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Abstract

In this paper, we address the problem of planning the patient flow in hospitals subject to

scarce medical resources with the objective of maximizing the contribution margin. We

assume that we can classify a large enough percentage of elective patients according to

their diagnosis-related group (DRG) and clinical pathway. The clinical pathway defines

the procedures (such as different types of diagnostic activities and surgery) as well as the

sequence in which they have to be applied to the patient. The decision is then on which day

each procedure of each patient’s clinical pathway should be done, taking into account the

sequence of procedures as well as scarce clinical resources, such that the contribution mar-

gin of all patients is maximized. We develop two mixed-integer programs (MIP) for this

problem which are embedded in a static and a rolling horizon planning approach. Com-

putational results on real-world data show that employing the MIPs leads to a significant

improvement of the contribution margin compared to the contribution margin obtained

by employing the planning approach currently practiced. Furthermore, we show that the

time between admission and surgery is significantly reduced by applying our models.
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1 Introduction

For many years, cost reimbursement has been the standard payment scheme for hospitals.

In this scheme, a hospital receives the total cost for treating the patient which is calculated

by multiplying the patient’s length of stay with a (ward specific) daily rate and adding the

costs for clinical procedures applied, such as diagnosis and surgery. Cost reimbursement does

not provide an incentive for hospitals to operate efficiently. As a consequence, hospital costs

as the largest part of total health care costs (approximately 31% in the U.S., see Lim et

al. [31]), have increased sharply. In an effort to limit hospital costs and to create an incentive

for hospitals to operate more efficiently, many countries have introduced payment schemes

that are based on diagnosis-related groups (DRGs). In these schemes, patients are classified

into DRGs with homogeneous clinical characteristics and resources required during treatment

within each group, while between groups, the patients’ clinical characteristics and therefore

costs are different. Hospitals receive payments based on the DRG instead of the applied

procedures and the length of stay. The reimbursement the hospital receives for treating a

patient with a specific DRG equals the average cost which accrued in a representative sample

of hospitals in the year before last. For each country, there is an institution, such as the German

institute for the reimbursement in hospitals INEK (see Schreyögg et al. [48]), responsible for

generating the sample, collecting, processing and distributing the cost data. With DRG-based

payment schemes in place, in order to be profitable a hospital has to operate such that its

patient specific costs are lower than the average costs of the hospitals in the sample. However,

the cost structure in hospitals, as in many service industries, is such that the predominant share

of the operational costs is fixed. Hence, costs can only be marginally reduced by operational

decisions. Instead, hospitals have to use existing resources such that revenue or the total

contribution margin is maximized. This approach is well-known in the service industry (see

Kimes [27] for an example in the service industry in general as well as Schütz and Kolisch [49]

for an example in the health care industry in particular).

In this paper, we propose two models to plan the patient flow in hospitals subject to scarce

medical resources with the objective to maximize the contribution margin. We assume that

we can classify a large enough percentage of elective patients according to DRG and clinical

pathway. The clinical pathway defines the procedures (such as different types of diagnostic

activities and surgery) as well as the sequence in which they have to be applied to the patient.

The decision is then on which day each procedure of each patient’s clinical pathway should

be done, taking into account the sequence of procedures as well as scarce clinical resources,

such that the contribution margin is maximized. We consider a particular variant of the

DRG-based payment scheme which is in use in Australia (see Duckett [17]), Switzerland (see

Zaugg et al. [58]), France and Germany (see Schreyögg et al. [48]). In this variant, payment
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is not only dependent on DRG but also, to some extent, on length of stay. More precisely, the

fixed reimbursement is reduced by some fixed amount per day if the length of stay (LOS) falls

below a lower threshold value, referred to in the literature as low LOS trim point. In contrast,

the fixed reimbursement is increased by some fixed amount per day if the medically necessary

length of stay exceeds a high threshold value, denoted by high LOS trim point. By this, the

payment scheme takes outliers into account (see, for example, Schreyögg et al. [48]). The

concept of trim points is described in Section 3; for more information about DRG trim points,

see Busse et al. [5]. An example of a cost, revenue and contribution margin function is given

in Section 3.1, while a detailed example of two patients and their corresponding contribution

margin for two specific DRGs is provided in Section 3.3. The payment scheme with fixed

payment not coupled to the length of stay is a special case of the one that is treated in our

study. Hence, our models can be applied to both variants.

Within the health care planning matrix of Hans et al. [23] our planning approach can be

classified as offline operational resource capacity planning. It comprises the detailed coordina-

tion of the activities regarding current (elective) demand (see Hulshof et al. [24]). Our models

thus use planning decisions which have been made at higher planning levels such as strategic

decisions on case mix, type and capacity of clinical resources as well as tactical decisions on

the master surgery schedule. Then, our models generate decisions on the admission day of

patients, the day-based assignment of clinical activities to hospital resources and the discharge

day of patients. These results are in turn input for decisions to be made on subordinate plan-

ning levels such as bed assignment in wards, sequencing of diagnostic activities and surgical

cases within a day. Contrary to most planning approaches for the offline operational level

proposed so far, our model considers not only one resource such as a diagnostic device or the

operating theater, but all scarce clinical resources. Correspondingly, we do not consider a

single type of activity within the clinical pathway, such as the surgery, but all activities. We

manage to do so by applying the right amount of aggregation in our models with a period

length of one day. Since the capacity demand of a single activity in a clinical pathway is usually

significantly smaller than a day, we can use expected values instead of distribution functions

for most data. However, for some data such as recovery times of patients with a length of

multiple days and arrival times of patients we explicitly take the stochastic nature into ac-

count by embedding our models in a rolling horizon approach with Bayesian recovery time

prediction. Our computational results using real-world data demonstrate that our approaches

lead to an improvement of approximately 5% in the contribution margin when compared to

the planning approach currently employed in the hospital from which we obtained our data.

Also, we show that the time span between admission and surgery is reduced by about 1.5 days

and that the length of stay is reduced by about 2 days.

The remainder of this paper is structured as follows. In Section 2, we provide a survey of the
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relevant literature and set apart our approach. Section 3 presents the mathematical models and

illustrates them by means of examples. In Section 4, we test our models on real-world data from

a midsize hospital. First, we provide results for the two static deterministic models of Section 3.

Then, we show how the models are embedded within a rolling horizon approach using Bayesian

recovery time prediction in order to take into account uncertain information. We provide a

computational comparison of the static deterministic and the dynamic stochastic planning,

benchmarking both against the solution approach currently employed by the hospital. Finally,

we analyze the impact of our approaches on some key figures such as time span between

admission and surgery as well as length of stay. Section 5 closes the paper with conclusions.

2 Literature review

There is a rich literature on offline operational capacity planning in hospitals. Table 1 pro-

vides an overview of offline operational capacity planning problems for surgical, inpatient and

residential care services, employing the taxonomy of Hulshof et al. [24]. We selected articles

based on that taxonomy and restricted our search to the application of mathematical pro-

gramming as a solution technique. Moreover, we excluded staff-to-shift assignment papers

and those that were published before 2000. We have classified each article with respect to the

use of scarce clinical resources (single vs. multiple) and the consideration of risk (deterministic

vs. stochastic).

Single resources

Operating room (OR) [2, 10, 14–16, 18,

19, 22, 25, 28–30,

32, 33, 38, 42, 44]

Beds [9, 13, 46]

Therapy [45]

Multiple resources

OR and ward/ICU beds [1, 6, 7, 11, 20, 36,

39, 52]

Diagnostic and beds [12]

Diagnostic and therapy [26]

(a)

Deterministic [1, 6, 7, 10, 12, 13,

18–20, 22, 25, 26, 33,

36, 39, 42, 44, 45, 52,

56]

Stochastic

Arrival [11, 28–30, 38]

Surgery durations [2, 14–16, 28, 30, 32,

38]

Ward recovery [9, 11, 46]

Clinical pathway [11, 57]

(b)

Table 1: Classification of articles by resources (a) and consideration of risk (b)

The table reveals that the majority of the papers consider a single resource such as the oper-

ating theater (for a survey see Cardoen et al. [8] and Guerriero and Guido [21]) or wards (De-

meester et al. [13]). The planning of diagnostic services is addressed, for example, by Patrick

et al. [37] who, in contrast to our work, employ Markov decision processes as a solution ap-

proach. Since our paper addresses all scarce hospital resources instead of a single one, we do
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not present these approaches in detail. A smaller number of papers take into account mul-

tiple resources, see Vanberkel et al. [55] for an overview. The majority of the papers which

consider multiple resources deal with the operating room in combination with its upstream or

downstream resources. Pham and Klinkert [39] propose a mixed-integer program (MIP) for

surgical case scheduling considering scarce resources at the preoperative, perioperative and

postoperative stages, solved with the standard solver CPLEX. Augusto et al. [1] consider the

problem of scheduling a fixed number of elective cases subject to scarce resources in the oper-

ating theater, the post-anesthesia care unit and the patient transportation unit. The problem

is modeled as a MIP and solved by using Lagrangian relaxation. Besides the scheduling deci-

sion, the model is used to explore the benefit of letting patients recover in the operating room

when there is no capacity in the post-anesthesia care unit. Conforti et al. [12] address the

so-called “week hospital problem” in which a decision is made if and when elective patients

on a waiting list are admitted to the hospital and when the clinical activities of the admitted

patients are performed. By definition, the week hospital problem ensures that all admitted

patients are discharged in the week they have been admitted. The objective is to maximize

the sum of the scores of admitted patients. The planning horizon of one week is divided into

periods of a half day length. The paper proposes a MIP which is solved with the standard

solver CPLEX.

On a tactical planning level, Min and Yih [34] address the surgery scheduling problem for

elective patients taking into account stochastic surgery durations and stochastic capacity of

the surgical intensive care unit by employing a stochastic discrete program which is solved with

the sample average approximation method. Vissers et al. [57] consider the tactical patient mix

optimization problem for a single specialty. Employing a MIP, for each day of the week they

decide on the number of patients from different categories to be admitted into the hospital.

The scarce clinical resources beds (before surgery and for recovery), the operating theater

and the intensive care unit are taken into account. The objective is the minimization of

the over- and underutilization of the clinical resources. Apart from the recent approaches in

operational capacity planning mentioned above, Sepulveda [50] can be regarded as an early

work in evaluating DRG-based cost saving policies using simulation.

The models proposed in this paper can be categorized into and differentiated from the

literature on offline capacity planning of multiple clinical resources as follows. First, an aggre-

gated approach is followed in which clinical activities are assigned to big bucket periods with a

length of one day. This is similar to Vissers et al. [57] and Conforti et al. [12] and differs from

the detailed scheduling approaches of Min and Yih [34] and Pham and Klinkert [39]. However,

Vissers et al. [57] decide on the admission date of patients only and assume for the latter a

fixed schedule. On the contrary, in this paper patients have to be admitted and their clinical

activities are scheduled. Thus, from a hierarchical planning perspective the models developed
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in this paper are located on a decision level below Vissers et al. [57] but located above the

detailed resource planning approaches referenced above. In this respect, our first model uses

the decision of Vissers et al. [57] on the patient’s admission dates in order to perform a con-

tribution margin-based big bucket scheduling decision, detailing on what day which clinical

activities of admitted patients will take place. The second model generalizes the first model

by additionally deciding on the day of admission. The decisions made by each of the models

can then be employed as input for the detailed resource specific planning approaches in order

to decide on more precise schedules and sequences for periods (such as hours or minutes) of

less than a day.

Second, in terms of a deterministic or stochastic approach, our paper follows the aggregated

approaches of Vissers et al. [57] and Conforti et al. [12]. The problems are modelled as

a deterministic MIP using expected values for resource demands of clinical activities, for

recovery times and resource capacities. The usage of expected values is well aligned with

the big bucket scheduling problem, since deviations of the realized values from the expected

values will be mitigated due to variance reduction effects, and there will be no disturbance of

detailed time lines. However, with respect to the demand for bed capacity a deviation from

the expected recovery times will disrupt the schedule. Hence, we embed our deterministic

models in a rolling horizon approach in order to cope with this type of variance.

Third, with respect to the objective function our approach is the only one which considers

contribution margin, a management accounting measure, and not an operational substitute

measure, such as weighted utilization or weighted time.

Finally, with respect to the constraints, our models are, along with Vissers et al. [57], the

only ones which consider all scarce clinical resources in an aggregated manner.

3 Model formulations

In the following, we present the two models for planning the patient flow, one with fixed and

one with variable admission dates.

3.1 The patient flow problem with fixed admission dates

Patients and clinical pathways We consider a set of elective patients P that have to

be treated in the hospital. For each patient p ∈ P we know its clinical pathway which is a

standardized, typically evidence based health care process (see van De Klundert et al. [54]). In

our models we depict the clinical pathway of a patient as an activity-on-node graph in which

the set of nodes represents the clinical activities and weighted arcs represent minimum time

lags between clinical activities. Let A denote the set of all clinical activities to be performed

and let E denote the set of all minimum time lags between clinical activities. A minimum time

lag (i, j) ∈ E of weight dmin
i,j ∈ Z≥0 stipulates that activity j has to be performed at least dmin

i,j

5



periods later than activity i; a period in our model accounts for one day. In Section 3.3 we

provide a detailed example of two patients and their corresponding clinical pathways. Given

the graph (A, E), the admission period αp and the discharge activity φp for each patient p ∈ P,

we calculate for each activity i ∈ A the earliest period Ei and the latest period Li in which

the activity has to be performed with longest path methods (see, for example, Neumann et

al. [35]; details of the calculation are given in Section 4.1). Let Wi := {Ei, Ei + 1, . . . , Li}
denote the time window of activity i and let T be the set of periods (days) within the planning

horizon. The length of the planning horizon |T | is set to the maximum latest period of all

activities maxi∈A Li which equals the latest discharge period of all patients.

Hospital resources Scarce hospital resources are depicted by two sets, day resources and

overnight resources. The set of day resources Rd depicts all resources which are available

during regular working days, such as computer tomography scanner (CT), magnetic resonance

imaging scanner (MRI) and surgery room. Each day resource k ∈ Rd has a capacity Rk,t in

period t ∈ T . The capacity demand of activity i ∈ A on day resource k ∈ Rd is ri,k. Rk,t and

ri,k are typically measured in minutes. The capacity demand ri,k of clinical activities ranges

between several minutes and several hours, whereas the capacity of day resources is, in the

case of a single shift, 8 hours. The set of overnight resources is depicted by Rn. Overnight

resources represent beds available at specialties, for example, the number of beds available at

the surgical specialty. The number of beds available at overnight resource k ∈ Rn in period

t ∈ T is Rk,t. If patient p ∈ P stays in the hospital from day t to day t + 1, he requires one

bed from the overnight resource bp in period t. With R = Rd ∪ Rn we denote the set of all

resources which includes day and overnight resources.

DRG and contribution margin We consider a DRG system in which, given a patient’s DRG

and his admission day, the hospital receives a specific revenue which depends on the DRG and

the discharge date and thus the length of stay. Figures 1(a)–(b) show two length of stay and

DRG dependent revenue functions for a specific DRG (based on the German DRG system).

The revenue (dotted line) is constant if the length of stay (LOS) is between a low LOS trim

point and a high LOS trim point. The trim points, 2 and 9 in Figure 1, represent the length

of stay range for the majority of the patients with a “normal” healing process. For a length

of stay within this range the hospital receives a constant revenue. In the case of a length

of stay below the low LOS trim point there is a per-day reduction of the revenue. In this

scenario, the health insurance company takes into account the fact that the hospital has lower

costs than for the average patient with the same DRG. In contrast, if for medical reasons the

length of stay of a patient is above the high LOS trim point, the hospital receives a per-day

surcharge on top of the fixed revenue in order to compensate additional costs (see case (a)

in Figure 1). However, if a length of stay above the high LOS trim point is not medically
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justified, this surcharge will not be paid (see case (b) in Figure 1). In practice, a claims agent

of the health insurance company scrutinizes the bill, examines the medical record and then

makes a decision regarding the surcharge.
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ing the high LOS trim point
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(b) Constant revenue after reaching the low LOS trim

point

Figure 1: Two example revenue, cost and contribution margin functions

Country Low LOS trim point High LOS trim point Reference

Australia yes yes Sharma [51]

Austria yes yes Busse et al. [5]

Canada no yes Botz [3]

Denmark no yes Schreyögg et al. [47]

England no yes Schreyögg et al. [47]

France yes yes Schreyögg et al. [47]

Germany yes yes Schreyögg et al. [47]

Italy no yes Schreyögg et al. [47]

Spain no yes Schreyögg et al. [47]

Switzerland yes yes (2) Zaugg et al. [58]

USA no yes Rogers et al. [43]

Table 2: DRG-based reimbursement policies of different countries

Table 2 provides an overview of the DRG-based reimbursement policies of different countries.

The table reveals that high LOS trim points exist in all listed countries while low LOS trim

points are only in place in some of the countries. A reason for countries not to employ low

LOS trim points is to provide an incentive for short-stay visits or day-cases (for example in

England, see Schreyögg et al. [47]). The parameter of the revenue function, low and high LOS

trim points, fixed revenue as well as per day reduction and addition are DRG specific (see

for example Porter and Guth [40]). Since we measure the length of stay in discrete days,

the revenue function is discrete as well. From the revenue, we subtract the variable cost not

associated with clinical procedures, which are essentially costs for meals, cleaning and so on
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(dashed line in Figure 1), in order to obtain the contribution margin πp,t−αp for patient p

with admission day αp, discharge day t and thus length of stay t−αp (solid line in Figure 1).

Note that we do not subtract the cost for clinical procedures because, in accordance with the

clinical pathway, the latter will be undertaken in any case and are therefore not relevant for

the decision, whereas the patients’ length of stay is a function of the scheduling decision. Also

note that the time-constant DRG variant is a special case of the time-variable variant and,

hence, our model can be applied directly to the latter.

Decision variables and model formulation Using the binary variables

xi,t =

{
1,

0,

if clinical activity i ∈ A is done at day t ∈ Wi

otherwise

originally introduced by Pritsker et al. [41], we can model the patient flow problem with fixed

admission date (PFP–FA) as follows:

Maximize z =
∑
p∈P

∑
t∈Wφp

πp,t−αp · xφp,t (1)

subject to

∑
t∈Wj

t · xj,t ≥
∑
t∈Wi

t · xi,t + dmin
i,j ∀(i, j) ∈ E (2)

∑
i∈A:t∈Wi

ri,k · xi,t ≤ Rk,t ∀k ∈ Rd, t ∈ T (3)

∑
p∈P:bp=k,t≥αp

1−
min{t,Lφp}∑
τ=Eφp

xφp,τ

 ≤ Rk,t ∀k ∈ Rn, t ∈ T (4)

∑
t∈Wi

xi,t = 1 ∀i ∈ A (5)

xi,t ∈ {0, 1} ∀i ∈ A, t ∈ Wi (6)

The objective function (1) maximizes the contribution margin of all patients who have to be

admitted to the hospital. Constraints (2) ensure minimum time lags between clinical activities.

Note that for dmin
i,j = 0 activities i and j can be performed on the same day. This might be

for example the case for two diagnostic activities. Constraints (3) depict the limited capacity

of day resources. For each resource and day, the capacity demand of all activities performed

at that day must not exceed resource capacity. Note that the dimension of resource capacity

can be, for example, time or slots in a master surgical schedule. Constraints (4) denote the

resource constraints for overnight resources. For patient p, the bed allocation starts with the

fixed admission date αp and the discharge activity φp releases the bed. Constraints (5) ensure
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that each activity is assigned to exactly one period of its time window. Variable definitions

are provided in (6).

Table 3 provides an example of the bed allocation with a planning horizon of T :=

{1, . . . , 7} days, overnight resource Rn := {1} and a single patient P := {1} with admis-

sion date α1 = 1 requiring overnight resource b1 = 1. The first row provides the decision

variables xφ1,t for discharge activity φ1 of patient 1 which has to take place in exactly one

period within the time window Wφ1 := {5, 6, 7}. As can be seen, the PFP–FA selects the dis-

charge period 6 by setting xφ1,6 = 1. The second row gives the left hand side of constraints (4)

for patient 1. The patient requires a bed starting with the night between days 1 and 2 until

the night between days 5 and 6.

t 1 2 3 4 5 6 7

xφ1,t – – – – 0 1 0∑
b1=1,t≥1

(
1−

min{t,Lφ1}∑
τ=Eφ1

xφ1,τ

)
1 1 1 1 1 0 0

Table 3: Bed allocation for the PFP–FA

In contrast to resource-constrained project scheduling (see in Pritsker et al. [41]), the PFP–

FA does not undertake detailed scheduling in which an activity’s starting and ending time is

precisely planned. Instead, the PFP–FA does aggregated planning by assigning activities to

days instead of deciding on activity start and finish times during the day. This aggregated

view can be illustrated by the relation between the length of periods and the duration of

activities. In resource-constrained project scheduling, we typically have activity durations

which are multiples of a period. Conversely, in the case of our model, activity durations are

between 10 minutes and several hours, whereas the length of one period is a working day with,

in the case of one shift, 8 hours. The approach of our model can thus be compared to assembly

line balancing (see for example Boysen et al. [4]) in which tasks are assigned to stations but

no sequencing of tasks within stations is undertaken.

Note that model (1)–(6) does not take into account a master surgery schedule (MSS) in

which OR capacity is assigned on the basis of a day or half-days to specialties but assumes

that surgeries from any specialty can be undertaken any day. However, the model can be

generalized straightforwardly in order to take MSSs into account. For this, constraints (3)

have to be defined not for the aggregated single day resource “operating theatre” but for each

specialty. In consequence, the number of constraints (3) increases.

The number of binary decision variables is
∑
i∈A
|Wi| while the number of constraints is |E|+

|R| · |T | + |A|. For a realistic problem with a planning horizon of |T | = 28 days, |P| = 150

patients, |R| = 10 resources, 3 activities per patient, time window size of |Wi| = 3 days for

each activity i ∈ A and |E| = 300 precedence relations, we have 1,350 binary decision variables
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and 1,030 constraints. Tables 9–11 in Section 4 provide the problem sizes of real-world test

instances.

3.2 The patient flow problem with variable admission dates

In the case of elective patients, the admission date is typically negotiated between the patient

or the referring physician and the hospital. Hence, αp is no longer a parameter. Instead, we

introduce for each patient p admission activity σp which has to be assigned by variables xσp,t

to exactly one admission day t within time window Wσp . Note that in the case of variable

admission dates, the contribution margin function πp,t for patient p ∈ P is defined for lengths

of stay t ∈ Lp, calculated by subtracting the admission date from the discharge date, formally

given by ∑
t∈Wφp

t · xφp,t −
∑
t∈Wσp

t · xσp,t. (7)

In order to ease the readability of the model, we introduce the binary variables

yp,t =

{
1,

0,

if patient p ∈ P has a LOS of t ∈ Lp days

otherwise.

We can now formulate the patient flow problem with variable admission dates (PFP–VA)

as follows:

Maximize z =
∑
p∈P

∑
t∈Lp

πp,t · yp,t (8)

subject to (2)–(3), (5)–(6) and

∑
p∈P:bp=k

min{t,Lσp}∑
τ=Eσp

xσp,τ −
min{t,Lφp}∑
τ=Eφp

xφp,τ

 ≤ Rk,t ∀k ∈ Rn, t ∈ T (9)

∑
t∈Wφp

t · xφp,t −
∑
t∈Wσp

t · xσp,t =
∑
t∈Lp

t · yp,t ∀p ∈ P (10)

∑
t∈Lp

yp,t = 1 ∀p ∈ P (11)

yp,t ∈ {0, 1} ∀p ∈ P, t ∈ Lp (12)

Objective function (8) maximizes the contribution margin of all patients. Overnight resource

constraints (9) have been modified in order to take into account flexible admission dates.

Constraints (10) calculate the LOS as the difference between the start of the discharge activity

and the start of the admission activity. Constraints (11) ensure that for each patient exactly

one LOS is selected and the additional LOS decision variables are defined by (12).

Table 4 provides an extension of the example in Table 3 where, additionally, we assume

for patient 1 admission time window Wσ1 := {1, 2, 3}. The first row provides the decision
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variables for the admission activity σ1 of patient 1 as well as the decision of PFP–VA to

admit patient 1 in the first period (xσ1,1 = 1). The second row gives the time window for

the discharge activity as well as the decision of PFP–VA to discharge patient 1 in period 5

(xφ1,5 = 1). The third row provides the left hand side of the bed allocation constraints (9).

t ∈ T 1 2 3 4 5 6 7

xσ1,t 1 0 0 – – – –

xφ1,t – – – – 1 0 0∑
b1=1

(
min{t,Lσ1}∑
τ=Eσ1

xσ1,τ −
min{t,Lφ1}∑
τ=Eφ1

xφ1,τ

)
1 1 1 1 0 0 0

Table 4: Bed allocation for the PFP–VA

The number of binary decision variables of model PFP–VA is
∑
i∈A
|Wi|+

∑
p∈P
|Lp| and the

number of constraints is |E| + |R| · |T | + 2 · |P| + |A|. Thus, PFP–VA is considerably larger

than PFP–FA. For example, consider the problem instance in Section 3.1 with an additional

admission activity per patient and |Lp| = 3 possible LOSs for each patient p ∈ P. Then, the

number of precedence relations is |E| = 450, the number of binary decision variables is 1,800

and the number of constraints is 1,630. For real-world instances, again, see Tables 9–11 in

Section 4.

3.3 An example of the patient flow problem with fixed and variable admis-

sion dates

In what follows we give an example with two patients. Patient (pat.) 1 has the DRG

I53Z (spinal disc surgery) and patient 2 has the DRG B04D (extracranial surgery). Con-

sider T := {1, . . . , 7} time periods, activities i ∈ A and resources Rd := {1, 2} and Rn := {3}
as shown in Table 5. The overnight resource requirements are b1 = b2 = 3. Clinical pathways

and resource requirements for day resources are shown in Figure 2.

i ∈ A
PFP–FA PFP–VA Description

– 1 Admission of pat. 1

2 2 Spine CT for pat. 1

3 3 Spinal surgery of pat. 1

4 4 Discharge of pat. 1

– 5 Admission of pat. 2

6 6 Arteriography for pat. 2

7 7 Stent implantation of pat. 2

8 8 Discharge of pat. 2

(a)

k ∈ R Description Rk,t

1 Radiology unit 30 min. on workdays,

0 otherwise

2 Operating theater 100 min. on workdays,

0 otherwise

3 Surgical ward 2 beds on workdays,

1 otherwise

(b)

Table 5: Activities (a) and resources (b)
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patient 1patient 223467844r2,1 = 20r3,2 = 70r6,1 = 30r7,2 = 100
(a)

patient 1patient 2Notation:ijri,kdmin
i,j1234567844r2,1 = 20r3,2 = 70r6,1 = 30r7,2 = 100

(b)

Figure 2: Clinical pathways for the PFP–FA (a) and the PFP–VA (b)

In Figure 2(a), r7,2 = 100 denotes that activity 7 (stent implantation for patient 2) requires 100

minutes from day resource 2 which is the operating theater. The minimum time lag dmin
3,4 = 4

between activity 3 and 4 in Figure 2(b) denotes that at least four days of recovery time have

to pass between the surgery and the discharge of patient 1. For the PFP–FA let the admission

days for both patients be α1 = α2 = 1. Table 6 provides earliest and latest time periods to

schedule the activities as obtained by longest path calculation.

i ∈ A 2 3 4 6 7 8

Ei 1 1 5 1 1 5

Li 3 3 7 3 3 7

(a)

i ∈ A 1 2 3 4 5 6 7 8

Ei 1 1 1 5 1 1 1 5

Li 3 3 3 7 3 3 3 7

(b)

Table 6: Earliest and latest periods for the PFP–FA (a) and the PFP–VA (b)

Table 7 shows the contribution margins for the two patients. Note that with increasing t,

this margin decreases.

t 4 5 6

π1,t 3,772.67 3,711.80 3,650.94

π2,t 3,498.41 3,436.15 3,373.90

Table 7: Contribution margin (in ¤) for the PFP–FA and the PFP–VA

Solving the PFP–FA and the PFP–VA with the given parameters, we obtain the optimal

solutions presented in Figures 3(a)–(b).
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(a)

t 1 2 3 4 5 6 7

Patient 1
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t 1 2 3 4 5 6 7

Patient 1

Admission

Spine CT

Spinal surgery

Discharge

Patient 2

Admission

Arteriography

Stent

Discharge

(b)

Figure 3: Optimal solution for the PFP–FA (a) and the PFP–VA (b)

The optimal objective function value of the PFP–FA and the PFP–VA is ¤ 7,210.21 and

¤ 7,271.08, respectively. Note that in the case of fixed admission dates, the length of stay of

patient 1 is one day longer than in the case of variable admission dates. The admission date

and the discharge date of patient 2 are postponed by one day in the case of flexible admission

dates, resulting in the same length of stay as in the fixed case.

4 Computational study

In the following, a computational and economic analysis of scheduling the hospital-wide patient

flow is provided.

4.1 Data and instance generation

We evaluated our models on data from the county hospital Erding, a 400-bed sized hospital

in the vicinity of Munich, Germany. We joined the hospital data with data from the German

institute for the reimbursement in hospitals (see Schreyögg et al. [48]). The latter contains the

information on the DRG attributes such as low and high LOS trim point, fixed revenue as well

as per day reduction and addition. Following suggestions from the hospital’s management,

the 18 DRGs shown in Table 8 were selected because at the time a patient contacts the hospital

for admission, these DRGs can be classified with sufficient accuracy. The table provides the

number of patients for each DRG (n), the classification accuracy (Acc.), i.e. the probability

of assigning the correct DRG at admission and the surgery lead time. The surgery lead time

is the minimum number of days required for medical activities prior to surgery. Examples
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are laboratory tests which have to be made prior to an incision or the time required for

pre-medication to take effect in the patient’s metabolism before surgery. We depict surgery

lead time with a minimum time lag between the admission activity and the surgery activity.

For the year 2008, the 18 selected DRGs represent 11.6% of all admitted patients. In the

following, we assume that these DRGs can be classified with high accuracy at the time the

patient or the referring physician contacts the hospital. For the PFP–FA, we set for each

patient p ∈ P the admission date αp according to the realized admission date as given by the

hospital data. In the case of the PFP–VA the admission time window Wσp is set according to

the realized admission week. For example, if a patient was admitted on Wednesday, then for

the PFP–FA we set αp to that specific Wednesday whereas for the PFP–VA we require that

the patient has to be admitted between Monday and Friday of that specific week. Only 3.8%

of the patients required capacity on the ICU and of them 42.8% left the ICU within 24 hours.

For the sake of simplicity, we therefore model the ICU as a day resource. Pre- and post-

clinical treatments are not considered. Resource capacity Rk,t is determined by using the

entire capacity of resource k ∈ R on day t ∈ T minus capacity allocated to patients who

do not have the selected DRGs. The order of activities (i, j) ∈ E is set according to the

order of time stamps in the hospital data. For the capacity demand ri,k of clinical activity i

on day resources k we use averages (avg.) of the observed distributions. As already stated

above, this approach is robust because, first, the capacity demand of activities is a fraction of

the available capacity per day, and, second, we benefit from variance reduction effects when

summing up the capacity demands of activities assigned to the resource on the same day.

The recovery time of each patient is determined by the difference between the time stamps

of the discharge activity and its immediately preceding activity in the clinical pathway. For

example, for patient 2 in Figure 2(b) activity 7 (stent implementation) immediately precedes

activity 8 (discharge). Note that a surgery activity is not always the immediate predecessor

of the discharge activity. For example, for DRG I68C in Table 8 a pain therapy activity is the

immediate predecessor of the discharge activity.
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DRG Description n Acc. [%] Surgery lead time [days]

B04D Extracranial surgery 47 96.6 1

C08B Cataract surgery 61 100 0

D30B Tonsillectomy 45 100 0

D38Z Nose surgery 50 89.4 0

F39B Vein stripping 138 89.8 0

G24Z Hernia repair 120 98.4 0

H08B Laparoscopic cholecystectomy 169 100 0

I44B Knee arthroplasty 62 93.1 1

I53Z Spinal disc surgery 139 98.3 0

I68C Spinal disc therapy (age > 55 years) 260 87.1 0

I68D Spinal disc therapy (age < 56 years) 165 81.6 0

K12Z Thyroid surgery 28 88.2 0

L06B Non-complex urinary bladder incision 70 90.4 0

L20C Complex urinary bladder incision 132 95.2 0

L64A Bladder stone (age > 75 years) 127 90.8 0

M02Z Prostate resection 54 100 0

N21Z Hysterectomy 52 89.7 1

N25Z Abrasio 51 82.4 0

Table 8: Statistics for the selected DRGs

Time windows for activities are determined by using longest path calculation (see Neumann

et al. [35]). More precisely, in the case of the PFP–FA we set the earliest period of the first

activity of a patient p equal to the admission date αp. We then calculate earliest periods

for all other activities of the patient using longest path methods. In doing so, the minimum

surgery lead time between an activity preceding surgery and the surgery activity itself has to

be taken into account for some surgeries (see column “Surgery lead time” in Table 8). In order

to determine the latest periods Li, we set Lφp = Eφp + w using the time window variation

parameter w and calculate the latest periods for all other activities of patient p. For the

PFP–VA we set the earliest period of the admission activity σp to the Monday of the week in

which the patient was admitted. We then calculate earliest periods as for the PFP–FA. For

the latest period of the discharge activity we set Lφp = Eφp + 4 + w. The “4” is added in

order to allow for a time window variation parameter of w = 0 which ensures that the patient

is admitted between Monday and Friday. The time window variation parameter w has been

varied between 0 and 6 (see Figure 4).

In total, we generated 12 test instances. Instance 1, 2, ..., 12 represents all elective patients

with the DRGs as provided in Table 8 admitted in month 1, 2, ..., 12 of 2008. Table 9 provides

the number of patients for each month as well as other key figures when the time window

parameter w is set to w = 4 for the PFP–FA and w = 1 for the PFP–VA.
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Instance |T | |P| |A| |E| 1
|A|
∑
i∈A
|Wi|

FA VA FA VA FA VA FA VA

1 53 52 179 453 632 274 453 5.6 5.3

2 45 45 142 356 498 214 356 5.6 5.5

3 46 46 145 335 480 190 335 5.3 5.6

4 47 45 185 449 634 264 449 5.4 5.2

5 53 52 137 350 487 213 350 5.5 5.5

6 51 48 147 377 524 230 377 5.7 5.2

7 47 46 141 347 488 206 347 5.4 5.3

8 49 50 114 286 400 172 286 5.4 5.6

9 44 42 136 340 476 204 340 5.5 5.2

10 45 46 154 379 533 225 379 5.5 5.5

11 44 44 153 363 516 210 363 5.4 5.6

12 33 34 137 320 457 183 320 5.4 5.6

avg. 46.4 45.8 147.5 362.9 510.4 215.4 362.9 5.5 5.4

Table 9: Sizes of the problem instances

As can be seen in the last two columns, this choice of w results in time windows of comparable

size of the two models which are abbreviated as “FA” and “VA” in the table. The available

capacity of the hospital resources has been adjusted by those patients which are not considered

in the instances. These are non-elective patients and elective patients with DRGs different

from the ones given in Table 8. Table 10 provides the daily capacity of the 12 day and

3 overnight resources before subtracting the expected demand of unplanned patients. For

example, the daily operating theater capacity of 3,600 minutes comes from 6 operating rooms,

each one opens from 8 a.m. until 6 p.m. on Monday through Friday.
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k ∈ R Description Rk,t

1–9 Biopsy, endoscopy, functional

test, punction, ultrasound, CT,

arteriography, nuclear medicine,

MRI resources

480 min. on workdays, 0 otherwise

10 Operating theater 3,600 min. on workdays, 0 otherwise

11 Physical therapy 1,900 min. on workdays, 0 otherwise

12 ICU 40 beds on workdays, 90% of the work-

day capacity otherwise

13 Ear, nose and throat 155 beds on workdays, 90% of the

workday capacity otherwise

14 Internal medicine 115 beds every day, 90% of the workday

capacity otherwise

15 Surgical specialty 95 beds every day, 90% of the workday

capacity otherwise

Table 10: Resources and capacities

4.2 Computation time analysis for the static approaches

Table 11 shows the number of variables and constraints as well as the computation times.

All computations were performed on a 2 GHz PC (Intel Core2 Duo T7250) with 4 GB RAM

running Windows 7 operating system. The models were coded in Java in an ILOG Concert

environment. The solver used was ILOG CPLEX 12.2 (64 bit).

Instance #Var. #Constr. Computation time [s]

FA VA FA VA FA VA

1 2,558 5,031 1,701 2,402 0.1 0.8

2 1,995 4,135 1,387 1,955 0.1 0.3

3 1,778 4,124 1,360 1,940 0.2 0.4

4 2,435 4,951 1,603 2,313 0.2 0.9

5 1,917 4,036 1,495 2,028 0.2 0.5

6 2,165 4,102 1,519 2,062 0.1 0.5

7 1,886 3,913 1,399 1,948 0.1 0.4

8 1,553 3,350 1,307 1,778 0.1 0.3

9 1,877 3,718 1,340 1,854 0.2 0.3

10 2,067 4,451 1,433 2,064 0.1 0.4

11 1,945 4,430 1,386 1,998 0.1 0.6

12 1,742 3,942 1,135 1,698 0.1 0.4

avg. 1,993.2 4,181.9 1,422.1 2,003.3 0.1 0.5

Table 11: Number of decision variables, constraints and solutions times

Each instance was optimally solved in less than a second by each of the two models, with

PFP–VA requiring solution times of factor 2 or more than the PFP–FA.
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4.3 Economic analysis for the static approaches

Table 12 provides the absolute and relative improvement of the contribution margins obtained

by the models when compared to the hospital data. The hospital does not have a formal

approach for dealing with the patient flow problem. Instead, it employs a heuristic procedure

for deciding on the discharge date and thus patients’ LOS. The procedure works as follows.

First, the medical criteria always have priority over the economic criteria. That is, a patient

is not discharged until fully recovered. As soon as a patient has sufficiently recovered, the

discharge decision is based on the marginal contribution margin. The patient is kept in the

hospital as long as the marginal contribution margin is increasing and is discharged as soon

as the marginal contribution margin is decreasing.

Instance Improvement [¤] Improvement [%]

PFP–FA PFP–VA PFP–FA PFP–VA

1 7,252.3 16,976.5 2.3 5.3

2 8,563.9 15,507.5 3.0 5.5

3 13,352.1 16,971.6 5.2 6.6

4 10,470.2 16,497.7 3.0 4.7

5 6,296.4 16,748.8 2.5 6.5

6 8,932.3 15,146.8 3.0 5.1

7 7,577.6 17,932.8 3.2 7.5

8 7,000.0 13,779.2 3.1 6.0

9 12,275.7 15,599.7 4.7 6.0

10 10,969.7 15,749.3 3.9 5.6

11 10,530.4 14,194.3 3.8 5.1

12 9,605.1 14,054.0 4.1 6.0

avg. 9,402.1 15,763.2 3.5 5.8

Table 12: Economic improvement for the static approaches

The average relative economic improvement for solving the test instances to optimality com-

pared to the hospital solution is 3.5% and 5.8% when employing the fixed admission date

model PFP–FA and the flexible admission date model PFP–VA, respectively. This is equiv-

alent to a monthly increase of the contribution margin of ¤ 9,402.1 for the PFP–FA and of

¤ 15,763.2 for the PFP–VA.

4.4 Rolling horizon approach

In practice, there is considerable variance in the data and therefore hospitals cannot undertake

a flow management of patients for a whole month in advance. Instead, they have to embed

the model into a rolling horizon approach in which the planning of the patient flow is done

every day with the most recent information available. This is also done in practice. Here,
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the hospital undertakes daily allocation decisions for single resources, such as the operating

theater and the wards. For example, each afternoon a decision is made about which of the

patients will be considered for surgery on the next day. Therefore, we have embedded each

of the two patient flow models in a rolling horizon approach in which each problem instance

is solved each day instead of once a month. In each run, the most recent data is used. This

is deterministic data which has become available at the day of planning, such as planned

admissions in the PFP–FA, or stochastic data for which expected values are calculated. More

precisely, we embedded the PFP–FA in the rolling horizon approach as follows. We solve

the model each day with all remaining, i.e. not yet undertaken, clinical activities of patients

admitted at that day or patients not yet discharged. The available resource capacity per day is

calculated by subtracting the average week-day dependent demand of patients not considered

in our planning approach (non elective patients and elective patients with DRGs different

from the ones given in Table 8) from the overall capacity. For the first day of each planning

horizon we subtract the observed capacity demand of all patients not considered in our model

from the overall capacity. The duration of the recovery activities is calculated with Bayesian

updating. We employed the approach of Tu et al. [53] which successfully used Bayesian

methods to predict recovery times. We added the attribute DRG and so far realized recovery

time to the attributes age, gender and type of surgery. When embedding the PFP–VA in the

rolling horizon approach, we considered all patients which were admitted in the week under

consideration instead of all patients which were admitted at the day of planning as in the PFP–

FA. Thereby, we assumed that all requests of elective patients are known at the beginning of

the week. Using data of the first half of 2008 to initialize the probability tables of the Bayesian

classifier and to forecast available capacity, we run the rolling horizon approach for the third

quarter of 2008. When calculating the activity time windows for the rolling horizon approach,

we proceeded similarly to the static approach with the following modifications. First, for

both models, the PFP–FA and the PFP–VA, we employ recovery times as calculated with

the Bayesian classifier instead of using realized recovery times. Second, for calculating latest

time periods we set the latest period of the discharge activity Lφp of patient p equal to the

maximum DRG-dependent recovery time. With this approach we obtain time windows which

are on average larger than in the static case. In order to make the results comparable we

adjusted the time window variation parameter to w = 6 for the fixed admission and to w = 5

for the variable admission model leading to a negligible difference between the static and the

rolling horizon approach of 0.1 and 0.5 days for the PFP–FA and the PFP–VA, respectively

(see Table 9).

For the PFP–FA, when running the model for day t, we admit all patients with αp = t.

For the PFP–VA, when running the model for day t, we allow the model to admit all patients

which were admitted at that day or some day later in the week. For example, if t is a Monday,
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the model schedules the admission activity σp of all patients in the hospital data admitted

in that week on exactly one day between Monday and Friday. However, only the decision

of patients scheduled on Monday will be fixed. If t is a Tuesday, the model schedules the

admission activities of all patients in the hospital data admitted in that week who were not

scheduled for Monday and so forth.

Table 13 gives the gain in contribution margin for the PFP–FA and the PFP–VA when im-

plemented in a static vs a rolling horizon approach for the third quarter of 2008.

Improvement [¤] Improvement [%]

PFP–FA PFP–VA PFP–FA PFP–VA

Static 46,844.2 47,311.7 6.4 6.5

Rolling horizon 27,441.0 33,427.0 3.9 5.1

Table 13: Economic improvement of the static vs the rolling horizon approaches

Note that the improvement for the static approach is larger than the sum of the improvements

for the instances 7 – 9 (July – September) given in Table 12. This is due to the larger time

windows which were used in the rolling horizon approach. From Table 13 one can see that the

improvement of both models compared to the hospital solution is reduced for the more real-

istic rolling horizon approach. This holds true to a larger extent for PFP–FA. Nevertheless,

both approaches and in particular PFP–VA still provide significant improvements compared

to the hospital solution. The inferior results of the rolling horizon approach are due to incom-

plete information. More precisely, for the rolling horizon approach a forecast of the recovery

times is used rather than deterministic recovery times. Furthermore, the stochastic resource

availability for the first period of each planning run is also considered.

Influence of the time window size Figures 4(a)–(b) show the impact of the time window

variation parameter w on the computation time and the relative improvement of PFP–FA and

PFP–VA.
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Figure 4: Computation time (a) and relative improvement (b) as a function of w

For increasing time window variation parameter values w the computation time and the eco-

nomic improvement, compared to the hospital solution, are increasing as well. The increase of

the computation time can be observed in particular for the PFP–VA, which considers, when

compared to the PFP–FA, the same number of patients but larger networks due to more activ-

ities and more precedence constraints. The increase in the improvement is particularly strong

for the PFP–FA. The impact on the improvement of the PFP–VA is only small because the

latter uses, by definition, larger time window sizes due to the admission time window whereas

the PFP–FA uses smaller ones. For both approaches, the PFP–FA and the PFP–VA, the

marginal improvement beyond a time window variation parameter of w = 3 is small.

Length of stay and time admitted patients wait for surgery Figures 5(a)–(b) provide

the frequency distribution for the time span between admission and surgery as well as the

length of stay in the hospital.
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Figure 5: Time span between admission and surgery (a) and LOS (b)

Our models reduce the time span between admission and surgery compared to the hospital

solution. In the hospital solution the difference between the surgery and the admission date

is on average 1.8 days. In both, the solutions of the static PFP–FA and the PFP–VA, the

average time span between admission and surgery is 0.2 days while it is 0.1 and 0.2 days for

the rolling horizon PFP–FA and PFP–VA, respectively. Employing our models also leads to

a reduction in the length of stay. Compared to the hospital solution with an average LOS of

6.5 days, the static PFP–FA and PFP–VA reduce the length of stay to 4.2 days. The rolling

horizon implementation results in a slightly longer length of stay of 4.3 days for the PFP–FA

and 4.6 days for the PFP–VA, respectively.

5 Conclusion

In this paper we have presented two discrete optimization models for the problem of scheduling

elective patients hospital-wide with the objective to maximize the contribution margin. For the

first model, we assumed a fixed admission date whereas in the second model this assumption

is relaxed. We embedded both models into a rolling horizon approach in order to cope with

stochastic data. Using real-world data from a mid-size hospital we performed an elaborate

computational study in order to study the applicability and the impact of the models. The

results show that the test instances can be solved to optimality within a very moderate time

of a fraction of a second on average. The obtained results are clearly superior to the current

solution of the hospitals which are derived with a simple heuristic. Analyzing our solutions

we observed that the time span between admission and surgery and the length of stay in the

hospital can be decreased substantially.
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