Policy language in restoration ecology

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Restoration Ecology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Opinion Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Jørgensen, Dolly; Umeå University, Department of Ecology & Environmental Science
Nilsson, Christer; Umeå University, Department of Ecology and Environmental Science
Hof, Anouschka; Swedish University of Agricultural Sciences, Department of Wildlife, Fish, and Environmental Studies
Hasselquist, Eliza; Umeå University, Department of Ecology and Environmental Science
Baker, Susan; Cardiff University, Cardiff School of the Social Sciences
Chapin III, F. Stuart; University of Alaska Fairbanks, Fairbanks, Institute of Arctic Biology
Eckerberg, Katarina; Umeå University, Department of Political Science
Hjältén, Joakim; Swedish University of Agricultural Sciences, Department of Wildlife, Fish, and Environmental Studies
Polvi, Lina; Umeå University, Department of Ecology and Environmental Science
Meyerson, Laura; University of Rhode Island, Department of Natural Resources Science |
| Keywords: | policymaking, research implications, scientific communication, climate change |
Policy language in restoration ecology

Manuscript Category: Opinion

Authors:

Dolly Jorgensen¹, Christer Nilsson¹, Anoushka R. Hof¹,², Eliza Maher Hasselquist¹,
Susan Baker³, F. Stuart Chapin III⁴, Katarina Eckerberg⁵, Joakim Hjältén², Lina Polvi¹
and Laura A. Meyerson⁶

¹Department of Ecology and Environmental Science, Umeå University, Umeå 90187, Sweden;
²Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural
Sciences, Umeå 90183, Sweden; and
³Cardiff School of the Social Sciences, Cardiff University, Glamorgan Building, King Edward
VII Avenue, Cardiff CF10 3WA, Wales;
⁴Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA;
⁵Department of Political Science, Umeå University, Umeå 90187, Sweden;
⁶Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode
Island 02881, USA

*Correspondence author. E-mail: dolly@jorgensenweb.net
Abstract

Relating restoration ecology to policy is one of the aims of the Society for Ecological Restoration and its journal *Restoration Ecology*. As an interdisciplinary team of researchers in both ecological science and political science, we have struggled with how policy-relevant language is and could be deployed in restoration ecology. Using language in scientific publications that resonates with overarching policy questions may facilitate linkages between researcher investigations and decision-makers’ concerns on all levels. Climate change is the most important environmental problem of our time and to provide policy makers with new relevant knowledge on this problem is of outmost importance. To determine whether or not policy-specific language was being included in restoration ecology science, we surveyed the field of restoration ecology from 2008 to 2010, identifying 1,003 articles, which we further examined for the inclusion of climate change as a key element of the research. We found that of the 57 articles with “climate change” or “global warming” in the abstract, only two identified specific policies relevant to the research results. We believe that restoration ecologists are failing to include themselves in policy formation and implementation of issues such as climate change. We suggest that more explicit reference to policies and terminology recognizable to policymakers might enhance the impact of restoration ecology on decision-making processes.

Key words: policymaking; research implications; scientific communication; climate change
Introduction

Relating scientific research to policy is a continual challenge. Restoration science can be
useful in the making and refining of public policies, in addition to providing guidance to
practitioners in the field (per Cabin et al. 2010). The Society for Ecological Restoration (SER)
has targeted “advising international organizations with policy and legislation”
(http://www.ser.org/about.asp) as one of its chief goals, and the Aims & Scope of the society's
flagship journal, Restoration Ecology, places the journal “at the forefront of a vital new
direction in science, ecology, and policy”
surveyed by Cabin et al. (2010) likewise identified developing political support for restoration
science as a desirable SER objective. Yet looking at the articles published in Restoration
Ecology from 2008 to 2011, few tackle policy as their main theme: only 18 articles out of 500
have any form of the words politics/policy in the abstract and only two have it in the title.
Although instructions for the “Implications for Practice” section of articles ask authors to
think about how practitioners could implement the findings, they do not ask authors to think
about whether their findings might have implications in the policy realm
(http://www.wiley.com/bw/submit.asp?ref=1061-2971) and thus this section generally
contains only technical field recommendations. Although scientists may have particular
policies in mind as relevant to their research, the pages of Restoration Ecology are not
conveying this explicitly.

As an interdisciplinary team of researchers in both ecological science and political
science, we have struggled with how policy-relevant findings could be deployed in restoration
ecology. Pointing out the implications of scientific research for policy questions may facilitate
linkages between researcher investigations and decision-makers’ concerns on all levels, from
local practitioners to regulatory agency specialists to interstate-level policymakers. Language
matters because scientific information will be incorporated into environmental policy only when stakeholders perceive the information as credible (scientifically adequate), salient (strongly relevant), and legitimate (respectful of the stakeholders’ values and beliefs) (Cash et al. 2003; Clark et al. 2006). Concepts such as “biodiversity” and “sustainable development” have found their way into policy statements at national and international levels giving them wide relevance (Noss 1995; Callicott et al. 1999), thus general policy concepts might provide a common language forged between policymakers and scientists.

Issue salience, which was first used by social scientists to explain voting behavior, refers to how important an issue is for shaping a public policy agenda (Wlezien 2005; Clark & Holliday 2006). Issues occupy points along a spectrum of saliency, ranging from high visibility to not appearing at all (Pralle 2009). Once an issue has entered political discourse, we can say that it did so because it has saliency, i.e., it is relevant to the decision-making process—even though we may not understand how or why it gained that status without further investigating the links between the ideas, social and political contexts, and media coverage of the issue.

Linking the relevance and implications of research to salient issues using commonly understood language is critical to increasing the impact of restoration research on policy. For example, if research findings have implications for “ecosystem services” policies, the article could indicate how the results are relevant. This does not mean that the scientist must necessarily take a normative stand on a particular policy option, but rather could state how the research is applicable to policy concerns. There has been extensive debate about the proper role of scientists in conservation policymaking (e.g. Brussard & Tull 2007; Lackey 2007). These authors caution that scientists must be careful to they present research so that it informs policy but does not advocate one policy over another because doing so may raise questions about the validity of the science. However, as Scott et al. (2007) note, scientific findings need
to be brought to the attention of policymakers. Scientists need to link policy problems to the
information that provides solutions (Cortner 2000).

Although some scientists may think pointing out the policy implications of research
findings is futile because policymakers do not consult research, studies of policymaking
behavior have shown otherwise (Amara et al. 2004; Rigby 2005; Rudd 2011). Policymakers
have been shown to use science in three ways: to identify new issues (conceptual), to identify
solutions to previously known problems (instrumental), and to support established positions
(symbolic) (Amara et al. 2004; Rudd 2011). The most extensive study of policymakers to
date, which surveyed 833 individuals at various Canadian governmental agencies, found that
over 40% of the respondents considered university research moderately important, very
important, or decisive in all three utilization categories (Amara et al. 2004). Studies also
indicate that policymakers are more likely to use research if it has an “actionable message”
aimed at the policy audience (Lavis et al. 2003; Rigby 2005). While big policy questions
cannot be entirely answered through individual research projects, systematic reviews
combining evidence can be particularly useful in high-level policy decision-making (Pullin
2009).

The case of restoration and climate change
Climate change is currently considered by many to be the environmental issue of the 21st
century, since the climate is changing rapidly and environmental consequences may be
significant (IPCC 2007). Climate change-related declines in species populations are
increasingly common (Thomas et al. 2004), and climate change may become the greatest
global threat to humans and biodiversity within the next few decades (Leadley et al. 2010).
An enquiry in the database Web of Knowledge (http://apps.webofknowledge.com/): Topic =
climate change, Web of Science Categories = environmental sciences, excluding publication
year 2013) shows that the percentage of papers published in environmental sciences on the topic climate change increased substantially over a decade: from 2% in 2000 to 14% in 2012. Considering the importance of framing ecological research within contemporary efforts to address climate change and the role that scientific articles may play in linking science with policy, we more closely examined whether or not climate change policy was visible within the scientific literature of restoration ecology.

Do restoration ecologists use language that might resonate with climate change concerns in order to bolster linkages with policy formulation, implementation or adaption? Using the list of journals targeting restoration from Aronson et al. (2010) and the authors’ knowledge of the field, we screened for potential journals with restoration articles in the period 2008–2010. We identified 18 journals that had more than 10 articles containing “restoration” in the abstract, resulting in a set of 1,003 articles (Table 1). Although containing the word “restoration” in the abstract did not guarantee that the article was about restoration, it meant that the author identified restoration as an important component of the research. All searches were performed using each journal’s web hosting search engine, which allowed searching only the abstract.

We identified a subset of articles that include the term “climate change” or “global warming” in the abstract (57 articles). Looking at those papers more closely, practitioners appeared to be a common target audience, with papers focused on restoration techniques appropriate under climate change, such as seed banking, marsh reconstruction, and fire management. Formal policies were named in only two cases: the EU Birds and Habitats Directive and Natura 2000 network (Verschuuren 2010); and the global conventions on Biodiversity, Climate Change, and Desertification (Bignon et al. 2008). In these two cases where specific policy instruments are named, the lead researchers were not restoration ecologists: Verschuuren is a specialist in international public law and Blignon is an
environmental resource economist, although Blignaut had one restoration ecologist as a co-author. How policies might be developed or modified in light of climate to incorporate the latest ecological restoration science is essentially absent. Although restoration scientists may not have findings relevant to setting overarching policy on CO₂ emission totals, they likely to have results that should affect how measures like the EU Water Framework Directive and Convention for Biodiversity Aichi Targets are implemented in light of climate change, but this kind of implication is not brought into focus in the articles. While climate change policy and adaption to climate change at everything from local to global levels is discussed openly in other venues, particularly journals targeted at the social sciences, restoration scientists are not often bringing their specific ecological knowledge into those discussions.

Making the message clear
As currently written, restoration ecology articles are scholarship that communicates primarily with other scientists and restoration practitioners. Although intra-scholarly community communication is vital to research development, restoration outcomes are greatly influenced by social and political pressures (Baker and Eckerberg, 2013). Restoration scientists have important messages for those who shape climate change and other policies, but they may not be making that linkage as explicit as they could in their journal articles.

In a recent editorial piece, Holl (2010) pleaded with authors submitting articles to Restoration Ecology to consider why an international audience would be interested in their work. She outlined five questions to consider when “framing” papers, focusing on how work in one specific locality can be made relevant to those working in other geographies, ecosystems, and sociopolitical contexts. The results of our survey suggest that the “framing” also needs to include policy implications. The “loading-dock” model of science, in which scientists produce knowledge and deliver it with the expectation that users will find and use it,
seems inadequate in a rapidly changing world where there is increasing need for science-informed policy (Cash et al. 2006). While we recognize that publication in a scholarly journal is not the only or even the best way to reach policymakers with research results, clear identification of politically salient issues like climate change is, frankly, an easy way to increase the likelihood of science-informed policies. Referencing specific policies or laws related to the research is an even more direct way of speaking to policy concerns.

Funding structures for research already encourage this kind of thinking. Many grant sources such as EU Framework Programme 7 require applicants to explain the social relevance of the research, just as “broader impacts” must be detailed in proposals to the U.S. National Science Foundation. Some scientists may be treating these sections of applications as a necessary evil, or they may be less interested in communicating their findings to a policy audience than to their scientific peers. The connections to policy issues become weaker as the scientific process moves from grant application to scholarly publication, but this need not be the case.

We are not saying that all restoration ecology science has an “actionable message” for policymakers—practitioners and other scientists are legitimate audiences—but we believe there are more policy-relevant recommendations already inherent in ongoing restoration research that could be highlighted. One practical suggestion would be for Restoration Ecology as the leading venue of scientific work on restoration to create a special section or paper category dedicated to policy issues, which would perhaps spur more two-way communication with policymakers and encourage policymakers to look more often at restoration science for guidance on policy making, implementation, and adaption. Another suggestion is to encourage authors to focus one of the “Implications for Practice” items on policy implications if it is appropriate. Restoration ecologists should be encouraged to work more collaboratively
with colleagues in the social sciences to identify policies that could be affected by their scientific results.

Although social interest in environmental issues is high, natural scientists continue to face difficulties providing information to the public and decision-makers in ways that resonate with their understandings of important issues. Groffman et al. (2010) encourage ecologists to become active communicators, specifically turning to new communication tools outside of academia to reach target groups. At a more basic level, we believe restoration ecologists need to be aware of the language they use in scientific communication and actively identify how their research findings could affect policies in the face of climate change.

Implications for practice

- Restoration ecologists should be aware how their scientific results could and should be incorporated into policy decisions.
- Working collaboratively with social scientists would aid in identification of specific local, regional, and even global policies that could be affected by restoration science.
- Restoration ecology scientific publications could better incorporate policy-relevant concerns such as climate change.
- Journals interested in restoration should encourage two-way communication between scientists and policymakers to help integrate scientific results into policy practices.

Acknowledgements

Funding provided by the Swedish research council FORMAS (to CN). The team thanks Margaret Palmer, David Bell, Anders Steinwall, Anna Zachrisson, and Stuart Allison for their suggestions on earlier versions of this manuscript.
Literature Cited

School of Plant Biology, University of Western Australia, Crawley, WA 6009 AUSTRALIA
science: prevalence, perspectives, and implications for conservation biologists.

Conservation Biology **21**:29–35.

Table 1. Journals identified as containing at least 10 articles with “restoration” in the abstract, 2008–2010.

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBIO</td>
<td>13</td>
</tr>
<tr>
<td>Biological Conservation</td>
<td>70</td>
</tr>
<tr>
<td>BioScience</td>
<td>16</td>
</tr>
<tr>
<td>Conservation Biology</td>
<td>24</td>
</tr>
<tr>
<td>Ecological Applications</td>
<td>68</td>
</tr>
<tr>
<td>Ecological Economics</td>
<td>20</td>
</tr>
<tr>
<td>Ecological Engineering</td>
<td>62</td>
</tr>
<tr>
<td>Ecological Management & Restoration</td>
<td>25</td>
</tr>
<tr>
<td>Ecological Restoration</td>
<td>73</td>
</tr>
<tr>
<td>Environmental Management</td>
<td>50</td>
</tr>
<tr>
<td>Forest Ecology & Management</td>
<td>108</td>
</tr>
<tr>
<td>Freshwater Biology</td>
<td>34</td>
</tr>
<tr>
<td>Frontiers in Ecology and the Environment</td>
<td>14</td>
</tr>
<tr>
<td>Journal of Applied Ecology</td>
<td>72</td>
</tr>
<tr>
<td>Journal of Arid Environments</td>
<td>34</td>
</tr>
<tr>
<td>Journal of Environmental Management</td>
<td>24</td>
</tr>
<tr>
<td>River Research and Applications</td>
<td>51</td>
</tr>
<tr>
<td>Restoration Ecology</td>
<td>245</td>
</tr>
</tbody>
</table>