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Abstract 
Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 
emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings 

has acted as a catalyst in the development of advanced computational methods for energy efficient 
design, management and control of buildings and systems. Heating, ventilation and air-conditioning 
(HVAC) systems are the major source of energy consumption in buildings and ideal candidates for 

substantial reductions in energy demand. Significant advances have been made in the past 
decades on the application of computational intelligence (CI) techniques for HVAC design, control, 
management, optimization, and fault detection and diagnosis. This article presents a comprehensive 

and critical review on the theory and applications of CI techniques for prediction, optimization, 
control and diagnosis of HVAC systems. The analysis of trends reveals that the minimisation of 
energy consumption was the key optimization objective in the reviewed research, closely 

followed by the optimization of thermal comfort, indoor air quality and occupant preferences. 
Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, 
EnergyPlus, DOE-2, HVACSim+ and ESP-r. Metaheuristic algorithms were the preferred CI method 

for solving HVAC related problems and in particular genetic algorithms were applied in most of 
the studies. Despite the low number of studies focussing on multi-agent systems (MAS), as compared 
to the other CI techniques, interest in the technique is increasing due to their ability of dividing and 

conquering an HVAC optimization problem with enhanced overall performance. The paper also 
identifies prospective future advancements and research directions. 
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1 Introduction 

1.1 Energy consumption in buildings 

Globally, buildings consume approximately 40% of the total 
energy used and contribute towards 30% of the total CO2 
emissions (Costa et al. 2013; Shaikh et al. 2014). The building 
sector is considered the largest consumer of energy in the 
European Union (EU) and is responsible for up to 40% of 
the total energy consumption and 36% of greenhouse gas 
(GHG) emissions (Grözinger et al. 2014). In the UK and 
USA, buildings consume approximately 39% (Pérez-Lombard 
et al. 2008) and 41.7% (EIA 2011) of the total energy used 
respectively. Majority of this energy come from the burning 
of fossil fuel, which amounted to 81.23% of global energy 
consumption in 2011 (The World Bank 2014). Associated 
GHG emissions from the burning of fossil fuels have been 

attributed as the extremely likely cause of anthropogenic 
climate change (IPCC 2013). The building sector, therefore, 
plays a significant role in mitigating the impacts of climate 
change by reducing GHG emissions from burning fossil fuel 
for energy. The European Commission recognizes that the 
improvement of the energy performance of Europe’s building 
stock is crucial for meeting both short- (20% by 2020) and 
long-term (88%–91% by 2050) targets of significant GHG 
reductions from 1990 levels and the move towards a low 
carbon economy by 2050 (EC 2011). The evolution of EPBD, 
from its approval in 2002 to the recast in 2010, illustrates  
a marked move towards more stringent requirements for 
building energy efficiency, in particular for building energy 
systems such as heating, ventilation and air-conditioning 
(HVAC). In a recent report on the European building stock 
(EU27, Switzerland and Norway), the Building Performance 
Institute Europe (BPIE) suggested that a greater emphasis 
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Abbreviations 

ACL   agent communication language 
ACO  ant colony optimization 
ACS   ant colony system 
AHU  air handling unit 
AI    artificial intelligence 
ANF   adaptive neuro fuzzy   
ANFIS  adaptive neuro-fuzzy inference system 
ANN  artificial neural network 
ARX   autoregressive with exogenous input  
ASHRAE  American Society of Heating, Refrigeration and 
   Air-Conditioning Engineering 
BEMS  building energy management system 
BFGS  Broyden–Fletcher–Golfarb–Shanno 
BP   back propagation   
BWAS  best–worst ant system  
CAV   constant air volume 
CI   computational intelligence  
EA    evolutionary algorithms 
EP   evolutionary programming 
EPBD  energy performance of buildings directive 
FDD   fault detection and diagnosis 
FL    fuzzy logic 
GA   genetic algorithm 
GRNN  general regression neural network 
 

GSHP    ground source heat pump 
HVAC  heating ventilation and air-conditioning 
LEE   least enthalpy estimator 
MAS   multi-agent systems 
MIMO  multi input multi output 
MLP   multilayer perception   
MMAS  max–min ant system 
MOGA  multi-objective genetic algorithm 
MOPSO  multi-objective particle swarm optimization 
NID   non-linear inverse dynamics   
N-M   Nelder-Mead  
NSGA-II  non-dominated sorting genetic algorithm 
PID   proportional integral derivative 
PMV  predicted mean vote 
PSO   particle swarm optimization  
RAE   robust evolutionary algorithm 
SA    simulated annealing 
SIMO  single input multi output   
S-PSO  strength-particle swarm optimization 
SVM   support vector machines 
TRNSYS  transient system simulation program  
TSFF  Takagi–Sugeno fuzzy forward  
VAV   variable air volume 
 

 
should be placed on the implementation of smart energy 
management to drastically reduce energy use, especially  
in non-domestic buildings (BPIE 2011). The report also 
estimates that the average specific energy consumption in the 
non-domestic sector in the surveyed countries is 280 kWh/m2 
per year, which is at least 40% higher than the equivalent 
value for the residential sector. These figures highlight the 
importance of HVAC in energy demand and the need for 
further research and development in HVAC energy efficiency 
to achieve societal goals of low energy use and GHG 
emissions.  

1.2 HVAC systems, optimization, and fault detection and 
diagnosis 

In most HVAC operation scenarios energy conservation is 
desired while maintaining the occupant thermal comfort 
level within a predicted mean vote (PMV) range of ±0.5 
(ASHRAE 2009; CIBSE 2006), which corresponds to 10% 
predicted percent dissatisfied (PPD) (ISO 2005). A com-
bination of these two desired outcomes is typically used as 
objectives to accomplish operation tasks. Various system 
parameters that have an impact on the desired objectives are 
used as design variables, the values of which are changed to 
maximise or minimise the objectives. For HVAC system, 

there are two types of controls: local and supervisory 
controls. In local control type, the design variables that  
are considered in the optimization or control problem for-
mulation can include valve position, damper position etc. 
Whereas, on supervisory level the control variable can be 
temperature set-points and schedules. Figure 1 illustrates a 
typical air handling unit of an HVAC, comprising: an outdoor 
air damper to control outside air intake; an exhaust air 
damper to control discharge to outside; a return air damper 
to control recirculation; a return air fan to control extraction 
of indoor air; heating and cooling coils to increase/decrease 
air temperature; and a supply air fan to control flow     
of conditioned air. Further components such as filters, 
dehumidifiers/humidifiers, reheaters, etc. can be added 
depending on circumstances but are excluded in this article 
for brevity. System variables are discussed here with the help 
of four scenarios, illustrated in Fig. 1. 

Scenario A illustrates the control of supply and/or return 
airflow rate to maintain desired comfort conditions. Air 
supply flow rate can also be constrained to avoid localized 
discomfort due to draught. Scenario B aims to reduce energy 
consumption while maintaining comfort conditions by con-
trolling the supply air temperature through heating and/or 
cooling coils. The operation of heating and cooling coils is 
typically linked with room air temperature, which together 



Ahmad et al. / Building Simulation / Vol. 9, No. 4 

 

361

with room air humidity affects thermal comfort level. 
Changing the room set-point temperature affects energy con-
sumption and thermal comfort. Widening the temperature 
range of thermal comfort by approximately 1 °C can have  
a corresponding effect on thermal comfort by ±0.5 PMV 
(CIBSE 2006). Scenario C is concerned with minimising 
thermal energy consumption by controlling the return air 
damper, while maintaining a desired level of thermal comfort. 
Scenario D involves the control of outdoor and exhaust air 
dampers to control how much fresh air is introduced, which 
has a corresponding effect on thermal energy consumption. 
The control of dampers can also be constrained to meet the 
minimum fresh air requirement to dilute air pollutants and 
odour for acceptable indoor environments. Indoor air quality 
(IAQ) in the form of carbon dioxide (CO2) concentration 
can be considered as an optimization objective. Scenarios C 
and D are often combined together to control the mixing of 
return air with outdoor air.  

Fault detection and diagnosis (FDD) of HVAC systems 
plays an important role in improving energy efficiency, 
thermal comfort and reducing maintenance and operating 
costs. Its basic aim is to detect outlier that may represent 
fault in an HVAC system. According to Du et al. (2014b), in 
general, FDD methods can be divided into three categories: 
the rules-based, model-based and data-driven methods. 
Model-based can be developed by employing energy and 
mass balance phenomenon and residues can be calculated by 
comparing outputs from the model and actual measurements. 
Rules-based methods do not need any model of a system and 
rely on the expert knowledge to create expert rules. HVAC 
systems/its components are controlled by different controllers, 
which can be stand-alone controllers or connected to a 
sophisticated building automation system (BAS). BAS 
consists of many sensors and controllers, and a large amount 
of data is available on the BAS central station. This rich 
data gives an opportunity to use it for developing data- 
driven fault detection and diagnosis strategies to distinguish 

between faulty and non-faulty operating conditions. The 
data-driven methods do not require any physical model  
or expert knowledge of the system. In Fig. 1, a fault may 
occur in outdoor air (OA) damper. For example, for certain 
conditions (e.g. weather and indoor), the outcome from the 
FDD model/strategy is always 30% open, but the current 
measurement of OA damper position is 90% open. This 
information can result in a warning suggesting that there 
may be outdoor air temperature sensor and/or economizer 
control fault(s). 

1.2.1 Evaluation of objective functions 

Indicators for building performance (e.g., energy use) 
typically have non-linear time dependent relationships 
with control variables in HVAC systems. It is challenging to 
define and use a straightforward mathematical relationship 
between inputs and outputs due to the complex behavior  
of the system and dynamic nature of the problem. Different 
types of prediction engines are used with computational 
intelligence (CI) techniques to evaluate optimization objec-
tives. Prediction engines can be broadly classified into three:  
 Analytical;  
 Numerical (e.g., whole building simulation); and  
 Predictive (e.g., ANN).  

Whole building simulation engines such as EnergyPlus1, 
TRNSYS2, DOE-23, etc. often enable the evaluation with 
reduced uncertainties, primarily due to their multi-domain 
(thermal, lighting, network airflow, etc.) modelling capabilities 
(Mourshed et al. 2003), as well as finer spatial and temporal 
resolutions of these tools. However, the disadvantage of using 
simulation tools as evaluation engines is the computation 
time required for simulation, making them unsuitable for 
online or near real-time applications. To reduce computation 

                                                        
1 EnergyPlus. http://energyplus.gov 
2 TRNSYS. http://sel.me.wisc.edu/trnsys 
3 DOE-2. http://doe2.com 
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Fig. 1 Schematic diagram of an air handling unit 
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time, predictive models such as artificial neural networks 
(ANN) are often used, in particular for online control 
optimizations. However, it is difficult to find the right 
topology for an ANN, which requires several experiments to 
determine the best combination of an ANN based predictor. 
The topology may also vary from problem to problem, 
making it necessary to develop case-by-case ANN predictors, 
with added complexities for scaling up.  

1.2.2 CI algorithms 

Computational intelligence (CI) was first proposed by Bezdek 
and the term was first used by the Institute of Electrical and 
Electronics Engineers (IEEE) Neural Networks Council  
in 1990 (Bezdek 1998). There is no commonly accepted 
definition of computational intelligence in the literature 
(Siddique and Adeli 2013). Siddique and Adeli (2013) defined 
computational intelligent system as a system which deals 
with low-level data such as numerical data, has a pattern- 
recognition component and does not use knowledge in the 
artificial intelligence (AI) sense, and additionally when it 
begins to exhibit computationally adaptivity, fault tolerance, 
speed approaching human-like turnaround and error rates 
that approximate human performance. CI is a rapidly 
advancing research field and includes a collection of various 
computation techniques, including but not limited to: expert 
systems, genetic algorithm (GA), artificial neural network 
(ANN), support vector machines (SVM). The most com-
monly used CI techniques for HVAC applications are fuzzy 
logic (Chu et al. 2005; So et al. 1997; Zheng and Xu 2004), 
ANN (Argiriou et al. 2000; Curtiss et al. 1994; Kanarachos 
and Geramanis 1998), GA (Lu et al. 2005; Mossolly et al. 
2009; Nassif et al. 2005; Wang and Jin 2000; Wright et al. 
2002), multi-agent systems (Hagras et al. 2008; Rutishauser 
et al. 2005; Yang and Wang 2013) and pattern recognition- 

based methods (Du et al. 2007a; Hu et al. 2012; Naja. et al. 
2012; Wang and Cui 2005; Wang and Xiao 2004a; Zhao et 
al. 2013b). 

CI techniques have been successfully applied by resear-
chers to overcome time delay, system uncertainties, and non- 
linear feature in PMV calculations (Dounis and Caraiscos 
2009), as well as includes HVAC applications such as 
prediction, optimization, control and fault detection and 
diagnosis. According to their applications, CI techniques 
can be classified into several groups, as shown in Fig. 2. 
Artificial neural network and support vector machine have 
been utilised for prediction, control and classification pur-
poses. In literature, most of the applications for the HVAC 
systems are mainly based on stochastic based optimization 
algorithms e.g. evolutionary algorithms and their enhan-
cements, as presented in this paper. For control and fault 
detection and diagnosis purposes, fuzzy logic based controller 
and detectors are widely used in the literature. Pattern 
recognition-based methods are mainly applied for fault 
detection and diagnosis purposes. Multi-agent systems can 
be used for many purposes such as control, monitoring and 
detection. For HVAC systems, multi-agent systems were 
mainly used for control purposes. 

1.3 Study contents 

Different literature surveys on optimization techniques  
for energy applications in buildings have been published. 
Dounis and Caraiscos (2009) reported on control systems 
for energy management and thermal comfort in buildings 
with a brief discussion on multi-agent systems. In a recent 
publication, Evins (2013) reviewed optimization methods  
for sustainable building design as a broad topic, including 
envelope design, configuration and building control. The 

 
Fig. 2 Classification of computational intelligence techniques with respect to their primary area of application. Hybrid algorithms—
combinations of two or more algorithms (e.g., ANN–GA) are not explicitly illustrated here to avoid compromising the clarity of the
image. Algorithms in shaded boxes are reviewed in this article 



Ahmad et al. / Building Simulation / Vol. 9, No. 4 

 

363

coverage in terms of the breadth of application areas 
constrained a deeper exploration of HVAC systems and 
algorithms. Another review on optimization methods applied 
to renewable and sustainable energy was published by Baños 
et al. (2011). Katipamula and Brambley (2005) reviewed 
different methods applied for fault detection and diagnosis 
in HVAC systems. A review of fuzzy logic systems applied 
to building research was presented by Kolokotsa (2007), 
where the author presented fuzzy logic applications for 
indoor visual and thermal comfort, and indoor air quality, 
as well as fuzzy logic control systems. Various methods  
for control were also discussed by Shaikh et al. (2014). The 
existing body of published reviews lack a comprehensive 
and focussed discussion on HVAC optimization, one of  
the most promising application areas for both classical 
optimization and CI techniques. Moreover, the choice of 
evaluation engine is critical for HVAC applications during 
the operation stage due to the time-critical nature of the 
application. The literature also lacks in a critical discussion 
of optimization variables and objective functions adopted 
in various research.  

Optimized control/operation of HVAC systems is 
challenging due to the presence of system non-linearities and 
delays, as well as seasonal variations in weather conditions. 
HVAC problems are classed as non-polynomial hard (NP- 
hard) problems. CI techniques are found to be effective in 
dealing with NP-hard optimization problems with incomplete 
information, as opposed to classical optimization techniques 
such as gradient-based methods. This research is, therefore, 
aimed at filling the gap in literature through a com-
prehensive and critical review of the theory and applications 
of CI techniques for prediction, optimization, control and 
diagnosis of HVAC systems. Our work focuses on the widely 
used CI algorithms: artificial neural network (ANN), genetic 
algorithm (GA), evolutionary programming (EP), ant colony 
optimization (ACO), particle swarm optimization (PSO), 
pattern recognition-based methods (principal component, 
clustering, pattern matching and Bayesian networks) fuzzy 
logic and multi-agent systems (MAS).The paper does not 
cover HVAC system sourced by renewable energy systems. 

The paper started with a brief discussion on the rationale 
for the use of computational intelligence in HVAC app-
lications, followed by a discussion on the evaluation of 
objective functions along with classifications of CI algorithms 
based on their application in the HVAC domain. The rest 
of the paper is structured as follows. The methodology 
adopted for this review is discussed next. The review itself 
is organized in six sections, five of which are dedicated to 
key CI algorithms: metaheuristic, artificial neural networks,  
pattern recognition-based methods, multi-agent systems 
and fuzzy logic. The sixth section is dedicated to hybrid 

algorithms that combine one or more of the CI techniques 
discussed. The review sections are followed by an analysis 
of trends in published literature. Conclusions are drawn in 
the end and future directions for research are discussed. A 
discussion on the formulation of an optimization problem 
using illustrated optimization scenarios is also discussed  
in the appendix. We feel that we have presented a com-
prehensive review on CI techniques applied to HVAC 
systems and have made every effort to include all research 
studies in this domain but as no review can be exhaustive and 
there will always be some studies that fail to be included.  

2 Methodology 

The review was conducted by the authors over a period  
of fourteen months and relied on: (a) searching publication 
databases for peer-reviewed journal and conference articles, 
and books, and (b) researchers combined experience in the 
development and application of building optimization 
spanning several decades. The literature search was carried 
out using relevant keywords, identified through an iterative 
process of exploration, brainstorming and selection. Three 
different categories of keywords were used: (a) CI technique 
(e.g., neural networks), (b) application (e.g., fault detection), 
and (c) generic terms (e.g., building optimization) to ensure 
the breadth and depth of coverage. Search terms were 
combined with Boolean operators, “OR” and “AND” to 
cover widest possible combinations in search engines. Five 
key search engines were used to identify potential sources: 
IEEE Xplore (http://ieeexplore.ieee.org/Xplore/home.jsp), 
ScienceDirect (http://www.sciencedirect.com), Scopus 
(http://www.scopus.com/home) and Google Scholar 
(http://scholar.google.co.uk). Cited articles were checked 
and relevant cited articles were included in the review. 

3 Metaheuristic algorithms 

Metaheuristic algorithms are able to find local minima/ 
maxima; however, they can not guarantee an optimum 
solution for non-polynomial hard (NP-hard) problems. In 
literature, metaheuristic algorithms are typically classified 
based on their search techniques, i.e., as population-based 
or single individual-based (Yuce 2012). The most popular 
population-based algorithms are genetic algorithm, evolu-
tionary programming, ant colony optimization, particle 
swarm optimization, and the bees algorithm. The most 
popular single individual-based metaheuristic algorithms 
are tabu search, simulated annealing and stochastic hill 
climbing. Four metaheuristic algorithms: genetic algorithm, 
evolutionary programming, ant colony optimization and 
particle swarm optimization are reviewed in this section 
because of their wider use in HVAC applications.  
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3.1 Genetic algorithm 

Genetic algorithms (GAs) are an adaptive heuristic search 
technique based on the process of natural selection (Bagley 
1967; Holland 1992). GA gives a set of optimal/potential 
solution(s) to a problem. Each solution in the population is 
known as an individual. A generation is a new population 
of individuals that is created each time the optimization 
algorithm is repeated. GA has three evolution operators: 
reproduction, crossover and mutation. These operators 
control the evolution of future generations. Crossover 
involves swapping of two randomly chosen chromosomes to 
create a new individual or offspring. The mutation operator 
is also inspired from nature to generate modifications on 
an allele in order to look for new points in solution space 
(Goldberg 1989). GA is often initiated with a random 
population but can also be designed to start from a known 
population, i.e., a known set of individuals. The algorithm 
evaluates the population and then the three GA operators 
are applied to generate a new set of population. To evaluate 
a single individual, GA utilises a cost/fitness function that 
measures the performance (i.e., fitness) of the solution. The 
probability of an individual to be selected for next generation 
depends on its fitness value and the selection process. 
Fitness proportionate selection, also known as roulette 
wheel selection, is a commonly used selection technique 
that involves the following steps (Sahu et al. 2012):  
(1) Normalization of each individual’s fitness value;  
(2) Sorting of the population by descending fitness values;  
(3) Computation of the accumulated normalized fitness 

values;  
(4) Generation of a random number between 0 and 1; and  
(5) Selection of the first individual whose accumulated 

normalized value is greater than the generated random 
number.  

The individual with the higher fitness value has a higher 
probability than the lower one. The overall process of a typical 
genetic algorithm optimization is illustrated in Fig. 3. There 
are many variants of GA depending on the implemented 
selection and reproduction methods, as well as optimization 
strategies such as elitism4. Further discussion on GA 
fundamentals is out of the scope of this article; hence, the 
reader is referred to (Goldberg 1989; Mitchell 1996). 

3.1.1 Single-objective GA applications 

Zhou et al. (2003) incorporated an optimization module 
into EnergyPlus to determine the best control strategies  
to reduce electricity cost by varying cooling set-points for 
different seasons. The authors compared different optimiza-
tion methods: Nelder-Mead simplex method, quasi-Newton, 
simulated annealing (SA) and GA. Although SA gave better 
performance during summer, GA performed better during 
the remainder. Computation time for SA in the study was 
about 7 times higher than that for GA, which had the second 
largest computation time. GA uses a population-based 
global search methodology, whereas the other algorithms 
in this study perform a single individual-based strategy to 
look for the optimum that may be cost effective for a simple 
problem with non-complex solution space. However, it 
may be useful to implement a population-based solution for 
complex problems such as energy optimization of HVAC 
systems.  

A genetic algorithm was used by Lu et al. (2005) to 
optimize the overall system energy consumption of an 
HVAC system. Adaptive neuro-fuzzy inference system 
(ANFIS) was used to model the duct and pipe networks 
and to obtain optimal differential pressure set-points. The 
authors selected simple but accurate component models for 
real-time system optimization. The results obtained from 
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Fig. 3 Flow chart for a typical genetic algorithm optimization 

 
4 Elitism allows the best individual from current generation to carry over to the next, unaltered. Elitist GA guarantees that the quality of solution will not 
decrease from one generation to the next. 
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optimized approach were compared with tradition control 
schemes (fixed chilled water supply temperature control and 
fixed differential pressure set-point control). It was found 
that the overall performance of the system was improved by 
using the proposed method. The authors did not include any 
statistical analysis of the proposed method to demonstrate 
its robustness.  

The running cost of an HVAC system was minimised 
by using online optimal control strategy with GA (Wang and 
Jin 2000). Dynamic models were developed to self-tune the 
systems and a GA was used to tune the model parameters 
(control parameters). This method allowed the user to 
select different weight factors in the objective function and 
thus giving more flexibility to the occupants. The authors 
compared the proposed method with a conventional method. 
According to the experiments, the proposed method 
performed better than the conventional method. This is 
due to utilising an optimization approach onto the controller. 
However, the robustness of system has not been highlighted. 
The experiments can be extended by including several 
parameter combinations to verify the robustness of the 
proposed methodology.  

A system-based approach to optimize total chiller 
energy cost by using GA along with ANN was proposed by 
Chow et al. (2002). The authors initially considered chilled 
and cooling water mass flow rate, chilled water temperature, 
cooling water return temperature as control variables of the 
problem. The proposed approach considered three different 
strategies by using each control variable. In the first strategy, 
both chiller and cooling water flow rates were kept constant. 
In the second strategy, they used variable cooling water flow 
rate and constant chilled water flow rate; and in the last 
strategy both these variables were varied. ANN was used as  
a fitness function predictor and 5-5-9-4 architecture was 
selected for the ANN. The proposed cost function was an 
aggregated calculation of the outputs (Chow et al. 2002).  
It was found that the highest energy saving with this 
optimization process was achieved with the third strategy i.e. 
by using a maximum number of control variables. It is worth 
mentioning that the accuracy of the optimization process is 
also strongly related to the cost function predictor. Therefore, 
the authors should have made efforts to find the best topology 
for the cost function predictor to obtain better results. In the 
proposed model, the MSE (mean square error) of the ANN 
was around 0.002, which may reduce after network’s tuning.  

Another, chiller optimization model using GA was pro-
posed by Čongradac and Kulić (2012). They also utilised 
ANN to predict the outputs. In the proposed ANN, they 
utilised outlet temperature, return temperature and 
external temperature in the chiller to predict the status of 
four compressors used in the study. GA was used to find 
optimal input variables for the ANN for minimising energy  

consumption. The proposed model was saving 12% more 
energy compared to the normal daily usage of the model. 
To verify the performance of the algorithm the results were 
also compared with EnergyPlus simulation model, and it was 
found that the proposed model performed better than the 
simulation model. However, the authors did not present 
information about computational time and statistical analysis 
of the optimizer. Moreover, the experiments can be extended 
by using different configurations of the GA. Counsell et al. 
(2013) designed a robust non-linear controller. To improve 
its robustness, a non-linear inverse dynamics (NID) technique 
was combined with a GA. The controller results were com-
pared with a GA based PI controller, and it was found that 
the proposed controller was more stable, faster in response 
and had no oscillatory behaviour.  

Ma and Wang (2011) proposed an optimized control 
using simplified linear self-tuning strategy with GA for a 
central chiller plant to minimise its energy consumption. 
The proposed model was tested on a simulated virtual test 
system by using TRNSYS simulation environment. In the 
proposed model, temperature controllers were utilised to 
optimize the overall system. The results for mild-summer 
and sunny-summer conditions of the optimized controller 
were compared with the conventional controllers and found 
that the highest energy saving achieved during spring season 
was about 2.5% lesser than the conventional control strategy. 
The lowest energy saving achieved during the sunny- 
summer seasons was about 0.7%. The author did not tune 
the parameters of the optimizer which resulted in lower 
energy savings during the sunny-summer conditions. Also, 
the more energy savings can be achieved by addressing the 
model mismatch issue.  

Evolutionary algorithms can also be used for HVAC 
system designing (Stanescu et al. 2012). A detailed simulation 
tool (DOE-2) was used to evaluate the objective function and 
the authors also used three different permutation options 
(only mutation, mutation + crossover and only crossover). 
The optimizer was aimed to find an optimum HVAC system 
configuration to reduce energy consumption. It was found 
that the strategy of using crossover and mutation saved 
more energy as compared to the other strategies. However, 
the authors selected mutation only strategy as their optimal 
solution because it resulted in a good compromise between 
computational time and optimization results. This strategy 
consumed 1.76% more energy, whereas the strategy with 
crossover and mutation took 1.5 more days to complete 
500 iterations. A better solution can be achieved with better 
parameter sets of the EA, as there are no unique parameter 
sets for EAs to find better solutions. Therefore, parameter 
optimization is also required for the optimizer itself to 
obtain a better solution.  
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3.1.2 Multi-objective GA applications 

A multi-objective genetic algorithm (MOGA) method to 
find an optimum trade-off between energy cost and thermal 
discomfort was proposed by Wright et al. (2002). A single 
zone and an HVAC system, which consisted of heating and 
cooling coils, fan and heat exchanger, were simulated for 
three days. There were 189 control variables in the problem 
formulation, and it was pointed out that reducing the number 
of control variables may be less effective for lightweight 
buildings. Different constraints were imposed on coil design, 
system capacity and fan performance limitations. The system 
was simulated for three days to take into account the swings 
in the weather data. The results of each individual were 
compared to the results of single objective based optimization 
solution. As expected, the results of single objective optimizer 
were better than the multi-objective optimizer. Moreover, 
the study can be extended to find a better solution with 
different parameters settings. As GA is a global search 
algorithm and cannot guarantee a better solution with any 
random parameter sets for such a complex problem.  

Nassif et al. (2005) proposed an HVAC optimization 
method to optimize both energy consumption and thermal 
comfort by using a non-dominated sorting genetic algorithm 
(NSGA-II). Supply air and chilled water supply temperatures, 
minimum outdoor ventilation, supply duct static pressure, 
reheat (or zone supply air temperature) and zone air 
temperatures were optimized in the proposed model. The 
results from actual and optimal energy use were compared 
and it was found that the optimization strategy could save 
16% of energy for two summer months. The results of the 
proposed algorithm were also compared with the results of 
a single objective (electricity consumption) with a constraint 
on thermal comfort, and it was found that the proposed 
algorithm performed better. This is an expected result; 

however this can be related to the number experiments 
considered in this study.  

Mossolly et al. (2009) proposed a GA based optimization 
process for a VAV air conditioning system to optimize 
energy cost and thermal discomfort was implemented by 
using a quadratic mathematical cost function. Three control 
strategies (one conventional base strategy and two optimized 
advanced strategies) were employed and simulated to ensure 
thermal comfort with less energy cost. Simulation results 
showed that 30.4% of the energy was saved by using the 
optimized control strategies during the summer season. This 
was because of using fixed set-points in the conventional 
system; however optimization based process becomes more 
proactive to changes in the VAV system. Also, studies with 
fixed variables were also included but they were not justified 
as the best combination of the parameter sets for the pro-
posed problem. Therefore, by using a better combination 
of the parameters’ set may achieve better results.  

3.2 Evolutionary programming 

Evolutionary programming (EP) shares same algorithmic 
principles with GA by applying a similar strategy to con-
verge to optimal solutions. The main difference between 
them is their data representation, selection approach and 
the importance of recombination and mutation (Fong et al. 
2006). GAs use binary representation, whereas EP uses real 
numbers for the problem variables. In EP, both mutation 
and crossover are the core operators, while in GAs 
crossover is used as a core operator and mutation is used as 
a background operator. GA uses a strategy called “selection 
for reproduction”; on the other hand, EP’s next generation 
selection is based on “selection for survival” (Fong et al. 
2009). The EP procedure is shown in Fig. 4 
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Fig. 4 Flow chart for a typical evolutionary programming optimization 
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3.2.1 EP Applications 

Fong et al. (2006) proposed an evolutionary programming 
(EP) based optimization process to reduce the energy con-
sumption of an HVAC system for a local subway station by 
using TRNSYS simulation tool as evaluation engine. The 
authors studied three different strategies to analyze the effect 
of different control variables on total energy consumption, 
including chilled water temperature and supply air tem-
perature of air handling unit (AHU). The first strategy was 
the minimisation of the year-round energy consumption  
of the HVAC system using chilled water temperature as a 
control variable. The second strategy was to enhance the 
first strategy by including one extra control parameter, i.e., 
supply air temperature. The last strategy was to minimise the 
monthly energy consumption using both control variables 
used in the second strategy. It was found that by using two 
control variables gave better solution and also, monthly based 
optimization process generated better results compared to 
the yearly based optimization. The main effect to have a 
better solution with two control variables is directly related 
to optimizing the environmental conditions using two 
variables. Control variables tend to reduce entropy in the 
overall system and also more control variables in the system 
also increase the gain of the overall system. The performance  

of the monthly based solution was found better than the 
one with a yearly solution because the resolution was better 
on monthly based solution. The authors used 50 epochs for 
the problem but did not mention about the computational 
time required to solve the problem.  

3.3 Ant colony 

Ant colony optimization (ACO) was first proposed by 
Marco Dorigo in the early 1990s (Colorni et al. 1991) and 
can be categorised as a metaheuristics method. It uses an 
algorithm that is used by ants in real life. The basic ant 
colony concept is shown in Fig. 5, the black dotted lines are 
the amount of pheromones on each trail. The behaviour of 
ants to follow optimal path to search for their food can be 
explained in four steps (Fig. 5): (a) Initially all three ants 
can choose any of the paths with same probability to reach 
to their food. (b) All of the ants chooses a different paths and 
one ant has a shorter path than the others. Ants deposit 
chemical substance (pheromone) while they walk so that 
other ants can follow them and also to remember their  
path. (c) The shorter path has a stronger pheromone trail 
than the longer path. (d) After certain time, the longer  
path pheromones were evaporated, and the shorter path 
pheromone trail became more dominant and all ants will 

(a) (b)

(c) (d)

Food

Obstacle

Pheromone
 

Fig. 5 ACO behaviour at different time stamps: (a) ants ready to choose any of the three paths with same probability, (b) ants have
chosen three different paths, (c) stronger pheromone on shorter path, (d) longer path pheromones were evaporated and all ants have
chosen shorter path 
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choose the shorter path (Tavares Neto and Godinho Filho 
2013). Some of the most used ACO algorithms are ant system 
(AS), ASElite, ASRank, ant colony system (ACS), max–min 
ant system (MMAS), best–worst ant system (BWAS).  

The ACO algorithm is demonstrated in Fig. 6, the ACO 
procedure consists of mainly three steps. In the first step 
initialisation of pheromone takes place. The second step 
involves the creation of complete solution by all ants. The 
solution is created by using pheromone trail. The quantity 
of pheromone trail is updated in the third step. This step  
is applied in two phases: in first phase, a fraction of 
pheromone evaporates (evaporation phase) and then in 
reinforcement phase each ant deposits pheromone that is 
proportional to the value of fitness of its solution. After this 
step, step 2 is again applied to the problem until the stopping 
criterion is met. 

In ACO, the quantity of pheromone is intensified around 
the best objective function value that was obtained during 
the previous iteration. The new position of ants is given by 
Eq. (1):  

,best
1

k g
t tx x x+ = ¶  (t=1,2,3,...,I)                     (1) 

where: x¶  is a randomly generated vector in the range of 
[−α, α] and ,bestg

tx  is the best solution found by ants. The 
length of jump is calculated by using Eq. (2): 

1 0.1t tα α+ = ´                                    (2) 

The   sign in Eq. (1) is the direction of movement, and it is 
decided depending on the value of bestx  comparing to ,bestgx . 

The step 3 of ACO procedure is described by Eqs. (3) 
and (4):  

10.1t tτ τ -= ´                                   (3) 

1 ,best(0.01 ( ))t t gτ τ f x-= + ´                        (4) 

where: τt is the quantity of pheromone, Eq. (3) represents 
evaporation phase and Eq. (4) represents reinforcement 
phase.  
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Fig. 6 Flowchart for a typical ant colony optimization (ACO) 

3.3.1 ACO Applications 

Lixing et al. (2010) proposed an ACO based method to pre-
dict HVAC cooling load by using support vector regression 
(SVR), SVR is known for its better ability to correlate 
inputs and outputs. However, the parameter determination 
of SVR is a big challenge and ACO was used to deal with this 
problem. The authors utilised this approach to determine 
following parameters of the SVR to predict the cooling load: 
the penalty parameters, insensitive loss function and a kernel 
function. The results of the SVR-ACO were compared with 
the back propagation ANN (BPANN). According to the 
experimental results, the optimized SVR produced better 
solutions than the BPANN. However, the authors did   
not compare other training algorithms with BPANN. A 
Levenberg–Marquardt based BPANN could have been    
a better alternative to generate better solution because it 
uses least square algorithm as learning and training 
methodology. 

3.4 Particle swarm optimization (PSO) 

PSO is categorised as a heuristic search method and is a 
population-based approach. It was invented by Kennedy 
and Eberhart in 1990s (Kennedy and Eberhart 1995). The 
steps involved in PSO algorithm are illustrated in Fig. 7, 
and are: generating particle positions and velocities, updating 
their velocity and updating their position. The particle is a 
point (solution) in the design space; each particle is initialised 
by a random position in the problem space and then is 
“flown” through the space to find the best position for itself. 
The solution of each particle is compared with other particles 
by using a fitness function. After this comparison, each 
particle moves toward two positions i.e. its own best position 
and the best position achieved so far by all particles (Lee et 

 

Fig. 7 Flow chart for a typical particle swarm optimization (PSO) 
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al. 2009). The updated position and velocity can be given 
by following equations:  

, 1 , 1 1 , , 2 2 ,( ) ( )i k i k i k i k g i kv wv C r y x C r y x+ = + ´ ´ - + ´ ´ -     (5) 

, 1 , , 1i k i k i kx x v+ += +                                (6) 

where: C1 and C2 are the acceleration constants, r1 and r2 are 
two random numbers between 0 and 1, vi and xi are the 
velocity and position of the particle i, respectively, yi is the 
personal best position of particle i and yg is the best position 
of all the particles (at present).  

3.4.1 PSO Applications 

Single-objective applications. Xu et al. (2013) used PSO to 
pre-cool a building for energy reduction by shifting peak 
load of the building. The PSO based optimizer utilised the 
start time and duration of the pre-cooling/pre-heating to 
minimise the energy consumption. The energy consumption 
of the case with pre-cooled strategy using PSO optimizer was 
lesser than the one without PSO optimizer. PSO algorithm is 
one of the efficient stochastic based optimization algorithms 
and if the weights and inertia parameters are properly tuned 
then the computational speed can be faster.  

Lee and Cheng (2012) combined EnergyPlus simulation 
programme with a hybrid optimization algorithm, com-
bining PSO with Hooke-Jeeves, to find optimal settings of a 
chilled water system. The PSO was used for local search 
optimization problem; however, algorithm had slow con-
vergence rate and weakness on the search process (Yuce et 
al. 2013). Therefore, PSO was combined with the Hooke- 
Jeeves algorithm to avoid its weaknesses in this research. 
Two types of strategies were implemented to show the 
strength of the algorithm. In the first strategy, constant 
optimal chilled and cooling water temperatures were selected 
as set-points. Whereas in the second strategy, both set-points 
were considered as changing over time. Simulation results 
for 4 summer and 4 winter days showed that the energy 
consumed was reduced by 9.4% in summer and 11.1% in 
winter when compared with the conventional settings. This 
study was only carried out for 8 days, which limits its 
usefulness and an yearly based simulation should have been 
performed to see the effect of seasonal variation.  

Multi-objective applications. An optimization of an HVAC 
system by using strength multi-objective particle swarm 
optimization (S-MOPSO) was carried out by Kusiak et al. 
(2011). The proposed algorithm was a combination of multi- 
objective particle swarm optimization and strength pareto 
evolutionary algorithm (SPEA). Evolutionary algorithms 
have strong ability of global search and weak ability of local 
search. On the other hand, PSO has a strong local search 
ability and weak global search ability. The hybridization of 

these both algorithms empowers the search process. Hourly 
optimal control settings were generated to minimise the 
energy consumption while maintaining the thermal comfort 
at an adequate level. The proposed algorithm performed 
better than the conventional MOPSO, because of its enhanced 
ability to search for both local and global solutions rather 
than only local solutions.  

3.5 Discussion 

Several stochastic based optimization algorithms have been 
utilised in the area of HVAC system optimization. Each 
algorithm has different specifics and search ability on the 
solution space; for example GA and EA are suitable for 
global search, however, the convergence rate is lower than 
the other algorithms. Moreover, PSO has a strong ability 
on the local search optimization process and therefore the 
search process is slower than GA. Further, ACO is capable 
to do a global search and has a better convergence rate than 
GA on the local search process. According to Mitchell (1996), 
the GA method is more suitable when an optimal solution 
is not perfectly smooth. Also, when the cost function is 
noisy or optimal problem is not well understood. GAs are 
mostly applied when a problem does not require an absolute 
solution. In some studies, GAs were also combined with 
artificial neural networks. ANNs were used for modelling 
purposes due to their ability to model complex non-linear 
system, whereas GAs were used to find a global optimum 
e.g., in the studies by Chow et al. (2002) and Čongradac   
and Kulić (2012). More work needs to be done to integrate 
control strategies and models with the building energy 
management systems. Real-time experiments need to be 
performed to evaluate the performance of control strategies. 
Table 1 summarizes work focussing on meta-heuristics 
algorithms.  

4 Artificial neural networks 

The idea of artificial neural networks (ANNs) is inspired 
from a human nervous system with its neurons, axons, 
dendrites and synapses. A neural network is a parallel 
distributed processor that stores knowledge from experience 
and makes it available to use (Haykin 1994). The artificial 
neural network resembles the human brain in two ways: 
the network acquires the knowledge through the learning 
process, and inter-neurons connection strengths (synaptic 
weights) are used to store the knowledge. Artificial neural 
networks do not require any advanced information about 
the system as they operate like a black box model. ANNs 
learn the relationship between inputs and outputs through 
previously recorded data. In literature, several ANN learning 
strategies have been introduced such as feed-forward network, 
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self-organizing maps, Hopfield Network, Elman Network 
and Radial Basis Network (Krenker et al. 2011). The most 
popular and generic among them is the feed-forward network, 
which is used for most of the problems, other learning 
strategies are specifically designed for specific problems 
such as classification, clustering and mapping (Mokhlessi 
et al. 2010). A schematic diagram of a feed-forward neural 
network architecture is shown in Fig. 8. A neural network 
consists of input, output and hidden layers. In Fig. 8, only 
two hidden layers are shown and the number can be more 
than 2 depending on the nature and complexity of the pro-
blem. At input layer, each neuron corresponds to each input 
parameter and at output layer each neuron corresponds to 

each output parameter (Kalogirou 2009). Each neuron is 
connected to every other neuron of the previous layer through 
adaptable synaptic weight. A training process is carried out 
to train ANN by modifying the connection weights and 
weights are adjusted to produce the desired outputs. The 
procedure of artificial neural network is shown in Fig. 9. The 
output signal from an ANN is calculated by using Eq. (7): 

( )i iy T W a b= +å                               (7) 

where i is used for i-th input, W is the connection weight, T 
and b represent transfer function and bias value respectively, 
a denotes input data and y is the output signal. 

Table 1 Review summary of meta-heuristic algorithms 
Objective functionc 

Algorithma Methodb 
Simulation  

tool EC TC VC OP Other 
Building sector/ 

system type 
Country/ 

SARd Sourcee Year Ref. 

EP Dynamic 
controller 

TRNSYS ✓ ✓    Commercial centralised 
HVAC 

HK ENB 2006 Fong et al. (2006) 

NM 
BFGS 
GA 
SA 

 EnergyPlus ✓ ✓    Commercial USA IBPSA 2003 Zhou et al. (2003) 

GA Optimal control TRNSYS ✓     Residential KR ENB 2014 Seo et al. (2014) 

PSO Optimal control EnergyPlus 
Matlab 

✓ ✓    Educational USA IEEEf 2013 Xu et al. (2013) 

GA ANFIS Matlab ✓ ✓   IAQ All SG ENB 2005 Lu et al. (2005) 

GA PID TRNSYS ✓ ✓   IAQ 

VF 

All VAV HK BAE 2000 Wang and Jin (2000) 

GA 
PSO 
Hooke–Jeeves 

 EnergyPlus ✓ ✓    Commercial chiller TW ENB 2012 Lee and Cheng (2012) 

GA  EnergyPlus ✓     Sports UK ENB 2014 Yang et al. (2014) 

GA PI 
NID 

 ✓ ✓     UK Eng Comp 2013 Counsell et al. (2013) 

GA ANN  ✓ ✓   IAQ Commercial CA BAE 2009 Zhou and Haghighat (2009) 

GA   ✓ ✓    Educational AHU CA HVAC&R 2005 Nassif et al. (2005) 

Hooke–Jeeves Optimal control GenOpt ✓    IAQ Commercial USA ENB 2014 Rackes and Waring (2014) 

PSO   ✓     Commercial 
CAV 
VAV 

USA IEEEf 2012 Yang and Wang (2012a) 

GA Optimal control V. DOE 4.0 ✓ ✓   IAQ Educational AHU LB EGY 2009 Mossolly et al. (2009) 

GA   ✓     Health 
Electric turbo refrigerator

JP BAE 2009 Ooka and Komamura (2009) 

GA Rule based control TRNSYS ✓     Commercial chiller HK ApEn 2011 Ma and Wang (2011) 

PSO 
S-PSO 

ANN  ✓ ✓  ✓  Educational AHU USA EGY 2011 Kusiak et al. (2011) 

EA  DOE-2 ✓     Educational VAV, CAV CA IBPSA 2012 Stanescu et al. (2012) 

GA    ✓   ECO Single zone building UK ENB 2002 Wright et al. (2002) 

GA   ✓     Single zone building UK HVAC&R 2006 Zhang et al. (2006) 

PSO 
GA 
Sequential search 

 DOE-2  ✓   LCC Residential USA ENB 2011 Bichiou and Krarti (2011) 

Notes: 
a EP: evolutionary programming, NM: Nelder–Mead simplex, BFGS: Broyden–Fletcher–Golfarb–Shanno, GA: genetic algorithm, SA: simulated annealing, PSO: particle swarm optimization, S-PSO: strength-particle swarm 
optimization, EA: evolutionary algorithm. 
b Control and/or fault detection and diagnosis (FDD) method. ANN: artificial neural network, PI: proportional integral, ANFIS: adaptive network-based fuzzy inference system, NID: non-linear inverse dynamics. 
c EC: energy consumption, TC: thermal comfort, VC: visual comfort, OP: occupant preference, IAQ: indoor air quality, VF: ventilation flow, ECO: energy cost, LCC: life cycle cost. 
d Country of the corresponding author in the case of authors from different countries. SAR: special administrative region, HK: Hong Kong SAR, China, SG: Singapore, RS: Serbia, TW: Taiwan area, China, CA: Canada, LB: 
Lebanon, UK: United Kingdom, USA: United States of America, KR: Republic of Korea, JP: Japan. 
e ENB: Energy and Buildings, ATE: Applied Thermal Engineering, BAE: Building and Environment, Eng Comp: Engineering Computations, HVAC&R: HVAC&R Research, EGY: Energy, ApEn: Applied Energy, IBPSA: International 
Building Performance Simulation Association. 
f IEEE conference. 
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Fig. 8 ANN schematic diagram 

 

 
Fig. 9 ANN procedure 

4.1 Artificial neural network topology 

The most important design considerations for an artificial 
neural network are finding the right number of hidden 
layers, the number of neurons in hidden layer, and the 
number of input and output nodes. According to Kalogirou 
(2009), finding the right number of neurons in the hidden 
layer is the biggest challenge in designing an artificial neural 
network. Their selection depends on the number of inputs 
and outputs and also on the number of training sets/cases. 
In past, researchers have tried to find the right number of 
hidden layers and hidden layers’ neurons; however it is more 
a trial and error approach. Too few neurons in hidden layer 
can result in large errors, whereas too many neurons can 
result in overtraining. Initially, a lower number of hidden 
layer is selected and then the ANN is trained and tested. 
Depending on the results obtained, the number of hidden 
layers can be increased.  

The number of neurons also depends on the complexity 
of the problem. Argiriou et al. (2000) used an ANN network 
for solar radiation prediction of solar irradiation that consisted 
of 28-16-8-1 neurons. Solar irradiation is a complicated  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

variable as it changes both in space and time and therefore 
extra care is needed in selecting network topology. The 
authors considered last and six previous values of daily 
normalised time, ambient temperature, day of the year and 
solar irradiation. The higher number of input neurons 
could not guarantee better results and can increase the 
computational time.  

Moon et al. (2013) compared the performance of an 
ANN model with different hidden layers (from 1 to 5). It 
was found that the minimum RMS (root mean square) and 
MSE (mean square error) values were produced by a 3 
hidden layered model. The authors also varied number of 
neurons in the hidden layers and a variation from 10 to 20 
neurons in each hidden layer was tested, and it was found 
that the optimal number of neurons was 10 neurons. This 
shows that increasing the number of neurons may not give 
better results but can increase the complexity of the model. 
Different topologies were adopted by different researchers 
for ANN applications on HVAC systems. A summary of 
these topologies is given in Table 2.  

4.2 Training methods 

ANN learns from examples and generates a mapping 
relationship between inputs and outputs. To generate this 
mapping relationship, every network is trained from the 
given example, and then testing and validation are carried 
out. The training methods for ANN are mainly classified into 
two main groups i.e. supervised learning and unsupervised 
learning. In supervised learning, the inputs and desired 
outputs are known to the network and training methods 
are applied to minimise the error between the desired  
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outputs and ANN output values. In unsupervised learning 
(adaptive learning), inputs are only known in the topology 
and learning methods are used to find the hidden structure 
in an unlabeled dataset.  

In literature, several ANN training algorithms have been 
proposed. Yuce et al. (2014) tested several training algorithms 
to increase the efficiency of a neural network for HVAC 

control system. They compared the training performance of 
the gradient descent based algorithms, Levenberg–Marquardt 
Algorithm (LMA) and conjugate based training algorithms. 
The gradient descent based algorithm utilises steepest 
descent algorithm, whereas LMA is an approximation of the 
Newton method that increases the accuracy of the output 
compare to other algorithms (Hagan and Menhaj 1994). The 

Table 2 ANN topologies in past research 
Ref. Year Predicted variable No. of layers No. of neurons 

Argiriou et al. (2000) 2000 Weather conditions 4 10-8-4-1 
  Heating energy 3 35-15-1 
  Indoor air temperature 4 12-12-6-1 
Argiriou et al. (2004) 2004 Solar irradiation 4 8-32-32-4 
  Ambient temperature 4 8-32-32-4 
  Supply temperature 4 52-32-32-12 
  Indoor temperature 4 56-32-32-4 
Kanarachos and Geramanis (1998) 1998 NN1: boiler control variable 2 1-1 
  NN2: boiler control variable 3 1-3-1 
  NN3: boiler control variable 2 2-1 
  NN4: boiler and heating systems control variables 2 2-2 
Ben-Nakhi and Mahmoud (2002) 2002 Thermostat end of setback   3 19-466-1 
   3 20-466-1 
   3 21-466-1 
   3 22-466-1 
   3 23-466-1 
   3 24-466-1 
Moon et al. (2013) 2013 Indoor air temperature 6 7-10-10-10-10-1 
Wang and Chen (2002) 2002 Stuck damper 3 3-10-1 
  Outdoor airflow sensor fault    
  Supply and return airflow sensors fault   
  CO2 sensor fault   
Curtiss et al. (1994) 1994 Energy load 4 6-10-10-1 
Ning and Zaheeruddin (2010) 2010 Fan speed 3 7-40-5 
  Airflow rate entering into zones   
  Chilled water flow rate    
  Compressor speed    
Morisot and Marchio (1999) 1999 Supply air temperature 3 6-4-2 
  Supply air humidity   
Lee et al. (1996) 1996 Supply fan 3 7-5-9 
  Pump   
  Return air fan   
  Cooling coil valve   
  Thermocouple     
  Pressure transducer     
  Supply and return flow stations   
Wang and Chen (2002) 2002 Outdoor airflow rate 3 3-10-1 
Li et al. (1996) 1996 Leaky valve 3 ANN1: 4-2-2 
  Early boost and Late boost  ANN2: 6-2-6 
  Heating curve fault     
  Exchanger fault     
  Bad combustion   
  Normal operation    
Li et al. (1997) 1997 Leaky valve 3 7-2-7 
  Early boost and Late boost   
  Heating curve fault     
  Exchanger fault     
  Bad combustion   
  Normal operation    
Yuce et al. (2014) 2014 Thermal energy consumption  4 8-22-20-3 
  Electricity consumption    
  Thermal comfort     
Du et al. (2014a) 2014 Supply temperature 3 5-8-1 
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authors proposed that the second order gradient methods 
(Levenberg–Marquart) are best suited for complex pro-
blems such as HVAC control (Yuce et al. 2014). A detailed 
mathematical description of different learning algorithms 
can be found in Meireles et al. (2003). 

According to Werbos (1974), the most popular learning 
algorithms for ANNs are the back propagation (BP) and its 
variants. The BP learning algorithm is a gradient descent 
algorithm that reduces the total error by changing the 
weights along its gradient to improve the performance of 
an artificial neural network. The sum of square value of the 
error is calculated by Eq. (8):  

21
2 ip ip

p i
E t o

é ù
ê ú= -ê úë û
åå                           (8) 

In the above equation, t is the target output, o is the output 
vector and E is the sum of squares error function.  

4.3 ANN applications 

4.3.1 HVAC control 

Artificial neural networks are self-learning controllers that 
can be used for energy management and comfort manage-
ment. An ANN based controller to optimize building energy 
demand by predicting the energy demand and weather 
conditions was proposed by Argiriou et al. (2000). The 
controller was designed for a solar house and was used   
to decrease the possibility of overheating. The authors used 
four modules for predicting solar radiation, outside air 
temperature, electrical heaters’ state (ON/OFF) and for 
estimating indoor air temperature for next time step. The 
controller was implemented on PASSYS test cell with a 
time step of 15 minutes (Vandaele and Wouters 1994). 
Considering the complexity of the controller, 15 minutes 
time step was a reasonable selection and as maller time step 
might have increased the complexity of the hardware. The 
controller was compared with an ON/Off controller and it 
was found that the ON/OFF controller did not consider the 
thermal inertia of the building, which resulted in an increase 
in the indoor air temperature.  

The above study was only limited to electrical heating 
systems and was applied on a test cell. Argiriou et al. (2004) 
and Kanarachos and Geramanis (1998) used the prediction 
capabilities of ANN, and used ANN as a controller for 
hydronic heating systems. Kanarachos and Geramanis (1998) 
implemented ANN controller on a single zone hydronic 
heating systems, whereas Argiriou et al. (2004) tested their 
controller on an office building. Both of these works consi-
dered the same type of heating system. However, Kanarachos 
and Geramanis (1998) did not perform prediction of indoor 
temperature and outdoor weather conditions. The ANN 

controller designed in Argiriou et al. (2004) was not able  
to cope with the cold Monday mornings due to the late 
start of the heating system and resulted in higher values of 
discomfort. This problem was tackled by using another 
ANN module to cope with step changes in the set-point 
temperature.  

PID controller is a most widely controller for HVAC 
system but they cannot deal with the non-linearities present 
in HVAC systems. Curtiss et al. (1994) used ANNs for local 
and global control of a commercial building’s HVAC system 
to address the problems of PID controller. For local control 
a hot water coil was considered, whereas for global control 
whole HVAC system was considered. From results of local 
control, the non-linear behaviour was clearly shown, and 
the valve exhibited critically damped oscillatory behaviour 
at higher set-point temperature. It was also shown that PID 
results are very much dependent on the gain values. The 
system became unstable at a gain value higher than 2. ANN 
results showed quick response and minimal overshoot.  

Curtiss et al. (1994) also studied the effect of learning rate 
on the controller’s results. For global control, the ANN was 
used to model the system (predicting its power consumption). 
The proposed global control method consisted of two 
ANNs. The first ANN was used to learn the relationship 
between different input variables, weather conditions and 
power consumption. The second ANN was used to find 
optimal operating conditions by adjusting local loop set- 
points. In order to simplify results, only cooling mode was 
studied. ANN outperformed PID controller in controlling 
heating coil and also showed promising results in controlling 
the whole HVAC system. ANN controller is more suitable 
for non-linear problems, and this study clearly showed  
that it performed better than the PID controller, which  
was unable to consider the non-linear behaviour of HVAC 
components.  

An NN-based optimization method was developed   
by Ning and Zaheeruddin (2010). The method integrated 
an NN-based optimization technique with a model-based 
prediction. The objective of the research was to find optimal 
set-points for a variable air volume (VAV) system. The 
authors used two different zones: in one zone the cooling 
load was mainly affected by internal gains, whereas in the 
second zone the cooling load was mainly affected by the 
outdoor air conditions. The results showed that both the 
night reset strategy and ANN control maintained indoor 
air temperature at the desired value. However, the energy 
cost for ANN case was lower than the night reset strategy. 
Fan energy use was higher for ANN controller because   
it took advantage of the cold outdoor air temperature in  
the morning and tried to pre-cool the building. Simulation 
results were compared with the conventional night reset 
operation scheme and it was found that ANN based controller 
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saved around 19% energy under part load conditions and 
10% under full load conditions. Energy savings were higher 
for part load because the temperature set-points for night 
reset strategy were not closer to the optimal values.  

Song et al. (2003) developed a robust NN controller for 
a VAV system. This was the first work that addressed the 
stability and robustness issues of a VAV system by using  
a robust NN controller. A normalised learning algorithm 
was used by the authors to train the NN. This method 
eliminates the requirement of a bounded regression system. 
One of the limitations of ANN controllers is that their 
model is dependent on historical data and any changes in 
the operating condition can result in invalidity of the model. 
The authors used an adaptive dead-zone scheme to enhance 
stability and adaptive capabilities of the system. The con-
troller was developed to deal with system’s uncertainties 
and disturbances because of incomplete knowledge of the 
system. When compared with standard NN, the proposed 
controller performed better. Simulation results showed that 
the robust NN controller guaranteed convergence and smaller 
error as compared to the standard back propagation neural 
network.  

Yuce et al. (2014) proposed an ANN based real-time 
prediction engine for energy consumption and thermal 
comfort of an HVAC system for an indoor swimming pool. 
They utilised two control variables and six environmental 
variables as inputs to predict thermal energy consumption, 
electricity consumption and thermal comfort level of the 
swimming pool. To train the ANN, they used a calibrated 
MATLAB Simulink-based thermal model to generate the 
data set. The authors tested several different ANN topologies 
to find the best configuration, and it was found that the 
network with Levenberg–Marquart as training algorithm 
generated better results with two hidden layers. The authors 
used ANN for developing the model of the system, further 
work towards developing an ANN controller needs to be 
done.  

General regression neural network (GRNN) were also 
used for HVAC control because of its quick learning ability, 
fast convergence and easy tuning as compared to the standard 
back propagation NN. GRNN was used by Ben-Nakhi and 
Mahmoud (2002) to optimize air conditioning setback 
scheduling and to demonstrate its advantages over standard 
NN. The objective was to predict the time of the end of 
thermostat setback while ensuring that the indoor design 
temperature is restored at the start of business hours. After 
office hours the indoor air temperature was allowed to rise 
to save energy. Two public buildings were considered in this 
study, and ESP-r tool was used to generate a database for 
training and testing ANNs. The authors also used Net-Perfect 
algorithm to prevent the possibility of overtraining. Different 
neural networks were compared with each other and 

GRNN. The R2 values for standard ANN were increased by 
increasing the number of input neurons, but this also 
increased the complexity of the problem. It was concluded 
that GRNN is a powerful technique for setback scheduling 
and it also performed better, even when it was introduced 
to the “production data” (it is the data which is outside the 
training data set).  

4.3.2 HVAC fault detection 

Artificial neural networks were also used for fault detection 
and diagnosis. They are trained on residual patterns or 
fault patterns to identify different faults in HVAC systems. 
Lee et al. (1996, 1997) used residual patterns to train ANN 
for fault diagnosis in an AHU, whereas Li et al. (1996) used 
fault patterns to identify faults. Other studies include, Wang 
and Chen (2002) trained ANN to diagnose faults of different 
sensors of an HVAC system. A GRNN was used by Lee et 
al. (2004) to find faults in an AHU system.  

Morisot and Marchio (1999) used an ANN for fault 
diagnosis and detection (FDD) on a VAV system. The authors 
mentioned the importance of using real data for training 
ANN. However, due to unavailability of real data, the training 
was performed by using a physical model. Results were 
presented for normal behaviour and on faulty operations. It 
was found that the faults were successfully detected by the 
ANNs. Lee et al. (1996) also applied ANN to the problem 
of fault diagnosis in an AHU. Eight different faults were 
studied, and the ANN was trained by using relationships 
between faults and their dominating symptoms. This approach 
was successfully applied to identify 8 different types of 
faults. The authors also used ANN for modelling and used 
IF THEN reasoning to construct a pattern of dominating 
training residuals for each fault. The number of faults can 
increase with the complexity of a system, this issue was 
highlighted by the authors, and it was suggested that it may be 
desirable to develop separate ANNs for different subsystems. 
This study was conducted under experimental conditions 
and its application on a real system with noise was not 
evaluated, which can be a limitation of this study. This 
study was based on steady state conditions but the problem 
can change when dynamic conditions are considered.  

Wang and Chen (2002) presented a supervisory control 
scheme to adapt to the presence of faults in an outdoor 
airflow rate control. The difference between NN output and 
the measurement of outdoor/supply airflow sensor is used 
to regain the outdoor airflow control. The proposed strategy 
was tested by using dynamic thermal simulations and the 
controller was able to maintain the indoor air quality at a 
satisfactory level without any increase in energy consump-
tion. Lee et al. (2004) used another type of neural network 
known as a general regression neural network (GRNN) to 
diagnose faults at a subsystem level. The parallel structure 
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of GRNN makes it a better option for real-time applications. 
IF-THEN rules were used for the classification of different 
faults on a subsystem level. The GRNN model was accurate 
in finding different faults.  

Li et al. (1996) developed an ANN based fault diagnosis 
method for six different faults. They used mathematical 
modelling to obtain a database to train and test a neural 
network. Seven operating modes (classes) were studied: 
normal, bad combustion, heat exchanger (for dirtiness and 
scale formulation), heating curve (bad tuning of radiators), 
leaky valve, early boost and late boost classes. Initially, only 
one neural network was used to differentiate between all 
seven classes. However, it was found that there was a risk  
of normal class to be detected as a control system fault. The 
authors used water supply temperature to discriminate 
heating curve class from others, which is dependent on the 
type of building and system. It was noted that it was difficult 
to find a reference value for supply water temperature that 
can represent good tuning of the heating curve for different 
systems and buildings. Different neural network architectures 
were tried including a combination of two neural networks. 
The first ANN (ANN1) was used to discriminate heating 
curve class from other classes and second ANN (ANN2) was 
used for discriminating other classes from heating curve 
class. It was found that on high solar radiation days, the 
ANN1 was unable to detect a heating curve that is too low. 
This ANN also, classified boost heating too late as a too  
low heating curve. ANN2 showed non-classification rate 
between 0 and 12% for different classes. Most of the bad 
classification was due to the confusion between early, normal 
and late boosts. Due to these limitations, the authors decided 
to use a single artificial neural network structure that can 
combine all fault classes instead of using multi neural 
networks for different classes.  

A single artificial neural network architecture was used 
by Li et al. (1997) to solve the same problem. It was found 
that heating curve and boosting curve detection was easier 
and the correct classification rate varied from 91% to 100%. 
This study shows the importance of network architecture 
for ANN performance. The performance of single artificial 
neural network could be better because single network 
learns a global knowledge more easily than a multiple ANN 
(Li et al. 1997).  

It is a well-known fact that the quality of artificial neural 
networks results strongly depends on the quality of training 
data and any uncertainty in the data can decrease the 
efficiency of a neural network. This problem was tackled by 
Du et al. (2009) by using wavelet neural networks. Wavelet 
analysis was used to process the original data and to seize 
valuable information. Through this method, noise in the 
training data can be removed and the ANNs can be easily 
and well trained. By constructing different data groups using 

essential relations and models, and combining wavelet analysis 
with a neural network, it was found that the ability of neural 
networks to diagnose various faults can be improved.  

Artificial neural networks were also used by Wang and 
Chen (2002) for fault-tolerant control in an outdoor airflow 
control. A supervisory control scheme was proposed for 
this purpose, and sensor based demand scheme was used. 
The faults were diagnosed by using the residuals between 
the measurements of flow sensors and the outputs of the 
neural network. The simulation results showed that the 
developed strategy was able to find a good compromise 
between energy consumption and indoor air quality.  

Peitsman and Bakker (1996) applied black box models 
for generating models for fault detection in HVAC systems. 
Multiple input single output (MISO) ARX (autoregressive 
with exogenous input) and ANN models were used for this 
purpose. The examined system was fully equipped with 
different type of sensors and meters and therefore, it was 
easy to create models from the collected data. Two types of 
models were created with the measured data i.e. system 
models and component models. ANN models performed 
slightly better than the ARX model. This work was further 
extended by Peitsman and Soethout (1997) and applied 
ARX models for real-time fault detection and diagnosis in 
HVAC systems.  

4.3.3 Discussion 

Artificial neural networks are mainly used in literature due 
to their ability of solving non-linear problems. Artificial 
neural network is one of the widely used techniques to make 
predictions without having any knowledge of the system. 
ANN can be classified as data driven method and like other 
data driven methods, they heavily rely on the quality of the 
training data. It is also found that most of the studies are 
based on static model prediction. The model is built by 
using historical data and when the new data is available or 
when the data outside the training set is present then the 
previous model may no longer be valid, which limits the use 
of ANNs. This problem can be solved by using an adaptive 
ANN model: a model that can adapt to any changes in the 
incoming data patterns and has an inherent self-revision 
capability. An example of such method can be found in 
Yang et al. (2005), the authors used adaptive ANN models 
to predict building energy.  

ANN fault detection and diagnostic methods are based 
on residual values, which depend on a comparison of 
actual value and value obtained from the model. Therefore, 
modelling error is critical in these applications. In literature, 
only one fault at a time was detected, and no study was 
found that dealt with a combination of faults at the same 
time. In future this problem needs to be addressed. One of 
the main limitation of artificial neural network is to find an 
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appropriate network, which is a trial and error process. By 
increasing the number of hidden layers and neurons can 
minimise the error but can also increase the training time. 
Too many hidden layers can also result in overfitting, which 
in return can cause poor generalisation of ANN model.  

Most of the previous studies are either carried on 
experimental set ups or are based on simulations, more 
studies should be performed on real operating systems to 

evaluate the performance of ANNs in real systems. In future, 
generalisation of ANN models needs to be addressed so that 
one model can be used for different buildings and HVAC 
systems. Different prepossessing techniques need to be 
investigated to improve the quality of training data e.g. use 
of wavelet neural networks for seizing valuable information 
(Chen et al. 2006; Du et al. 2009). Table 3 summarizes 
research work focussing on artificial neural networks.  

Table 3 Review summary of artificial neural networks 

Objective functionc 

Methoda Algorithmb 
Simulation 

tool EC TC VC OP Other Fault 
Building sector/ 

system type 
Country/ 

SARd Sourcee Year Ref. 

ANN BFGS quasi-Newton BP 
CG–BP 
GD–BP 
LM BP  

Matlab ✓ ✓     Sports facility UK ENB 2014 Yuce et al. (2014) 

ANN BP TRNSYS 
SNNS 

✓ ✓     Commercial GR NeuNet 2000 Argiriou et al. (2000) 

ANN BP TRNSYS ✓ ✓     Single zone 
Hydronic hetaing 

GR NeuNet 2004 Argiriou et al. (2004) 

ANN BP  ✓ ✓     Residential 
Hydronic hetaing

GR ECM 1998 Kanarachos and 
Geramanis (1998) 

GRNN  ESP-r ✓ ✓     Commercial  KW ApEn 2002 Ben-Nakhi and 
Mahmoud (2002) 

ANN LM BP TRNSYS  ✓ ✓   IAQ  Commercial  
VAV 

HK BAE 2002 Wang and Chen (2002)

ANN Delta rule BP  ✓ ✓     Commercial USA IEEEf 1994 Curtiss et al. (1994) 

ANN LM BP Matlab  ✓  ✓      Commercial KR BAE 2013 Moon et al. (2013) 

ANN GD with momentum term 
BFGS quasi-Newton 

 ✓ ✓      VAV CA ATE 2010 Ning and Zaheeruddin 
(2010) 

ANN Robust adaptive  ✓      VAV SG IEEEf 2003 Song et al. (2003) 

ANN LM BP Matlab      Air side fouling 
Faulty inlet air sensor 

VAV  FR IBPSA 1999 Morisot and Marchio 
(1999) 

ANN BP         Supply fan 
Pump 
Return fan 
Cooling coil valve 
Thermocouple 
Pressure transducer 
Supply and return flow stations 

 AHU  KR ASHRAE 
Trans. 

1996 Lee et al. (1996) 

GRNN             Stuck and fouled cooling coil 
Leaky heating coil 
Supply fan degradation 
Return fan degradation 
Pressure sensor 
Temperature sensor  

 AHU  KR ApEn 2004 Lee et al. (2004) 

ANN LM BP TRNSYS         Supply air temperature sensor 
Supply water temperature sensor
Return water temperature 
Flow rate sensor  

AHU CN ENB 2014 Du et al. (2014a) 

ANN LM BP            Combustion 
Heating curve 
Exchanger 
Early and late boost 
Leaky valve 

Commercial 
Heating system  

FR ASHRAE 
Trans. 

1996 Li et al. (1996) 

ANN BP         Temperature sensor 
Flow rate sensor 
Pressure sensor 

 VAV  CN ApEn 2009 Du et al. (2009) 

ANN    ✓      IAQ Stuck damper 
CO2 sensor 
Return, supply flow sensors 
Outdoor air flow sensor 

Commercial 
VAV 
CAV  

CN BAE 2002 Wang and Chen (2002)

Notes: 
a Control and/or fault detection and diagnosis (FDD) method. 
b BP: back propagation, LM BP: Levenberg–Marquart back propagation, GD–BP: gradient decent back propagation, CG–BP: conjugate gradient back propagation, BFGS: Broyden–Fletcher–Goldfarb–Shanno. 
c EC: energy consumption, TC: thermal comfort, VC: visual comfort, OP: occupant preference, IAQ: indoor air quality. 
d SAR: special administrative region, HK: Hong Kong SAR, China, SG: Singapore, CA: Canada, UK: United Kingdom, USA: United States of America, GR: Greece, KR: Republic of Korea, FR: France, CN: Mainland China, KW: Kuwait. 
e ENB: Energy and Buildings, ATE: Applied Thermal Engineering, BAE: Building and Environment, NeuNet: Neural Networks, ASHRAE Trans.: ASHRAE Transactions, ApEn: Applied Energy, ECM: Energy Conversion and 
Management, IBPSA: International Building Performance Simulation Association. 
f IEEE conference. 
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5 Pattern recognition-based methods 

5.1 Principal component analysis 

Principal component analysis (PCA) is a multivariate 
analysis method (Jackson 2005; Jolliffe 2005), which is also 
used as a dimensional reduction technique. PCA produces 
a lower dimensional representation that preserves the 
correlation structure between the process variables and is 
optimal in terms of capturing the variability in the data 
(Russell et al. 2012). In PCA, the original variables are 
represented by a smaller number of components (principal 
components) because of the redundancy of the variables. 
Therefore, instead of analysing all involved variables, the 
PCA method focuses on analysing principal components 
(Wang and Xiao 2004b). Principal components, ( )mÎy y R , 
are constructed as a weighted linear combination of the 
original variables ( )mÎx x R  as given by Eq. (9):  

Ty = U x                                        (9) 

In Eq. (9) U T is the loading matrix, ( )m m´ÎU U R , which  
is used to assign weights to each variable. The columns of 
the matrix U are the eigenvectors of the covariance matrix 
of the variables, T( )= U UCov Cov . In PCA, the only 
retained eigenvectors are the one that are associated with 
the first k largest eigenvalues. These retained eigenvectors 
represent the directions of the most variance of a system.  
If only k number of principal components are used, an 
estimation of x in Eq. (9) can be reproduced, and hence, a 
new sample xnew can be divided into two parts i.e. estimation 
of ˆ( )new newx x  and residual (e) (Wang and Xiao 2004b). In 
most of the fault detection and diagnosis application, Q 
statistics (the squared sum of the residual) or squared pre-
diction error (SPE) is used as an index of faulty conditions. 
The Q statistics can be represented by the following equation 
(Wang and Xiao 2004b):  

22 T 2
statistics new new newˆSPE ( )Q δ= = - = - £x x I PP x   (10) 

5.1.1 Principal component analysis application 

Wang and Cui (2005) applied an online strategy to detect, 
diagnose and validate sensor faults in centrifugal chillers  
by using principal component analysis. The authors used 
Q-statistics to detect and Q-contribution plot to diagnose the 
sensor faults. They developed and trained PCA models by 
using three steps: decomposing of the covariance matrix of 
training matrixes, retaining loading vectors, and determina-
tion of Q-statistics. They developed two PCA models: one 
concerning energy balance and the second concerning 
energy performance. Tests were performed by adding bias 
to the measurements of different sensors and artificially 

corrupting their readings. The results showed that the 
sensor faults were successfully detected and PCA-based 
methodology accurately estimated most of the introduced 
sensor biases. The PCA methodology captured the relation-
ship between major measured variables in the centrifugal 
chiller. Same kind of methodology was also applied by Hu 
et al. (2012) but they employed a self adaptive process to 
automatically remove error sampled in the original data set 
to improve fault detection efficiency. The authors compared 
the proposed methodology with the normal PCA method, and 
it was found that the proposed methodology significantly 
enhance the fault detection efficiency.  

An improved principal component analysis with joint 
angle analysis (JAA) was also used to detect and diagnose 
fixed and drifting biases of sensors in variable air volume 
(VAV) systems (Du et al. 2007a). The authors used squared 
prediction error plot based on PCA to detect the sensor 
biases and then instead of using conventional contribution 
plot, they used JAA plot for diagnosing faults. The authors 
also used PCA in another study for fault detection but used 
Fisher discriminant analysis (FDA), a linear dimensionality 
reduction technique, to diagnose fault score (Du et al. 2007b). 
Due to PCA’s pure data-driven nature, additional methods 
(e.g. Fisher discriminant analysis) need to be integrated to 
isolate HVAC sensor faults. Wang and Qin (2005) used 
PCA models at both system and terminal levels of a VAV 
system to detect and diagnose sensor faults. The authors 
used T2 statistic and square prediction error (SPE) to detect 
faults and then these faults were isolated using the SPE 
contribution plot.  

Wang and Xiao (2004a) also reported a PCA method 
based fault detection and diagnosis strategy for sensor faults 
in a typical air handling unit. The faults were detected by 
either using Q-statistics or squared prediction error (SPE) 
and then were isolated by using Q-contribution and SPE 
plots, which were also supplemented by some expert rules. 
As most of the HVAC processes are non-linear in nature, the 
authors used multiple models to improve the fault isolation 
ability of the proposed method. The authors also tested the 
proposed method using measurements from the existing 
BMS (building management system) of an AHU in another 
study (Wang and Xiao 2004b). It was concluded that PCA 
models are able to generate useful residuals for sensor FDD 
and PCA-based strategies can be improved by combining 
them with other simple physical reasoning methods. Same 
kind of study was also applied by Wang et al. (2010), for fault 
detection, diagnosis and estimation purposes of HVAC 
sub-systems involving sensors faults at the system level.  

5.2 Bayesian networks 

Bayesian networks are probabilistic graphical models that 
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represent relationships of probabilistic dependence within 
a group of variables through a direct acyclic graph (Zhao  
et al. 2013b). Bayesian theorem is used for calculating 
conditional probabilities. To demonstrate this, let’s assume 
there are two random events: X and Y, and the probability 
of Y is greater than zero. If we have a probability of event Y, 
the probability of the event X, represented by ( )P X Y , is 
given by Eq. (11):  

( ) ( ) ( )( )
( ) ( )

P XY P X P Y XP X Y
P Y P Y

= =                   (11) 

where, P(XY) is the joint probability and can be found using 
Eq. (12):  

( ) ( ) ( ) ( ) ( )P XY P Y P X Y P X P Y X= =               (12) 

Assuming Y1,Y2,...,Yn, are a set of random variables and 

satisfy conditions: (i) P(Yi)>0, i=1,2,...,n; (ii)
1

n
ii

Y S
=

=å ,  

S is a certain event; (iii) they are mutually exclusive (Xu 
2012). For any given event X, the marginal probability of X 
is given by Eq. (13):  

1
( ) ( ) ( )

n

i i
i

P X P Y P X Y
=

=å                          (13) 

Bayesian theorem can be obtained by the conditional and 
marginal probabilities:  

1

( ) ( ) ( )( )
( ) ( ) ( )

i i i
i n

i ii

P XY P Y P X YP Y X
P X P Y P X Y

=

= =
å

            (14) 

The items on the right hand side of Eq. (14) are called 
prior probabilities and the items on the left hand side are 
called the posterior probability. Bayesian probabilities pro-
vide a method to calculate the posterior probability from the 
prior probabilities, which is the basic idea of the Bayesian 
inference. For a simple case, if the prior probability of fault Yi 
and the conditional probability of the symptom X given Yi are 
known (which can be found from historical data etc.) then 
the posterior probability can be calculated by using Eq. (14). 

5.2.1 Bayesian networks application 

Zhao et al. (2013b) developed a three-layer Bayesian network 
to diagnose chiller faults. The authors used probability 
analysis and graph theory to calculate posterior probabilities 
of the faults. Bayesian network is an effective and efficient 
method for fault detection and diagnosis under uncertain, 
conflicting and incomplete information. The development 
of Bayesian network for this study required to estimate 
parameters (which represented the quantitative probabilistic 
relationship between layers) and it was acknowledged in 
the study that obtaining these parameters are difficult, and 

further work needs to be done to reduce this difficulty. 
Same kind of methodology was also employed by Zhao et al. 
(2015) and Xiao et al. (2014) but for diagnosing faults in air 
handling units and variable air volume systems respectively. 

Naja. et al. (2012) proposed a static Bayesian network 
for fault diagnostics in AHUs. The proposed method was 
based on analysing observed behaviour and comparing these 
observed behaviours with behavioural patterns that were 
generated under faulty conditions. The aim of the paper was 
to develop an FDD method that is more flexible in terms of 
measurement constraints (e.g. measurements that are not 
easily accessible/measurable in real world applications) and 
less dependent on model accuracy. The authors demonstrated 
that such problems can be formulated as a posterior estima-
tion problems of a Bayesian model. The research needs to 
be extended to tackle complexity, which can result due to 
increase in number of air handling units.  

5.3 Clustering 

Clustering is one of the most popular unsupervised ap-
proaches in the area of the data analysis to group a given 
pattern into a meaningful sub-patterns. The clustering tech-
niques do not utilise a supervised approach which means 
the given row pattern does not contain any labelled or prior 
information. Thus the grouping (classification) process is 
based on the utilised metrics such as a statistical metric (Jain 
et al. 1999). To group the data set according to similarity, 
cluster techniques employ three fundamental steps: feature 
extraction, determination of the similarity of the inter-pattern 
and grouping. The most popular clustering algorithms in 
literature are K-means and fuzzy-C-means (Velmurugan 
2014). Moreover other computational intelligence techniques 
such as ANN, ensemble rapid centroid estimation and 
Markov chains are also widely utilised.  

The clustering (grouping) process is based on the 
minimising the sum square distance between data and 
cluster centres, which is based on the Euclidean distance 
calculation, called K-means. For a given set of inputs, X= 
X1,X2,...,Xn, it is given by Eq. (15): 

2

1 1
Clustered min Ceni j

j i
X

= =

= -åå( )              (15) 

where, Clustered is the sum square error for a given pattern, 
Xi is the individual pattern and Cenj is the center of the 
cluster j.  

Further, the extension of the K-means by using the fuzzy 
membership values for the distance calculation is called 
fuzzy-C-mean, given in Eqs. (16) and (17):  

2

1 1
Clustered min Cenk

ij i j
j i

μ X
= =

= -åå( )           (16) 
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=
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                          (17) 

where, Clustered is the sum square error for the given 
pattern, Xi is the individual pattern, Cenj is the centre of the 
cluster j, and k

ijμ  membership value of the k-th membership 
function for the i-th pattern and the j-th cluster centre.  

5.3.1 Clustering application 

Yuwono et al. (2015) proposed a consensus clustering 
algorithm with an unsupervised selection to detect some 
unknown features in the collected data from the HVAC 
system to avoid the redundancy and detect the faults. The 
proposed method utilises ensemble rapid centroid estimation 
(ERCE) approach using the relative entropy to detect the 
faults according to the features’ frequency. The proposed 
algorithm is utilised on the forty-nine different types of 
HVAC faults from the ASHRAE-1312-RP, and the results are 
compared to K-means features selections. This consensus- 
based clustering method utilises the consensus matrix  
that includes the individual probability information about 
their correspondent class centre. This information has been 
modelled very similar to the fuzzy-C-means membership 
weights to determine the cluster centres. The cluster centre 
info then is utilised to partition the data set into subsets 
using the entropy distance approach using a PSO based 
search process for each individual. The authors also used  
a non-linear auto-regressive neural network to classify  
the features. To compare the performance of the clustering 
techniques, the normalised mutual information method is 
utilised for the selected features. According to the results, 
the proposed method performed better than K-means. 

5.4 Pattern matching 

Pattern matching is one of the most popular technique   
in the area of the computational system. The idea of the 
pattern matching is to search for a pattern in the existing 
greater patterns, which is based on the similarity search 
(Manfaat et al. 1996). Pattern matching is highly popular in 
several domains including image processing, text processing, 
data mining and signal processing. Several techniques are 
available to match a pattern and determine the highest 
resembled pattern (class) such as ANN, fuzzy logic, PCA, 
tree-match, and Markov chain (Maitrey et al. 2014).  

5.4.1 Pattern matching application 

Cho et al. (2005) proposed transient pattern analysis based 
approach to detect faults in HVAC systems. The authors 
generated several fault conditions by changing outputs by 
20% from their normal setting, and reclassified as faulty 
condition and fault-free conditions. They experimentally 

tested the proposed method in an environmental chamber’s 
test room. The results showed that the time evolution of 
fault patterns can be classified as slow and fast patterns. It 
was concluded that HVAC systems experiencing a fault 
required approx. 60 min to reach steady state, and without 
considering the transient behaviour, it may generate different 
diagnosis results.  

5.5 Discussion 

PCA-based methods like other multivariate statistical methods 
do not require full information of the system and can be 
trained by using historical data. These methods are also 
popular due to their conceptual simplicity. PCA-based 
methods assume that the involved variables are linear and 
Gaussian distributed, and are mostly suited for linear 
system as they look for a linear combination of original 
features. As HVAC systems are highly non-linear, therefore 
the effectiveness of PCA-based methods for fault detection 
and diagnosis of HVAC systems can be limited. PCA-based 
methods’ performance also reduces with increase in the 
range of variables. Another limitation of PCA-based methods 
is that the models are time invariant, whereas the processes 
themselves are time-varying. Therefore, to tackle this 
problem, the PCA models needs to be recursively updated. 
The update should include: PCs including a number of 
components to be retained, the confidence limits for T2 and 
Q, and mean covariance (Venkatasubramanian et al. 2003). 
Another drawback of PCA-based methods is that they do 
not have an ability for the future prediction. However, they 
reduce the dimensions of the data, which is useful while 
dealing with a complex large number of data set, by using a 
correlation matrix without prior information (Gorsuch 1988). 

Bayesian networks, a class of probabilistic models, have 
proven ability to be effective methods for fault detection and 
diagnosis in HVAC systems. The method is a data-driven 
process that is highly dependent on the existence of the data. 
The larger volume of data provides a generalised solution to 
the probability value of the relationship between the variables. 
Bayesian network can be utilised on most computational 
systems as a predictor. However, the method has a weakness 
for latent node networks (Williamson et al. 2000). These 
weakness needs to be evaluated, and a correlation between 
lateral nodes and their outputs needs to be used so that  
the structure of the nodes can be reconstructed. Bayesian 
networks are highly dependent on the dataset, and noisy 
dataset may reduce the accuracy of the model. House et al. 
(1999) published their work on the application of several 
classification algorithms for fault detection and diagnosis, 
including artificial neural network, rule-based, k-nearest 
prototype, k-nearest neighbor and Bayes classifiers. The 
results showed that the Bayes classifier outperformed other 
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methods for fault detection and had the lowest percent   
of incorrect diagnosis. The authors also concluded that the 
Bayes classifier is a simple and straightforward method  
that requires limited storage and computational effort as 
compared to other studied classifiers.  

Clustering algorithms are also unsupervised classification 
techniques without having any prior information about  
the dataset. Most of the clustering algorithms utilise fixed 
number of classes and classify the dataset into this subclasses 
according to the measured distance. Mostly, the measured 
distance is based on the Euclidian distance, which is highly 
sensitive to non-linear data sets. Therefore, to avoid this 
weakness several hybrid statistical and intelligent techniques 
are integrated to increase the clustering quality. Moreover, 
having a constant number of classes may also reduce the 
quality of the clustering process (Xu and Wunsch 2005). 
K-means clustering technique is one of the most popular 
clustering algorithms, which pre-supposes the number of 
clusters needed to cluster the given data. This method uses all 
the clusters’ centers so that each cluster is guaranteed to have 
at least one pattern. According to Venkatasubramanian et 
al. (2003), K-means clustering can be considered as a special 
case of Kohonen’s clustering algorithm (Kohonen 1998), 
where the algorithm makes clusters in the neighbourhood to 
be the winner of the pattern. This can result in the problem 
of gravity as all the cluster centers migrate toward dense 
regions (Venkatasubramanian et al. 2003), which can be 
addressed by using fuzzy clustering technique.  

Pattern matching is one of the most popular subjects  
in the area of the computational systems, text processing, 
signal processing and image processing. The technique is 
highly dependent on the similarity measure to determine a 
pattern in entire patterns. The matching process is highly 
dependent on the length of the match and similarity 
function, as both factors affect the performance of pattern 
matching process. Some of the similarity measures such as 
entropy, maximum similarity are the most widely used 
measures. However, the results obtained while using these 
measures are highly dependent on the data quality. The 
noisy data may reduce the quality of the similarity. Table 4 
summarizes research work focussing on pattern recognition- 
based methods. 

6 Multi-agent systems 

Lavinal and Weiss (1999) defined agent as a computer 
system (hardware/software), located in some environment 
and is able to meet its objective by autonomously reacting 
to any changes in that environment. An agent has three 
basic characteristics (McArthur et al. 2007a,b):  
(1) Reactivity. The ability of an agent to react to any changes 

in its environment.  

(2) Pro-activeness. Pro-activeness refers to the ability of an 
agent to change its behaviour dynamically to achieve its 
objective.  

(3) Social ability. This allows an agent to communicate with 
other agents by using an agent communication language 
(ACL). This ability allows agents to converse rather than 
just passing data.  
The basic idea behind multi-agent systems (MAS) is 

that there are local goals rather than having overall system 
goal. The agents work together to perform complex tasks 
that are difficult to perform by a single agent. An overview 
of a three agents (central, local and personal) based multi- 
agent control system is shown in Fig. 10. The system receives 
data from sensors and implements decisions on HVAC 
system. The personal agent is used to observe external 
environment, assist to manage occupant’s information and 
providing feedback from other agents to their occupants. 
MAS has been successfully tested in homes (Joumaa et al. 
2011) and office buildings (Erickson and Cerpa 2010) for 
managing HVAC systems, IAQ and lighting systems. In 
both these studies the multi-agent control system was able 
to learn occupancy trends and optimize building energy 
demand. MAS have also gained popularity in other fields  
of energy as well, a review on MAS applied on microgrid 
systems can be found in (Kulasekera et al. 2011).  

MAS can be applied to large buildings with many users 
of different preferences. The conflict between occupants’ 
preferences can be a challenging task, and MAS have been 
used to handle this problem (Lee 2010). In this study, the 
conflicts were resolved through communication and colla-
boration between object agents, and also with higher-level 
agents. MAS can also be used to find a trade-off between 
energy consumption and comfort level, which are always in 
conflict with each other (Kastner et al. 2010; Wang et al. 
2012). In most of the studies, multi-agent systems are 
featured as open architecture systems, which makes them 
an attractive solution to be applied to different types of 
buildings (Yang and Wang 2013). 

6.1 MAS applications 

Multi-agent control systems are based on the idea of dividing 
a problem into small sub-problems and then solving these 
sub-problems; this idea is known as divide-and-conquer 
(Ferber 1999). Multi-agent control systems have shown great 
success in recent years. The following review will focus  
on multi-agent systems which use CI techniques to solve 
building energy control problems.  

Occupants’ behaviour has a significant effect on building 
energy consumption, and this research area has gained a  
lot of researchers’ attention. The ability of MAS to divide  
a complex problem into small problems can be used to 
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address energy consumption from occupant behaviour. An 
agent can be used to learn occupants’ behaviour, Yang and 
Wang (2013) developed a multi-agent system for achieving 
better thermal and energy management in a building. It was 
emphasized in their research that occupant should have 

interaction with the building as occupants’ behaviour has 
direct impact on the system performance and energy con-
sumption. A personal agent was designed for this purpose and 
ANN was used for learning purposes. The main objective 
of the research was to achieve user-centered control by using  

Table 4 Review summary of pattern recognition-based methods
Methoda Fault System type Country/SARb Sourcec Year Ref. 

PCA  Chilled and condenser water flow rates 
Condensing and evaporating pressure 
Condensing temperature 
Chilled-water supply and return temperatures 
Entering and leaving condenser water temperature 
Evaporating temperature 
Chiller electrical-power  

Chiller HK ApEn 2005 Wang and Cui (2005) 

PCA  Chiller-water supply temperature sensors Chiller CN ENB 2012 Hu et al. (2012) 

PCA 
JAA  

Outdoor air temperature 
Supply water temperature 
Return airflow rate 
Outdoor air humidity 
Return air humidity 
Control signals for supply and return fans 

VAV CN BAE 2007 Du et al. (2007a) 

PCA 
FDA  

Flow-pressure sensors  VAV CN HVAC&R 2007 Du et al. (2007b) 

PCA  Mass flow rate of fresh, supply and return air 
Fresh, supply and return air temperatures 
Fresh, supply and return air humidities 
Chilled-water supply temperature 
Chilled-water valve control signal 
Supply air pressure 
Supply and return air fans' control signals  

AHU HK ENB 2004 Wang and Xiao (2004a) 

PCA Inlet air dry-bulb and inlet water temperature (cooling tower) 
Evaporator inlet temperature 
Water flow rates before and after heat exchanger 
Inlet water temperature before and after heat exchanger  

Cooling tower 
Chiller 
Heat exchanger 
Variable speed pump 

HK ENB 2010 Wang et al. (2010) 

BN Condenser fouling 
Refrigerant leakage 
Refrigerant overcharge 
Mass flow rates of cooling and evaporators water 

Chiller HK ENB 2013 Zhao et al. (2013b) 

BN Damper stuck 
Supply and zone air temperature 
Supply air pressure 
Zone temperature sensor and flow sensor biased 
Improper zone set-point and supply air temperatures 

VAV HK AutoCon 2014 Xiao et al. (2014) 

BN Heating and cooling coils fouling and stuck 
Cooling and heating coils valves leaking 
Supply and return air temperatures 
Circulating pump’s pressure 
Supply water temperature 
Supply chilled-water temperature 
Mixed air humidity  

AHU HK ATE 2015 Zhao et al. (2015) 

BN Mixing box 
Coils' leakage 
Stuck dampers  

AHU USA ApEn 2012 Najafi et al. (2012) 

Clustering AHU duct leakage 
Cooling coil stuck 
Heating coil leakage 
Outdoor air damper leakage and stuck 
Return fan complete failure 
Return fan at fixed speed 
Extract air damper stuck 
heating coil fouling 
Outdoor air temperature sensor bias 

All AUS Appl Soft Comput 2015 Yuwono et al. (2015) 

Pattern 
matching 

Outdoor air damper failure 
Indoor temp. sensor 
Supply valve failure 
Supply fan failure 

AHU KR ECM 2005 Cho et al. (2005) 

Notes: 
a Control and/or fault detection and diagnosis (FDD) method. PCA: principal component analysis, JAA: joint angle analysis, FDA: fisher discriminant analysis, BN: Bayesian network. 
b SAR: special administrative region, HK: Hong Kong SAR, China, KR: Republic of Korea, USA: United States of America, CN: Mainland China. 
c ENB: Energy and Buildings, Appl Soft Comput: Applied Soft Computing, ApEn: Applied Energy, AutoCon: Automation in Construction, ATE: Applied Thermal Engineering, ECM: Energy Conversion and 

Management, HVAC&R: HVAC&R Research, BAE: Building and Environment. 

 



Ahmad et al. / Building Simulation / Vol. 9, No. 4 

 

382 

MAS

Local 
agent

Local 
agent

Central 
agent

Personal 
agent

Personal 
agent

Indoor air 
monitoring 
sensors

Weather 
station

Occupants 
presence 
sensor

Occupants 
behaviour

HVAC 
control

 

Fig. 10 Overview of a multi-agent system for building applications 

personal agents. The multi-agent system was designed to 
manage indoor environment (indoor illuminance, tem-
perature and air quality). From simulation results, it was 
shown that the controller was able to control thermal 
environment by satisfying occupant’s thermal comfort and 
it also reduced energy consumption.  

Rutishauser et al. (2005) deployed a multi-agent system 
for a commercial building that was equipped with effectors 
and sensors. The MAS was implemented by using a novel 
unsupervised on-line real-time learning algorithm. The 
knowledge of the system was represented by a set of fuzzy 
rules, which were used as learning algorithms. It was shown 
that the performance of the building was improved by using 
a multi-agent system. A design of a MAS for room energy 
savings was proposed by Bin et al. (2010). The design was 
consisted of four types of agents: personal, environmental, 
room and management agents. The authors tried to address 
the problem of energy wasted by switching on and off   
the electrical equipment e.g. HVAC system; however no 
simulation or experimental results were mentioned to prove 
authors’ claim. Also, the personal agent was portable in this 
study, which is not a feasible solution for larger buildings 
because of the number of people and this can increase the 
initial cost of the system.  

Yang and Wang (2011) used a multi-agent control 
system for a multi-zone building. The multi-agent system 
consisted of three agents: central, zone and local agents. 
The authors integrated a particle swarm optimizer into the 
central agent. The central controller utilised PSO to find 
the best possible solution for the maximum overall comfort 
level inside the building. Hurtado et al. (2013) presented a 
multi-agent based BEMS framework to optimize energy use 
and to ensure minimum thermal comfort level. A multi-agent 
control system combined with heuristic optimization for 
indoor energy and comfort management was developed by 
Wang et al. (2012). Particle swarm optimization was used 

to optimize set-points and ordered weighted averaging 
weights (OWA), OWA aggregation was used for information 
fusion. A fuzzy logic controller was used to calculate the 
required power and PID controller was employed to control 
indoor environmental parameters. Simulations results showed 
that 3% increase in overall comfort level and approximately 
9% of the total energy was saved.  

Mokhtar et al. (2013) proposed an ARTMAP multi- 
agent BMS system. ARTMAP is a type of ANN that provides 
incremental learning inspired by how human processes 
memory and learns new information without necessarily 
forgetting the previously learned information (Carpenter et 
al. 1991). The advantage of using ARTMAP is that it can 
perform classification and prediction at the same time. This 
makes it a better tool for adaption of an agent as compared 
to the classical methods (ANN, fuzzy logic). The proposed 
system was applied to UCLan Samuel Lindow Building, 
which uses a ground source heat pump (GSHP) and gas fired 
boiler to meet its heating demand. The previously installed 
MAS BMS was underperforming and was not able to use 
GSHP to its maximum capability. The authors added a layer 
of Mediator agents in between Source and User agents’ layer 
to categories the two energy sources into two categories. Some 
promising results were obtained from the simulations, and 
it was found that the ARtMAP based MAS with an extra 
mediator layer performed better than the existing MAS 
based BMS system.  

Fuzzy membership and rules were also used by Doctor 
et al. (2005) to represent occupant’s behaviour. Different 
experiments were conducted at iDorm (Holmes et al. 2002) 
in which agent was trained to adapt to the occupant’s 
behaviour. From experimental results, it was found that  
the proposed controller when compared with genetic pro-
gramming (GP), the adaptive neuro-fuzzy inference system 
(ANFIS) and the multilayer perceptron (MLP) neural 
network had less computational cost and also RMSE (root 
mean square error) was lower than other methods. As   
the proposed method was computationally less intensive, 
therefore it is better suited for on-line applications.  

Hagras et al. (2008) presented a novel agent based 
approach called intelligent control for energy (ICE) for 
energy management in a commercial building. ICE was 
trained to learn building’s response to different variables  
by using different computational intelligence (CI) methods 
(neural network, fuzzy logic and GA). It was shown that 
ICE can reduce energy consumption while keeping thermal 
comfort to costumer-defined level. Klein et al. (2012) used 
MAS to improve energy and comfort management inside 
buildings and utilised Markov decision problems (MDP)  
to coordinate building system devices and occupants. The 
authors studied a complex problem and considered a 
17-zoned three-story university building. Simulation results 
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showed a 12% reduction in energy consumption as compared 
to the existing control.  

Liu et al. (2008) presented a multi-agent system for the 
existing BEMS and required input from policy manage-
ment and wireless sensor network. The authors claimed 
that the proposed system can be adapted to most type of 
the buildings but future work needs to be done to evaluate 
the performance of the system. A back propagation ANN 
based MAS was developed by Liang and Du (2005). The 
controller was used to maintain thermal comfort at the 
desired level. The controller was tested on CAV and VAV 
systems, and it showed better performance and energy savings 
as compared to the conventional controllers. However, 
controller’s implementation on large scale buildings was 
not discussed in the paper. This can be a serious limitation 
due to the convergence problem of artificial neural networks. 
Caraiscos (2009) used a fuzzy controller in a MAS as a 
behavioural system and GA to regulate the knowledge  
basis and membership function. Artificial neural networks 
minimise a cost function that satisfies the occupant’s needs 
on an average level and, therefore, occupant does not have 
more participation in the system operation (Dounis and 
Caraiscos 2009). The authors used fuzzy logic to address 
this problem.  

6.2 Discussion 

Multi-agent systems are autonomous systems where each 
member system aims to maximise its own gain. MAS are 

utilised to implement on complex and multitask problems. 
Although MAS can solve these complex problems, they 
cannot guarantee to achieve maximum gain from the 
overall system. However, they offer a multitask solution 
methodology. Therefore, they have been utilised for HVAC 
problems as mentioned above. As highlighted in above section, 
most of the studies in the literature on HVAC system using 
MAS are based on the controlling set-points and learning 
the patterns in the buildings such as occupancy patterns. 
Therefore, each multi-agent system has its own topology 
and design such as an agent can be a learning agent or an 
optimization agent. Table 5 presents research work focussing 
on multi-agent systems.  

7 Fuzzy logic 

Fuzzy logic (FL) was developed to deal with the uncertainties 
that are present in real world problems. The difference 
between classical mathematics and fuzzy logic is that 
traditional mathematics requires objects to have either 0% 
or 100% membership, whereas fuzzy logic allows to have 
any degree of membership between 0% and 100% (Symans 
and Kelly 1999). Fuzzy logic theory mimics the human ability 
of reasoning and judging imprecise and uncertain problems. 
FL is mainly based on three modules; a fuzzifier, an inter-
ference engine and a defuzzifier as illustrated in Fig. 11. In 
the fuzzifier module, the non-fuzzy numbers become fuzzy, 
meaning that measured control inputs are converted into 
fuzzy linguistic values by using reasoning mechanism. The  

Table 5 Review summary of multi-agent systems 
Objective functionc 

Methoda Algorithmb Simulation tool EC TC VC OP Other Fault 
Building sector/ 

system type 
Country/ 

SARd Sourcee Year Ref. 
MAS PSO  ✓ ✓  ✓   Commercial USA ENB 2013 Yang and Wang (2013) 

ARTMAP ANN 
MAS 

      RE  Educational UK ENB 2013 Mokhtar et al. (2013) 

MAS  EnergyPlus  
AMPL 

    ECO  All USA IEEE Trans. 2013 Zhao et al. (2013a) 

Direct NN 
MAS 

   ✓     VAV 
CAV 

HK IEEEf 2005 Liang and Du (2005) 

MAS   ✓      A building room CN IEEEf 2010 Bin et al. (2010) 
MAS 
FLC 

PSO Matlab ✓ ✓ ✓ ✓ IAQ  All USA SCS 2012 Yang and Wang (2012b) 

MAS PSO  ✓ ✓ ✓ ✓   All USA IEEEf 2011 Yang and Wang (2011) 
MAS  Matlab/Simulink ✓ ✓     A room NL IEEEf 2013 Hurtado et al. (2013) 
MAS 
FLC 

PSO Matlab ✓ ✓ ✓ ✓ IAQ  All USA ApEn 2012 Wang et al. (2012) 

MAS 
FLC 

FRB  ✓ ✓  ✓    UK IEEEf 2008 Liu et al. (2008) 

MAS 
FLC 

PSO Matlab ✓ ✓ ✓ ✓ IAQ  All USA IEEEf 2011 Wang et al. (2011) 

MAS FRB Matlab ✓ ✓ ✓ ✓   Commercial CH IEEE Trans. 2005 Rutishauser et al. (2005)
MAS MDP OpenGL ✓ ✓  ✓ OS  Educational 

VAV 
USA AutoCon 2012 Klein et al. (2012) 

MAS 
FLC 

GA Matlab 
TRNSYS 

✓ ✓ ✓  IAQ  All GR RSER 2009 Dounis and Caraiscos 
(2009) 

Notes: 
a Control and/or fault detection and diagnosis (FDD) method. 
b FRB: fuzzy rule base, PSO: particle swarm optimization, GA: genetic algorithm, MDP: Markov decision problems. 
c EC: energy consumption, TC: thermal comfort, VC: visual comfort, OP: occupant preference, IAQ: indoor air quality, RE: renewable energy (maximise), OS: occupant schedule, ECO: energy cost . 
d SAR: special administrative region, HK: Hong Kong SAR, China, NL: Netherlands, UK: United Kingdom, USA: United States of America, GR: Greece, CN: Mainland China, CH: Switzerland. 
e ENB: Energy and Buildings, IEEE Trans.: IEEE Transactions, ApEn: Applied Energy, AutoCon: Automation in Construction, RSER: Renewable and Sustainable Energy Review, SCS: Sustainable Cities and Society. 
f IEEE conference. 
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Fig. 11 Schematic of fuzzy logic controller 

fuzzy inference module infers the control action for a given 
fuzzy input, the most commonly used inference method is 
the “IF-Then” rule (Pourzeynali et al. 2007), expert knowledge 
is often used to obtain a set of fuzzy rules. A defuzzifier is 
used to convert the inferred value into a crisp control value. 
The procedure for fuzzy logic is shown in Fig. 12.  

To represent fuzzy logic mathematically, we will use 
fault detection process for illustration purposes, which can 
be considered as classification problem. Numerical input 
value is fuzzified by the fuzzifier to a membership of a 
linguistic value defined on the range of the numerical data 
(Lo et al. 2007). These numerical values can be represented 
as A={A1,A2,...,AN }. Each of these numerical values Ak is 
defined by a linguistic variable that takes linguistics values 
from { }1 2( ) , , ,k k k

k SkL A L L L=  . The faults in the system can 
be represented by the set, F={F1,F2,...,FM}. These faults can be 
classified by the fuzzy rule set, R={r1,r2,...,rO} and the i-th rule 
can be written as given in Eq. (18) (Lo et al. 2007):  

1
1: IF( is ) AND ( is );k

i ji k jkr A L a L                       

THEN (fault is )aF                                (18) 

7.1 Fuzzy logic applications 

Fuzzy logic based systems mimic the human thinking  
and execution ability that helps to deal with uncertainty 
and vagueness (Zadeh 1965). Therefore, fuzzy systems are 
capable of approximating any type of problem, even with 
the existence of inexact information (Zheng and Xu 2004). 
HVAC control and monitoring problems are challenging 
because HVAC systems perform in dynamic, nonlinear, 
uncertain and multivariate environments. Therefore, a 
robust and intelligent solution technique is required to deal 

with this kind of complex problems, and fuzzy systems are 
one of the best candidates to handle this type of control 
problems (Zheng and Xu 2004). In literature, several fuzzy 
logic based HVAC control and fault detection systems have 
been proposed.  

7.1.1 Control 

PID controllers are most widely used control solutions for 
HVAC systems because of their simplicity. However, fuzzy 
logic controllers are more energy efficient, robust and also 
have a faster response to external disturbances because of 
their expert knowledge. Different authors have investigated 
the performance of fuzzy logic controllers for HVAC system 
and also compared results with PID controllers. It is often 
difficult to tune PID gains to their optimal values, on the 
other hand, sometimes fuzzy logic rules are not effective 
because they are linguistics rules based on human knowledge. 
So et al. (1997) tackled this problem by developing self- 
learning fuzzy logic controller and using ANN to model  
the AHU system. Self-learning algorithms were applied to 
adaptively change the crisp values during the defuzzification. 
Different simulations were performed, and reduction in 
energy consumption and faster response were achieved. 
However, the limitation of self-learning controllers is the 
requirement of real-time model of the system. Zheng and 
Xu (2004) used a self-regulating fuzzy controller to control 
an air conditioning system. The controller was based on 
qualitative and quantitative variables, which were used as 
weighting factor. The proposed controller was compared 
with a typical fuzzy controller, and it was shown that the 
self-regulating controller has shorter response time and 
lesser stable errors.  

Ali (2012) proposed a fuzzy logic based controller for 
air conditioning system to control compressor motor speed 
and fan speed to reduce energy cost and meet thermal 
comfort requirements. According to the result, the author 
utilised a low number of linguistic variables. Therefore, the 
fuzzification level for parameters was not smooth. Moreover, 
the performance analysis of the proposed method was 
missing. The experiment can be extended by using extra 
control variables such as air temperature, flow rate etc. 
Mongkolwongrojn and Sarawit (2005) used a fuzzy logic 
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Fig. 12 Fuzzy logic procedure 
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based controller for an air conditioning system to maintain 
the indoor temperature and humidity by controlling the 
compressor speed, heater and supply airflow rate. The pro-
posed method generated 1 °C temperature and 2% relative 
humidity errors under steady state conditions. To decrease 
the error rate, the number of linguistic variables can be 
increased. Moreover, the proposed model can be extended 
by feeding the error back to system.  

A self-tuning fuzzy PI controller for HVAC system was 
developed by Pal and Mudi (2008). The controller was used 
to control the supply air pressure in an HVAC system. The 
fuzzy rule based system was defined according to the error 
change and error of the control variable. These rules were 
then used to adjust the output scaling factor of fuzzy PI 
controller. The self-tuning fuzzy PI controller (STFPIC) 
was aimed to overcome the process parameters variations. 
According to the authors, the proposed method performed 
well both under normal and model variation conditions. It 
was found that the proposed method performed better 
than the PID and adaptive neuro-fuzzy controllers. These 
experiments may need to be replicated to illustrate the 
consistency of the results.  

Ghiaus (2001) developed and tested a Sugeno-type fuzzy 
model and controller for a fan coil unit. The Sugeno-fuzzy 
system is a non-linear function obtained by interpolating 
between linear systems. Results showed that the PID con-
troller had a larger settling time (225 s) compared to the 
fuzzy logic controller (100 s). Both controllers were able  
to reject external disturbances caused by the outdoor air 
temperature. Chu et al. (2005) proposed a least enthalpy 
estimator (LEE) based fuzzy control system for a fan coil 
unit. The controller integrated the concept of thermal 
comfort with the theory of enthalpy. It was shown from the 
experimental results that the LEE based fuzzy controller 
can achieve thermal comfort and energy savings at the same 
time. The controller allowed the room temperature to rise 
to bring humidity to the desired level. A Takagi–Sugeno 
fuzzy worward (TSFF) controller was proposed by Homod 
et al. (2012). This controller was explored due to their ability 
to speed up system response and also to reduce overshoot 
(Homod et al. 2012). The controller was compared with 
conventional Takagi–Sugeno fuzzy and hybrid cascade 
controllers. It was demonstrated that the TSFF controller 
performed better and was also more robust than the other 
controllers.  

Ahmed et al. (2007) developed a fuzzy logic based 
control scheme to maintain temperature and humidity of 
an occupied space that was served by a central air con-
ditioning unit. The deviations of actual temperature and 
humidity from their desired values were used to decide  
the fuzzy qualifier. The control scheme was tested on two 
laboratory spaces that were served by the same AHU. From 

results, it was demonstrated that the fuzzy logic controller 
saved energy consumption and was also simple to implement. 
Tianyi et al. (2011) developed a duty ratio fuzzy controller 
for fan coil units. The basic concept behind the proposed 
controller was to fully utilise the dehumidifying and cooling 
capacities of a fan coil unit when the control valve was 
closed. The controller was implemented on a test rig of a 
VAV system. When compared with a conventional controller, 
a total energy saving of 30% was achieved by using a duty 
ratio fuzzy controller.  

7.1.2 Fault detection 

Kolokotsa et al. (2005b) used average absolute error 
between the actual and predicted values of sensors as fault 
detection criterion. The system was controlled using a fuzzy 
logic controller, and the sensor data was collected from the 
BEMS to use for fault detection. The study focussed on 
three faults, i.e., temperature, CO2 and illuminance sensors. 
From results, it was shown that the fault detection system 
performed satisfactorily. However, its performance could 
have been improved by minimising the influence of external 
disturbances. In most of the cases, the fault was not detected 
due to poor prediction data.  

A fuzzy model based approach for fault detection and 
diagnosis was proposed by Dexter and Benouarets (1997). 
A set of fuzzy reference models was used for faulty and 
normal operating conditions. For fault diagnosis, a fuzzy 
matching based classifier was used. The authors used 
Dempster’s rule of combination to combine new evidences 
with previously collected ones. Fuzzy reference models were 
compared with each other to account for any uncertainty 
that may arise due to similar results. Simulation and 
experimental results showed that the proposed method was 
capable of identifying faults in a cooling coil system of an 
air handling unit. This method was computationally com-
plex, which limits its application on real-time and low-cost 
hardware, and future work was suggested by the authors to 
reduce its complexity. Ngo and Dexter (1998) implemented 
a tool for remotely commissioning a cooling coil of an 
office building. The faults were detected by a fuzzy logic 
model based fault detection scheme, which was using generic 
reference models to describe faults or normal conditions.  

Soyguder and Alli (2010) proposed a fuzzy adaptive 
controller to generate the optimal proportion, integral  
and derivation values for PID controllers of two actuators 
position (damper gap rates) in an HVAC system. The first 
damper gate was controlled by utilising the temperature of 
indoor air volume. The second damper gate was controlled 
by the humidity of the same indoor air volume. The control 
variables adaptively adjusted the flow rate according to the 
error of the PID system. According to the experiments, the 
proposed method reduced the ambient temperature from 
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31.4 °C to 25.5 °C in 10 minutes. Moreover, the ambient 
humidity was adjusted from 24% to 41% in 6 minutes. 
However, the authors did not discuss a detailed comparison 
for PID controller without fuzzy system.  

7.2 Discussion 

Fuzzy logic has been widely used in literature due to its 
ability to map real-world problem with non-linear functions 
(Alcalá et al. 2003). Therefore, these controllers can be 
utilised instead of any classical controllers to achieve better 
performance. In most cases, the human experience and 
non-linearity without mathematical modelling are highly 

required for control logic of the problems. However, it is a 
challenging task to generate rules for a fuzzy logic system 
for every problem. Therefore, experts knowledge and best 
practices are used to create initial rule base. However, this 
knowledge may not be enough to define the rule based 
system. Therefore, Alcalá et al. (2006) proposed a genetic 
algorithm (GA) based fuzzy system for HVAC control, 
where they have utilised GA as a post-processing engine  
for rule selection, classical tuning and lateral tuning of 
membership functions. According to their analysis, hybrid 
approach has yielded much better results than the classical 
control system. Table 6 summarizes research work focussing 
on fuzzy logic systems.  

Table 6 Review summary of fuzzy logic applications 
Objective functionc 

Methoda Algorithmb Simulation tool EC TC VC OP Other Fault 
Building sector/ 

system type 
Country/ 

SARd Sourcee Year Ref. 
FLC 
MAS 

AFIS 
GP 
ANFIS 
MLPNN 

  ✓ ✓ ✓   Educational UK IEEE Trans. 2005 Doctor et al. (2005) 

FLC 
ANN 

FRB  ✓ ✓     Commercial 
AHU 

HK BSERT 1997 So et al. (1997) 

FLC   ✓ ✓ ✓ ✓   Educational GR ENB 2005 Kolokotsa et al. (2005a) 
FLC  Matlab     IAQ 

EE 
CE 

 Commercial JP BSERT 2003 Shepherd and Batty (2003)

Fuzzy PID Sugeno   ✓     Fan coil FR ENB 2001 Ghiaus (2001) 
FLC FRB  ✓ ✓     Commercial 

Fan coil 
TW ECM 2005 Chu et al. (2005) 

FF 
PID 

TS   ✓     All MY ENB 2012 Homod et al. (2012) 

FLC FRB Matlab ✓ ✓     Educational 
AHU 

BD EGY 2007 Ahmed et al. (2007) 

FLC FRB  ✓ ✓     Commercial 
Fan coil 

CN BAE 2011 Tianyi et al. (2011) 

FLC FRB       CO2 sensor 
Illuminance sensor 
Humidity sensor 
Temperature sensor 

Test cell GR ICTA 2005 Kolokotsa et al. (2005b) 

FLC 
ANN 

GA  ✓ ✓     Commercial UK 
EG 

IEEEf 2008 Hagras et al. (2008) 

FLC 
AR-NN 

LM BP   ✓     Commercial IT BAE 2014 Marvuglia et al. (2014) 

FLC GA Matlab ✓ ✓     All ES APPL 
INTELL 

2003 Alcalá et al. (2003) 

ANN GA      ECO  Absoption chiller HK ENB 2002 Chow et al. (2002) 
ANN GA EnergyPlus 

Matlab 
✓ ✓     Commercial 

Chiller 
RS ENB 2012 Čongradac and Kulić (2012)

FLC 
ANN 

— Matlab      Temperature sensor 
Flow damper sensor 
Stuck damper 

VAV USA IEEEf 2013 Allen and Rubaai (2013) 

FLC FRB — ✓      Split air condi- 
tioner 

TH ICCAS 2005 Mongkolwongrojn and 
Sarawit (2005) 

PID-FLC  Matlab  ✓     All IT ATE 2010 Calvino et al. (2010) 
FLC FRB       Leaky coil 

Fouling 
Supply temperature 
sensor 

Commercial UK IEEE Trans. 1997 Dexter and Benouarets (1997)

FLC        Fouled coil 
Leaky valve 
Stuck valve 

Commercial UK IEEEf 1998 Ngo and Dexter (1998) 

AF  Matlab  ✓     All TR ESWA 2010 Soyguder and Alli (2010) 
Notes: 
a Control and/or fault detection and diagnosis (FDD) method. FLC: fuzzy logic controller, FF: fuzzy forward, AF: adaptive fuzzy, AR-NN: Auto-regressive neural network, PID: proportional integral and derivative. 
b LM BP: Levenberg–Marquart back propagation, GA: genetic algorithm, TS: Takagi–Sugeno, FRB: fuzzy rule base, AFIS: adaptive online fuzzy inference system, ANFIS: adaptive neuro-fuzzy inference system, MLP NN: 
multilayer perceptron neural network. 
c EC: energy consumption, TC: thermal comfort, VC: visual comfort, OP: occupant preference, IAQ: indoor air quality, EE: energy efficiency, CE: cost efficiency.  
d SAR: special administrative region, HK: Hong Kong SAR, China, JP: Japan, TW: Taiwan area, China MY: Malaysia, BD: Bangladesh, EG: Egypt, IT: Italy, ES: Spain, TH: Thailand, TR: Turkey, UK: United Kingdom, USA: 
United States of America, GR: Greece, FR: France, CN: Mainland China. 
e IEEE Trans. IEEE Transactions, BSERT: Building Services Engineering Research and Technology, ENB: Energy and Buildings, EGY: Energy, APPL ITELL: Applied Intelligence, ATE: Applied Thermal Engineering, ECM: Energy 
Conversion and Management, BAE: Building and Environment, ESWA: Expert Systems with Applications, ICTA: International Conference on Technology and Automation, ICCAS: International Conference on Control, 
Automation and Systems. 
f IEEE conference. 
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8 Hybrid applications 

In literature, several computational intelligence techniques 
have been proposed for controlling, optimizing and fault 
diagnosis HVAC systems. However, No Free Lunch theorem 
(NFL) (Wolpert and Macready 1997) states that there is not 
a single technique to solve all type of problems. This can 
also be related to the complex nature of HVAC systems. 
Therefore, several hybrid techniques have been proposed 
to solve, control and diagnose in the HVAC systems, 
including artificial neural network, genetic algorithm, fuzzy 
logic, particle swarm optimization, etc.  

8.1 HVAC control 

Ursu et al. (2013) analytically modelled an HVAC system 
and then used a Fuzzy Supervised Neuro-Control based 
intelligent controller. The controller had two components: 
neuro-control and fuzzy logic control. The neuro-controller 
was utilised to generate the volumetric airflow rate and the 
water flow rate of the chiller/heater. The fuzzy logic con-
troller was used to supervise the neuro-controller to counteract 
the saturation. The neuro-controller was a single layered 
artificial neural network (ANN) and the proposed fuzzy 
logic controller was a Mamdani type. The fuzzy controller 
was activated when the neuro-controller saturated. The usage 
of single neurons might have reduced the performance of 
the neural network, and a multi-layered ANN might have 
performed better. The processing time required for multi- 
layered NN can be a drawback for this type of controllers.  

An optimal intelligent controller by using fuzzy controller 
and particle swarm optimization (PSO) can be used for 
HVAC systems (Khooban et al. 2012). The aim of the study 
was to control the air supply pressure of an HVAC system. 
Input membership function, first order Sugeno type poly-
nomial functions and the coefficients of the PID controller 
were optimized simultaneously by using random inertia 
weight based PSO. The controller was compared with  
PID, adaptive neuro fuzzy (ANF) and self-tuning fuzzy PI 
controller (STFPIC). The performance of the proposed 
controller was better than the other controller and also   
its peak overshoot rate was lower. The proposed optimal 
intelligent control is an efficient technique for HVAC air 
supply pressure controller.  

Hadjiski et al. (2007) proposed a hybrid multi-agent 
system (MAS), dynamic ontology (DO) and ant colony 
optimization (ACO) technique to control an HVAC system. 
The proposed method was a combination of data driven 
and knowledge driven methods to improve system’s stability, 
speed, internal communication rate and robustness. ACO 
based optimal control received the information from MAS 
then evaluate the probability of the decision to update   

the DO. The ACO mechanism chose an optimal control 
according to the probability of decision quality. Moreover, 
the knowledge changes in agent system were used to 
eliminate bad decisions. The proposed method only 
presented the hybridization of MAS, DO and ACO but was 
not implemented on multidimensional HVAC system on 
local and system level.  

Chow et al. (2001) used an ANN-GA based chiller 
system optimization system to reduce the cost of electrical 
and fuel energy usage. The aim was to find optimum values 
of chilled water, cooling flow rate and temperature set-points 
for cooling loads. Both single and two hidden layered 
topologies and up to fifteen nodes per layer were tested. 
Levenberg–Marquardt based training algorithm with 
tangent-sigmoid (hidden layer) and linear (output layer) 
transfer functions was used as training algorithms. The 
authors utilised this trained ANN as a simulation engine to 
generate outputs for GA. Although the methodology is well 
defined, the performance of GA-ANN was not illustrated. 
Moreover, ANN tuning can be extended including other 
training algorithms and transfer functions.  

Yang and Wang (2012b) used multi-objective particle 
swarm optimization (MOPSO) to find an optimized solution 
between energy and comfort. A multi-agent control system 
was proposed, which consisted of two primary categories  
of agents (central coordinator agent and local controller 
agents). The central agent was responsible for cooperating 
with the optimizer to ensure occupants’ thermal comfort 
should meet the desired criteria. The local controller agents 
were used to control temperature, illuminance and CO2 
concentration. In this research, there was no information 
about building performance which may limit its application. 
Wang et al. (2011) also used a MAS with PSO for energy and 
comfort management. The framework consisted of central 
coordinate agent, local controller agents (for controlling 
thermal and visual comfort and air quality) and load agents. 

In most of the applications in buildings, ANNs are used 
for prediction purposes. Ferreira et al. (2012) presented 
results on neural network based predictive control. ANN 
was used to predict predicted mean vote (PMV) and MOGA 
was used to find an optimal number of neurons for ANN. 
The proposed method resulted in energy savings of more 
than 50%. Nassif (2012) also used ANNs to model an HVAC 
system and then the system operation was optimized by 
using a genetic algorithm. An NN predictor for indoor air 
temperature was used by Marvuglia et al. (2014). The pre-
diction was used for the fuzzy logic controller to regulate 
thermal comfort inside an office building.  

8.2 Fault detection 

Lo et al. (2007) proposed an automatic fault detection and 



Ahmad et al. / Building Simulation / Vol. 9, No. 4 

 

388 

diagnosis system using fuzzy-genetic algorithm for an 
HVAC system. Faults were represented at different levels of 
the monitoring system and recognised using fuzzy-genetic 
system. Genetic algorithm (GA) was utilised to train fuzzy 
rule using simulated data generated from HVACSIM+ 
simulation program, and a fuzzy system was utilised for 
evaluating the fitness of individuals of the GA’s population. 
The results showed that the proposed method performed 
better with a higher number of GA populations. The 
accuracy of the system could have been increased by using 
more linguistic variables in fuzzy logic instead of three (i.e. 
positive big, zero and negative big).  

Fan et al. (2010) proposed a hybrid self-adaptive fault 
detection and diagnosis system using artificial neural network 
(ANN), fuzzy c-means (FCM) and wavelet analysis (WA) 
for air handling unit (AHU). The proposed method has 
two main stages: the first stage consisted of two back 
propagation neural networks (BPNN) for fault detection 
and the second stage consisted of a fault diagnosis stage 
utilising WA, FCM and Elman neural network (ENN). In 
the first stage, BPNN was trained by using normal system’s 
operating data and a sensitivity analysis was implemented 
on the input variables to determine the most significant 
inputs. The significant inputs were selected for the second 
BPNN for fault detection. In the second stage, the WA was 
used to extract the approximation coefficient. This informa-
tion then was utilised to develop an ENN for diagnosis of 
sensor faults in the AHU. The authors also used FCM to 
cluster the approximation coefficient and to determine  
the cluster centres. The proposed model was sensitive to 
the threshold during the fault detection, which affects the 
accuracy of the stage. Moreover, it was recommended to 
keep the threshold to 1% of the level and therefore the model 
needs more robust approach.  

Dehestani et al. (2013) proposed an artificial neural 
network (ANN) and online support vector machines (SVM) 
based fault detection and isolation approach for HVAC 
system. The aim of the study was to reduce the maintenance 
cost and increase the utilisation of the HVAC system using 
a minimum number of data set. An ANN was used to 
generate a reference model for SVM and then SVM was 
utilised to detect faults in the HVAC system in accordance 
to a reference model both for online and offline conditions. 
In this study, the detailed information for ANN and the 
methodology of the sensitivity analysis and accuracy of the 
process were not well defined. A fuzzy logic and artificial 
neural network based fuzzy-neuro health monitoring system 
for HVAC control systems was developed by Allen and 
Rubaai (2013). The aim of this study was to detect the 
abnormal operating conditions and generate fault signatures 
in the HVAC system using fuzzy logic and then to classify 
the fault signatures using ANN. The proposed method 

detected all the normal conditions correctly using a fuzzy 
controller, and there was no error generated during the 
classification stage. On the other hand, ANN misclassified 
one of the four faults.  

Du et al. (2014b) developed a subtractive clustering 
approach for classification of sensor faults in the HVAC 
systems. The authors used a combined neural network 
(combination of basic and auxiliary neural networks) to 
detect fault and then used clustering analysis to diagnose 
the fault sources. The combined neural network was used 
to overcome the complexity of patterns in the HVAC 
systems. Among other clustering techniques, the authors 
used adaptive subtractive clustering analysis because of its 
adaptive classification capacity. When the neural network 
is to detect a fault or receive any signal, the subtractive 
clustering algorithm search the nearest cluster centre for 
the received pattern, whereas the cluster centre is calculated 
according to the historical data density information. It is 
believed that with the integration of dual neural networks, 
the detention efficiency of false alarm, detection time and 
missing alarm will be improved.  

Li and Wen (2014) presented a hybrid fault detection 
and diagnosis strategy based on PCA and Pattern Matching 
methods. The pattern matching method was used to locate 
period of operation from a historical data set whose opera-
tional condition is similar to target operating conditions 
and then building PCA models for these identified periods. 
The authors used the Mahalanobis distance measurement 
approach as it is less sensitive as compared to Euclidian 
based distance measurement for the scale and correlation 
inherited in the data sets. It is evident from previously 
described studies, where authors used different techniques 
to preprocess the training data, that preprocessing can 
enhance the sensibility of PCA models. The same idea was 
utilised by the authors and used pattern matching method 
to preprocess the training data. The authors used this 
method to detect air handling unit’s faults. The authors used 
both faulty and fault-free data to examine the proposed 
method. The authors did not perform online testing; however, 
it was believed that the proposed approach will significantly 
improve the sensitivity of fault detection process.  

8.3 Discussion 

In this section, several hybrid computational intelligence 
techniques have been discussed. Moreover, each individual 
technique and its characteristics were discussed one by one 
in previous sections. Each of these techniques has its own 
characteristic, e.g. some techniques have learning, some 
have control and some have optimization abilities. Some 
problems in HVAC system do require a combination of 
different techniques to overcome complexity and also to 
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propose a better solution. With respect to the purpose of 
solution, these hybrid methodologies generate better solutions 
and offer a higher gain in overall system performance. This 
approach fits to the system theory, in which, the aim is to 
maximise the gain in overall system performance (Hanson 
1995). This gain can be time and cost reduction, and 
induction of the comfort. HVAC systems consist of several 
subsystems, which have highly interdependent relationships 
with each other. Therefore, several hybrid techniques are 

presented to illustrate these complex problems and solution 
techniques. Table 7 summarizes research work focussing 
on hybrid applications.  

9 Trend analysis 

Graphical information of all the works included in this 
paper is presented in Fig. 13. Figure 13(a) shows the research 
work published in different journals and conferences. The 

Table 7 Review summary of hybrid applications 
Objective functionc 

Methoda Algorithmb 
Simulation  

tool EC TC VC OP Other Fault
Building sector/ 

system type 
Country/ 

SARd Sourcee Year Ref. 
FLC GD-BP  ✓    IAQ  Health RO INCAS 2013 Ursu et al. (2013) 
ANN Mamdani             
PD              
ANF Sugeno Matlab     Controller 

performance 
 All IR JPT 2012 Khooban et al. (2012) 

Fuzzy-PID PSO             
MAS 
DM 

ACO Protégé     HVAC 
performance 

 All BG CIT 2007 Hadjiski et al. (2007) 

ANN GA  ✓      Commercial CN IBPSA 2001 Chow et al. (2001) 
 LM BP             
FLC 
ANN 

BP 
Fuzzy c-means 

      Temp. sensor fault All CN BAE 2010 Fan et al. (2010) 

ANN  Matlab      Supply fan Educational AUS ECC 2013 Dehestani et al. (2013) 
SVM        Return damper      
FLC        Temperature sensor VAV USA IEEEf 2013 Allen and Rubaai (2013)
ANN        Damper valve stuck       
        Fan       
        Controller       
MAS PSO Matlab ✓ ✓ ✓ ✓ IAQ  All USA SCS 2013 Yang and Wang (2012b) 
FLC              
MAS PSO Matlab ✓ ✓ ✓ ✓ IAQ  All USA IEEEf 2011 Wang et al. (2011) 
FLC               
ANN LM BP  ✓ ✓     All IT ENB 2012 Ferreira et al. (2012) 
 GA             
FLC LM BP Matlab  ✓     Residential KR ATE 2011 Moon et al. (2011) 
ANFIS              
ANN              
FLC GA Matlab ✓ ✓   IAQ  VRV IND ENB 2010 Parameshwaran et al. 

(2010) 
 Mamdani        VAV      
ANN EA  ✓      All USA ASHRAE 

Trans. 
2012 Nassif (2012) 

FLC GA  ✓ ✓     All IR ECM 2011 Jahedi and Ardehali 
(2011) 

PID FRB              
FL GA HVACSIM+      Duct blockage All HK ASC 2007 Lo et al. (2007) 
 FRB       Temperature sensor       
        Cooling coil condensation       
        Fan belt       
A-FLC GA  ✓ ✓ ✓  IAQ  Educational USA ENB 2012 Navale and Nelson (2012)
FLC LM BP   ✓     Commercial  IT BAE 2014 Marvuglia et al. (2014) 
AR-NN              
ANN 
Clustering 

       Fixed bias of return water temp. 
Positive and negative fixed bias of supply 
air temp. 
Drifting bias of supply air temp. 
complete failure of supply air temp. 
Chiller water valve stuck 

Commercial CN BAE 2014 Du et al. (2014b) 

PCA 
Pattern matching 

       Outdoor air temperature 
Mix air temperature 
Supply air temperature 
Mixing box damper position signal 
Supply air duct static pressure, supply  
airflow rate 
Cooling and heating coils valve position 
signals 
Supply and return fans total power meter
Supply and return fans speed signals  

AHU CN AutoCon 2014 Li and Wen (2014) 

Notes: 
a Control and/or fault detection and diagnosis (FDD) method. FLC: fuzzy logic controller, ANN: artificial neural network, MAS: multi-agent system, PID: proportional integral and derivative, ANFIS: adaptive network-based 
fuzzy inference system, SVM: support vector machine, DM: dynamic ontology, A-FLC: adaptive fuzzy logic controller. 
bBP: back propagation, LM BP: Levenberg–Marquart back propagation, GD–BP: gradient decent back propagation, GA: genetic algorithm, PSO: particle swarm optimization, ACO: ant colony optimization. 
c EC: energy consumption, TC: thermal comfort, VC: visual comfort, OP: occupant preference, IAQ: indoor air quality. 
d SAR: special administrative region, RO: Romania, IR: Iran, BG: Bulgaria, AUS: Australia, IND: India, IT: Italy, HK: Hong Kong SAR, China, USA: United States of America, KR: Republic of Korea, CN: Mainland China. 
e ENB: Energy and Buildings, ATE: Applied Thermal Engineering, BAE: Building and Environment, ASHRAE Trans.: ASHRAE Transactions, ECC: European Control Conference, ASC: Applied Soft Computing, ECM: Energy Conversion 
and Management, IBPSA: International Building Performance Simulation Association, JPT: Journal of Power Technology, CIT: Cybernetics and Information Technologies, SCS: Sustainable Cities and Society, INCAS: National 
Institute for Aerospace Research. 
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majority of the work was published in Energy related 
journals, e.g., Energy and Buildings, Building and Environ-
ment, Applied Energy, etc. Also, from the review, it is 
evident that most of the multi-agent research studies were 
presented in IEEE conferences. The works published in 
control related journals/conferences are lesser as compared 
to the work published in energy or Building related 
journals/conferences. 

Percentage of research work in the field of CI applied  
to HVAC system published by the authors of different 
countries is shown in Fig. 13(b). USA looks to be more 
focussed on HVAC efficiency problems with more than 20 
percentage studies conducted in the USA. In Europe, UK 
has shown more interest as compared to other countries.  
It is also evident that other developed countries/special 
administrative regions such as Hong Kong SAR, Singapore, 
etc. have also made efforts to address HVAC problems with 
the help of CI techniques. There are only a few studies that 
were conducted and published in the developing countries, 
which needs to be changed as developing countries have 
more energy related issues (e.g. load shedding) as compared 
to developed countries.  

The most common objective function was energy 
consumption and 38% of the studies tried to minimise 

energy consumption. Thermal comfort and indoor air 
quality were also important cost functions and were used in 
29% and 11% of the studies respectively. The researchers 
also considered occupant preference and visual comfort  
as objective functions. Other objective functions include 
occupant schedule, maximising renewable energy use, energy 
cost, cost and energy efficiencies. Multi-agent based studies 
considered more number of objective functions at a time as 
compared to other CI techniques because of their ability to 
divide a bigger task into a number of small tasks.  

Metaheuristic algorithms, particularly GAs are more 
popular amongst researchers. ANNs were also used in HVAC 
related problems due to their ability to model non-linear 
problems. Back propagation was one of the researchers’ 
preferred choices for training ANN. Among different BP 
algorithms, Levenberg–Marquardt back propagation was 
mostly used because of its fast training speed and better 
accuracy. Fuzzy logic was also used for control and fault 
detection purposes. There are a fewer number of studies 
that used multi-agent systems, but their use is increasing 
day by day.  

In literature, Matlab (Mathworks 2012) has been used 
for about 47% (including Simulink) of the total work 
reviewed in this paper. Matlab has its own optimization 

O

 
Fig. 13 Summary of compiled literature review 
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toolbox, which includes artificial neural networks, fuzzy 
inference system, multi-objective genetic algorithm etc, 
and makes Matlab/Simulink an attractive option to choose. 
Matlab/Simulink are mainly used for designing controllers 
or for coupling building energy simulation engines and 
optimization algorithms. Hamdy et al. (2009) mentioned 
that besides having many useful optimization algorithms 
libraries, Matlab provides an opportunity to the user to use 
other features as well e.g. use of databases, data analysis, 
graphical user interface, etc. EnergyPlus (Crawley et al. 2001), 
an open source building simulation engine, constitutes 12% 
of the literature. EnergyPlus has no interface, which limits 
its use to some extent. EnergyPlus was mostly used for 
generating databases for ANN training and also used as  
an evaluation engine in optimization problems. TRNSYS 
(Klein et al. 1976) stands for TRaNsient SYstems Simulation 
Program and is used 19% in the literature. It was mainly 
used for dynamic simulations of building zones and also 
for generating data for ANN training. Researchers have also 
coupled TRNSYS with other optimization software tools.  

10 Conclusions 

10.1 The survey 

In this article, we presented a comprehensive review 
discussing computational intelligence techniques for 
HVAC systems. In literature, several applications that use 
Computational Intelligence (CI) techniques can be found 
in the area of robotics, machine vision, computer science, 
mathematics, physics, chemistry and operational research. 
CI techniques have also several applications on HVAC 
systems and most of these applications are based on 
Genetic Algorithm (GA), Evolutionary Programming (EP), 
Ant Colony Optimization (ACO), Particle Swarm Optimiza-
tion (PSO), Artificial Neural Network (ANN), Principal 
Component Analysis, Clustering, Bayesian Networks, Pattern 
Matching, Fuzzy Logic, Multi-Agent Systems (MAS) and 
hybrid combinations of these techniques. There is clearly a 
growing trend in the popularity of CI techniques for control 
and fault detection applications in HVAC systems. This is 
due to the evaluation in computation power available to 
apply these techniques on both experimental and real-life 
problems, and also, due to more stringent requirements  
for building energy efficiency and in particular for HVAC 
systems. 

As each CI has its own merits and demerits, it is not 
possible to utilise one unique technique on every application. 
Therefore, different types of CI techniques have been found 
in the literature for different applications. ANNs were used 
due to their ability to solve non-linear problems and have 
been widely utilised on HVAC systems. The quality of ANN 

results is highly related to the quality of training data set. 
However, if the data is post-processed, it can produce 
better results for HVAC systems. HVAC problems are 
computationally extensive and as simulation-based optimiza-
tion techniques often require hundreds or thousands of 
simulation runs which may make optimization techniques 
infeasible to apply on real-time basis. Artificial neural 
networks are one of the promising solution to solve this 
problem. However, modelling a sensitive objective function 
using ANNs can be a challenging task as small deviation can 
make a huge difference. Most of the research conducted on 
fuzzy logic controller also performed a comparison with 
the state of the art controllers (e.g. PID controllers). It is 
well-known fact that tuning PID gains can be a challenging 
task. Sometimes fuzzy logic rules are not effective as they 
are based on human knowledge. Fuzzy logic controllers can 
be energy efficient and robust controller as compared to 
PID controllers and also have better/faster response rate  
to external disturbances. Generating rules for fuzzy logic 
methods can be a challenging task and, therefore, best 
practices and experts knowledge are used to create initial 
rules. A clearly identified gap is the need to implement   
CI techniques on real systems and buildings, as most of  
the reviewed studies were based on virtual systems using 
computer simulation.  

Metaheuristic algorithms are the most popular CI 
techniques due to their different specifics and search abilities 
e.g. genetic algorithms and ant colony optimization are more 
suited for global search whereas particle swarm optimization 
has a strong ability in local search. Evolutionary Algorithms 
(EAs) such as GA and EP are stochastic based optimization 
techniques offer population-based solutions and as HVAC 
systems being highly complex, stochastic problems can  
be optimized in a short time period with better quality 
results by using EAs. Single individual based optimization 
techniques look for the optimum solution that may be cost 
effective for a simple problem with non-complex solution 
space but it can be useful to solve complex problems (e.g. 
optimization of HVAC operation) by using population- 
based techniques (e.g. genetic algorithm). Particle swarm 
optimization can be categorised as one of the efficient 
stochastic based optimization algorithms but its efficiency 
is highly dependent on the tuning of weights and inertia 
parameters. Pattern recognition-based methods have been 
used for FDD purposes, but their usefulness depends on the 
quality of the data used for generating models or patterns. 
Several advancements are seen in this field of research but 
their application on HVAC system is still lacking.  

The work presented in this paper is the first of its kind 
that presents trends analysis of research focussing on CI 
techniques applied to HVAC system. It revealed that most 
of the developed countries are showing greater interest in  
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energy efficient HVAC systems, as most of the reviewed 
studies were conducted in developed countries/SAR and 
low number of studies were conducted in developing or 
underdeveloped countries. Genetic algorithms were applied 
in most of the studies to solve HVAC related optimization 
problems. Interest in MAS is increasing due to their ability 
to solve the problem by dividing it into a number of small 
problems. Matlab/Simulink was the most widely used 
simulation tool followed by building energy simulation tools 
(EnergyPlus, TRNSYS, DOE-2 etc.).  

10.2 Future directions 

 HVAC design problems are different than the control 
problems in a way that optimization process is only 
required at the design stage; however optimizing control 
problems needs computation power throughout the HVAC 
running cycle. Which means, we may be saving energy 
by efficiently controlling/optimizing HVAC systems but 
on the other hand we are also consuming energy while 
running computationally extensive equipment. Therefore, 
the future research should focus on using single board 
computers (Raspberry Pi, Banana Pi, BeagleBoard etc.), 
which use less power.  

 The issue that may arise by using single board computers 
could be the use of appropriate evaluation engine. As 
dynamic simulation tools were the main evaluation engines 
used in the research studies and are computationally 
extensive. The use of single board computer would also 
mean using some form of surrogate models instead of 
detailed simulation models.  

 Reductions in initial and running costs can also be 
achieved by using cloud computing technologies. The 
emerging cloud computing technologies provide a way 
to optimize HVAC systems’ operation by using a shared 
and dynamic infrastructure. The popularity of these 
technologies depends on the advancements in internet 
connection speed and further future advancements will 
allow us to control HVAC systems using CI techniques 
on a nearly real-time basis and shared IT infrastructure.  

 Another area that requires attention from building 
research community is to sufficiently explore the applica-
tion of parallel processing to improve simulation results 
without sacrificing accuracy.  

 From the literature review, it is evident that it is highly 
desirable to combine different CI techniques (hybrid 
applications) to overcome their deficiencies. It is also 
evident that no single CI technique has all the desirable 
features for control, optimization or FDD system. Therefore, 
most of the methods can complement one another 
resulting in a better CI based optimization, control and/or 

FDD system. In most of the cases, hybrid techniques e.g. 
ANN-GA, Fuzzy Logic-GA or ANN-Fuzzy Logic provided 
better results. Therefore, not only other algorithms such 
as the Bees Algorithm, Artificial Bee Colony and Fish 
School Algorithm, Type 2 Fuzzy set etc. need to be 
explored for optimizing HVAC systems, future research 
should also focus on their hybrid applications with 
currently applied techniques.  

 The use of MAS is growing increasingly, the current 
MAS techniques learn from user interactions and efforts 
should be made to test different learning algorithms that 
do not require any interaction or feedback from user.  

 The number of articles presented in this paper is merely 
to demonstrate the usefulness and popularity of CI 
techniques in HVAC optimization problems. It is hard 
to conclude which of these techniques is suitable for a 
particular application. However, there should be future 
studies that may serve as a guide to select CI techniques 
for different applications e.g. studies comparing different 
CI techniques for test problems and then recommending 
best suited techniques for that particular problem (as we 
have test functions to evaluate characteristics of various 
optimization algorithms).  

 Most of the studies were validated by simulations or on 
small-scale HVAC systems. The practical validation needs 
to be performed on commercial HVAC systems and 
controlling them on real-time basis.  
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Appendix A Mathematical formulation 

Like most design optimization problems; HVAC optimization 
aims to find the best solution from feasible alternative 
solutions, collectively referred to as solution space. Generally, 
an objective function such as energy use is minimised 
subject to various constraints. A single-objective optimization 
problem can be represented as (Mourshed 2006) 
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min ( )f
ÎXx

x                                     (A.1) 

subject to:  

( ) 0 1,2, ,jg j m£ = x                          (A.2) 

( ) 0 1,2, ,kh k n= = x                           (A.3) 

upperlower 1,2, ,i i is s s i p£ £ =                      (A.4) 

where: x is design vector T
1 2[ , , , ]nx x x , n being the number 

of variables; f(x) is objective function; gj(x) is inequality 
constraint; hk(x) is equality constraint; and lower

is and upper
is  

are lower and upper bounds of design variable si.  
All design variables: 1 2, , , nx x x , are assembled into the 

vector T
1 2[ , , , ]nx x x= x  belonging to a subset X of the n- 

dimensional real space n , that is nXÎ Í x . The choice 
of n  is made because the vast majority of the HVAC 
optimization problems have variables that are continuous.  

For optimization problems with two or more objectives 
such as the scenario B in Fig. 1, where energy consump-
tion and thermal discomfort (e.g., PPD<10%) need to be 
minimised, a modified form of Eq. (A.1) is used to express 
multi-objective optimization: 

1 2min ( ) [ ( ), ( ), , ( )]uf f f f
Î

=
x X

x x x x                  (A.5) 

where: x is design vector T
1 2[ , , , ]nx x x , n being the number 

of variables; and fu(x) is the u-th objective function.  
The formulations for constraints and variable bounds 

are same as in single objective optimization, as illustrated 
in Eqs. (A.2) to (A.4). 

Solving multi-objective optimization problems are more 
involved than single-objective ones, as objective functions 
are often in conflict with each other and may be equally 
important. A single best solution may not exist, which makes 
decision making particularly challenging. One straightforward 
solution is to convert the multi-objective formulation into 
a scalar objective by applying appropriate weights to solve 
the problem using single-objective optimization methods. 
The scalarization of objective functions is further discussed in 
Mourshed (2006), Mourshed et al. (2011). Another approach 
is to find a set of trade-off solutions that represents the best 
compromise between the objectives. This set is referred to as 
Pareto front and further explored in Brownlee et al. (2011), 
Reyes-Sierra and Coello (2006), Wright et al. (2014). 
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