around pyrene 

molecules can be indicated by the intensity ratio of I1/I3, which is considered to estimate 

the polarity level of its environment [6].      

                                        

               Figure 2.1 Chemical structure of the fluorescent probe, pyrene. 

At room temperature the fine structure of pyrene monomer fluorescence is strongly 

dependent on the solvent polarity. The greatest difference in the fluorescence 

spectrum is at the 373 and 384 nm peaks. However, in nonpolar environments, the 

most intense peak is the 384 nm whereas at higher polarity, the peak of 373 nm is the 

most intense. The ratio of I373/I384 values can be used to obtain a sensitive parameter of 

solution polarity [6]. To estimate the surfactant CMC, pyrene I1/I3 ratio is plotted as a 

function of the total surfactant concentration and that show a typical decrease up to the 

CMC of the surfactant. I1/I3 ratio values correspond to a polar environment below the 
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CMC of the surfactant, so when the surfactant concentration increases, the ratio 

decreases rapidly to indicate a more hydrophobic environment. However, the ratio 

reaches a constant value above the CMC as the pyrene incorporates into the 

hydrophobic region of the micelles [7, 8].  

2.2.2.2. Fluorescence instrument  

Photophysical data were obtained on a JobinYvon–Horiba Fluorolog spectrometer 

fitted with a JY TBX photodetection module. All spectra were recorded using an 

excitation wavelength of 340 nm. All samples have been measured at room 

temperature. CMCs were determined by the breakpoints in the concentration 

dependent ratio of the third to first vibronic peak, known as the I3/I1 ratio.                                   

2.2.3. Small-Angle Neutron Scattering (SANS) 

Studying colloidal systems requires the determination of the molecular organization in 

order to relate the physical properties and molecular structure. Quantitative information 

on size, shape and structure of colloidal particles can be obtained using scattering 

techniques. These techniques mainly depend on interactions between incident 

radiations (neutrons or X-ray) and the particles. Since micelles or other colloidal 

dispersions have a range of size between 10 to 104 Å, the incident wavelength must fall 

within this range to get valuable information [9]. Using the Bragg equation (equation 

2.3) [10].  

                                                  𝑛 𝜆 = 2 𝑑 sin𝜃                                                           (2.3) 

where, 𝜃  is the angle of diffraction of radiation, 𝜆   is the wavelength and 𝑑  is the 

separation of lattice planes which is the distance between atomic layers, and 𝑛 is an 

integer (1, 2, 3 etc.). 

Therefore, small particles such as microemulsion droplets, which are in nanometer of 

size, scatter at small angles, and small angle neutron scattering (SANS) is the 

appropriate way to study these systems [9, 11].    

2.2.3.1. Neutrons 

Neutrons are uncharged subatomic particles that can be scattered by strong nuclear 

forces and can penetrate the material bulk and interact with the nuclei of investigated 

material [9]. Their scattering differs from electrons and traditional electromagnetic 

methods as scattering is by the interaction with the electron clouds. The neutron mass 

is 1.675 x 10 -27 Kg, (1.839 times that of the electron) and they are stable when linked 
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to atomic nucleus, whereas they have a lifetime of 1000 s as a free particle. The 

neutron wavelength λ depends on its velocity based on the Broglie equation (2.4), so 

the time-of-flight technique is used to select a specific neutron wavelength.    

                                                      𝜆 = ℎ/𝑚𝑣                                                          (2.4) 

where, 𝒉 is the Planck’s constant, 𝒗 the particle velocity and 𝒎 is the neutron mass.  

Neutron scattering of an atom does not relate to the atomic number as the interaction 

is with the nuclei which differ from the X-rays and electrons since the scattering power 

is strongly relates to the atomic number. Neutrons also have lower possibility to 

degrade investigated samples as they have lower energy than X-ray for the same 

wavelength [9].  

The sources of neutrons for research are produced in two ways, the nuclear fission of 

radioactive material in reactor-based sources or by spallation in accelerator based 

neutron sources. In the reactor-based sources, neutrons are produced as a product of 

the nuclear fission of heavy nuclides (uranium-235 nuclei) in reactors. The U-235 is 

split into fragments and generates a very high energy (MeV). The thermalized high-

energy neutrons cause emitting beams with a broad band of wavelengths. A thermal 

equilibrium of neutrons with a hot source will help to shift the energy of neutrons to 

higher energies (shorter wavelengths). To select the targeted wavelength, Bragg 

scattering approach using a crystal monochromator or velocity selection through a 

mechanical chopper could be used. By this way, high-flux neutron beams with high 

quality and narrow wavelengths distributions are produced for experimental purposes.  

In the other method, the spallation at accelerator based pulsed neutron sources; 

neutrons are released by using high-energy particles (H+) from higher power 

accelerator to collide a heavy metal target (U, Ta). In this method, useful neutrons with 

less heat are released compared to those produced from fission. Between 1-30 

neutrons per proton are produced by these collisions. Neutrons here also need to be 

slowed by passage through moderating materials in order to have the right wavelength 

(energy) to be used in experimental purposes.   

In both ways, neutrons interact with the investigated particle in an elastic or inelastic 

fashion. The energy of neutrons is not changed in the elastic interaction whereas the 

inelastic one includes loss of energy from the molecular motion of the scattering atom. 

That might also be a coherent (scattering from ordered nuclei produces patterns of 

constructive and destructive interference) or incoherent (scattering from random events 

involving dynamic information). However, only coherent elastic scattering is considered 
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in a SANS experiment, and incoherent scattering that occur in background can be 

measured from the total scattering [12].  

2.2.3.2. SANS instrument theory 

Generally, SANS instruments count the number of scattered neutrons as a function of 

wave vector and that depends on the scattering angle 𝜃 and the wavelength 𝜆 based 

on equation (2.5).  

                                        𝑄 = 4𝜋/  𝜆 sin (𝜃 /2)                                                        (2.5)  

𝑄 value therefore relates to the size of the object, meaning that smaller objects scatter 

at high 𝑄 values, whereas larger objects scatter at low 𝑄 values.   

2.2.3.3. SANS instrument  

The SANS measurements were performed as detailed previously [13] on the fixed-

geometry, time-of-flight LOQ diffractometer (ISIS Spallation Neutron Source, 

Oxfordshire, UK). All measurements were carried out at 25 oC. Experimental 

measuring times were between 40 and 80 minutes. All scattering data were normalised 

for the sample transmission and incident wavelength distribution, corrected for 

instrumental and sample backgrounds using an empty quartz cell, and for the linearity 

and efficiency of the detector response. The data were put onto an absolute scale 

using a well-characterised partially-deuterated polystyrene-blend standard sample. 

The data-fitting model used for both surfactant solutions and the mixtures are 

described along with the results in Chapter Three.   

2.2.4. 1H-NMR, 19F-NMR and pulsed-gradient spin-echo NMR 

spectroscopy (PGSE-NMR) 

Nuclear magnetic resonance is the used technique to elucidate the chemical structures 

and observing the interaction between molecules. The common elements to possess a 

magnetic moment in NMR spectroscopy are 1H and 13C nuclei, which are in most of 

surfactant molecules, and 19F to study the fluorocarbon surfactants.    

1H-NMR, 19F-NMR and PGSE-NMR are the complementary techniques that have been 

used to study the surfactant aqueous solutions as well as the surfactant/oil solutions.  

2.2.4.1. Theoretical aspects  

Pulsed-gradient spin-echo NMR is a suitable technique to measure diffusion 

coefficients. The technique is a valuable tool to study mixture separation analysis 
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based on the molecular size approach. The technique is similar to all nuclear magnetic 

resonance techniques in terms of the advantages when studying multicomponent 

systems as non-destructive tools, but the most important feature of PGSE-NMR is the 

ability to identify and analyse each component in the mixture in a single experiment.  

Self-diffusion coefficient (𝐷𝑠) is a term to express both the rotational and transitional 

motion of molecules in solutions [14]. The value of 𝐷𝑠  is obtained by the Stokes-

Einstein equation (2.6) [14].  

                                         𝐷𝑠 = 𝐾  𝑇/ 6 𝜋  𝜂 RH                                                      (2.6) 

where, 𝐾  is the Boltzmann constant, T is the temperature, 𝜂 is the solvent viscosity and 

RH is the hydrodynamic radius.  

The equation is strictly valid for a spherical particle with a RH radius but also may use 

to determine the size of molecules. In a defined amount of time 𝑡 (s), the distance 𝑧, 

which a molecule travels in a single direction, is obtained by equation 2.7.  

                                           𝑧 = (2 D 𝑡)1/2                                                             (2.7) 

2.2.4.2. NMR spectra  

In the 1H-NMR spectrum, basically starting to pulse a magnetic field at 90° and then 

detecting what was pulsed to produce the peaks in the frequency domain. However, in 

the diffusion spectrum, what the spin-Eco does is refocusing the magnetization with a 

90° pulse then dispersed using a magnetic field gradient (figure 2.2). After some time 

another pulse is focused again at 180°. The magnetization builds up into an echo after 

the same time of the 90° pulses. So the total is basically 2𝜏. 

                      

                 Figure 2.2 Pulse sequence for gradient PGSENMR. 
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Interestingly, if the time is varied to make 𝜏 longer and longer, the peaks get smaller 

intensities and the reason they do is because longer time allows relaxing the sample so 

if the intensity is plotted verses the time the signal decreases exponentially and then 

the relaxation time can be measured. In the gradient channel, a gradient is pulsed and 

adjusted the time of each gradient to put small delta 𝛿 for each gradient and the time 

between this is the big delta ∆. The first gradient dephases the magnetization and the 

other one rephases it. Further, if the molecules have defused in that time big delta then 

it is not able to rephase the magnetization and again the peak intensity decreases 

upon this echo when the gradient plotted versus the intensity. The decay depends on 

the parameters of ∆,	  𝛿, 𝜆. These NMR parameters should be set in the experiment, as 

constants and then the 𝐷𝑠 can be determined.                     

2.2.4.3. NMR instruments  

Pulsed-Gradient Spin-Echo (PGSE-) NMR measurements were performed on a Bruker 

AMX400 NMR spectrometer operating at 400 MHz (1H) using a stimulated echo 

sequence. All the experiments were run at 25 ºC using the standard heating/cooling 

system of the spectrometer to an accuracy of ±0.3 ºC.  

The self-diffusion coefficient, 𝐷𝑠, was deduced by fitting the attenuation of the integral 

for a chosen peak to equation 2.8. 

                           A (𝛿,𝐺, ∆)=A0 exp(-𝑘 𝐷s)                                                        (2.8) 

where A is the signal intensity in the presence and absence (0) of the field gradients, 

and  𝑘 = −𝛾!𝐺!𝛿!(∆ −
!

!
).  

where 𝛾   is the magnetogyric ratio of the nucleus under observation, in this case 

protons, ∆ the diffusion time, 𝛿 the gradient pulse length, and 𝜎 the ramp time, and 𝐺 is 

the gradient field strength [15].   

The analysis of the self-diffusion coefficients   𝐷𝑠  solves the association and 

complexation processes. The methylene resonance associated to –(CH2)X- of the inner 

part of the hydrocarbon chains related to the broad peak between 𝑑= 1.11 – 1.20 ppm 

in case of micellization studies, is related to the attenuation function observed in the 1H 

NMR spectra. That reflects the time-average population-weighted average mobility of 

the monomeric and micellized surfactant. 

In case of complexation, the attenuation function was recorded from the peak 

corresponding to the methylene in the spacer used in the experiment (singlet at 𝑑= 
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5.36 ppm) and again, reflected the time-average population-weighted average mobility 

of monomeric and micellised surfactant. 

2.2.5. Electron paramagnetic resonance spectroscopy (EPR)  

Electron paramagnetic resonance is the most sensitive tool for characterization of 

solutions containing stable free radicals. The paramagnetic substance is defined as the 

material that acquires a resultant magnetic moment in the direction of an applied 

external magnetic field. The resultant moment of the substance is partially due to the 

induced dipole possessed from the change in the motion of the electrons of the atom or 

ion [16-18].  

2.2.5.1. Theoretical aspects  

The spectral line fitting of the EPR spectra reveals information about the polarity and 

the rotational correlation time, since the radical spectrum is sensitive to the rate of 

molecular motion. In the micellar environments, studying these two parameters 

provides a description of the size of micelles and the polarity around micelles.   

• Rotational correlation time 

Rotational correlation time 𝜏!  is a parameter to describe the average time for a 

molecule to move in any direction.  

For fast molecular motion (10-11< 𝜏!  <10-9) s the rotational correlation time can be 

estimated by equation 2.9.   

                             𝜏!!!.!!!"!!"  !!°  (
!°

!!!  

− 1)                                                            (2.9) 

 where, Δ𝐻°  is linewidth of the central peak and 𝐻° and 𝐻!!  are the intensities of the 

central and high field peaks respectively. 

• Hyperfine coupling constant 

As a polarity determination index, the hyperfine-coupling constant is sensitive to the 

amount of water in the surrounding of the nitroxide, and it results from magnetic 

interaction between the electron and nuclear spins of atomic neighbours. Three 

possible spin states (m=-1, 0, +1) for the 14N as aminoxyl radicals (figure 2.3), which 

cause three lines in its EPR spectrum (figure 2.4). In the figure, form 1 is stabilized in 

the presence of polar solvents which can provide H bonding and that increase the 

hyperfine-coupling constant.   
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                              Figure 2.3 The three spin states of 14N.  

                

                               Figure 2.4 A typical EPR spectra.           

The hyperfine-coupling constant is directly related to the distance between peaks in the 

EPR spectrum and indicates the extent of delocalization of the unpaired electron over 

the molecule. It is obtained by measuring the half of the separation of the two 

outermost lines in the spectrum. This parameter varies with the local polarity around 

the aminoxyl group, which may help to investigate micellar environments from studying 

the polarity of the location of the used spin probe.  

3 
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2.2.5.2. EPR instrument 

Five EPR spectra were recorded on a Bruker ESP-300 spectrometer. The experimental 

details measurements are identical to those described previously [19]. The non-

degassed samples were sealed with a gas-oxygen torch into melting point capillaries, 

which were housed within quartz EPR tube for the measurements. A Bruker Variable 

Temperature Unit (BVT 2000) has been used to control the temperature to ± 0.2 K.  

2.2.5.3. EPR lineshape fitting and analysis 

 The EPR spectra have been analysed in terms of the rotational correlation time (𝜏!), 

which was estimated using the formula in equation (2.9).   

The rotational correlation time and hyperfine-coupling constant were calculated by 

fitting the values using (WinEPR, Bruker) software.  

The line shapes have been fitted to a Voigt approximation in order to separate the 

Gaussian and Lorentzian components of the spectral lines and to locate the resonance 

fields of the three EPR lines, which have been built by the nitroxide radical to a 

precision of few mG. Rotational correlation times are computed from the overall 

linewidth of the centre line and the peak-to-peak heights of the three lines and 

corrected for inhomogeneous broadening using the procedure outlined by Bales [13, 

19].  

From EPR outcomes, the separation A+ of the low and centre lines (MI=+1 and MI=0) 

is directly related to the polarity index H (25oC), defined as the molar ratio of OH 

groups in a given volume relative to water (equation 2.10). H (25oC) therefore 

corresponds to the volume fraction of water in the polar shell, φwater, and may be used 

to constrain the SANS fitting.  

                                H (25°C) = (A+ − 14.21) / 1.52                                                (2.10) 
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2.2.6. Scanning Electron Microscopy (SEM) 

The surface of solid materials can be studied by using SEM techniques. A high-energy 

electron beam is focused on the sample to generate a variety of signals at the surface 

of the sample. External morphology, chemical composition and crystalline structure can 

be estimated using SEM technique [20].  

2.2.6.1. Theoretical aspects  

Scanning electron microscopy uses electrons instead of light to form an image for the 

material surfaces. SEM can determine the morphology of the sample and the crystal 

size. An electron beam is produced by an electron gun in the instrument, and then 

passed through the microscope in a vertical path connected within the vacuum. 

Through an electromagnetic field, the beam travels and passes the lenses to be 

focused down toward a sufficiently thin specimen. Once the beam hits the sample, 

electrons and X-ray are ejected and then converted to a signal after collected using a 

detector [20, 21].  

2.2.6.2. SEM instrument 

SEM was performed using Hitachi S-4300LV microscope equipped with a Schottky 

field emission gun.  

2.2.7. Transmission Electron Microscopy (TEM) 

Detailed morphological and compositional information of the investigated sample can 

be provided by TEM.   

2.2.7.1. Theoretical aspects  

TEM is a microscopy technique that uses a beam of electrons transmitted through the 

sample. The image is formed as a result of the interaction between the electrons and 

the sample and then magnified and focused onto an imaging device [22].  

2.2.7.2. TEM instrument  

TEM was performed using high-resolution transmission electron microscope (HRTEM) 

system JEOL 2100 (LaB6).	   The instrument is equipped with high-resolution Gatan 

digital camera ( 2  𝑘×2  𝑘 ) providing resolution of 0.2 Å. To provide excellent 

compositional contrast, a dark field (HAADF/Z-contrast) detector was used.  
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2.2.8. X-Ray Diffraction (XRD) 

X-ray powder diffraction is used for phase identification of a crystalline material and 

characterizes the unit cell dimensions. In nonporous materials, this technique is 

commonly used to determine some of their properties such as 𝑑-spacing, pore spacing 

(𝑎) and lattice parameters. By this technique, a solid sample can be classified in terms 

of its structure to be crystalline phase or amorphous.  

2.2.8.1. Theoretical aspects 

In XRD, the incident beam is reflected by a set of material planes, to produce the 

diffraction XRD pattern, which is plotted based on the intensity of reflected beams 

(figure 2.5). The reflected X-ray from the surface of the sample travels less distance 

than the X-ray reflected from a plane of atoms in the crystal. X-ray penetrated the 

surface sample, travels down to the internal layer and then reflects to travel back over 

the same distance before getting back at the surface. The total distance depends on 

the separation between layers and the angle (𝜃) of the incident beam. Bragg has 

developed this study and expressed the equation 2.11, to explain why the crystal faces 

appear to reflect X-ray beams at certain angles (𝜃) of the incident beams [10].  

                                     𝑛 𝜆  = 2 𝑑 sin 𝜃                                                                 (2.11)                 

where 𝑑 is the distance between atomic layers in a crystal (interplanar 𝑑-spacing) and  𝜆 

is the wavelength of the beam, and 𝑛 is an integer (1, 2, 3 etc.).   

                    

Figure 2.5 Schematic representations of diffracted beams based on Bragg’s law.  

The reflected waves from the layers need to travel a whole number of wavelengths 

inside the materials to be in phase with the wave reflected from the surface, and then a 

very strong signal can be detected from the reflection, when the reflected waves from 

different layers are in phase with each other (figure 2.6). 
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Figure 2.6 Schematic representations of X-ray tube, the X-ray detector and the    

sample.  

2.2.8.2. XRD instrument 	   

Low angle powder XRD patterns were recorded on a Panalytical X’pert Pro 

diffractometer fitted with an X’celerator detector and Cu Ka (𝜆 =1.54 Å) radiation 

source. The spectrometer was calibrated periodically using silicon, which has well 

known, well-defined and strong diffraction peaks. Low angle patterns were recorded for 

2𝜃 = 0.3 - 8° with a step size of 0.01◦.  

2.2.9. Porosimetry (N2 isotherm) 

For nanoporous materials, it is essential to focus on the porosity system in terms of 

studying the pore size distribution and the surface area of the material. N2 adsorption 

porosimetry has been used as a valuable technique for this purpose.  

2.2.9.1. Theoretical aspects 

Traditionally, the pore size distribution is obtained from the Barrett, Joyner and 

Halenda (BJH) adsorption method, whereas, the specific surface area is estimated by 

the Brunauer, Emmett and Teller model (BET) [23, 24], both methods are strongly 

related to the assumption of converting the N2 isotherm into valuable information.  

In N2 isotherm, the sample is treated with a small amount of nitrogen to reach 

equilibrium with the surrounding vessel. At the equilibrium, the pressure of the vessel 

represents the volume of the gas based on the ideal gas equation. Once the 
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equilibrium achieved, nitrogen will continued to be added until the pressure is saturated. 

Thus, the isotherm is built by plotting the adsorbed volume versus partial pressure. Six 

types of adsorption isotherms have been classified by IUPAC (see section 1.3.1 in 

Chapter one).  

The BET method is the standard model for surface area estimation, and is based on 

the concept of determining the surface area related to the gas adsorbed. The adsorbed 

gas is usually N2 at temperature of 77K. BET theory has described the amount of gas 

adsorbed as given in equation 2.12.  
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!!!  
                                            (2.12)  

where, 𝑉 is the volume of the adsorbed gas, 𝑉! is the volume of the monolayer of 

adsorbed gas, 𝑃 is the equilibrium gas pressure, 𝑃° is the saturation pressure of the 

adsorbate and 𝐶 is the BET constant.   

At given pressure, the amount of gas adsorbed can be used to estimate the number of 

adsorbed molecules that will be needed to make a monolayer on the surface of the 

material, and then the surface area can be easily calculated [23]. 

BJH method is proposed to assess the pore size using the classical Kelvin equation, 

which relates the pressure of the capillary condensation or evaporation to the material 

pore size. The method is based on the model of adsorbent as a collection of cylindrical 

pores and represents the capillary condensation in the pores [23, 25].  

2.2.9.2. Porosimetry instrument  

Nitrogen physisorption was undertaken on a Quantachrome Nova 2000e porosimeter 

and analysed using NOVAWin software version 11.  

Specific BET surface areas were calculated over the relative pressure range 0.05–

0.25, where a linear relationship was maintained. Pore diameters and volumes were 

calculated using the BJH method to the desorption isotherm for relative pressures 

>0.35. 
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2.2.10. Thermal gravimetric analysis (TGA) 

Thermogravimetric analyzer (TGA) is an important technique used for material 

characterization. It studies the material mass as a function of temperature or time in a 

controlled atmosphere.  

2.2.10.1. Theoretical aspects 

TGA is performed by a gradual increase (heating) or decrease (cooling) of the sample 

temperature in a furnace after measuring its weight on a balance outside the furnace. 

Due to increasing temperatures, a gradual mass loss is observed, related to the loss of 

each volatile component in a material decomposition. The weight of the sample at each 

temperature is plotted vs temperature in a TGA curve [26]. Figure 2.7 shows a 

schematic representation of TGA instrument.  

               

               Figure 2.7 Schematic representations of TGA instrument [26]. 

2.2.10.2. TGA instrument 

TGA was performed using a Stanton Redcroft STA780 thermal analyser on 10–20 mg 

samples under a 10 V% of O2 /He mixtures (20 cm3 min−1 total flow) during heating at 

20 °C min−1 in order to study the decomposition of organic moieties in the sample.  
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2.2.11. X-ray photoelectron spectroscopy (XPS) 

It is essential to study the changes of the catalyst surfaces in the reactions based on 

active sites of the catalyst. These changes include the surface electronic, chemical and 

structural properties through a specific process.  

2.2.11.1. Theoretical aspects 

XPS is one of the analytical techniques are used to study material surface changes. 

The technique is suitable to determine the quantitative elemental compositions (atomic 

%) of elements on the surface of the sample. Hydrogen and Helium are the two 

elements, which cannot be detected by XPS as they have atomic number of 1 and 2 

respectively and that is not applicable to be analyzed by XPS [27, 28].    

High-energy photons (in KeV) hit the material with photoelectrons. Einstein’s law, 

(equation 2.13), measures the kinetic energy Ek of the photoelectron. 

                                                 Ek= ℎ𝑣 - Eb                                                                 (2.13) 

where, ℎ𝑣  is the incident radiation energy, Eb is the electron binding energy in a 

particular level (equation 2.14).   

                                                  Eb = Ei-Ef                                                                (2.14) 

where Ei is the initial (ground) atomic state, and Ef is the final (ionized) state.   

When the incident photon flux with sufficient energy (typically >1200 eV) [29, 30] and 

hit the sample levels, materials can be ionized and photoelectrons are ejected from 

atom core levels. Due to the photoelectron effect, spectra are produced to display all 

energy levels as a distribution of the kinetic energy of emitted photoelectrons based on 

equation 2.13. The binding energy of the electron for each energy level can also be 

calculated by equation 2.14. The quantum number of each level classify and label each 

photoelectron peaks in the spectra [30], since the electron at that level is described by 

a total momentum number  𝑗=𝑙 + 𝑠, where 𝑙 is the orbital momentum number and 𝑠 is 

the spin momentum number (-1/2 or +1/2).  

Identification of the elements at the surface of materials is the main target of using XPS 

for characterization approaches, since each element has a unique set of binding 

energies. The typical XPS spectrum involves the plot of electron counts versus binding 

energy (eV).  Element oxidation states can also be determined by XPS analysis as the 

binding energy shifts with the screening effects of the electron in different orbitals. 
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The emitted electron from the sample leaves the core hole, which is immediately filled 

by another electron from the lower energy level. The difference of energies between 

the two levels can be expressed in either two ways. The first is the emission of a 

photon with an appropriate energy in the form of X-ray fluorescence. The other way is 

that the photon transferred to a third electron (Auger electron), and this electron is able 

to be emitted and escape with certain energy and it also has an independent kinetic 

energy that different from the photon energy, which used to irradiate the sample.  

2.2.11.2. XPS instrument 

XPS instrument consists of four main components, which are the X-ray source, the 

electron detector, the electron energy analyser and high vacuum pumping system.  

The principle of the technique is based on the photoelectric effect. If an atom absorbs a 

photon of energy greater than the work function of the atom, the electron can be 

ejected with the excess energy as kinetic energy. 

The sample is irradiated with monoenergetic soft X-rays under UHV (ultra-high 

vacuum). The X-ray source is Mg or Al. Photons have limited penetration in the solid 

within the distance of 1-10 µm, so atoms can emit photoelectrons in this region by the 

photoelectric effect, and that makes the technique is useful for surface investigations of 

materials.  

In this project, XPS measurement were carried out by Dr David Morgan using a Kratos 

Axis Ultra-DLD XPS system with a monochromated Al Ka source and analysed using 

Casa XPS software.  

2.2.12. Gas Chromatography (GC) 

Gas chromatography has been used to characterize palmitic acid esterification 

reaction.  

2.2.12.1. Theoretical aspects 

GC is the one of the most widely used technique to analyse hydrocarbon mixtures 

since the technique involves a wide range of measurements from ppm to 100%, the 

ability to detect a wide range of components and the advantage of measurement 

repeatability.  All gas chromatographs compose from the same functional components 

including the sample handling system, the column and the chromatograph oven.  

The function of the sample handling system is to control the sample pressure and 

remove liquids and solid from the sample to ensure a clean and dry sample is injected 
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to the chromatograph [31].  

The main analytical components of GC chromatograph are the column, the valve and 

detector, which are enclosed in a heated oven. The change of the temperature can 

affect the performance and response of the column and detectors, so the oven is 

designed to isolate the other component from the temperature changes, and keep the 

internal temperature is very stable. Using a temperature control of ± 0.3 °C.  

 The column in GC is to separate a gas mixture into its individual components by 

material physical properties such as boiling point, molecular size or polarity differences. 

The GC column includes the stationary and moving phases by packing tube with 

column packing material. Inside the column, materials placed and filtered at one of the 

column ends, and then the sample gas is carried through the column using the carrier 

gas that is not measured. This phase between the sample and the carrier gas is the 

moving phase. The carrier gas could be helium for the application of hydrogen, and 

hydrogen, nitrogen or argon and that depends on the application [31, 32].  

When the sample moves inside the column, the lower boiling point components move 

slowly than the higher boiling point components. The difference of their speed cause 

the separation and that depends on the column temperature. The amount of 

component separation is strongly dependent on the length of the column [29]. 

2.2.12.2. GC instrument  

The GC measurements were carried out by Mr Thomas Williams, using a Waters GC 

6890N gas chromatograph with a 30 m 5% phenyl 95% methyl column with a 0.1 um 

diameter. The temperature program is initial temperature 40 oC held for 5 minutes and 

then ramped up to 300 oC at 8.0 oC/min, It is then held for 5 minutes. The inlet was 200 
oC and with a split of 20 %.  

2.3. Materials 

The materials section has been divided into three parts, first is general materials, which 

includes those used in different experiments such as preparing stock solutions. 

Second, surfactants, and then thirdly, the materials used in nanoporous silicas and 

their applications. 

2.3.1 General materials 

Perfluorohexane (PFH) was purchased from Fluorochem. Hexane, D2O, d-chloroform, 

16-doxyl stearic acid methyl ester (16-DSE) (EPR spin-probe) and pyrene (fluorescent 
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probe) were purchased from Sigma-Aldrich and used as received. Distilled water was 

used for preparation of the aqueous solutions. Acetone and ethanol have been used as 

solvents and were purchased from Sigma-Aldrich.   

2.3.2. Surfactants  

Zonyl FSN-100 with an average chemical structure of C8F17C2H4(OC2H4)9OH (MW= 

950 g mol-1), Zonyl FSO-100 (CF3(CF2)n(EO)n) and cetyltrimethylammonium bromide 

(CTAB, 364.45 g mol-1) were purchased from Sigma-Aldrich and used as received. 

2.3.3. Materials used in nanoporous silicas synthesis and 

applications  

Palmitic acid, aqueous ammonia (35 wt %), tetraethoxysilane (TEOS, 98%) as silica 

precursor, were purchased from Sigma-Aldrich and used as received. Methanol, 

toluene, dihexylether, hydrogen peroxide (H2O2), 3-mercaptopropyl trimethoxysilane 

(MPTMS), and dichloromethane (DCM) were purchased from Fisher. 

2.4. Synthesis of nanoporous materials 

This section includes the preparation method of the nanoporous materials, the grafting 

reaction on the surface of materials, and the esterification reaction of palmitic acid. It 

also includes the synthesis of MCM-14 as a comparator for the synthesized materials.  

2.4.1. MCM-41 Comparator  

MCM-41 (Mobil Composition of Matter No. 41) is a form of mesoporous silicate, which 

has hexagonal arrays of a regular pore system [33]. The synthesis of MCM-41 has 

been studied using n-alkyltrimethylammonium bromide of various alkyl chain lengths 

from C12 to C20, as a template [34]. In this project, MCM-41 has been prepared using 

Hexadecyltrimethylammonium bromide (CTAB (C16)) based on the same pathway to 

use it as a comparator for the targeted materials.  

MCM-41 was synthesized by adding TEOS (98%, 0.008 mol) slowly to the CTAB 

solution (0.055 mol L-1) over a period of 15 min, in the presence of 9.0 g of aqueous 

ammonium (35%). The mixture was stirred for one hour, after which white precipitate 

was filtered, washed with deionized water and dried at 90 oC. To remove the organic 

template, the resultant material was calcined at 550 oC in air (1 K min-1) for 5 h. 

Results obtained are discussed in Chapter 5 and were in a good agreement with the 

literature values [34]. Based on these results, the MCM-41 synthesis pathway [34] has 
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been adjusted to include the fluorocarbon surfactant FSN-100 and perfluorohexane as 

an oil phase in order to create an additional type of pores in a hierarchical material 

pore structure as will be described in the next section.  

2.4.2. Synthesis of hierarchical nanoporous materials  

 0.4 g CTAB was dissolved in 20 ml deionized water to yield a 0.055 mol L-1 solution. 

Different amounts of perfluorohexane were added to the aqueous FSN-100 stock 

solution (0.4g FSN100 in 20 ml H2O, 0.021 mol L-1) to prepare six samples with 

different volume percentages of the oil in the surfactant mixture solution (0 %, 1 %, 11 

%, 20 %, 27 % and 33 %). Aqueous ammonia (35 wt %, 2.216 g) was added to the 

mixture. While stirring, tetraethoxysilane TEOS (98 %, 0.008 mol) was added slowly to 

the surfactant mixture solution over 15 min. The mixture was stirred for one hour at 

room temperature, and then the resultant white precipitate was filtered and washed 

with approximately 70 ml of deionized water. After drying at 80-90 oC for about 12 h, 

samples were calcined at 550 oC with the rate of 1 K min-1 in air and kept at this 

temperature for 5 h to remove the template.  

2.4.3. Post-synthesis grafting reactions 

The grafting reaction of sulfonic acid to the synthesized materials was performed 

through a post synthesis method following a procedure described previously [35]. The 

reaction includes two main steps, sulfonic acid functionalization followed by oxidation 

reaction to convert thiol groups (RSH) into sulfonic acid (RSO3H).   

2.4.3.1. Sulfonic acid functionalization  

Grafting synthesized nanoporous materials to yield sulfonic acid functionalization was 

achieved through the post synthesis method [35]. Typically, 0.2247g of the prepared 

mesoporous material was added to 30 ml toluene and mixed for 50 minutes, before 

0.25 ml of 3-mercaptopropyl trimethoxysilane (MPTMS) was added to the mixture. The 

mixture was refluxed at 130 oC for 24 h and then the resultant solid filtered and washed 

with methanol before drying at 80 oC overnight.  

2.4.3.2. Oxidation reaction  

To convert thus attached thiol group to sulfonic acid, 30 ml H2O2 was mixed with the 

sample at room temperature for 24 h. The sample was then filtered and washed with 

methanol three times before again drying at 80 oC overnight. 
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2.4.4. Palmitic acid esterification (catalysis tests) 

Catalytic tests were performed following a procedure reported by Lee et al [35]. A 

typical palmitic acid esterification was performed by mixing 1.282 g of palmitic acid, 

6.25 ml methanol and 0.24 g dihexylether (DHE) in a reaction tube at 60 oC under 

refluxing for 10 minutes. After taking the first sample to be measured by GC, the 

catalyst (25 mg) was added to the mixture, before the mixture was regularly sampled 

over 24 h by withdrawing 0.1 ml and analysing by GC.  

2.4.4.1. Samples for GC 

0.1 ml of the sample was added to 50 ml of dichloromethane (DCM) for dilution and 

then 1.0 ml of the diluted solution kept in GC tubes to be analysed by gas 

chromatography to determine the amount of methyl palmitate or the conversion rate of 

palmitic acid to palmitate reaction.   

2.5. Sample preparation for characterization   

Samples have been prepared in different ways based on both targeted characterization 

and the requirements of each used technique. Some techniques such as XRD, SEM 

and XPS need solid samples, but samples have to be dissolved for other techniques.  

2.5.1. The choice of solvents 

The solvent was D2O in small-angle neutron scattering (SANS), pulse gradient spin eco 

NMR spectroscopy (PGSE-NMR), 19F-NMR and 1H-NMR, whereas deionized water 

has been used in the surface tension, fluorescence and Electron paramagnetic 

resonance (EPR) measurements. Acetone and ethanol were used as solvents for the 

pyrene and 16-DSE stock solutions respectively; d-CHCl3 has been used to measure 

NMR samples.  

2.5.2. Surface tension 

Surface tension measurements have been performed on the aqueous solutions of 

CTAB, FSN-100, as well as their mixture solutions in order to determine the critical 

micelle concentration (CMC) for each case.  

2.5.2.1 CTAB and FSN-100 solutions  

Stock CTAB solutions were prepared by dissolving the appropriate mass of CTAB in 

deionized water to produce a stock solution with a CTAB concentration of 10 mM, from 
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which a range of concentrations were derived. Serial dilutions were prepared to make 

different CTAB concentrations ranging from 0.01 to 4.0 mM.  

FSN-100 stock solutions were prepared by dissolving the appropriate mass of FSN-

100 in distilled water to produce a total concentration of 150 mM. Serial dilutions were 

prepared to make different FSN-100 concentrations ranging from 100 to 0.01 mM.  

2.5.2.2. CTAB/FSN-100 mixtures 

Surface tension measurements have also been performed for a number of mixtures 

between CTAB and FSN-100. A series of CTAB mole fraction mixtures have been 

prepared to cover a range of compositions in terms of CTAB mole fraction (0.15- 0.9).   

2.5.3. Fluorescence  

Fluorescence measurements have also been performed to determine the CMC of the 

pure surfactant solutions and mixtures using pyrene as fluorescent probe.  

2.5.3.1. Pyrene stock solution 

A 2 𝜇M of pyrene was prepared by dissolving an appropriate amount of pyrene in 1.0 

ml acetone and transferring into 1000 ml volumetric flask, then kept in a dark place. 

The pyrene stock solution was used to prepare different concentrations of CTAB, FSN-

100 and their mixtures.  

2.5.3.2. Surfactant solution samples 

Surfactant solutions and surfactant mixtures were prepared in distilled water as 

described in the surface tension case, with 10 𝜇L of the pyrene stock solution being 

transferred to a sample vial to allow acetone to evaporate fully before adding 1.0 ml of 

the aqueous sample into the vial and mixing for at least 1 h to ensure that the probe 

has been incorporated into the micelle. Samples have been measured by the 

fluorescence emission spectrum and by calculating the ratio of the 1st and 3rd vibronic 

peak intensities (I3/I1), which are usually around 373 nm and 384 nm respectively. The 

CMC for each solution can be estimated from the breakpoint of the curve of (I3/I1) vs 

the concentration.  
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2.5.4. Small angle neutron scattering (SANS) 

Small angle neutron scattering measurements have been performed for the pure 

surfactants and their mixtures. The solutions have also been measured in the presence 

of 2 % PFH or 2 % hexane as an oil phase.  

2.5.4.1.  Pure surfactant solutions  

50 mM of CTAB solution and 50 mM of FSN-100 solutions have been prepared in D2O 

and measured by SANS. The same concentration of each surfactant has been mixed 

with 2 % of PFH or hexane to do the measurements in the presence of oil.   

2.5.4.2. Surfactant mixture solutions 

0.2, 0.4, 0.6, and 0.8 CTAB mole fraction solutions have been prepared in D2O for 

SANS measurements. The same mole fractions except 0.4 have also been measured 

after mixing with 2 % of hexane or PFH.    

2.5.5. Pulsed-gradient spin-echo NMR spectroscopy (PGSE-

NMR)  

PGSE-NMR measurements have been performed in both cases with the oil and 

without the oil phase for both pure surfactant solutions and the surfactant mixtures.  

2.5.5.1. Pure surfactant solutions  

Stock solutions of CTAB, FSN-100 were prepared by dissolving the appropriate mass 

in deuterium oxide to produce a total concentration of 50 mM. All solutions were 

prepared from stock solutions using D2O as solvent, and 0.6 mL were transferred to 5 

mm o.d. NMR tubes (Willmad NMR tubes form Sigma-Aldrich).  

2.5.5.2. Surfactant mixture solutions 

0.2, 0.5 and 0.8 CTAB mole fraction solutions have been prepared in D2O and mixed 

with 2 % of hexane and only 0.5 mole fraction was measured with PFH by the NMR 

spectroscopy before and after adding the oil.  
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2.5.6. Electron paramagnetic resonance spectroscopy (EPR) 

EPR spectroscopy measurements have been performed for the aqueous solutions of 

the pure surfactants and mixtures using 16-DSE as a spin probe.   

2.5.6.1. 16-DSE stock solution 

The spin probe has been prepared by adding the appropriate amount in 2 ml of ethanol 

to produce 0.01 M. Figure 2.8 shows the structure of the spin probe 16-DSE.  

                                 

                    Figure 2.8 The chemical structure of 16-DSE spin probe. 

2.5.6.1. Surfactant solution samples 

To prepare surfactant samples for EPR, 0.02 ml of the probe solution (0.01 M) was 

transferred into a separate glass vial. After allowing for the ethanol evaporate, 1.0 ml of 

the surfactant sample was added to the vial and mixed for at least 1 h to give a final 

spin-probe concentration at 2x10-4 M, and to ensure that the probe has been 

incorporated into the micelle solutions.                  

2.5.7. Scanning Electron Microscopy (SEM) 

SEM microscopy has been performed for the synthesized nanoporous materials. The 

solid sample was ground and held on an aluminium stub holder using carbon tape. 

Samples were then placed into SEM instruments for scanning.  

 2.5.8. Transmission Electron Microscopy (TEM) 

TEM microscopy technique has been performed for the synthesized nanoporous 

materials. For the analysis, the powder sample was dispersed in hexane as a 

dispersant to avoid dissolution of the particles in the samples, and a drop of this 

suspension deposited on a carbon film copper grid.  
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2.5.9. X-ray diffraction (XRD) 

XRD measurements have been performed for the synthesized nanoporous materials. 

The sold sample was ground and then placed on a plastic, aluminium or glass sample 

holder avoiding vertical loading before being connected to the instrument.  

2.5.10. Nitrogen porosimetry 

Nitrogen porosimetry measurements have been performed for the synthesized 

nanoporous materials. Solid samples were degassed at 120 oC for 2 h before the 

analysis by N2 adsorption at −196 oC, with equilibration times of 150 seconds for each 

data point. The sample has to be extensively degassed, since any tiny amount of water 

can affect the quantity of adsorbed N2 molecules by its partial pressure.  

2.5.11. Thermal gravimetric analysis (TGA) 

TGA measurements have been performed to characterize the catalysts. 1.0 mg of the 

solid sample was placed on a sample pan, and then a survey scan was run at 20 oC 

per minute, which began and ended 100 oC below and above the transition of the 

sample to adjust the beginning and ending temperatures.  

2.5.12. X-ray photoelectron spectroscopy (XPS) 

XPS measurements have been performed to analyse the prepared catalysts. The 

sample bar used to accommodate samples is available with an area of 8 cm x1.5 cm, 

and the maximum sample depth is 4 mm.  
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3.1. Introduction 

The aim of this chapter is to establish an experimental approach to study the mixture of 

the hydrocarbon surfactant cetyltrimethylammonium bromide (CTAB) and the 

fluorocarbon surfactant, Zonyl-FSN-100 which has an average chemical structure of 

C8F17C2H4(OC2H4)9OH. The main aim was to determine the size and shape of the 

micelles and critical micelle concentration at different surfactant ratios.  

Different techniques have been used to analyse the single components and their 

mixtures including surface tension and fluorescence measurements, small-angle 

neutron scattering (SANS), electron paramagnetic resonance spectroscopy (EPR), 

pulsed gradient spin-eco nuclear magnetic resonance (PGSE-NMR), 1H-NMR and 19F-

NMR. The characterized data from each technique will provide more information about 

the micellization processes in both single component solutions and mixtures in order to 

explain the whole picture of the surfactant micelles.  

Surface tension and fluorescence measurements have been used to estimate the 

critical micelle concentration (CMC) values for surfactant solutions and define the 

relationship between these values and the compositions as a function of CTAB mole 

fraction. SANS is a good method to estimate the size-shape and structure of the 

micelles and that is essential to determine micelle compositions especially in the mixed 

micelle systems. EPR data characterization will help to describe the hydration of 

micelle headgroup regions and surfactant solution polarity and viscosity, which provide 

a good measure of the micelle dynamics. The interaction between surfactant micelles 

and mixed micelles was studied using PGSE-NMR, which measures the diffusion 

mobility of each component in the solution. 1H-NMR and 19F-NMR have been used to 

investigate the presence of each surfactant in the mixture.  

3.2. Surface tension 

In this section, surface tension measurements have been carried out for the pure 

surfactant solution as well as the surfactant mixture solutions in order to estimate the 

CMC in each case.   

3.2.1. Surfactant solutions  

Surface tension measurements have been performed to estimate the CMC of CTAB 

and FSN-100 solutions. Figure 3.1 shows the surface tension of CTAB and FSN-100 

aqueous solutions as a function of the solution total concentration. The range of 
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concentrations in FSN-100 is larger than that in CTAB, since the FSN-100 has two 

breaking points in the surface tension curve with the concentration.  

In the CTAB curve, surface tension values decrease with increasing the total 

concentration of CTAB aqueous solution up to 8.0x10-4 M, which indicates the critical 

micelle concentration of CTAB. The determined CMC of CTAB is in a good agreement 

with the literature value [1]. The FSN-100 shows two break points (6.8x10-5 M, 1.0x10-3 

M) again in agreement with literature values [2], these have previously been explained 

as pre-association and micellization processes [2, 3]. In addition, the hydrophobicity of 

FSN-100 is much greater than CTAB, So different micelle structures could be 

recognised over a range of different concentrations of FSN-100 in the solution.  

 

Figure 3.1 Surface tension measurements as a function of total concentration for 

CTAB (open triangles) and FSN-100 (closed triangles).  
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3.2.2. Surfactant mixture solutions  

Surface tension measurements have been carried out for a range of compositions in 

terms of CTAB mole fraction and due to the difference in the patterns, data have been 

divided into two groups of CTAB mole fractions (figures 3.2 and 3.3). In figure 3.2, it is 

clearly that the CMC increases with increasing CTAB mole fraction up to the CMC of 

the CTAB solution. However in the other group of mole fractions (figure 3.3), the CMC 

values do not follow a monotonic relationship with the compositions, suggesting an 

unusual micellization process over a range of compositions between the two 

surfactants. This pattern is investigated further in the next section of the chapter.  

 

Figure 3.2 Surface tension measurements as a function of total concentration for 

CTAB (open triangles), FSN-100 (closed triangles), 0.2 CTAB mole fraction (open 

square), 0.5 CTAB mole fraction (closed squares) and 0.9 CTAB mole fraction 

(open circles).  
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Figure 3.3 Surface tension measurements as a function of total concentration for 

CTAB (open triangles), FSN-100 (closed triangles), 0.15 CTAB mole fraction 

(open squares), 0.33 CTAB mole fraction (open diamonds) and 0.8 CTAB mole 

fraction (open circles). 

3.2.3. CMC determination  

Surface tension measurements for a range of surfactant compositions have also been 

used to determine the relationship between CMC values and the CTAB mole fraction 

(figure 3.4). The two limits correspond to the single component species, for which the 

CMC values (FSN-100 = 6.8x10-5 M, CTAB= 0.8x10-4 M) are in excellent agreement 

with the literature values [1, 2]. In figure 3.4, the first CMC value of FSN-100 has been 

plotted instead of the second one, because of the micellisation process has been 

started at this point and then micelles have changed their structures at the second one, 

so the first CMC represents the actual CMC value in terms of its definition and should 

not be ignored. 
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Figure 3.4 The critical micelle concentration, CMC, as a function of CTAB 

solution mole fraction determined by surface tension. The solid line corresponds 

to the ideal mixing prediction; the dotted line is a guide to the eye.  

The CMC vs αCTAB behaviour in figure (3.4) shows a number of distinct features. 

Particularly, significant regions where the CMC is greater than would be predicted by 

an ideal mixing approach. Therefore, there are specific interactions between the two 

molecules, and these are strongly antagonistic, surprisingly, this system includes a 

region apparent ideality around 0.5 > αCTAB > 0.7. The increases in CMC in the 

mixtures to a value greater than its single component CMC, confirm a loss of surfactant 

activity and the presence of a strongly different micellization process. Clearly, further 

analysis of the micelle composition and size-shape is required.  

3.2.4. Surface area of surfactant per molecule calculations  

From the surface tension curves, surface area per molecule can be calculated using 𝛾 

vs 𝑙𝑛C. The slope of the curve is proportional to the excess absorbed amount of the 

surfactant at the air water interface per unit area.  

The maximum surface excess concentration (Г) and the minimum area per molecule 

𝐴!"# have been calculated using equation 3.1 and 3.2, for the single component 

surfactant solutions and a range of compositions of the mixture as a function of CTAB 

mole fraction.  
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                                        Г =   −(𝜕𝛾/𝜕𝑙𝑛𝐶)/𝑛𝑅𝑇                                                       (3.1) 

where 𝑛 is the number of species formed by surfactant dissociation (e.g. for non- ionic 

surfactants 𝑛 = 1), 𝑅 is the gas constant and 𝑇 is the temperature.  

                                       𝐴!"#= 1020 /N. Г                                                               (3.2) 

where N is Avogadro’s number and  𝐴!"# is expressed in Å2/ molecule.  

All calculated parameters from surface tension data have been listed in table 3.1. For 

CTAB solution, Г is 3.4x10-6 mol m-2, and the surface area is 49 Å2, which agree with 

the literature values [4]. However, it was not easy to calculate surface area per 

molecule for the surfactant FSN-100 due to the coexistence of the first and second 

CMC, but by taking the higher concentration break (0.001M) as the CMC of the 

surfactant, the fit provides the value of 4.6x10-6 mol m-2 as a maximum surface excess 

concentration for the FSN-100 and corresponding to the surface area of 36 Å2, which 

are in a good agreement with the literature value at the same CMC point [2].  

CTAB/mole 
fraction 

CMC 
X104/M 

𝛾!"! /mNm-1 ГX106/mol 
m-2 

𝑛 ACMC /Å2 

0 0.68, 10 56, 30 0.1, 5.0 1.0 1582,36 

0.15 6.4 31 5.4 1.1 31 

0.20 6.9 33 8.5 1.2 20 

0.33 9.1 32 3.8 1.3 44 

0.50 3.9 39 4.6 1.5 36 

0.60 6.4 35 4.2 1.6 40 

0.66 6.1 39 3.4 1.7 47 

0.70 6.7 34 3.3 1.7 50 

0.75 8.0 34 3.6 1.7 46 

0.80 10.6 32 2.9 1.8 57 

0.85 11.3 33 3.4 1.8 49 

0.9 7.8 35 3.4 1.9 50 

1 8.0 42 3.4 2.0 49 

Table 3.1 Values of the CMC, surface tension value at the CMC, maximum 

surface excess concentration and minimum area per molecule parameters for 

CTAB, FSN-100, 0.15, 0.2, 0.33, 0.5, 0.6, 0.66, 0.7, 0.75, 0.8, 0.85, and 0.9 CTAB 

mole fraction solutions, n for mixtures were calculated as a simple weighted 

value of CTAB and FSN-100.  
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3.3. Fluorescence  

Surface tension detects changes in the surface composition, which generally reflects 

the general solution structure. To provide a contrasting measure of the CMC, pyrene 

solubilisation has also been used. This technique has been used for CTAB, FSN-100 

single component solutions as well as a range of compositions of mixtures in terms of 

CTAB mole fraction.   

3.3.1. CTAB and FSN-100 single component aqueous solutions  

In the case of the aqueous surfactant solutions of CTAB and FSN-100 the I1/I3 values 

decrease with increasing the surfactant total concentration up to the CMC. In CTAB 

solutions the break point of the curve (figure 3.5) confirms the estimated CMC value 

from the surface tension measurements.  

 

Figure 3.5 Fluorescence measurements for CTAB aqueous solution. Lines are 

guide to the eye.  
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Figure 3.6 Fluorescence measurements for FSN-100 aqueous solution. Lines are 

guide to the eye. 

Again, two break points have been observed from the FSN-100 curve (figure 3.6), 

which confirm the type of the micellization process in this surfactant solution. The 
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3.3.2. CMC determination  

Pyrene probe has been used in the fluorescence measurements to estimate the CMC 

for different CTAB mole fraction solutions and study the interaction of micelles with low-

polar-mass compounds. The curve pattern is similar to the surface tension curve, as 

the same structure of micelles has been observed through the different concentration 

regions.  

From figure 3.7, the two curves show remarkable similarity, indicating that there is 

indeed some unusual micellization process occurring in this system and further 

investigations are required.   

 

Figure 3.7 The critical micelle concentration, CMC, as a function of CTAB mole 

fraction determined by pyrene solubilisation (open circles) and surface tension 

(closed circles). The dotted lines are guides to the eye. Literature CMC values for 

the pure surfactants are also plotted, (open triangles).  
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3.4. Small-angle neutron scattering (SANS) 

SANS was carried out to quantify the size-shape of the micelles and to investigate the 

micellisation process in terms of the coexistence of multiple type of micelles. SANS 

experiment has been carried out for the single component solutions as well as the 

mixtures as a function of CTAB mole fraction. The scattering intensity, I, is measured 

as a function of the scattering vector Q according to the equation 3.3.  

                        𝐼 𝑄 = 𝑛!𝑉!
!  
∆  𝔢

!
𝑃 𝑄 𝑆 𝑄 + 𝐵!"#                                               (3.3) 

where, 𝑛! is the number of scattering bodies within the sample solution, 𝑉! is the 

volume of scattering bodies. ∆𝑒  is the scattering contrast, 𝑃(𝑄) is the form factor, 𝑆(𝑄) 

is the structure factor and 𝐵!"# is the incoherent background.  

3.4.1. Model used to fit the data 

Equation 3.4 gives the intensity of scattered radiation, I(Q), as a function of the wave-

vector, Q. 

𝐼!"!. 𝑄 = 𝑛   𝑆 𝑄 𝐹 𝑄 !
+    𝐹(𝑄) !

− 𝐹 𝑄 !
+ 𝐵!"#                                   

(3.4) 
 

𝑆(𝑄) represents the spatial arrangement of the micelles in solution and 𝑛 is the micelle 

number density. In the case of core-shell morphology  𝐹(𝑄)  is represented by equation 

3.5.  

   𝐹 𝑄 = 𝑉! 𝜌! − 𝜌! 𝐹! 𝑄𝑅! + 𝑉!(𝜌! − 𝜌!)𝐹!(𝑄𝑅!)                                               (3.5) 

The subscript 1 represents the scattering from the core and the subscript 2 is for the 

polar shell  and F! QR
!!!(!")

!"
  (ji is the first-order spherical Bessel function), 

so,  𝜌! is the neutron scattering length density of the micellar core (subscript 1), the 

polar shell (subscript 2) and the solvent (subscript 0),  

Constants are combined into a single fittable parameter used to “scale” the model 

intensity to the absolute value. Post-fitting, this scalar is recalculated using the 

parameters describing the micelle morphology/composition and the molar 

concentration of micelles to validate the fit. The calculated and observed values should 

lie within ~10%. 

For both surfactants, a charged particle with an elliptical core-shell morphology is the 

adopted model of the micelle. The average volume per headgroup،٬ average tail volume 

3

3

4

ii
RV π=
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and their average scattering length densities are input as constants. These were 

calculated assuming the composition of the micelle is the same as the solution 

composition.  

3.4.1.1. CTAB parameters 

For the head group, ρCTAB head = 2.4 x10-6 Å-2 and the volume is 412 Å3. The bromide ion 

dissociation in the CTAB significantly affect the charge on the micelle and hence the 

structure factor 𝑆(𝑄). For the tail, the average core scattering length density is ρCTAB tail 

= -0.4 x 10-6 Å-2 and the volume is 460 Å3.  

3.4.1.2. FSN-100 parameters 

For the head group, ρFSN head = 0.6 x 10-6 Å-2 and the volume is 2000 Å3. For the tail, the 

average core scattering length density is calculated  ρFSN tail = 2.0 x 10-6 Å-2 and the 

volume is 295 Å3. 

In both cases, the structure factor 𝑆(𝑄) was calculated using the Hayter and Penfold 

model [5] for spheres of a given micellar concentration, charge and ionic strength, 

incorporating refinements for low volume fractions and a penetrating ionic background. 

Various approaches to parameterising the structure factor were adopted based on 

known or measured estimates of the micelle size and surfactant concentration to 

calculate the hard sphere volume fraction, charge and Debye length. This method of 

calculating the structure factor, which assumes spherical particles, remains valid for 

dilute, isotropic samples of micelles with small degrees of Ellipticity, as same as the 

case here [6].   

The headgroup region, the shell comprising the various headgroups and associated 

water do not affect the SANS data fitting. The shell scattering length density is 

calculated from the average headgroup scattering length density and their hydration 

using equation 3.6. 

                                                                (3.6)
 

Since ∅!"#$%! 
!!"#$%

!!!!""

,  and  parameters are strongly coupled and not 

amenable to fitting. From EPR calculations (next section (3.5)), the approach of fixing 

φwater value has been adopted and to define the shell volume (thickness). The scattering 

length density of the hydrated shell region is then (re-)calculated within the analysis 

software, based on φwater, so, that helps to eliminate the trial-and-error aspects which 

headgroupswaterwaterwater ρφρφρ )1( −+=

V
water

V
shell
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have been required in previous work to find the overall “best fit” value of φwater due to 

local minima in the least-squares fits [5].   

3.4.2. Surfactant solutions  

Considering the fit for the single component surfactant solutions, the data have been 

fitted to a model describing the micelle morphology as globular, with a varying degree 

of ionic character. In both surfactant fittings, constants have been applied to the 

analysis. Specifically, the known chemical structure, concentration molar volumes, 

dimensions and scattering length densities, also, the known concentrations and the 

experimental values of the degree of hydration from EPR (section 3.5) (table 3.3). The 

ellipticity, the charge and the incoherent background are the only fitting parameters that 

have not been varied. Figures 3.8 and 3.9 show the scattering curves with the fitting of 

CTAB and FSN-100 solutions respectively, and the fitting parameters for both 

surfactants are compared to those from mixtures in the next section, table 3.2. 

 

Figure 3.8 Small angle neutron scattering of 50mM CTAB aqueous solution (open 

squares) with fit (solid line).  
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Figure 3.9 Small angle neutron scattering of 50mM FSN-100 aqueous solution 

(open triangles) with fit (solid line).  

3.4.3. Surfactant mixture solutions  

SANS measurements were performed on a single component CTAB and FSN-100 as 

well as selected CTAB/FSN-100 mixtures at specific CTAB mole fractions, in order to 

detect micelle shape and size corresponding to the features in the CMC plot.  

Figures from 3.10 to 3.13 show the SANS curves for each mixture solution. In figure 

3.14, SANS data for the single components have been compared to the four studied 

mixtures. The scattering curves are a composite of the form factor describing the size 

and the shape, and the structure factor describing the electrostatic interaction between 

micelles.  
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Figure 3.10 Small angle neutron scattering of 50mM of 0.2 CTAB mole fraction 

aqueous solution (closed triangles) with fit (solid line).   

 

Figure 3.11 Small angle neutron scattering of 50mM of 0.4 CTAB mole fraction 

aqueous solution (closed squares) with fit (solid line). 
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Figure 3.12 Small angle neutron scattering of 50mM of 0.6 CTAB mole fraction 

aqueous solution (open circles) with fit (solid line). 

 

Figure 3.13 Small angle neutron scattering of 50mM of 0.8 CTAB mole fraction 

aqueous solution (star) with fit (solid line). 
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Figure 3.14 Small angle neutron scattering as a function of CTAB mole fraction, 

(open square) αCTAB= 1, (open triangle) αCTAB=0, (closed triangle) αCTAB=0.2, (open 

diamond) αCTAB=0.4,	   (open circle)	  αCTAB=0.6, (star)	  αCTAB=0.8. Fits are included as 

solid line. Data are offset by a factor of 3 for clarity.  

Ionic surfactant micelles have an oscillatory structure factor in the scattering curve, 

which is the responsible for reduction in intensity at low Q and “bumps” at higher Q. 

However, the scattering from non-ionic micelles does not have these features. This 

concept clearly occurs for many of the overall features in the data, particularly, the 

most obvious difference in the curve from FSN-100 compared with all other mixtures. 

Therefore, once CTAB is added to the solution, the micelles show less variance in 

structure. As predicted, the scattering intensity decreases at low Q as the CTAB mole 

fraction increases, with shoulders around Q=0.06 Å becoming more pronounced. Fitting 

parameters for the pure surfactants and the mixtures are listed in table 3.2. 
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CTAB mole 
fraction 

𝑹𝑪𝒐𝒓𝒆 /Å Shell 
thickness 

(±5)/ Å 

Ellipticity, 
𝑿  

𝑽𝒔  (𝒅𝒓𝒚)/𝑽𝑪𝒐𝒓𝒆 𝑵𝒂𝒈𝒈. 

(±10) 
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Table 3.2 Parameters describing the fits of SANS data from CTAB, FSN-100, 0.2, 

0.4, 0.6, 0.8 CTAB mole fraction solutions using a model that describes the 

micelle as a globular elliptical with some ionic character. 

Table 3.2 describes the fit for the single components and the mixtures parameters. 

Obviously, the mixtures are strongly characterised by the ionic CTAB component. The 

aggregation numbers have been calculated via equation (3.7), the ratio of the core 

volume divided by a simple weighted value of the effective tail volume, this assumes 

that the micelle composition is identical to the solution one. In addition, the aggregation 

number of FSN-100 micelles is smaller than the literature value [(Nagg=102) [3]], 

whereas CTAB micelle aggregation number is in a good agreement with the literature 

one considering the same concentration [7].  

                  𝑁!"". =
!!"#$

!!"#$  
=

!

!
!  !!"#$

!
  !

!!"#$  !!"#$
!"#$

! !!! !"#$  !!"#!!""
!"#$

  
                                                 (3.7) 

where, 𝑁!"!.. Is the aggregation number, 𝑋 is the ellipticity, 𝑅!"#$ is the core radius, 

𝑉!"#$  is the surfactant tail volume, 𝑉!"#$  is the surfactant core volume. 
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3.5. Electron paramagnetic resonance spectroscopy 

(EPR)  

Electron paramagnetic resonance (EPR) spectroscopy has been used to study the 

hyperfine coupling constant and rotational correlation times of the spin probe, 16-doxyl-

stearic acid methyl ester (16-DSE) solubilized in hydrocarbon surfactant aqueous 

solution (CTAB), fluorocarbon surfactant aqueous solution (FSN-100), and a range of 

compositions of hydrocarbon/fluorocarbon surfactant mixtures (HC/CF) as a function of 

CTAB mole fraction. The data in this experiment were also conducted at two different 

total surfactant concentrations (20 mM and 50 mM) to assess whether the micelle 

structure undergoes a significant change with the total concentration. 

3.5.1. The choice of spin-probe 

The EPR technique introduces a very small amount (2x10-4 M) of nitroxide free radical 

as a spin probe (in this case, 16-DSE) into the micelle and by measuring the hyperfine 

coupling constant and rotational correlation times of the probe, the micelle structure 

can be estimated. These particles have limited solubility in water, so associate closely 

with the micelles of any charge. Micelles also can accommodate a small number of 

these particles and no EPR signal is detected from the probe containing surfactant 

solutions below the critical micelle concentration (CMC). The structure of the spin 

probe 16-DSE has been shown previously in Chapter Two, section 2.5.6.1.  

3.5.2. Hyperfine coupling constant  

The hyperfine coupling constant is affected by several factors, which contribute the 

behaviour of this parameter. These factors include the nature of the micelle headgroup 

and the replacement of some water molecules, which were in contact with the outer 

regions of the micelle core adsorbed by the surfactant [6, 8].   

In order to limit the analysis of the scattering from the mixtures, EPR was used in 

SANS data analysis to quantify the hydration of the micelle headgroup region by 

measuring the hyperfine coupling constant (A+) as a function of polarity index H (25 oC) 

defined as the molar ratio of OH groups in a given volume relative to water. Thus, the 

polarity index corresponds to the volume fraction of water in the polar shell, φwater, 

(hydration) and may be used to constrain the SANS fitting. The volume fraction of the 

solvent in the headgroup region (hydration) has been estimated using equation 3.8.  

                     H (25°C) = (A+ − 14.21) / 1.52                                                   (3.8) 
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The hyperfine coupling constant from the two different measurements 20 mM & 50 

mM) are plotted versus CTAB mole fraction in figure (3.15). It is obvious that there is a 

greater degree of water (52%) associated with the FSN-100 headgroup, presumably 

because of the larger headgroup providing a greater volume for water penetration. The 

CTAB is a smaller, spherical structure and the predicted value for ∅H2O at 50 mM 

would be calculated from equation (3.9) is 0.30 Å3 and it is in a fair agreement with the 

experimental value (0.32) (table 3.3). In this equation SANS fitted parameters have 

been used. Calculation of the estimate for FSN-100 (∅
!!!

!"#!!"") is less precise due to 

the uncertainty in the headgroup structure, but again the calculated value (0.53) is in a 

good agreement with the experimental one (0.52). Table 3.3 also includes the 

experimental data of water volume fraction in the headgroup region for all mixtures 

calculated from the hyperfine coupling constants and using equation 3.9.    

             ∅!!! =
!!"#$$!  !!"#$%&'()*

!!"#$$  
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                      (3.9) 

 

Figure 3.15 Hyperfine coupling constant of CTAB/FSN-100 mixtures, as a 

function of CTAB solution mole fraction at a total surfactant concentration of 20 

mM	   (open triangles) and 50 mM (open circles). The corresponding volume 

fraction of water in the headgroup region is indicated on the secondary axis. 
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From figure 3.15, the hyperfine coupling constant (Ao) decreases with increasing the 

CTAB mole fraction in both measurements due to the decrease in water molecules 

around the hydrophobic core of the micelles so the micellar surface will be less polar.  

∝CTAB ∝FSN-100 Exp.Ø!"#
!!!"" 

50 mM/ (± 0.2) 

Exp.Ø!"#
!!!"" 

20 mM/ (± 0.2) 

0 1 0.52 0.52 

0.15 0.85 0.50 0.50 

0.2 0.8 0.50 0.50 

0.33 0.67 0.48 - 

0.4 0.6 0.47 - 

0.5 0.5 0.46 0.47 

0.6 0.4 0.45 - 

0.8 0.2 0.37 - 

0.9 0.1 0.37 0.40 

            1 0 0.32 0.35 

Table 3.3 Experimental values for volume fraction of water in the polar shell 

(∅H2O) using EPR, in the single surfactant solutions and mixtures at two different 

total surfactant concentration. 
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3.5.3. Rotational correlation time  

The EPR experiment provides an additional characterisation of the micelle via the 

rotational correlation time (𝜏𝒸), which is a measure of the dynamics with the micelle and 

the micelle tumbling itself and indicates the time taken for the probe to rotate through 

an angle one radian around its axis [6]. Determining the rotational correlation time from 

EPR analysis assesse the mobility of the spin probe inside surfactant micelles. Figure 

3.16, shows the rotational correlation times for 16-DSE solubilized in CTAB micelles, 

FSN-100 micelles and in a range of compositions in terms of CTAB mole fraction at the 

two different total concentration.  

 

Figure 3.16 Rotational correlation time of 16-DSE in CTAB/FSN-100 mixtures, as 

a function of CTAB solution mole fraction at a total surfactant concentration of 

20 mM	  (open triangles) and 50 mM (open circles). The rotational correlation time 

corrected using SANS data are over-plotted (closed circles).  

The two single component micelles have a similar microviscosity and there is a 

pronounced minimum in 𝜏𝒸  across the entire mole fraction range, consistent with a 

decrease in local viscosity experienced by the probe. At low CTAB mole fractions up to 

0.5 the rotational correlation times decrease as the mobility of the spin probe can rotate 

easily and spin faster. Less viscos system also is presented once CTAB mole fraction 

reaching the mole fraction of 0.5, after the point of 0.5, the rotational correlation times 

and viscosity increase with increasing CTAB mole fraction.  
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As a usual procedure in the rotational correlation time studies, the separation of the 

dynamics of the spin probe within the micelle 𝜏  !"#$%&'" to that of the micelle itself 

𝜏  !"#$%%$ is required in order to comment on the microviscosity of the headgroup region. 

In the concentration of 50 mM, the estimation of the size using SANS data has been 

used to obtain 𝜏  !!"#$$# to arrive at 𝜏  !"#$%&'", which is over-plotted in figure 3.16, for 

selected data points, [9]. Clearly, as expected, the 𝜏 correction has little impact on the 

appearance and the pronounced minimum in microviscosity as a function of CTAB 

mole fraction is still obvious.  

Moreover, the microviscosity does not show any obvious dependence of 𝑁!"". as 

curvature being largely defined by the numbers and bulkiness of the headgroups and 

the degree of hydration. It is also obvious that there is an opposite influence of the 

smaller TAB headgroup and the bulky but hydrated ethylene oxide headgroup of FSN-

100.   

3.6. PGSE- NMR spectroscopy studies 

As a complementary approach, pulsed gradient spin-eco nuclear magnetic resonance 

(PGSE-NMR) spectroscopy was employed to provide more information about micelle 

structures. 

PGSE-NMR spectroscopy has been used to measure the self-diffusion coefficient of 

the single component of CTAB and FSN-100 aqueous solutions and mixtures of both 

surfactants as a function of CTAB mole fraction. The measured self-diffusion coefficient 

is a weighted value of the non-micellised and micellised components. Basically, if a 

coexisting micelle population were present, coupled with varying levels of non-

micellised surfactant, the diffusion coefficient of the CTAB and FSN-100 should be 

quite different. However, Figure 3.17 shows similar diffusion coefficient values for both 

surfactants, and that again, consistent with the SANS conclusion that these two 

surfactants mix, further, the diffusion coefficient values are mutually comparable 

consistent with the relative volumes of the respective micelles, which have been 

calculated using SANS data (𝑉!"#$%%$ = 
!

!
 𝜋𝑅!

!  , 𝑉!"#$%%$ were calculated from known 

volumes of constituent groups of CH2, CO, …… 

R = (VCTAB) 1/3 = (1.4x105 
Å

3)1/3 ~ 32 Å	  	   

R = (VFSN-100)
 1/3 = (2.4x105 

Å
3)1/3 ~ 39 Å	  
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Figure 3.17 Self-diffusion coefficients as a function of CTAB mole fraction, (open 

squares) αCTAB= 1, (open triangles) αCTAB=0.  
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3.7. 1H-NMR  

NMR spectroscopy provides an efficient tool for studying micelle formation and mixing 

of various surfactants. In this part of the project, micelles in the hydrocarbon/ 

fluorocarbon surfactant mixtures as well as in the single component solutions have 

been studied. 1H-NMR spectroscopy has been measured for 50 mM CTAB aqueous 

solution, 50 mM FSN-100 aqueous solution and the mixture of both surfactants at the 

ratio of 1:1. The concentrations are selected to be above the CMC of each surfactant in 

order to confirm the presence of micelles in all solutions.   

3.7.1. 50 mM CTAB solution 

Figure 3.18 shows the 1H-NMR spectrum of 50 mM CTAB solution. Signals from the 

main hydrophobic chain protons, terminal methylene group and methylene group from 

attached to head group nitrogen can be identified. For instance, it is clear that CH3 is at 

a chemical shift of 0.75 ppm and signals from protons around nitrogen are at a 

chemical shift of 3.06 ppm.  

 

Figure 3.18 1H High resolution-NMR data from 50 mM of CTAB in D2O.  
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3.7.2. 50 mM FSN-100 solution   

Figure 3.19 shows the 1H-NMR spectrum of the solution 50 mM FSN-100. Two signals 

from hydrophobic chain protons and hydroxyl group at 3.54 ppm and 2.23 ppm are 

observed respectively.  

 

Figure 3.19  1H High resolution-NMR data from 50 mM of FSN-100 in D2O. 
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3.7.3. CTAB/FSN-100 (50 mM, 50 mM) mixture solution  

In figure 3.20, the presence of both surfactant micelles are confirmed from proton 

chemical shifts related to both surfactants. It is one phase mixture and from the 

intensities of peaks at 0.75 ppm CH3 in CTAB spectrum and 3.54 ppm CH2 in FSN-100 

spectrum (0.18 CTAB becomes 0.09 in the mixture) (0.30 FSN becomes 0.18 in the 

mixture).  

 

Figure 3.20 1H High resolution-NMR data from the mixture of CTAB and FSN-100 

in D2O. 

 

 

 

 

 

 



Chapter Three                                    Phase behaviour of mixed surfactant systems 

 97 

In the table 3.4, the signal of CH3 was shifted from 0.75 ppm in CTAB to 0.68 ppm in 

the mixture, which may indicate that there is a degree of mixing between the two 

surfactants. 

 

Surfactant solution 

 

Signals 

Single component 
sol. Chemical shift/ 

(ppm) 

Mixture chemical 
shift/ (ppm) 

 

CTAB 

 

CH3 

 

 

0.75 

 

0.68 

 

FSN-100 

 

 

(CH2) O 

 

3.54 

 

3.54 

Table 3.4 Chemical shifts of CH3 (CTAB) and CH2 (FSN-100) signals in the single 

surfactant solution and the mixture. 
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3.8. 19F-NMR 

In order to study the system of fluorinated surfactant FSN-100 and its mixture with the 

hydrocarbon surfactant CTAB, 19F-NMR spectroscopy is required. The measurement 

was performed for the solutions of 50 mM FSN-100 and the mixture with CTAB. From a 

previous study [3], the 19F-NMR spectrum of FSN-100 in D2O was observed in the 

region from -116 to -112 ppm.  

3.8.1. 50 mM FSN-100 and FSN-100/CTAB mixture  

From figure 3.21, six signals from 7 CF2 and the terminal CF3 group were observed. 

One of the environment sensitive CF2 signals appears at 114.15 ppm for the solution. 

This signal are at the same chemical shift in the case of the mixture (figure 3.22). As 

CTAB has no fluorine, it cannot be shown by 19F-NMR.  

 

Figure 3.21 19F High resolution-NMR data from 50 mM of FSN-100 in D2O.  
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Figure 3.22 19F High resolution-NMR data from 50 mM of FSN-100 in D2O (red) 

and the mixture of CTAB and FSN-100 in D2O (blue). 

From NMR analysis, the structure of each surfactant has been investigated, and the 
1H-NMR spectrum for the mixture indicates the presence of each surfactant. This 

confirms the mixing behaviour between CTAB and FSN-100 in the aqueous solutions.   

3.9. Conclusions  

Mixed micelles of the cationic surfactant CTAB and the non-ionic surfactant FSN-100 

have been studied by various techniques. The data show that the two surfactants mix 

nonideally with CMCs higher than predicted for the ideal mixing except some 

concentrations (0.5 > αCTAB > 0.7), which show a degree of ideality. The mixing 

between the two surfactants has been confirmed using the NMR technique. This 

behaviour ensures that there is a substantially different micellization process along a 

range of compositions and that depends on how the micellization process is dominated 

by which surfactant. It is clearly that from SANS data the mixtures are strongly 

characterised by the CTAB component, and micelles are less variable in structure 

when different amounts of CTAB were added to the solution. With increasing the CTAB 

mole fraction a reduction in the amount of water presented in the head group region, as 

smaller CTAB micelles being more characterized in the mixture, so less polar system is 

presenting as CTAB mole fraction is increased. To conclude, the combination of data 
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from all mentioned techniques can present a more detailed picture of the CTAB/FSN-

100 mixed micelle system, which provides information that would not be extracted from 

any technique alone.  
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4.1. Introduction 

It has been shown in Chapter Three that there is a considerable nonideality of mixing in 

the system of CTAB/FSN mixtures. Due to the well-known nonideality of mixing in such 

systems, it was hypothesised that this nonideality might be harnessed to permit the 

preferential solubilisation of specific oils into fluorocarbon or hydrocarbon phases 

where fluorocarbon or hydrocarbon are involved. Moreover, it is well known that 

surfactants increase the solubility of hydrophobic organic compounds by partitioning it 

in the hydrophobic core of the micelles and this behaviour is highly dependent on the 

surfactant concentration [1].  

The hydrocarbon chain in CTAB and fluorocarbon chain in FSN-100 and their 

interactions have been generally studied in terms of their different specific properties 

(e.g. the hydrophobicity) [2-5]. It can be concluded that fluorine is more electronegative 

and has larger size than hydrogen, so stable fluorocarbon chains are more bulky and 

rigid than hydrocarbon chains [6]. Fluorocarbon surfactants have lower CMCs, stronger 

ability to reduce the surface tension and higher chemical and thermal stability 

comparing to hydrocarbon surfactants. Due to their low CMCs, many more micelles 

can be formed from fluorocarbon surfactants at the same concentration of hydrocarbon 

surfactants. Thus they are expected to be more suitable for solubilisation of volatile 

organic compounds compared to hydrocarbon surfactants [7].  

On the other hand, ethoxylated nonionic surfactants such as FSN-100 have different 

solubilisation effect on hydrophobic organic compounds depending on the length of 

ethoxy chain. The greater ethoxy chain length will decrease the solubilisation on the 

hydrophobic organic compounds such as hexane [8]. However, there are few studies 

about the use of fluorocarbon surfactant in the solubilisation of hexane [7]. As a 

consequence, different phase behaviour is expected from the CTAB and FSN-100 in 

hexane and perfluorohexane (PFH).  

It is also strongly recommended to use a multi-technique approach to characterise 

surfactant/oil systems as each technique provides different results, which may be 

compared. Therefore, here is surfactant/oil solutions have been investigated by 1H-

NMR, 19F-NMR, small-angle neutron scattering (SANS) and pulsed gradient spin-eco 

NMR (PGSE-NMR). In order to prepare for these studies, a good point to start with is 

the visibly determined phase behaviour of surfactant/oil solutions. In this part of the 

thesis, some findings for the surfactants CTAB and FSN-100 and their mixtures with 

and without oil will be presented and discussed.  
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4.2. Phase behaviour of surfactant/oil solutions 

In principle, CTAB and FSN-100 associate into micelles above the CMC in water and 

form different phases at higher concentrations. Since all surfactant solutions were 

prepared at concentrations of 50 mM, which are above the CMC of both surfactants, 

the surfactant phase behaviour at the molecular level of the aggregates in the system 

will be discussed. A fixed amount of oil (hexane or PFH) has been added to the single 

surfactant solution as well as to the surfactant mixtures and then photos for the 

resulted emulsions have been taken in each case.  

4.2.1. Surfactant/W/O systems  

Figure 4.1 represents 50 mM of CTAB and 50 mM of FSN-100 aqueous solutions 

before and after the addition of 2 % of hexane. Both surfactants have a good solubility 

in water at 25 °C as shown in the figure, but once hexane is added to the surfactant 

solution, the solution splits into two phases. This experiment was repeated over a 

range of different oil amounts and in all cases the hexane was split to the top of the 

solution.  

             

                   (a)                                 (b)                                                  (c)  

Figure 4.1 Surfactant aqueous solutions for both CTAB and FSN-100 before (a), 

(b) and after adding 2 % of hexane (c).  

The same procedure has been performed with the PFH and two-phase solutions have 

been collected but in this case PFH was at the bottom of the vial (d = 1.669 g/ml at 

25 °C). Photos of the PFH case have been excluded to avoid repetition.  

The question here is how much of the 2 % hexane or PFH goes into the aqueous 

phase, existing in the micelles of each surfactant. In order to know whether a degree of 
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mixing might be investigated, 1H-NMR and 19F-NMR were performed for the two 

phases separately for each sample. The results of these measurements will be 

discussed in the next two sections of this chapter.   

4.2.2. Surfactant mixtures/W/O systems  

Three mixtures have been prepared (0.2, 0.6 and 0.8 CTAB mole fraction) and then 2 

% of oil has been added to the solutions. Figure 4.2 represents those solutions with 

hexane, and it is clear that hexane is at the top of the solution in all cases. However, 

PFH separated to the bottom.  

Again photos with the PFH case have been excluded to avoid the repetition. Further, 
1H-NMR and 19F-NMR were performed for the two phases separately for the 50 mM of 

a mixture of the two surfactants with the two oils, which will be also discussed in the 

next two sections of this chapter.  

         

                        (a)                                                                 (b) 

Figure 4.2 Surfactant mixture aqueous solutions of 0.2, 0.6 and 0.8 in terms of 

CTAB mole fraction before (a) and after adding 2 % of hexane (b). 

4.3. 1H-NMR measurements  

This section will focus on investigating whether hexane or PFH as oil phases mix or do 

not mix with the surfactant mixture as well as with the single component solutions. 1H-

NMR spectroscopy has been measured for 50 mM CTAB aqueous solution, 50 mM 

FSN-100 aqueous solution and the mixture of both surfactants at the ratio of 1:1 in the 

presence of 2 % hexane or PFH. The concentrations are selected to be above the 

CMC of each surfactant in order to ensure the presence of micelles in all solutions. 
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From section 4.2 of this chapter, phase separation of the oil has been noticed in all 

surfactant/oil solutions from the aqueous phases resulting in two components. Thus, 

the main question is whether the oil has some solubilisation in the surfactant solution? 

Analysing both layers in each surfactant-oil solution and studying chemical shifts in the 
1H-NMR spectroscopy should resolve this issue.   

4.3.1. CTAB/hexane 

The system is a two-phase solution and each phase has been analysed by the 1H-

NMR spectroscopy. Figure 4.3 shows 1H-NMR spectrum of the CTAB solution in D2O 

(red) and the lower phase of CTAB/hexane solution in D2O (blue) spectra as hexane 

splits to the top of the solution. Both spectra are identical, and protons from hexane 

should have chemical shifts at (0.91-0.86 ppm, CH3) and (1.35-1.23 ppm, CH2) [9]. 

However all signals from CTAB protons, which have been discussed in Chapter Three, 

can be identified in the lower phase spectrum. There is no much difference between 

the spectra of the pure CTAB solution and the lower phase of CTAB/ hexane solution 

suggesting that there is no mixing between CTAB and hexane and no hexane goes into 

CTAB micelles.   

 

Figure 4.3 1H High resolution-NMR data from 50 mM of CTAB in D2O (red) and the 

lower phase of CTAB/ hexane solution (blue).  
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On the other hand, in order to investigate whether some surfactant goes to the top of 

the solution (oil phase), 1H-NMR spectra of the top phase compared to the CTAB 

spectra is required. 

Figure 4.4 shows spectra from CTAB in CDCl3 (blue) and the top phase of CTAB/ 

hexane in CDCl3 solution (red). Peaks from CTAB do not exist in the spectrum of the 

top phase CTAB/hexane solution. However, comparing the hexane in CDCl3 spectrum 

to that from the top phase of CTAB/ hexane (figure 4.5), spectra are identical, which 

suggests that there is no CTAB in the top phase of the solution and the whole phase is 

only hexane as the hexane signals at chemical shifts of 0.8-0.9 ppm for CH3 and 1.2-

1.4 ppm for CH2 which are consistent with the literature in CDCl3
 [9].  

 

Figure 4.4 1H High resolution-NMR data from 50 mM of CTAB in CDCl3 (blue) and 

the top phase of CTAB/ hexane in CDCl3 solution (red).  
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Figure 4.5 1H High resolution-NMR data from the top phase of CTAB/ hexane in 

CDCl3 (red) and hexane in CDCl3 solution (blue). 
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4.3.2. CTAB/PFH  

As the PFH goes to the bottom of the vial after mixing with the surfactant solution, the 

top phase (the surfactant phase) this time is more important to be analysed in order to 

investigate whether some PFH goes into CTAB micelles or not.  

Figure 4.6 shows the spectra of CTAB solution (red) and the top phase of CTAB/PFH 

solution (blue). Again all signals in the spectrum of the top phase are from CTAB. 

However, since there are no protons in the PFH structure that can be detected by 1H-

NMR, 19F-NMR has been used to detect any PFH in the surfactant phase, the results of 

which will be studied in the next section (4.4) of this chapter.  

 

Figure 4.6 1H High resolution-NMR data from the top phase of 50 mM CTAB 

solution with 2 % PFH in D2O (red) and the solution of CTAB in D2O (blue). 
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4.3.3. FSN-100/hexane  

This solution is also two phases and each one has been analysed by 1H-NMR. Figure 

4.7 shows the 1H-NMR spectra of the lower phase of the solution FSN-100 with 2 % of 

hexane (red) and the solution of 50 mM of FSN-100 in D2O. It was discussed in 

Chapter Three that two signals from hydrophobic chain protons and hydroxyl group at 

3.54 ppm and 2.24 ppm were observed respectively in the 1H-NMR spectra of FSN-100 

solution, and the same peaks have also been observed in the mixture with hexane. The 

spectra do not include any hexane signals suggesting that there is no mixing between 

the surfactant FSN-100 and hexane.   

 

Figure 4.7 1H High resolution-NMR data from the lower phase of 50mM FSN-100 

solution with 2% hexane in D2O (red) and the solution of FSN-100 in D2O (blue). 
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4.3.4. FSN-100/PFH 

Similarly, PFH as an oil phase cannot be detected by the 1H-NMR spectroscopy, as the 

oil has no protons in the structure. Figure 4.8 represents the top phase spectrum (blue) 

comparing to the FSN-100 spectrum of the solution and they are identical. The lower 

phase is only the oil PFH as no 1H-NMR spectrum of this phase is observed (data not 

shown).  

 

Figure 4.8 1H High resolution-NMR data from the top phase of 50mM FSN-100 

solution with 2% PFH in D2O (red) and the solution of FSN-100 in D2O (blue). 
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4.3.5. The mixture/hexane 

From the previously analysed spectra, it has been concluded that neither CTAB nor 

FSN-100 mixes with hexane. Thus, the question is whether the mixture of both 

surfactants accommodates some oil in the mixed micelles or not?   

The mixture was also separated into two phases and each layer was analysed by 1H-

NMR spectroscopy. As hexane goes to the top layer so the surfactant aqueous solution 

(at the bottom) should be considered to investigate whether the mixed micelles mix 

with hexane or not. Figure 4.9 shows the spectra from the lower phase (red) and it is 

exactly the same as the spectra from CTAB/FSN-100 mixture (blue) suggesting that 

there is no mixing between hexane and the surfactant mixture as well. Further, the top 

phase of the mixture is only hexane as no surfactant peaks are observed in the 

spectra. The spectra are similar to that one in the figure 4.5, and excluded to avoid 

repetition.  

 

Figure 4.9 1H High resolution-NMR data from the lower phase of CTAB/FSN-100 

mixture solution with 2 % hexane in D2O (red) and the solution of CTAB/FSN-100 

in D2O (blue). 
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4.3.6. The mixture/PFH 

Again, since neither of the pure surfactants mix with PFH, does the mixture of both 

surfactants mix?  

Figure 4.10 shows the 1H-NMR spectrum of the top phase of the mixture solution of 50 

mM CTAB/FSN-100 with 2 % of PFH, which clearly has the same spectrum to that from 

the mixture without oil. This shows that the spectrum of CTAB/FSN-100 mixture is not 

changed by adding PFH, (cannot tell if PFH is there or not by 1H-NMR).  

The lower phase of this solution has no observed signals by the 1H-NMR and is 

therefore confirmed to be only the oil PFH.   

 

Figure 4.10 1H High resolution-NMR data from the top phase of CTAB/FSN-100 

mixture solution with 2 % PFH in D2O (red) and the solution of CTAB/FSN-100 in 

D2O (blue). 
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4.4. 19F-NMR measurements 

19F-NMR has been used to study the solutions of CTAB/PFH, FSN-100/hexane, FSN-

100/PFH, the surfactant mixture with hexane and the surfactant mixture with PFH, as 

other systems do not include fluorine in their structures (e.g. CTAB/hexane). 

As all solutions are two phases, the 19F-NMR analysis has been performed for each 

phase.  

4.4.1. CTAB/PFH  

The top phase of the solution of 50 mM CTAB with 2 % PFH has been analysed by 19F-

NMR and the spectrum was essentially only noise, this observation means that no 

fluorine is detected in this phase. As 1H-NMR has shown the CTAB to reside in the 

upper phase, this suggests that there is no mixing between the CTAB surfactant and 

the PFH. Figure 4.11 shows the lower phase spectrum of the solution (red) and it is 

similar to the spectra of the PFH (blue). 1H-NMR of the lower phase confirmed that 

there is no mixing of CTAB into the oil, (only noise detected).  

 

Figure 4.11 19F High resolution-NMR data from the lower phase of CTAB solution 

with 2 % PFH in CDCl3 (red) and the solution of PFH in CDCl3 (blue). 
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4.4.2. FSN-100/ hexane 

The solution is also two phases and hexane is located on the top. The 19F-NMR 

spectrum for the top phase is only a noise as no fluorine is detected suggesting that the 

surfactant does not exist in the top phase (oil phase).  

The lower phase is only the surfactant, and from 1H-NMR there is no hexane in this 

phase. This confirms that hexane does not dissolve with the surfactant. Figure 4.12 

shows the lower phase of the solution of FSN-100 with 2 % hexane and the spectra of 

the pure surfactant FSN-100, clearly both spectra are identical.  

 

Figure 4.12 19F High resolution-NMR data from the lower phase of FSN-100 

solution with 2 % hexane in D2O (blue) and the solution of 50 mM FSN-100 in D2O 

(red). 
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4.4.3. FSN-100/PFH 

The question here is whether the fluorosurfactant mix with the fluorocarbon oil? Figure 

4.13 shows the spectra of the top phase of 50 mM FSN-100 with 2 % of PFH solution 

compared to the pure FSN-100 solution spectra. Clearly, there are no signals from PFH 

in the surfactant phase and both spectra are similar suggesting that PFH does not exist 

in the aqueous FSN-100 solution, thus the surfactant does not mix with the PFH.  

 

Figure 4.13 19F High resolution-NMR data from the top phase of FSN-100 solution 

with 2 % PFH in D2O (blue) and the solution of 50 mM FSN-100 in D2O (red). 
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4.4.4. The surfactant mixture /hexane 

Figure 4.14 shows the 19F-NMR of the lower phase of the mixture with hexane and the 

mixture without oil. Both spectra are identical suggesting that there is also no mixing 

between the mixture and hexane, which has been confirmed by 1H-NMR.  

The spectrum of the top phase is only noise as the whole phase is hexane.  

 

Figure 4.14 19F High resolution-NMR data from the lower phase of the CTAB/FSN-

100 mixture solution with 2 % hexane in D2O (red) and the mixture solution of 50 

mM CTAB/FSN-100 in D2O (blue). 

 

 

 

 

 

 



Chapter Four                               The solution behaviour of the oil swollen micelles 

 118 

4.4.5. The surfactant mixture/PFH 

Figure 4.15 shows that spectra from the top phase of surfactant mixture with 2 % PFH 

(blue) and the mixture without oil (red). Spectra are identical except the small signal at 

117.18 ppm in the case of mixture with oil which does not exist in the oil spectrum 

indicating that this signal may be an impurity.  

 

Figure 4.15 19F High resolution-NMR data from the top phase of the CTAB/FSN-

100 mixture solution with 2 % PFH in D2O (blue) and the mixture solution of 50 

mM the CTAB/FSN-100 in D2O without PFH (red). 

4.5. PGSE- NMR spectroscopy  

The determination of the self-diffusion coefficient of each component in the 

surfactant/oil solutions is required in order to have a complete characterization. This 

part deals with the characterization at the molecular level of the aggregates in the 

surfactant/water/oil systems through pulsed gradient spin-eco NMR experiments. The 

technique has been used to measure the self-diffusion coefficients of CTAB (ionic 

surfactant) and FSN-100 (non-ionic surfactant) in the absence and presence of 

hydrocarbon oil (hexane) and fluorocarbon oil (PFH). All data were fitted to (single + 

single stretched), double (two components) fits using the CORE (COmponent 

REsolved PGSE NMR) method of data analysis. From the CORE outcomes, effective 
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spectra for all fitted components have been collected and used to calculate the self-

diffusion coefficients. Figure 4.16 shows the results of PGSE-NMR measurements for 

the single component of 50 mM CTAB and 50 mM FSN-100 aqueous solutions and 

three mixtures of both surfactants (0.2, 0.5 and 0.8 CTAB mole fraction) with and 

without a fixed amount of oil (2 % hexane or 2 % PFH). For each system, the diffusion 

coefficient of CTAB and FSN-100 were reported. The systems without oils have been 

included in Chapter Three.  

 

Figure 4.16 Self-diffusion coefficients of CTAB and FSN-100 and the mixtures 

with hexane and PFH as a function of CTAB mole fraction. αCTAB= 1 (open 

squares), αCTAB= 0 (open triangles), CTAB/hexane (open blue squares), 

FSN/hexane (open blue triangles), CTAB/PFH (open red squares), FSN/PFH (open 

red  triangles).  

For better understanding of these systems, it is useful to review the interaction of oils 

and single surfactant systems before discussing what happens when oil is added to a 

mixture containing hydrocarbon and fluorocarbon surfactants.  

4.5.1 CTAB with hexane or PFH solutions (∝CTAB =1) 

In figure 4.16, the self-diffusion coefficients are plotted vs CTAB mole fraction. From 

the diffusion coefficient values, it is obvious that adding hexane or PFH to the CTAB 

solution does not make any difference in the mobility of CTAB micelles and similar 

micelle sizes would be presented in all cases, which confirms that CTAB aqueous 

1	  

2	  

3	  

4	  

5	  

6	  

7	  

0	   0.1	   0.2	   0.3	   0.4	   0.5	   0.6	   0.7	   0.8	   0.9	   1	  

S
e

lf
-d

if
fu

s
io

n
 c

o
e

ff
ic

ie
n

t,
 D

s
x

1
0

11
/m

2
s

-1
  

Solution mole fraction, αCTAB 



Chapter Four                               The solution behaviour of the oil swollen micelles 

 120 

solution does not mix with both hexane and PFH consistent with results from 1H-NMR 

and 19F-NMR. This means that the mixing of hexane or PFH and CTAB in the core is 

not applicable since CTAB as a hydrophilic surfactant has a low solubility in hexane or 

PFH as discussed above (sections 4.2.1).  

4.5.2 FSN-100 with hexane or PFH solutions (∝CTAB =0) 

From figure 4.16 the self-diffusion coefficient of FSN-100 is slightly changed after 

adding hexane and PFH to the surfactant solution but these values are still within the 

experimental errors. This is evident that FSN-100 micelle diffusion does not change in 

the hexane case as well as the PFH case, indicating that FSN micelle size and mobility 

are similar to that in the pure surfactant micelles indicating the low efficiency of hexane 

to mix with the surfactant. It is also obvious from 1H-NMR and 19F-NMR that both oils 

are not at all soluble in the surfactant solution. This is not in agreement with the 

literature [1, 7] which suggests that there is a great solubilisation between hexane and 

FSN-100. However, these two studies involve different surfactant concentrations and 

different techniques used to investigate this solubility. 

4.5.3 Surfactant mixtures with oils 

Figure 4.16 shows that the changes in the self-diffusion coefficients of each surfactant 

are more pronounced when oils added to the mixture of 0.5 CTAB mole fractions. 

However, both surfactants have similar diffusion in all cases, which confirms the mixing 

behaviour between the two surfactants, which has been studied in Chapter Three. Both 

surfactant diffusions are becoming slightly higher once hexane is added to 0.2 and 0.8 

CTAB mole fractions although these changes are almost within the experimental 

errors. Adding PFH to the mixtures 0.2 and 0.8 has not been studied to measure the 

self-diffusion coefficients due to the limited time to do these measurements.  

The mixture of ∝=0.5 shows larger changes in the diffusion coefficient than at ∝=0.2, 

and ∝=0.8. Both oils apparently lower Ds for the surfactant/PFH more so than hexane. 

This is currently difficult to explain given the data at ∝=0.2 and ∝=0.8. However, the 

mixture of ∝= 0.5 has not been measured by other techniques, so these values are not 

comparable and further investigations including repeating this measurement is highly 

required. At this point, possible explanations are due to the micelle shape change. 

Table 4.1 includes the self-diffusion coefficients for the measured solutions. 
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CTAB/mole 
fraction  

                     Self-diffusion coefficient/ (10-11 ± 0.5)/ m2s-1 
                                                Hexane                             PFH 

 

CTAB FSN  CTAB FSN  CTAB FSN 
   0.0  5.00      5.30     3.86 
   0.2 4.40 4.45     4.65    4.60       -     - 
   0.5 4.72 4.78     3.45    3.50    1.88   1.89 
   0.8 4.54 4.58     5.55    5.60       -     - 
  1.0 5.05      5.28     5.24  

Table 4.1 Self-diffusion coefficients of CTAB, FSN-100 and mixtures of 0.2, 0.5, 

0.8 CTAB mole fractions in the presence of hexane or PFH at 25 °C.  

4.6. Small-angle neutron scattering (SANS)  

The complete characterization of the surfactant/oil systems requires the determination 

of size and shape of the aggregates in solutions. Such details can be obtained using 

SANS analysis techniques.  

All measurements were performed on the fixed-geometry, time of flight LOQ 

diffractometer (ISIS Spallation Neutron Source, Oxfordshire UK). Surfactant 

concentrations were 50 mM and 2 % of the oil (hexane or PFH) has been added to the 

single surfactant solutions as well as to the mixtures of 0.2, 0.6 and 0.8 CTAB mole 

fraction. Excess oil was removed before starting the measurements. All data were fitted 

to a model describing the globular micelle morphology.  

4.6.1 Surfactants with oils 

In this part of the discussion, the scattering of the single surfactant in the presence of 

the two different oils will be presented first and compared to that for the surfactant in 

the absence of oil, which have been discussed in Chapter Three. In all cases samples 

were prepared by adding of excess oil (2%) and removal of aqueous phase for study 

by SANS.  

4.6.1.1. CTAB /hexane solutions 

From figure 4.17, the scattering from the ionic CTAB surfactant micelles shows the 

form expected for a charged micelle with a reduction in the intensity at low Q due to the 

structure factor. In the curve from the presence of hexane and without hexane, there is 

no difference in the scattering of both cases suggesting that there is no much hexane 

goes into the core of CTAB micelles, and there is no change in the shape of micelles. 

Figure 4.18, describes the fit for CTAB with hexane solution and all parameters are 

listed in table 4.2, and compared to those for the pure CTAB aqueous solution.   
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Figure 4.17 Small angle neutron scattering of 50 mM CTAB aqueous solution 

(open square) in D2O and 50 mM CTAB aqueous solution in D2O saturated with 2 

% hexane (closed square).   

 

Figure 4.18 Small-angle neutron scattering of 50 mM CTAB aqueous solution in 

D2O saturated with 2% hexane (open square) with the fit (solid line).  
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CTAB / Parameter  

Without 
hexane 

With 
hexane 

 
Aggregation number, 𝑁!"". (±10) 
 

 
135 

 

 
- 

 
Volume fraction of solvent in the core, ∅sol ±  0.01  
 

 
0.02 

 
0.03 

 
“Core” radius, 𝑅!"#$ /Å 
 

 
25.7 

 

 
25.9  

 
Incoherent background scattering, B/cm-1 ±  0.01 
 

 
0.02 

 

 
0.03 

 
Ellipticity, 𝑋  
 

 
0.85 

 

 
0.65 

 
𝑉!  (!"#)/𝑉!"#$ 
 

 
0.9 

 

 
0.9 

Table 4.2 Parameters describing the fits of SANS data from CTAB solutions in 

D2O saturated with 2 % hexane and compared to the pure surfactant parameters, 

using a model that describes the micelle as a globular elliptical with some ionic 

character. 

From table 4.2, parameters of both solutions with hexane and without hexane are 

similar and this is in a good agreement with the shape of both curves in figure 4.17. 

The core radius is about the same with a little change in the ellipticity suggesting that 

either hexane does not exist in the core of the micelle and thus the aggregation number 

does not change, or a tiny amount of hexane exists in the core and in this case the 

aggregation number can not be calculated as this amount is unknown.  

4.6.1.2. FSN-100 /hexane solutions 

Figure 4.19 shows the scattering from the non-ionic surfactant FSN-100 micelles, there 

is now a noticeable “bump” around Q= 0.1  Å, (higher Q values) and no reduction in the 

intensity at low Q as the micelle is uncharged. Little difference is observable between 

the hexane and no-hexane samples. There is also no difference between the scattering 

curves at low Q values, whereas at higher Q values FSN-100 with hexane have lower 

intensity associated with different levels of incoherent background.   

Figure 4.20, describes the fit for FSN-100 with hexane solution and all parameters are 

listed in table 4.3 and compared to those for the pure FSN-100 aqueous solution.   
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Figure 4.19 Small-angle neutron scattering of 50 mM FSN-100 aqueous solution 

in D2O (open triangle), and the solution in D2O saturated with 2 % hexane (closed 

triangle).   

 

Figure 4.20 Small-angle neutron scattering of 50 mM FSN-100 aqueous solution 

in D2O saturated with 2 % hexane (open triangle) with the fit (solid line).  
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FSN-100 /Parameter 
 

Without 
hexane 

With 
hexane 

 
Aggregation number, 𝑁!"". (±10) 
 

 
50 

 

 
- 

 
Volume fraction of solvent in the core, ∅sol ±  0.01  
 

 
0.02 

 
0.02 

 
“Core” radius, 𝑅!"#$ /Å 
 

 
13.2 

 

 
13.3 

 
Incoherent background scattering B/cm-1 ±0.01 

 
0.05 

 
0.02 

 
Ellipticity, 𝑋  
 

 
1.5 

 

 
1.6 

 
𝑉!  (!"#)/𝑉!"#$ 
 

 
0.8 

 

 
0.8 

Table 4.3 Parameters describing the fits of SANS data from FSN-100 solutions in 

D2O saturated with 2 % hexane and compared to the pure surfactant parameters, 

using a model that describes the micelle as a globular elliptical with some ionic 

character. 

Again parameters are similar in both cases except the incoherent background 

scattering parameter as described in figure 4.19. The aggregation number in the FSN-

100/hexane solution is not expected to change from the pure surfactant. FSN-

100/hexane solution has been fitted as a solid object due to the small difference in the 

scattering length density between the head group and the tail in the FSN-100 micelles, 

and the module used considered the interface between the micelle and the solvent, so 

the shell thickness is excluded from the calculations. Thus, the module has been forced 

to calculate the radius based only on the core of the micelle to be comparable to the 

parameters of the pure surfactant estimated in Chapter Three. This situation is different 

from CTAB case since the core and shell in the spherical CTAB micelles is more 

pronounced.    

4.6.1.3. CTAB/PFH solutions  

This section shows the scattering curves obtained for CTAB and CTAB with PFH. From 

figure 4.21, it is clear that the intensity from CTAB aqueous solution is stronger than 

that with the PFH particularly at low Q values suggesting a slight difference in the 

concentrations due to either the experimental errors as both experiments have been 
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performed in different measurements or loosing some surfactant aqueous solution 

when removing the oil phase in the preparation of the samples for scattering. This is 

obvious also from the collected parameters in the table 4.4 as they are similar. The 

reduction in the intensity at low Q values, which characterizes the ionic surfactants, is 

clearly noticeable in both cases.  

Figure 4.22, describes the fit for CTAB solution in the presence of PFH and all 

collected parameters from the fit are listed in table 4.4, and compared to those for the 

CTAB aqueous solution.  

    

Figure 4.21 Small angle neutron scattering of 50 mM CTAB aqueous solution 

(open square) in D2O and 50 mM CTAB aqueous solution in D2O saturated with 2 

% Perfluorohexane (closed square).   
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Figure 4.22 Small-angle neutron scattering of 50 mM CTAB aqueous solution in 

D2O saturated with 2 % PFH (open square) with the fit (solid line).  

 
CTAB / Parameter 
 

 
Without      

PFH 

 
With PFH 

 
Aggregation number, 𝑁!"". (±10) 
 

 
135  

 

 
- 

 
Volume fraction of solvent in the core, ∅sol±  0.01  
 

 
0.02 

 
0.03 

 
“Core” radius, 𝑅!"#$ /Å  
 

 
25.7 

 

 
25.9 

 
Incoherent background scattering B/cm-1 ±0.01 
 

 
0.02 

 

 
0.02 

 
Ellipticity, 𝑋 
 

 
0.85 

 

 
0.75 

 
𝑉!  (!"#)/𝑉!"#$ 
 

 
0.9 

 

 
0.9 

Table 4.4 Parameters describing the fits of SANS data from CTAB solutions in 

D2O saturated with 2 % hexane and compared to the pure surfactant parameters, 

using a model that describes the micelle as a globular elliptical with some ionic 

character. 
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4.6.1.4. FSN-100/PFH solutions 

From figure 4.23, similar scattering from the FSN aqueous solution and the FSN with 

PFH at low Q values is introduced. The “bump” around Q= 0.1 Å is more pronounced in 

the surfactant/oil case suggesting a little more H2O floating in D2O solvent. There is no 

difference between the scattering curves at low Q values, whereas at higher Q values 

FSN-100 with oil solution has lower intensity. Figure 4.24, describes the fit for FSN with 

PFH solution and all parameters are listed in table 4.5 and compared to those for the 

FSN aqueous solution.   

Again, the model used to fit the FSN-100/PFH data has been forced to calculate the 

radius based only on the core of the micelle in order to compare these parameters to 

those from the pure surfactant estimated in Chapter Three. From table 4.5 parameters 

are about the same suggesting that PFH does not mix with surfactant, which agrees 

with other techniques used in this chapter.   

 

Figure 4.23 Small angle neutron scattering of 50 mM FSN-100 aqueous solution 

(open triangle) with fit (solid line), 50 mM FSN-100 in D2O saturated with 2 % 

perfluorohexane (closed triangle).  
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Figure 4.24 Small-angle neutron scattering of 50 mM FSN-100 aqueous solution 

in D2O saturated with 2 % PFH (open triangle) with the fit (solid line). 

 
FSN-100 / Parameter 
 

 
Without PFH 

 
With PFH 

 
Aggregation number, 𝑁!"". (±10) 
 

 
50 

 
- 

 
Volume fraction of solvent in the core, ∅sol ±  0.01  
 

 
0.02 

 
0.01 

 
“Core” radius, 𝑅!"#$ /Å 
 

 
13.2 

 
13.4 

 
Incoherent background scattering B/cm-1 ±0.01 
 

 
0.05 

 
0.03 

 
Ellipticity,  𝑋 
 

 
1.5 

 
1.6 

 
𝑉!  (!"#)/𝑉!"#$ 
 

 
0.8 

 
0.8 

Table 4.5 Parameters describing the fits of SANS data from FSN-100 solutions in 

D2O saturated with 2 % hexane and compared to the pure surfactant parameters, 

using a model that describes the micelle as a globular elliptical with some ionic 

character. 
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4.6.2. Surfactant mixture /oil solutions  

The neutron scattering measurements have been performed for three different 

surfactant mixtures (0.2, 0.6, and 0.8 CTAB mole fraction) in the presence of hexane or 

PFH. All solutions are at total concentration of 50 mM and 2 % of hexane or PFH was 

added to the mixture and stirred for a while before measuring the saturated solution. In 

this section data will be discussed separately, once with the hexane and then with the 

PFH.  

4.6.2.1. Mixture/hexane solutions 

As discussed in Chapter Three for the mixtures without oils, the scattering intensity in 

the figure 4.25, decreases at low Q as the CTAB mole fraction increases, with 

shoulders around Q=0.06 Å. However, the “bump” at high Q values is more 

pronounced at the mixture of 0.2 and that is similar to what has been noticed in the 

FSN-100/hexane scattering, which suggests that this bump is more characterized by 

the FSN-100 surfactant. 

 

Figure 4.25 Small angle neutron scattering as a function of CTAB mole fraction, 

(open square) αCTAB= 1, (open triangle) αCTAB= 0, (closed triangle) αCTAB= 0.2, 

(open circle)	  αCTAB= 0.6, (star)	  αCTAB= 0.8, and 2 % Hexane. Fits are included as 

solid line. Data are offset by a factor of 3 for clarity.  
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Table 4.6, describes the fit of the mixtures with hexane parameters, and the only 

parameter has changed mostly is the core radius which decreases with increasing the 

CTAB mole fraction. In this table parameters from mixture/hexane solutions have been 

compared to those from the mixtures without hexane (values between brackets) and it 

is obvious that both are similar suggesting that mixtures do not mix with hexane as 

same as the pure surfactant solutions. 

 
Mixtures with hexane, (CTAB mole fraction) 
/ parameters 

 
0.2 

 
0.6 

 
0.8 

 
Volume fraction of solvent in the core, ∅sol 
±  0.01 
 

 
 

0.02 

 
 

0.05 

 
 

0.03 

 
“Core” radius, 𝑅!"#$ /Å 

 
27.9 

(27.8) 
 

 
26.5 

(26.2) 
 

 
21.8 

(21.6) 
 

Incoherent background scattering B/cm-1 
±0.01 
 

 
0.02 
 

 
0.03 

 
0.02 

 
 
Ellipticity, 𝑋 
 
 

 
1.2 
(1.1) 

 
1.1 

(1.0) 

 
1.2 

(1.1) 

 
𝑉!  (!"#)/𝑉!"#$ 
 

 
0.8 

(0.9) 

 
0.8 

(0.9) 

 
0.8 

(1.0) 

Table 4.6 Parameters describing the fits of SANS data from the mixtures with 

hexane of 0.2, 0.6, 0.8 CTAB mole fraction solutions using a model that describes 

the micelle as a globular elliptical with some ionic character. Parameters 

between brackets are for the mixtures without oil.  
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4.6.2.2. Mixture/PFH solutions 

From figure 4.26, similar pattern to the hexane case in the scattering of the mixtures 

with a noticeable higher intensity at high Q in the mixture of 0.8 CTAB mole fractions. It 

is also similar to the mixtures without oil; mixtures are strongly characterized by the 

CTAB component as micelles in the emulsions show similar structure with increasing 

CTAB concentration.  

 

Figure 4.26 Small angle neutron scattering as a function of CTAB mole fraction, 

(open square) αCTAB= 1, (open triangle) αCTAB= 0, (closed triangle) αCTAB= 0.2, 

(open circle)	   αCTAB= 0.6, (star)	   αCTAB= 0.8, and 2 % perfluorohexane. Fits are 

included as solid line. Data are offset by a factor of 3 for clarity. 
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Mixtures with PFH (CTAB mole fraction)/ 
Parameters 

 
0.2 

 
0.6 

 
0.8 

 
Volume fraction of solvent in the core, ∅sol 
±  0.01   
 

 
0.02 

 
0.03 

 
0.03 

 
“Core” radius, 𝑅!"#$ /Å 

27.9 
(27.8) 

 

26.6 
(26.2) 

21.9 
(21.6) 

Incoherent background scattering B/cm-1 
±0.01 
 

0.04 0.08 
 

0.04 

Ellipticity, 𝑋 
 
 

1.2 
(1.1) 

1.0 
(1.0) 

1.2 
(1.1) 

 
Vs(dry)/VCore 

 

 
0.9 

 
0.8 

 
0.9 

Table 4.7 Parameters describing the fits of SANS data from the mixtures with 

PFH of 0.2, 0.6, 0.8 CTAB mole fraction solutions using a model that describes 

the micelle as a globular elliptical with some ionic character. Parameters 

between brackets are for the mixtures without oil.  

From table 4.7, parameters are similar to those from mixtures without oils (between 

brackets). Similar shapes of micelles are introduced and the core radius decreases 

with increasing the CTAB mole fraction consistent to the pattern from mixtures with no 

oil.  

4.7. Conclusions  

The cationic CTAB and non-ionic FSN-100 surfactants and their phase behaviour in the 

presence of hydrocarbon oil (hexane) and fluorocarbon oil (PFH) have been studied in 

this chapter by 1H-NMR, 19F-NMR, PGSE-NMR and SANS. The data show that both 

surfactants (CTAB & FSN-100) mix with neither hexane nor PFH and that has been 

shown consistently by all used techniques. This conclusion does not agree with the 

data in a very recent literature publication [7], which suggested that there is a great 

solubilisation between hexane and FSN-100. However, different surfactant 

concentrations and techniques have been used in the reference and that may suggest 

that the amount of oil used in the project here is not enough to be detected. This 

approach has been confirmed from all techniques used and all data are consistent 

indicating that at the surfactant concentration of 50 mM and 2 % of oil, there is no 

solubilisation of both oils with both surfactants.   
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From the mixing surfactant systems, which have been studied in Chapter Three, it was 

concluded that a different micellization process along a range of compositions has 

been investigated, and from SANS data the mixtures are strongly characterised by the 

CTAB component, and micelles have similar structure once different amounts of CTAB 

was added to the solution. The same behaviour is noticeable in the surfactant/oil 

solutions for the surfactant mixtures and in the presence of oil; mixed micelles are not 

able to accommodate hexane or PFH. This is noticeable from the similar micelle 

shapes of both mixtures with and without oils. 
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5.1. Introduction  

The synthesis of templated porous materials can be carried out using surfactant 

molecules dispersed in a solvent which are aggregated to form micelles and direct the 

pore structure when combined with the inorganic precursor (e.g. Si (OEt)4). This can 

occur by one of the two methods described previously in Chapter One, A common 

example is when surfactant micelles form micellar rods and then aggregate together to 

form a hexagonal array in solution as an initial step in a liquid crystal templating 

mechanism [1], whereas in emulsion templating, oils are added to swell the micelles 

and provide an environment for the precursor molecules to condense around the 

template [2]. This work utilises both mechanisms as a hybrid, in which a swollen liquid 

crystalline template is used, or at least that was the hypothesis we explored.  

In general, the shape and size of a micelle are controlled by the molecular geometry of 

the surfactant molecules and the solution conditions such as surfactant concentration, 

pH and temperature [3]. Various surfactants with different properties are used to 

introduce different porosity into materials [4-6]. For example, increasing the length of 

the alkyl chain in the surfactant can be used to increase pore diameter. In addition, the 

use of fluorinated surfactants can be used as templates to produce various 

mesostructures [7]. 

This part of the thesis will report the synthesis of hierarchical porous materials using 

mixed surfactant micelles (CTAB & FSN-100) based on their solution phase behaviour, 

which is covered in Chapters Three and Four. In this work, different amounts of oil 

(PFH) have been added to the mixed micelle surfactant solutions to examine whether 

structural differences in the synthesized materials in terms of their porosity and 

morphology may be induced. The volume percentage (V %) of PFH in the solution 

starts from 0 %, to 33 %. After calcination, the organic template has been removed and 

then different techniques have been used to characterize these materials including 

scanning electron microscopy (SEM), transmission electron microscopy (TEM), 

porosimetry and X-ray diffraction (XRD).   

This chapter is laid out as follows; the scoping experiments are first presented, to 

outline the strategy taken in selecting further systems to explore.   
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5.2. System screening experiments 

Two surfactants and two oils have been examined here. The hydrocarbon surfactant 

CTAB and Zonyl FSN-100, where the supplier literature suggests a structure of 

C8F17C2H4(OC2H4)9OH or FSO-100, (CF3(CF2)4-(EO)10) as fluorocarbon surfactants 

have been used. Hexane has been used as hydrocarbon oil combined with the 

fluorocarbon oil perfluorohexane (PFH). Samples here were characterized by, TEM 

and XRD following calcination to remove the organic template.  

5.2.1. Using CTAB with Zonyl FSO-100 (FSO sample) 

The surfactant FSO-100 has been used with the hydrocarbon surfactant CTAB with 

both oils hexane and PFH as a template. The characterization was based on TEM and 

X-ray diffraction. For an ordered hexagonal structure, three distinguished peaks are 

expected in the XRD pattern. For this sample no peaks were observed, (the curve is 

not included) suggesting the formation of disordered structure in this attempt. TEM 

image in figure (A1) in the Appendix gives further evidence of disordered structure that 

might describe foam structure. Further, it was not clear which component was the 

responsible of the disordered structure. However, a decision of not using the surfactant 

of FSO-100 was taken and another fluorocarbon surfactant was sourced. 

5.2.2. Using FSN-100 surfactant (FSN sample)   

FSN sample has been synthesized using only the fluorocarbon surfactant FSN-100. 

The TEM image for the FSN sample (figure A2 in the Appendix) shows obviously that 

the sample has neither clear morphology, nor disordered system. This experiment has 

been carried out to investigate the morphology of the material when the template is 

only FSN-100. Thus, the FSN-100 does not support formation of nanoparticles on its 

own and adding another surfactant is highly needed.  

5.2.3. Using FSN-100 surfactant and PFH (FSN/PFH sample) 

The template in this case is the fluorocarbon surfactant FSN-100 aqueous solution and 

PFH as an oil phase. Again, there is no obvious structure after calcination and 

removing the template as shown in the TEM image for FSN/PFH sample (figure A3 in 

the Appendix). This experiment was conceived to investigate the type of pores resulted 

from the template including the fluorocarbon surfactant and the oil but without using the 

hydrocarbon surfactant of CTAB.                          



Chapter Five             The Applications of Mixed Surfactant Systems to Template    
Hierarchical Nanoporous Materials 

 139 

5.2.4. Using the template of FSN-100/ CTAB/PFH/hexane  

This experiment represents the two surfactants and the two oils in the template, 

(CTAB, FSN-100) (PFH, hexane). Figure 5.1 shows TEM images of the sample at two 

different scales. Some regions describe ordered pores (figure 5.1 (a)), whereas foam 

structure (figure 5.1 (b)) is observed in some areas of the sample after calcination. It 

has been suggested that hexane expands the pores and makes foams, and higher 

surface area material (920 m2/g) was produced. Excluding hexane from the template 

was the next step to see whether the foam structure was from hexane or not.   

            

(a)                                       (b)   

 Figure 5.1 TEM images (a, b) of the sample FSN/ CTAB/PFH/ hexane. 

5.2.5. Using the template of FSN-100/CTAB/PFH 

Figure 5.2 shows TEM image of the calcined material using the template of CTAB/ 

FSN-100/PFH and explains that micelles in the template are well organised to produce 

such pores. This image is the representative for the material as the material has stable 

solid structure. The material also possesses high surface area and well-ordered pores 

using various characterizations, which are going to be more focused in next sections. 

                              

                        Figure 5.2 TEM image of the sample FSN/ CTAB/PFH. 
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Thus, from the last attempt, using the two surfactants (CTAB/FSN-100) and the oil PFH 

to template the materials has been considered and this template is taken further.  

5.3. The synthesis of the comparator MCM-41  

The last experiment to test the surfactant templating was the synthesis of MCM-41 as a 

comparator for the targeted materials. The experiment was based on the MCM-41 

synthesis pathway presented previously [8].  

The adsorption and desorption isotherms of nitrogen were performed at 77 K for MCM-

41. Figure 5.3 shows the N2 isotherm and pore size distribution of the MCM-41. The 

isotherm is typically a type IV isotherm with gas adsorbed amount uptake between ~0.2 

and 0.4. The amount of adsorbed nitrogen increased gradually with an increase in 

relative pressure. The specific surface area according to the Brunauer, Emmett and 

Teller model (BET) and the average pore diameter according to the Barrett, Joyner and 

Halenda method (BJH) are 1020.210 m²/g and 3.01 nm respectively, which are in a 

good agreement to the literature values [8].  

 

Figure 5.3 N2 adsorption (closed square)-desorption (open square) isotherms 

and BJH pore size distribution (figure inside) of MCM-41 comparator.  
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Scanning electron microscopy has also been performed for MCM-41 to determine the 

particle size and morphology. It is clear that most of the particles are spherical in form 

and the particle size ranges from 400 to 1000 nm (figure 5.4).  

                                

Figure 5.4 Scanning electron microscopy image of MCM-14 comparator. 

From these results, the MCM-41 synthesis pathway [8] was adjusted to include the 

fluorocarbon surfactant FSN-100 and perfluorohexane as an oil phase in order to 

create an additional type of pores in a hierarchical material pore structure.  
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5.4. CTAB/FSN/PFH based systems 

Due to the previous findings, the system of two surfactants FSN-100 and CTAB with 

the fluorocarbon oil (PFH) has been adopted to template different porous materials. 

Different amounts of oil in the surfactant mixture were used to investigate how that 

affects the porosity system of the synthesized materials.  

 Six samples have been prepared due to the different oil amounts in the template, 

starting from no oil sample 0 % and then 1 %, 11 %, 20 %, 27 % and 33 % (oil V/ V%). 

All samples have been characterized and studied individually to discuss the porosity in 

terms of the material surface area and pore size distribution as well as the morphology 

of ordered structures. Table 5.1 includes sample details, which represent the template 

components.  

 

 

 

                    

 

 

 

 

                    Table 5.1 Sample details and abbreviations. 

 

 

 

 

 

 

 

 

Sample (V%) 

 

Sample details 
 

0 % CTAB/FSN-100/H2O 

 

1 % CTAB/FSN-100/H2O/ (0.4 ml) PFH 
 

11 % CTAB/FSN-100/H2O/ (5 ml) PFH 

 

20 % CTAB/FSN-100/H2O/  (10 ml) PFH 
 

27 % CTAB/FSN-100/H2O/ (15 ml) PFH 

 

33 % CTAB/FSN-100/H2O/ (20 ml) PFH 
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5.5. Scanning electron microscopy (SEM) 

Scanning electron microscopy has been used to have an idea about the particle size, 

particle morphology and the particle size distribution of the synthesized materials. The 

particle size for all measured samples are in the same range and only three samples 

will be shown in this section as examples.   

Figures 5.5 shows SEM images for particles prepared using 0 %, 20 % and 33 % 

(PFH) after calcination. It is clear that most particles are spherical with different 

diameters but some agglomerates are associated with the 33 % sample. Hollow silica 

spheres are also visible in 20 % sample (figure 5.5 (b)) and more irregular 

arrangements like sponge are connected to 33 % sample indicating different material 

pore morphology varying with oil content (figure 5.5 (c)). This confirms that oil amount 

has an influence on particle morphology.   

     

                            (a) 0 % sample                                  (b) 20 % sample 

 

 

                                  

                                                       (c) 33 % sample 

Figure 5.5 SEM images of the samples, 0 % (a), 20 % (b) and 33 % (c).   
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5.6. Transmission electron microscopy (TEM) 

Pore arrangements have been evaluated using transmission electron microscopy 

(TEM), which shows that the typical hexagonal structure and channels of mesoporous 

materials are retained in most cases.  

All TEM images of synthesized materials will be shown in this section, as different pore 

arrangements are visible over the range of template compositions. Long order and 

well-defined structure have been achieved in most samples with few differences in pore 

sizes. Most interesting TEM images have been collected from the 1 % sample (figure 

5.6 (b & b’), and clearly that surfactant micelles in the template are well organised to 

produce such pores with a high organised morphology. Further, once oil is added to the 

template pores become more regular and the surfactant mixtures can make more 

regular micelles to make such pores at this specific phase composition. Similar 

regularity continues over the range of compositions in the rest of samples (see images 

c’, d, f and f’ in figure 5.6). However, two types of pores are produced in 1 % and 33 % 

samples, which may suggest the bimodal pore size distribution as small and large 

mesoporous material or as meso-macro pores which is going to be tested by N2 

isotherm measurements (see b & f in figure 5.6).   
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                                             (a) 0 % sample 

            

                                 (b) 1 % sample                                     (b’) 1 % sample 

      

                         (c) 11 % sample                                (c’) (scale 0.2 µm), 11 % sample  

0.2	  µm	   
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                    (d) 20 % sample                                     (e), 27 % sample                                                 

                                                                        

                 (f) 33 % sample                                           (f’) 33 % sample 

Figure 5.6 TEM images of the samples, 0 % (a), 1 % (b) & (b’), 11 % (c) & (c’), 20 % 

(d), 27 % (e) and 33 % (f) & (f’).   

5.7. Porosimetry characterization 

Gas adsorption is one of the most important measurements to characterize 

nanoporous materials. Nitrogen adsorption-desorption isotherms were used to estimate 

the specific surface areas using Brunauer, Emmett and Teller method (BET), and the 

use of nitrogen adsorption to analyse the pore size distributions using the Barrett, 

Joyner and Halenda (BJH) method, which is based on the Kelvin equation [9, 10]. 

5.7.1. N2 adsorption- desorption isotherms 

Nitrogen adsorption-desorption isotherms have been obtained for each sample to 

investigate the porosity system of the materials. All samples were outgassed before 

measurements were performed. The gas adsorption starts to form a monolayer on the 

surface and then multilayer and then the capillary condensation occur. This procedure 

0.2	  µm	   
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is strongly related to the porosity type as micropores filling occurs at low pressure at 

(P/P° <10-4), whereas high pressure is required to fill mesopores and start the capillary 

condensation and macropores (> 50 nm) filling occurs only at very high P/P°. Thus, the 

shape of the plot of adsorbed amount of N2 versus the relative pressure indicates the 

porosity system.  

In addition, based on N2 isotherm types presented previously in the introduction 

(Chapter One), different types of N2 isotherms with an observed hysteresis loop have 

been collected from the six materials (figures 5.7 - 5.10). The observations confirm the 

gas capillary condensation in the pores from 2 and 50 nm (mesopores) [11]. Each 

isotherm will be discussed individually in the next sections.  
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5.7.1.1. N2 isotherm of 0 % sample 

Figure 5.7 shows a typical N2 isotherm of the 0.0 % sample. The adsorption branch 

coincides with the desorption branch until about P/P° = 0.9, and then the isotherm is 

slightly broadened to provide a hysteresis loop which appears in the multilayer range of 

isotherms. This type of isotherm suggests type II isotherm and it is closer to the type V 

hysteresis loop, suggesting mesopore filing and capillary condensation presenting a 

different type of porosity compared to the other samples. 

 

Figure 5.7 N2 adsorption (open square)-desorption (closed square) isotherms for 

0 % mesoporous sample.  
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5.7.1.2. N2 isotherm of 1 % sample 

A different type of isotherm is observed from 1 % sample suggesting a different type of 

porosity from the previously discussed sample. Figure 5.8 shows type IV isotherm, 

which indicates the capillary condensation in meso and macropores. In the isotherm, 

the closure of P/P° is at about 0.4 which therefore corresponds to the lower limit of 

capillary condensation hysteresis.  

 

Figure 5.8 N2 adsorption (open square)-desorption (closed square) isotherms for 

1 % mesoporous sample.   
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5.7.1.3. N2 isotherm of 11 %, 20 % and 27 % samples 

Similar shape of isotherms has been collected from samples 11 %, 20 % and 27 %. 

The adsorption branch in these samples coincides with the desorption branch until 

about 0.8 and then the isotherm is broad. Type V isotherm is presented from these 

three materials suggesting a different pore order and regularity. Figure 5.9 shows the 

isotherm of 11 % samples as an example for the three materials. 

 

Figure 5.9 N2 adsorption (open square)-desorption (closed square) isotherms for 

11 % mesoporous sample.  
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5.7.1.4. N2 isotherm for 33 % sample 

Again due to specific features, the two templates of 1 % and 33 %, produced materials 

after calcination that exhibit similar pore structure and regularity and are quite different 

from all the other samples. Figure 5.10 shows N2 isotherm from the 33 % sample, and 

the adsorbed amount of N2 increased gradually with increasing the relative pressure by 

multilayer adsorption. The uptake of the adsorbed amount was also around the relative 

pressure of 0.4, which provides a similar hysteresis to that one in 1 % sample.  

 

Figure 5.10 N2 adsorption (open square)-desorption (closed square) isotherms 

for 33 % mesoporous sample. 

Considering the data for the samples overall, 1 % and 33 % show similar adsorption 

behaviour and porosity system and they are different from other materials as will be 

obvious in all measured parameters over the next sections. 
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5.7.2. BET specific surface area  

The specific surface area according to the BET equation has been estimated for all 

synthesized materials using the N2 isotherms. Figure 5.11 shows a comparison of the 

BET specific surface areas of all samples. Lower surface area is related to the 0 % 

sample (577 m2/g) and once oil is added to the template, specific surface area of 

materials has increased.  

 

Figure 5.11 BET surface area vs oil volume in the template of samples 0 %, 1 %, 

11 %, 20 %, 27 % and 33 %.   

It is also clear that the highest surface area is for 1 % and 33 % samples (969 and 

1090 cm2/g respectively) (see table 5.2). Further, the three samples in the middle (11 

%, 20 % and 27 %) of the oil phase structured have almost the same surface area 

value suggesting that increasing the oil volume over this range, it does not affect the 

surface area, the isotherm shape or the pore structure at these three samples. These 

differences between the samples (1 %, 33 %) and the rest have been confirmed by the 

isotherm and TEM images as well as by X-ray diffraction as will be shown in the next 

sections.  
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5.7.3. Pore size determination  

The average pore diameter has also been estimated from desorption isotherms using 

the BJH method. From table 5.2, it is observed that the pore diameter increases slightly 

from 2.5 nm to 3.3 nm when only 1 % of oil has been added to the template and for the 

rest of samples pore diameters are in the same range.  

Oil volume in the 
template/ V% 

Surface area/ m²/g 

(±10) 

Pore diameter/ 

nm (± 0.1) 

Pore volume/ 

cm3/g (± 0.1) 

 

0 

 

577 

 

 

2.49 

 

2.32 

 
1 

 
969 

 

 
3.27 

 
2.24 

 

11 

 

702 
 

 

3.40 

 

2.34 

 

20 

 

716 
 

 

3.39 

 

2.33 

 

27 

 

707 

 

 

3.42 

 

2.38 

 

33 

 

1090 

 

 

2.78 

 

1.12 

Table 5.2 N2 porosimetry parameters for synthesized materials obtained at 

different oil volume ratios.   

From table 5.2, comparing samples templated with oil, samples, which have high 

surface area have also the lowest pore diameter and pore volume and they are 

different from the rest of samples. Since, all materials have been prepared in the same 

conditions, and the difference is only in the quantity of the oil added to the template, the 

variety of porosity systems is strongly related to the amount of oil raised in each 

experiment. 

The values of pore diameter and pore volume for all synthesized materials and how 

that relates to the oil content in templates are shown in figure 5.12. Values are not in a 

linear relationship, but they explain the differences in the intermediate materials from 

the samples 1 % and 33 %.    
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Figure 5.12 Pore diameter (closed square) and pore volume (open square) vs oil 

content in the template of samples 0 %, 1 %, 11 %, 20 %, 27 % and 33 %.   

From figure 5.12, the lowest pore diameter and pore volume were found for 1 % and 33 

% samples, whereas 11 %, 20 % and 27 % have similar values to each other 

consistent with the BET surface area differences.  
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In terms of the BJH pore size distribution of each sample, different distributions have 

been collected from the six materials. Figure 5.13 shows the BJH pore size distribution 

of the sample synthesized from the template without oil (0 % sample). The figure 

shows one peak as one type of pores is presented in this sample.  

 

Figure 5.13 BJH pore size distribution of 0 % sample.  
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Further, the quantity of oil has similar effect on the pore size distribution in samples 11 

%, 20 % and 27 %, one type of pores are presented in these samples. Again, this is 

consistent with their TEM images, surface areas and pore diameters. Figure 5.14 

represents the pore size distribution of 18.5 % sample as an example, which is similar 

to that in the other two samples (11 %, 27 %) (Figures are not shown to avoid 

repeating).  

 

Figure 5.14 BJH pore size distribution of 20 % sample. 
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However, the BJH pore diameter distribution of 1 % and 33 % samples exhibit two well-

defined maxima for the material suggesting formation of bimodal mesoporous silica 

(figures 5.15 & 5.16).  

 

Figure 5.15 BJH pore size distribution of 1 % sample.  

 

Figure 5.16 BJH pore size distribution of 33 % sample. 
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To conclude the porosimetry findings, samples 1 % and 33 % have similar isotherms, 

and higher specific surface areas comparing to other materials. This is consistent with 

the collected TEM images, which described more homogeneous and ordered porosity 

system in both cases. Samples of 11 %, 20 % and 27 % showed similar values of 

surface area, pore volume and pore diameter. 

5.8. X-ray Diffraction (XRD)  

XRD patterns for all synthesized materials are compared in figure 5.17. Interestingly, 

once oil is added to the mixed surfactant template the intensity of the first peak 

becomes stronger in XRD curves, so using the template without oil does not indicate a 

strong long structural order from the XRD curve of the 0 % sample (black line in figure 

5.17). The figure shows that 33 % and 1 % have well-ordered structures and the oil 

volume in these samples suggests a favourable phase composition for the formation of 

the target structure. This was indicated by the three obvious Bragg peaks at low angle 

(2𝜽) between 2-7°. These three distinct reflections suggest the lattice parameters of 

100, 110 and 200, which are strongly related to the hexagonal structure of pore 

morphology.  

 

Figure 5.17  XRD patterns of samples 0 % (black), 1 % (red), 11 % (brown), 20 % 

(green), 27 % (blue) and 33 % (purple).  
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From XRD curves,  𝑑-spacing or the Layer spacing and pore spacing of the first 

reflection have been calculated using Braggs Law, and the values of diffraction angle  𝜽 

have been estimated from each curve (table 5.3). The table shows that the samples 11 

%, 20 % and 27 % have 𝑑-spacing and pore spacing values in the same range as each 

other. However, 1 % and 33 % samples, which have more regular pores based on their 

XRD curves, have also lower pore parameters.  

Oil volume in the 
template/V% 

2°ѳ,  𝑑 spacing, nm 

(±0.01) 

Pore spacing, a/nm 

(± 0.02) 

 

0 

 

2.36, 3.73 

 

4.31 

 
1 

 
2.66, 3.32 

 
3.84 

 

11 

 

1.95, 4.52 

 

5.22 

 
20 

 
2.01, 4.40 

 
5.09 

 

27 

 

1.92, 4.58 

 

5.29 

 
33 

 
2.34, 3.77 

 
4.36 

Table 5.3 Pore structure parameters from XRD measurements. 

To summarize XRD findings, the well-ordered structures have been observed in the 

samples of 1 % and 33 % due to the obvious peaks collected from such hexagonal 

structures. The peak intensity of 0 % sample is the lowest comparing to other samples 

templated with the oil whereas the intensity of the first peak has increased with 

increasing the amount of oil in the template. This suggests the importance of oil in the 

template to possess well-ordered porosity system with regular morphology.  

5.9. Conclusions  

To conclude, the concept of fabricating hierarchically bimodal mesopore structures 

using surfactant mixtures templating approach was investigated in this chapter. To 

summarize the observations of measured techniques, long range ordering and porosity 

were observed in most prepared samples particularly at the 1 % and 33 % templates. 

Both of these materials possess bimodal pore diameter distribution, high surface areas 

resulted from N2 porosimetry, and more regular pore systems based on XRD curve 

patterns. That was also consistent with the collected TEM images from the two 

samples since, the pores with different sizes and well-organized porosity with a higher 

degree of regularity can be observed from their images.  
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Further, these data indicate the importance of the role of PFH in surfactant mixture 

systems to template nanoporous silica. This was the hypothesis needed to explore 

since the PFH was added to make swollen liquid crystalline template. Once the oil is 

added to the template, the resulting materials had higher BET surface areas and more 

regular pores. All intermediate oil contents (11 %, 20 % and 27 %) have similar 

conclusion in each characterization, suggesting similar pore structures are connected 

to these samples. However, the samples 1 % and 33 % possess high pore order 

regularity and high surface areas comparing to the rest of the samples.  

Both surfactants did not show a clear mixing behaviour with the oil PFH as studied in 

Chapter Four. The shape and size of the mixed micelles were presented in the 

presence of PFH are similar to those in the case of absence of oil suggesting that there 

is no evidence of the solubility of PFH in the mixed micelles too with exception of the 

mixture of 0.5 CTAB mole fraction which possessed different behaviour with the oil in 

the PGSE data analysis. Thus, the swollen micelles behaviour is not able to explain the 

difference in the structure of the templated materials once PFH is added to the 

template. However, since materials with more regular porosity systems and higher 

surface areas were associated to the use of surfactant/oil template, the system after 

adding the TEOS needs to be analysed. This will help to investigate how adding TEOS 

to the templating makes such changes associated to the amount of oil. In addition, the 

variety of the porosity systems within the samples formed in oil is not yet justified and 

that may require the synthesis of more materials to expand the range of surfactant/oil 

compositions. That also helps to understand the advantage of the template in 1 % and 

33 % samples as they have higher surface areas and more regular pores than other 

materials.  

Nonetheless, all synthesized porous materials obtained can be used further to form 

catalysts, and in the next chapter grafting approaches will be considered to obtain this 

in a suggesting future work of the application of these materials. ` 
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6.1. Introduction  

Catalysis - an essential application for nanoporous materials - has been studied to 

describe their efficiency. This chapter includes some further studies and suggestions of 

future work for the materials synthesized in Chapter Five, as well as a preliminary 

assessment to these materials as catalysts.  

Having synthesized a series of mesoporous materials, the next step was to assess 

their suitability as catalytic supports. The first reaction was to functionalize their surface 

structure by grafting of alkoxysilanes followed by an oxidation reaction to attach organic 

functional groups to the surface. Active sites are created at the surface of the catalyst 

for use in heterogeneous catalysis reactions. This method also generates a new class 

of ordered hierarchical sulfonic acid functionalized silicas without the risk of pore 

blockage [1]. Grafting reactions and their subsequent oxidations have been evaluated 

by the thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) 

techniques. Further, the sulfonic acid functionalized silicas (grafted materials) have 

been used to enhance the rate of esterification of palmitic acid (C16FFA) with methanol. 

The conversion rate and the catalytic reactivity have been characterized by gas 

chromatography (GC). Overall, this chapter will focus on the efficiency of the 

synthesized nanoporous materials as catalysts. Four materials (0%, 1%, 11% and 

33%) synthesized in Chapter Five were used as catalyst support here and studied in 

this application part of the thesis to see whether the difference in the amount of the oil 

PFH (perfluorohexane) has affected the ability of the catalyst.  

6.2. Grafting materials  

Sulfonic acid functionalization was performed via post- synthesis grafting reaction on 

four samples of the nanoporous materials. Grafting of mercaptopropyl thiol groups has 

been performed on the synthesized materials, and their subsequent oxidation to 

produce tethered sulfonic acid centres (RSO3H) attached to the surface [2] (figure 6.1). 

Grafting reactions were evaluated by TGA and XPS techniques. Each technique 

provides the quantity of sulfonic acid loading, thermal stability and calculated the sulfur 

content (S content) attached to the surface of the material.  
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Figure 6.1 A schematic representation of the sulfonic acid functionalization 

reaction.  

6.2.1. Thermal gravimetric analysis (TGA) 

TGA experiments have been used to test the thermal stability of the grafted materials 

as well as to calculate the S content across the series. Figure 6.2 shows TGA curves 

for  [0 %, 1 %, 11 % and 33 %] grafted materials. It is obvious that the weight loss 

percentages increased with increasing the oil content (PFH) in the mesoporous 

material series. The first loss at temperatures less than 200 oC (not shown) 

characterises the desorption of water from the pores or material surfaces [3]. Water 

loss has been excluded from figure 6.2, to clarify the other loss, which is more 

important in order to calculate the decomposition of the organic components.  

 

Figure 6.2 The thermal analysis curves (TGA) of (a) 0 % (black line), (b) 1 % (red 

line), (c) 11 % (green line) and (d) 33 % (orange line) sulfonic acid functionalized 

mesoporous silicas. 
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The loss above 200 oC is due to organic component decompositions including 

surfactant decomposition at 200-250 oC, organosulfonic acid decomposition at about 

460 oC and propylthiol decomposition at 350 oC [4, 5].  

From figure 6.2, it is clear that there is no significant weight loss observed after 550 oC. 

Comparing to a previous study [6] which has a similar TGA curve shape, it showed that 

weight loss occurring between 350 oC and 550 oC can be referred to the removal of 

tethered mercaptopropyl groups which decomposed by 350 oC, and propylsulfonic acid 

moieties which are stable until 450 oC and then decompose to give as follows, C3H6, 

SO2 and H2O. Therefore, the weight loss in figure 6.2 between the temperatures 350 oC 

and 550 oC was used to determine the experimental S content per cent values in all 

samples (table 6.1).  

 
Sample 

 
Weight loss/% 

350-550 oC 

Estimated S 
content/wt %  

(±  𝟎.𝟏) 

350-550 oC 

 
0 % 

 
0.308 

 

 
0.82 

 

1 % 

 

0.203 
 

 

0.49 

 

11 % 

 

0.223 
 

 

0.61 

 

33 % 

 

0.242 

 
 

 

0.76 

Table 6.1 the weight percentages of sulfur content of functionalized materials 

evaluated by TGA technique. 

Table 6.1 shows the weight loss percentages of the particles over this temperature 

range and the calculated sulfur content percentages, which were obtained from the 

decomposition of each grafted material. With exception of the 0 % sample (no oil in the 

template), the weight percent of sulfur estimated from TGA increases with increasing 

the volume of oil in the surfactant template used to synthesize the nanoporous support 

material. 

The weight loss between 350 and 550 oC was calculated from the TGA data, and was 

assumed to be due to C3H6, SO2 and H2O in the ratio of 1:1:1 as described in previous 

calculations [6]. This gives a theoretical weight per cent of S content of this mixture of 

25 %. This value was used to estimate the S content in the mixture decomposed from 
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each material. However, S content weight % estimated here is lower than that in similar 

materials studied previously (sulfonic acid functionalized SBA-15 [6] and sulfonic acid 

functionalized MCM-41 [7]).  

6.2.2. X-ray photoelectron spectroscopy (XPS) 

As a complementary technique, XPS has been performed to provide quantitative and 

qualitative information for the grafted materials. Analysis of the peak intensities and 

peak positions determines the specific elements related to the binding energy (BE) and 

the relation between the intensity of the photoelectron peaks and the concentration of 

the element [3]. Thus, the peak intensity measures how much of the element at the 

surface and the peak position indicates the chemical composition and the element. 

The sulfur is the most important element, and defines whether the surface has been 

grafted with sulfur or not. It also shows the level of loading of sulfur on the grafted 

material which may be compared to the findings from TGA. Figure 6.3 shows the sulfur 

(2S) spectrum close to the surface region for one of grafted materials as an example.  

 

Figure 6.3 XPS spectrum (S 2s ) of functionalized 0 % sample showing peaks for 

sulfur as thiol (228.0 eV) and in the oxidized sulfonic acid form (233.0 eV). 

High-resolution spectra of the S 2s core-level and very low-resolution spectra of the S 

2p have been observed in all samples. In figure 6.3, the S 2s spectra indicate the 
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existence of two types of sulfur species, one at low BE (228 eV) associated to –SH 

groups and the other at higher BE (233 eV) corresponds to -SO3H groups [2, 8].  

XPS is only sensitive to the region near the material surface and the level of grafting 

process and the percentages of sulfur on the surfaces can be determined. Since, -SH 

and -SO3H are the two possible forms of sulfur near the surface, MCM-41-SH is the 

form for the material before the oxidation and the MCM-41-SO3H form is after oxidation 

[9] in the grafting process of MCM-41 as an example.   

Figure 6.3 shows that XPS spectra analysis has revealed the presence of two sulfur 

chemical environments at the two different binding energies 233.0 eV for the oxidized 

sulfur form (SO4) or SO3H and 228.0 eV for the element S or the thiol form (-SH), 

indicating an incomplete thiol oxidation to sulfonic acid in the oxidation step.  

Table 6.2, shows the proportion of both sulfur oxidized to –SO3H and the thiol form –

SH, and very low percentages associated to the thiol form in all samples in terms of the 

measured element concentration.  

 

Sample, oil content/ V/V% 

Element conc. % 

SO4 & -SO3H 

(233 eV) 
 

Element conc. % 

S &-SH 

(228 eV) 

                     0 

 

80 20 

1 

 

80 20 

11 

 

70 30 

33 86 14 

Table 6.2 Binding energy and element concentrations from XPS analysis for 

grafted materials.  
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In addition, the sulfur content percentages have been estimated from the peaks and 

listed in table 6.3. Values from XPS agree with the literature for similar materials 

(sulfonic acid functionalized SBA-15, 1.2-1.8 wt %) [6]. 

 

Sample, oil content/ V/V% 
 

 

S content, TGA/ wt % 

 

S content, XPS/ wt % 

 

0 

 

 

0.82 

 

1.35 

 
1 

 

 
0.49 

 
1.31 

 
11 

 

 
0.61 

 
1.61 

 

33 
 

 

0.76 

 

2.18 

Table 6.3 Sulfur content in weight percent of functionalized materials evaluated 

by XPS and TGA techniques. 

To compare results from TGA and XPS, table 6.3 shows the weight percent of sulfur 

estimated at the surface of the material across the series. It is clear that figures are not 

consistent, but in both cases the weight percent of sulfur increases with increasing the 

oil volume in the template in the samples of 1 %, 11 % and 33 %. However the 

disagreement between both values from TGA and XPS needs further investigations. 

6.3. Catalytic activity  

To investigate the properties of the porous materials prepared in Chapter Five as 

catalyst support, the catalytic performance of sulfonic acid functionalized porous silica 

at 60 oC was assessed the esterification of palmitic acid with methanol. Despite their 

incomplete oxidation in the synthesis of catalyst (grafting reaction), the palmitic acid 

esterification reaction occurred with comparable conversion rate.  

6.3.1. Palmitic acid esterification reaction 

Sulfonic acid silica catalysts were evaluated using esterification of palmitic acid (C16 

saturated fatty acid) with methanol reaction. 

Palmitic acid esterification was performed using the same grafted materials (0 %, 1 %, 

11 %, and 33 %) to produce methyl palmitate as shown in the next reaction.   

              CH3 (CH2)14 COOH +CH3OH                CH3 (CH2)14COOCH3 
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Products were quantified using GC analysis and figure 6.4 shows conversions of 

palmitic acid to palmitate after 6 h in each reaction as well as the conversion in a 

similar palmitic acid reaction used mesoporous functionalized silica [6]. The sample 0 

% has the lowest conversion of ~7.7 % after 6 h, whereas higher conversions have 

been considered in samples 1 %, 11 % and 33 % (sample numbers 2,3 and 4 in the 

figure respectively). The conversion also has been increased with increase the oil 

volume in the template used to synthesis the material support.  

 

Figure 6.4 Palmitic acid conversions after 6 h at 60 oC using sulfonic acid 

functionalized porous silica catalysts of samples 1, 2, 3 and 4  ( 0 %, 1 %, 11 %, 

and 33 % (open squares) respectively), and the conversion from the literature 

(sample 5, (closed square)).  

Comparing to the conversion in the literature [6], catalysts synthesized in this project 

have lower conversions. They are also very low compared to the palmitic acid 

conversion with methanol observed by using the catalyst of Al-MCM-41 (79 %) [10]. 

This was expected due to the low sulfur loading estimated from TGA. However, the 

conversions are consistent with the TGA and XPS findings in terms of the increase of 

the conversion with increasing the weight percent of sulfur.  
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6.4. Conclusions 

There are two main conclusions about the functionalized sulfonic acid catalysts. First, 

the activity of catalysts used depends on sulfonic acid loading at all reactions, since the 

catalyst that has higher sulfur loading possesses higher palmitic acid conversion. Data 

from XPS showed very similar spectra patterns with slight differences in sulfur wt % 

values for all sulfonic functionalized catalysts prepared in this work. However, lower 

sulfur weight percentages have been estimated from TGA for the same materials, 

which may need further investigations including repeating TGA measurements or 

grafting more nanoporous materials. The highest conversion (~28 %) was observed 

using the sample of 33 %, whereas very low conversion (7.7 %) was associated to the 

sample 0 %.  

The second is there appears to be a relationship between the activity of the 

functionalized material as catalysts and material template compositions, which has 

been clearly shown from conversion figures across the series. Increasing oil volume in 

the template used to synthesize the catalyst support has a direct influence on the 

conversion reaction of palmitic acid with methanol. However, due to the structure of the 

materials synthesized, it was expected that higher loading of sulfur and higher palmitic 

acid conversions would be associated to the samples 1 % and 33 % as they have the 

highest surface areas and more organized and well-ordered porosity systems, but this 

was not. This unexpected behaviour needs more investigations including the synthesis 

of more materials with a wider range of surfactant/oil compositions or repeating the 

grafting and esterification reactions. Further characterizations on the catalysts might be 

required in terms of studying their structure using X-ray diffractions, SEM, or TEM. Due 

to the limited time, such investigations have not been carried out in the catalysis part of 

the project, suggesting that the preliminary assessment in this chapter might be a 

starting point in further studies in this field. 
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7.1. Project conclusions  

In order to establish whether this approach would generate a hierarchical porous silica, 

mixtures of hydrocarbon and fluorocarbon surfactants (CTAB/FSN-100) in the 

presence of perflurohexane (PFH) have been used to template nanoporous silicas. The 

morphology of synthesized materials have been studied in terms of the specific surface 

area and pore size distribution. The role of surfactants in the templating process has 

also been investigated by studying the surfactant phase behaviour in the pure 

surfactant solution as well as the mixture. The study of surfactant phase behaviour was 

considered in terms of determining the surfactant critical micelle concentration since 

the templating process is based on the surfactant self-assembly approach and how the 

inorganic species condense around the micelles, and create pores after removing the 

surfactant aggregates.   

The surfactant critical micelle concentration has been obtained using two different 

techniques, surface tension and fluorescence measurements. Different micellization 

processes have been observed across the studied range of compositions. For 

example, the two surfactants (CTAB and FSN-100) mix nonideally except for a degree 

of ideality at some CTAB mole fractions (0.5 > αCTAB > 0.7). The well-known nonideal 

behaviour of such mixture has been used to study the systems of surfactant mixture 

with hydrocarbon oil (hexane) or fluorocarbon oil (PFH) in order to investigate the role 

of adding the oil PFH in the surfactant template as swelling agent, and how that affects 

the porosity arrangements. The structure of CTAB micelles, FSN-100 micelles, 

CTAB/FSN-100 mixed micelles and mixtures with hexane or PFH have been 

determined focusing on their size and shape. The main conclusion in the CTAB/FSN-

100 systems over a range of CTAB mole fractions is that these mixtures are strongly 

characterized by the hydrocarbon surfactant, both in the presence of oil and without.  

The hierarchical porous materials synthesized here from the mixture of CTAB/FSN-100 

and different amounts of PFH have different morphologies over the composition range. 

Higher specific BET surface areas and more regular pores result once the oil has been 

added to the surfactant template with different porosity being observed as the PFH 

volume is raised in the template. Since the CTAB dominates the micellization process 

and micelles retain similar structures in a range of CTAB/FSN-100 compositions, the 

hexagonal porosity system observed in the synthesized materials is strongly related to 

the CTAB micellar structure. However, the relationship between the surfactant phase 

behaviour in the presence of PFH and the templated materials can be seen from the 

data collected in Chapter Four. The insolubility of PFH in the core of each surfactant 
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may explain the similar structure from most of the synthesized materials, except the 1 

% and 33 %, which have a slightly different porosity system. These materials were 

studied in more details. The key finding here is the increase of the material specific 

surface area once PFH is added to the template, even with the insolubility of the oil 

with the two surfactants.  

The catalytic activity of the synthesized nanoporous materials has been measured to 

study the potential of the materials as catalysts. The focus was to find out the 

relationship between the activity of the catalyst in the reaction and the phase 

composition of the template. The catalyst was able to convert palmitic acid to palmitate 

in spite of the low loading of sulfonic acid on the surface introduced by the grafting 

reaction. However, these results are preliminary and many further investigations are 

required in order to build up a clearer description of this relationship.  

To conclude CTAB and FSN-100 mixtures have been studied as an example of 

hydrocarbon-fluorocarbon surfactant blends. The mixed micelles have extensively 

characterized in terms of their structure and dynamics, using a range of techniques.  

There is no obvious correlation that relate the surfactant solution structures to the final 

catalyst morphology, though it should be noted that the synthesis was carried out in the 

presence of a solvent other than a simple aqueous one.    

The future work should focus on the application of the porous materials produced from 

such surfactant templating, in the presence of more representative solution conditions. 

This should allow a closer match between the final catalyst structure and the mixed 

micellar structure, and the porosity. This may necessitate more investigations including 

the use of different fluorocarbon surfactants in the surfactant phase or different 

fluorocarbon oils added to the template.    
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Appendix  
 

                                         

 

Figure A1 TEM image of sample FSO as described in Chapter Five, section 

5.2.1. 

 

 

 

 

 

 

 

Figure A2 TEM image of the sample FSN as described in Chapter Five, section 

5.2.2. 
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Figure A3 TEM image of the sample FSN/ PFH as described in Chapter Five, 

section 5.2.3. 
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1. Introduction

Surfactant solutions have been a  subject of many investigations
[1–7]. Surfactants self-assemble in aqueous solutions to form a
wide variety of aggregated structures and many techniques have
been developed to study these structures, most based on determin-
ing the shape/size of the micelles formed, and their critical micelle
concentration. The latter gives an idea of the strength and nature of
the interaction between the surfactants in the solution. Here, sur-
face tension, fluorescence, small-angle neutron scattering (SANS),
pulsed-gradient spin-echo NMR  (PGSE-NMR) spectroscopy and

electron paramagnetic resonance spectroscopy (EPR) have been
employed to provide a  detailed insight into one interesting system,
a mixture of a charged, hydrocarbon surfactant and a  non-charged,
fluorocarbon surfactant.

Hydrocarbon surfactant micelle systems have been extensively
studied [3–6], however there are far fewer studies on fluorinated
and partially fluorinated surfactant micelles, even though the lat-
ter material possess many unique features, especially increased
surface activity and hydrophobicity [7–10]. The miscibility of
fluorocarbon and hydrocarbon surfactants often presents a  chal-
lenge to formulation. In this study, we are concerned with the

Fig. 1. (a) Surface tension measurements as a function of total concentration for (open triangles) �C16TAB = 1, (closed triangles) �C16TAB = 0, (open squares) �C16TAB = 0.15,  (open
diamonds) �C16TAB =  0.33, (closed squares) �C16TAB = 0.2, and (open circles) �C16TAB = 0.5. (b) The critical micelle concentration, CMC, as a function of C16TAB mole fraction
determined by pyrene solubilisation (open circles) and surface tension (closed circles). Literature CMC  values for the pure surfactants are also plotted, (open triangles).
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Fig. 2. (a) Hyperfine coupling constant of C16TAB/FSN-100 mixtures, as a function of C16TAB solution mole fraction at a total surfactant concentration of 20 mM (open
triangles) and 50 mM (open circles). The corresponding volume fraction of water in the headgroup region is indicated on  the secondary axis. (b) Rotational correlation time
of  16-DSE in C16TAB/FSN-100 mixtures, as a  function of C16TAB solution mole fraction at a total surfactant concentration of 20 mM (open triangles) and 50 mM (open circles).

aggregation of C16TAB as the model hydrocarbon surfactant and
FSN-100 as a model fluorocarbon surfactant; C16TAB has been
well-characterised [3,11], whereas FSN-100 has been less well
studied, but interestingly, it exhibits two CMC  values in aque-
ous solution, indicating a  rather more complex micellisation
process [8,10].

2. Materials and methods

2.1. Materials

Cetyltrimethyl ammonium bromide (C16TAB) and Zonyl FSN-
100 fluorosurfactant, 16-doxyl stearic acid methyl ester (16-DSE)
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Fig. 3. (a) Small angle neutron scattering as a  function of C16TAB mole fraction, (open triangles) �C16TAB = 1,  (closed triangles) �C16TAB = 0, (open circles) �C16TAB = 0.2. The solid
line  represents the calculated numerical average of the two pure surfactant data sets, scaled to an appropriate concentration. (b) Small angle neutron scattering as a  function
of  C16TAB mole fraction, (open triangles) �C16TAB =  1,  (closed triangles) �C16TAB = 0, (closed squares) �C16TAB = 0.2, (open diamonds) �C16TAB = 0.4, (open circles) �C16TAB = 0.6,
(stars)  �C16TAB = 0.8. Fits are included as solid line. Data are offset by a  factor of 3 for clarity.

spin-probe and pyrene fluorescent probe were purchased from
Sigma-Aldrich and used as received. The solvent was D2O  in the
SANS and PGSE-NMR, and deionized water in  the surface ten-
sion, fluorescence and EPR measurements. Acetone (Aldrich) and
ethanol (Aldrich) were used as solvents for the stock pyrene and
16-DSE solutions.

2.2. Surface tension

Surface tension measurements were carried out at room tem-
perature and using LAUDA Drop Volume Tensiometer (TVT1). In
this instrument, the volume of a  drop that detaches from a  capil-
lary is determined. By increasing the volume of the drop, its weight
increases until it reaches a critical value at which it cannot be coun-
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terbalanced by the surface tension. The force balance at the drop
results in the following relation for the surface tension, Eq. (1).

� = Vg�pF/2�rcap (1)

where � = interfacial tension, V =  drop volume, g =  acceleration con-
stant, �p  = difference of the densities of both adjacent phases,
F = correlation factor, and rcap = radius of the capillary.

2.3. Fluorescence

All solutions have been prepared from stock solutions by
addition of surfactant stock solutions in  distilled water to  vials
containing the pyrene probe. The pyrene concentration was kept
constant at 2 ×  10−6 M by  addition of 0.01 ml of acetone containing
pyrene stock solution to empty glass vials and subsequent evap-
oration of the acetone before addition of the aqueous surfactant
solution. Photophysical data were obtained on a  JobinYvon–Horiba
Fluorolog spectrometer fitted with a  JY TBX photodetection mod-
ule. All spectra were recorded using an excitation wavelength of
340 nm.  All samples have been measured at room temperature.
CMCs were determined by  the breakpoints in  the concentration
dependent ratio of the third to  first vibronic peak, known as the
I3/I1 ratio.

2.4. Small-angle neutron scattering

The SANS measurements were performed as detailed previ-
ously [12] on the fixed-geometry, time-of-flight LOQ diffractometer
(ISIS Spallation Neutron Source, Oxfordshire, UK). All measure-
ments were carried out at 25 ◦C.  Experimental measuring times
were between 40 and 80 min. All  scattering data were normalised
for the sample transmission and incident wavelength distribu-
tion, corrected for instrumental and sample backgrounds using
an empty quartz cell, and for the linearity and efficiency of the
detector response. The data were put onto an absolute scale using
a  well-characterised partially-deuterated polystyrene-blend stan-
dard sample.

2.4.1. SANS data fitting and analysis

The intensity of scattered radiation, I (Q), as a function of the
wave-vector, Q, is  given by;

Isur. (Q ) = n
[

S (Q ) |F (Q ) |
2

+ |F (Q ) |
2

− |F (Q ) |
2
]

+ Binc (2)

where in the case of a  core–shell morphology F (Q )is  represented
as,

F (Q ) = V1 (�1 −  �2) F0 (QR1) + V2 (�2 − �0) F0 (QR2). The first
term represents the scattering from the core (subscript 1)
and the second, the polar shell (subscript 2). Vi = 4/3�R3

i and
F0 (QR) = 3ji(QR)/QR, (ji is the first-order spherical Bessel func-
tion). S(Q) represents the spatial arrangement of the micelles
in solution and n the micelle number density. �i is the neutron
scattering length density of the micellar core (subscript 1), the
polar shell (subscript 2) and the solvent (subscript 0). These
constants are combined into a single fittable parameter used to
“scale” the model intensity to the absolute value. Post-fitting, this
scalar is recalculated using the parameters describing the micelle
morphology/composition and the molar concentration of micelles
to validate the fit. The calculated and observed values should lie
within ∼10%.

The model of the micelle adopted here is  that of a charged
particle with an elliptical core–shell morphology. In the model
the average volume per headgroup average tail volume and their
average scattering length densities are input as constants, calcu-
lated assuming the composition of the micelle is the same as the
solution composition. For C16TAB, �C16TABhead = 2.4 ×  10−6 Å−2 and

volume 412 Å3. For the FSN-100, �FSNhead =  0.6 × 10−6 Å−2 and vol-
ume  2000 Å3. The bromide ion dissociation in  the C16TAB case does
however, significantly affect the charge on the micelle and hence
the structure factor S(Q), a  point we return to later in  the discussion.
The average core scattering length density is also similarly calcu-
lated, with �C16TABtail = −0.4 × 10−6 Å−2 and volume 460 Å3 whereas
�FSNtail = 2.0 × 10−6 Å−2 and  volume 295 Å3.

The structure factor S(Q) was calculated using the Hayter and
Penfold [13] for spheres of a  given micellar concentration, charge
and ionic strength, incorporating refinements for low volume frac-
tions and a  penetrating ionic background. Various approaches to
parameterising the structure factor were adopted based on known
or measured estimates of the micelle size and surfactant concentra-
tion to calculate the hard sphere volume fraction, charge and Debye
length. We  have shown that this method of calculating the structure
factor, which assumes spherical particles, remains valid for dilute,
isotropic samples of micelles with small degrees of ellipticity, as is
the case here [14,15].

For the SANS analysis, the hard sphere volume fraction was fixed
at 0.02, calculated from the total surfactant concentration (assum-
ing a  mass density of 1 g cm−3).  Starting values for the charge (20)
and Debye length were estimated based on typical values for ionic
surfactants [14],  and scaled according to C16TAB mole fraction. The
S(Q) parameters were refined during the fitting process to obtain
the best fit parameters for P(Q).

The fitting of SANS data is insensitive to the headgroup region,
the shell comprising the various headgroups and associated water.
The prevailing shell scattering length density is calculated from
the average headgroup scattering length density and their hydra-
tion, given �̄ =  ϕwater�water + (1 − ϕwater) �̄headgroups.  Sinceϕwater =

Vwater/ Vshell,  the parameters Vwater and Vshell are strongly coupled
and not amenable to fitting. We  adopt the approach of fixing ϕwater

at the EPR determined value that inter alia, defines the shell vol-
ume  (thickness). The scattering length density of the hydrated shell
region is  then (re-) calculated within the analysis software, based
on ϕwater fwater. Hence, constraining this value eliminates the trial-
and-error aspects required in previous work to  find the overall “best
fit” value of ϕwater fwater due to local minima in the least-squares
fits [14].

2.5. PGSE-NMR spectroscopy

Pulsed-Gradient Spin-Echo (PGSE-) NMR  measurements were
performed on a  Bruker AMX400 NMR  spectrometer operating at
400 MHz  (1H) using a  stimulated echo sequence. All the exper-
iments were run at 25 ◦C using the standard heating/cooling
system of the spectrometer to an accuracy of ±0.3 ◦C. All solutions
were prepared from stock solutions using D2O, and 0.6 ml were
transferred to 5 mm o.d. NMR tubes (Willmad NMR  tubes form
Sigma–Aldrich).

The self-diffusion coefficient, Ds, was  deduced by fitting the
attenuation of the integral for a  chosen peak to  Eq. (3).

A
(

ı, G, �
)

= A0 exp(−k ×  Ds) (3)

where A is  the signal intensity in the presence and absence (0) of the
field gradients, and k = −2G2ı2

(

�  − �/3
)

,  where is the magne-
togyric ratio, � the diffusion time, ı  the gradient pulse length, and
� the ramp time, and G is the gradient field strength [16].

Association and complexation processes can both be extracted
from an analysis of the self-diffusion coefficientsDs.  In case of micel-
lization studies, the attenuation function observed in the 1H NMR
spectra corresponded to the methylene resonance associated to
–(CH2)X- of the inner part of the hydrocarbon chains related to the
broad peak between d =  1.11–1.20 ppm and thus, reflects the time-
average population-weighted average mobility of the monomeric
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and micellized surfactant. In case of complexation, the attenuation
function was recorded from the peak corresponding to the methy-
lene in the spacer (singlet at d  = 5.36 ppm) and again, reflected the
time-average population-weighted average mobility of monomeric
and micellised surfactant.

2.6. EPR spectroscopy

To prepare samples for EPR, 16-DSE (0.01 M)  was prepared by
dissolving the appropriate amount in 2 ml of ethanol and then
0.02 ml  of the solution transferred into a separate glass vial. After
allowing for ethanol evaporation, 1.0 ml  of the sample was  added
to the vial and mixed for at least 1 h to give a final spin-probe con-
centration at 2 × 10−4 M  and to  ensure that the probe has been
incorporated into the micelle solutions.

Experimental details for the EPR measurements are also iden-
tical to those described previously [15] and only brief details are
repeated here. These non-degassed samples were sealed with a
gas-oxygen torch into melting point capillaries, which were housed
within a quartz EPR tube for the measurements. The temperature
was  controlled to  ±0.2 K  by a  Bruker Variable Temperature Unit
BVT 2000. Five spectra were taken at X-band on a  Bruker ESP-300
spectrometer.

2.6.1. EPR lineshape fitting and analysis

The lineshapes were fitted to a  Voigt approximation to separate
the Gaussian and Lorentzian components of the spectral lines and
to locate the resonance fields of the three EPR lines arising from the
nitroxide radical to a precision of a few mG.  Rotational correlation
times are computed from the overall linewidth of the centre line
and the peak-to-peak heights of the three lines and corrected for
inhomogeneous broadening using the procedure outlined by Bales
[12,15].

The separation A+ of the low and centre lines (MI = +1  and MI = 0)
is directly related to  the polarity index H (25 ◦C),  defined as the
molar ratio of OH groups in  a given volume relative to water (Eq.
(4)). H (25 ◦C) therefore corresponds to the volume fraction of water
in the polar shell, fwater , and may  be used to constrain the SANS
fitting.

H (25◦C) = (A+ −  14.21) /1.52 (4)

3. Results and discussion

3.1. Critical micelle concentration (CMC) determinations

Surface tension measurements have been carried out for a range
of solution compositions expressed as a  function of C16TAB (solu-
tion) mole fraction. The raw are included in  Supplemental section
(Figs. S1 and S2), but representative data are  included in Fig. 1a. The
two limits correspond to  the single component species, for which
our CMC  values (C16TAB =  0.8 ×  10−4 M,  FSN-100 =  6.8 ×  10−5 M)
are in excellent agreement with literature ones [6,8], (Supple-
mental Fig. S1). FSN-100 shows two break points (6.8 × 10−5 M,
1.0 × 10−3 M)  again as observed previously [8], these have previ-
ously been ascribed to  pre-association and micellization processes.
As may  be seen for FSN-100 rich mixtures, there are still two break
points, but at higher �C16TAB, only one prevails.

The  CMC  vs �C16TAB behaviour in Fig. 1b shows a  number
of  distinct features, in particular, significant regions where the
CMC  is greater than would be predicted by  an ideal mixing
approach. Therefore, there are specific interactions between the
two molecules, and these are strongly antagonistic. What is  sur-
prising in this system is the presence of a  region of apparent ideality
around 0.5 > �C16TAB >  0.7. Such increases in  CMC, crucially to a  con-
centration of one of the species to a value greater than its single

component CMC, as around 0.2  <  �C16TAB <  0.4 emphasises a loss
of surfactant activity and the presence of a substantially differ-
ent micellization process. Clearly, further analysis of the micelle
composition and size/shape is warranted.

Surface tension detects changes in  the surface composition,
which generally reflects the prevailing solution structure. To pro-
vide a  contrasting measure of the CMC, pyrene solubilisation has
also been used. The two  curves show remarkable similarity (Fig. 1b),
indicating that there is indeed some unusual micellization process
occurring in this system.

3.2. Electron paramagnetic resonance spectroscopy (EPR)

measurements

In order to constrain various parameters in the analysis of
the scattering data (the next section), EPR was used to quantify
the hydration of the micelle headgroup region. The EPR tech-
nique introduces a  very small amount of nitroxide free radical as
a spin probe (in this case, 16-DSE) into the micelle and by mea-
suring the hyperfine coupling constant, the micelle structure can
be estimated. The data in  this experiment were also recorded at
two different total surfactant concentrations (20 mM and 50 mM)
to assess whether the micelle structure undergoes a  significant
change with total concentration.

The hyperfine coupling constant from the EPR measurements
are plotted versus C16TAB mole fraction in  Fig. 2a.  It  is  obvious
that there is  a  greater degree of water (52%) associated with the
FSN-100 headgroup, presumably because of the larger headgroup
providing a  greater volume for water penetration. The C16TAB is
a smaller, spherical structure and the predicted value for �H2O at
50  mM  would be calculated from Eq. (5) is 0.30, in fair agreement
with the experimental value (0.32) (Table 1). Calculation of the
estimate for FSN-100 is  less precise due to the uncertainty in  the
headgroup structure, but again the calculated value (0.53) is in good
agreement with the experimental one (0.52).

�H2O =
Vshell − Vheadgroups

Vshell
=

(

4
3 �(R + �)3X − 4

3 �R3X
)

− Nagg.VCTAB

(

4
3 �(R + �)3X − 4

3 �R3X
) (5)

The headgroup region of the cationic micelle is  densely pop-
ulated with the spherical, cationic headgroups and accordingly,
the spin-probe will experience a relatively viscous environment
(Fig. 2b). By contrast the non-ionic micelle headgroup region will
be populated by fairly large, oligomeric sterically hindering head-
groups and accordingly, the spin-probe will also experience a
viscous environment. These features are not that  sensitive to the
aggregation number.

For each cationic molecule (C16TAB) that is removed from the
mixed headgroup region, by the mixing of the cationic and non-
ionic headgroups, there will be a  change in amount of  water
equivalent to the difference in the respective headgroup volumes,
consistent with the change in  aggregation number. This is seen as
the largely linear dependence of hydration (Fig. 2a) as a  function
of CTAB mole fraction. Interestingly, the spin-probe experiences
a more mobile, a  less viscous environment (Fig. 2b), between the
two single surfactant extremes, as evidenced by the minimum in
the rotational correlation time, a  minimum in  the viscosity.

EPR experiment provides an additional characterisation of  the
micelle via the rotational correlation time (�c) which is  a measure
of the dynamics with the micelle and the micelle tumbling itself
(Fig. 2b).

The two single component micelles have a  similar microvis-
cosity and there is  a  pronounced minimum in �ccross the entire
mole fraction range, consistent with a decrease in local viscosity
experienced by the probe.

It is  customary to  separate the dynamics of the spin probe
within the micelle �Relative to that of the micelle itself �micelle in
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Table  1

Experimental values for volume fraction of water in the polar shell (�H2O) using EPR, in the single surfactant solutions and mixtures at two different total surfactant
concentration.

C16TAB/M FSN-100/M Exp.�
shell
H2O 50 mM/(± 0.2) Exp.�

shell
H2O (20 mM/(± 0.2)

0 1 0.52 0.52
0.15  0.85 0.50 0.50
0.2  0.8 0.50 0.50
0.33 0.67 0.48 –
0.4 0.6  0.47 –
0.5  0.5 0.46 0.47
0.6  0.4 0.45 –
0.8  0.2 0.37 –
0.9  0.1 0.37 0.40
1  0 0.32 0.35

order to comment on the microviscosity of the headgroup region.
We use the SANS estimate of the size to  obtain �micelleto arrive at
�Relative, which is over-plotted in  Fig. 2b, for selected data points
[17]. Clearly, as expected, the �corrected has little impact on the
appearance. There is still a pronounced minimum in microviscosity
as a function of C16TAB mole fraction.

The microviscosity does not  show any obvious dependence of
Nagg as curvature, being largely defined by the numbers, and bulk-
iness of the headgroups, modulated by the prevailing degree of
hydration. There is a  clearly an opposite influence of the smaller TAB
headgroup and the bulky, but hydrated ethylene oxide headgroup
of the FSN-100.

3.3. Small- angle neutron scattering (SANS) studies

One mechanism by  which apparent antagonistic micellization
may  occur is the coexistence of multiple types of micelles. There-
fore, SANS was carried out to test this hypothesis and to quantify
the size/shape of the micelles as a function of solution composition.

SANS measurements were performed on a single component
C16TAB and FSN-100 as well as selected C16TAB/FSN-100 mixtures
at specific C16TAB mole fractions, in  order to detect micelle shape
and size corresponding to  the features in  the CMC  plot. Fig. 3a  illus-
trates the approach adopted to test the hypothesis that two  micelle
types coexist. The figure shows the data from C16TAB and FSN-100
alone, plus the measured data for �C16TAB =  0.2, where the CMC
shows a significant departure from ideality. The solid line repre-
sents the calculated numerical average of the two  pure surfactant
data sets, scaled to  an appropriate concentration. As can be seen
this calculated data set is not  in  agreement with the experimental
data for �C16TAB = 0.2. This clearly shows that we  do not have two
populations of FSN and C16TAB micelles, and therefore that mixed
micelles must be present. This has been demonstrated for other
sample compositions in Supplemental section (Figs. S3 and S4).

Fig. 3b shows the SANS data for the single components and
four mixtures. The scattering curves are  a composite of the form
factor describing the size and the shape, and the structure factor
describing the electrostatic interaction between micelles.

The scattering from ionic surfactant micelles possess an oscil-
latory structure factor which will lead to reduction in intensity at
low Q and “bumps” at higher Q. These features are not  expected in

the  scattering from a  non-ionic micelle, at least at moderate con-
centrations. This simple interpretation accounts for many of the
gross features in  the data, in particular, the most striking differ-
ence in  the curve from FSN-100 compared with all other mixtures.
Expressed differently, once C16TAB is  added to  the solution, the
micelles show less variance in structure, and more similarity with
the pure C16TAB. As predicted, the scattering intensity decreases at
low Q as the C16TAB mole fraction increases, with shoulders around
Q =  0.06 Å becoming more pronounced.

Therefore, we  conclude that coexisting population of  pure
micelles do not exist, and the next challenge is to characterize, in
detail, the structure of the mixed micelles formed.

Considering the fit for the single component surfactant solu-
tions, the data have been fitted to a  model describing the micelle
morphology as globular, with a  varying degree of ionic character.
In both cases, constants have been applied to  the analysis; specif-
ically, using the known chemical structure, concentration molar
volumes, dimensions and scattering length densities, in constrain-
ing with the known concentrations and the experimental values of
the degree of hydration from EPR (Table 1). The fitting parameters
that are allowed to freely float are  the ellipticity, the charge and the
incoherent background.

From Table 2,  describing the fit for the single components and
the mixtures parameters, reflect what is also evident from the data,
namely that the mixtures are strongly characterised by the ionic
C16TAB component. The aggregation numbers have been calculated
via equation (6), the ratio of the core volume divided by  a  simple
weighted value of the effective tail volume, this assumes that the
micelle composition is identical to the solution one. In addition, the
aggregation number of FSN-100 micelles is a  little smaller than the
literature value [10],  whereas C16TAB micelle aggregation number
is in a  good agreement with the literature one [18].

Nagg. =
Vcore

Vtail
=

4
3 �R3

coreX

˛CTABV tail
CTAB + (1 − ˛)CTABV tail

FSN−100

(6)

where, Nagg. Is the aggregation number, X is the ellipticity, RCore

is the core radius, Vtail is the surfactant tail volume, VCore is  the
surfactant core volume.

The model assumes a  single micelle type and the success of this
approach in  describing the data suggests that  either a  single micelle

Table 2

Parameters describing the fits of SANS data from C16TAB, FSN-100, and their mixtures as a function of C16TAB mole fraction using a  model that describes the micelle as a
globular  elliptical with some ionic character.

C16TAB mole fraction RCore/Å Shell thickness (±5)/Å Ellipticity, X Vs(dry)/VCore Nagg (±)

0 13.3 24 1.5 0.8 65
0.2  27.8 12 1.1 0.9 310
0.4  27.8 11 1.0  0.9 250
0.6  26.2 10 1.0  0.9 190
0.8  21.6 10 1.1 1.0  140
1.0  25.8 8.0 0.85 0.9 135
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type is indeed present or any coexisting population of micelles are
not substantially different. As  a complimentary approach, PGSE-
NMR  was employed to  provide more information about micelle
structures.

3.4. PGSE- NMR  spectroscopy studies

In  this experiment, the measured diffusion coefficient is  a
weighted value of the non-micellised and micellised components.
One would expect that if a coexisting micelle population were
present, coupled with varying levels of non-micellised surfactant,
the diffusion coefficient of the C16TAB and FSN-100 would be quite
different. Clearly, they are not (Supplemental Fig. S5), again, con-
sistent with the SANS conclusion that these two surfactants mix,
further, the diffusion coefficient values are mutually comparable
consistent with the relative volumes of the respective micelles, also
suggest that the solution composition is  the same as the micellar
one.

4. Conclusions

Mixed micelles of cationic C16TAB and non-ionic FSN-100 sur-
factants have been studied by  various techniques. The data show
that the two surfactants mix nonideally with CMCs higher than pre-
dicted for ideal mixtures whilst some concentrations show a degree
of ideality. This behaviour confirms that there is  a substantially dif-
ferent micellization process across a  range of compositions. It  is
clear that from SANS data the mixed micelles are strongly charac-
terised by the C16TAB component, and micelles have less variable in
structure when different amount of C16TAB was added to the solu-
tion. With increasing C16TAB mole fraction, there is a reduction in
the amount of water present in the headgroup region. Furthermore,
combining resulted data from several techniques has been used to
conduct a full picture of the micellar system of C16TAB, FSN-100
and their mixtures.
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